For the circuit above, $V_i = 10 \text{ mV}$:

- What is V_o if the amplifier is ideal?
- What is V_o if the offset voltage, $V_{OS} = 10 \mu V$?
- What is V_o if the bias current, $I_B = 10 \text{ nA}$?

- What is V_o if the amplifier is ideal?
 Represent ideal as \bar{V}_o

 $$V_+ = \frac{25 \text{ k}\Omega}{25 + 2.4 \text{ k}\Omega} V_i = (9.120 \text{ mV}, \quad \bar{V}_o = \left(1 + \frac{25 \text{ k}\Omega}{2.4 \text{ k}\Omega}\right) V_+ = 11.417 V_+ = 104.123 \text{ mV}$$

- What is V_o if the offset voltage, $V_{OS} = 10 \mu V$?
 Use superposition to get (V'_o) then add to ideal V_{OS}:

 $$V'_o = \left(1 + \frac{25 \text{ k}\Omega}{2.4 \text{ k}\Omega}\right) V_{OS} = 11.417 \times V_{OS} = 0.114 \text{ mV}$$

 $$V_o = \bar{V}_o + V'_o = 104.237 \text{ mV}$$

- What is V_o if the bias current, $I_B = 10 \text{ nA}$?
 First, use superposition to get (V''_o) for I_B into V_+. Current travels through parallel resistors.

 $$V'_o = -\left(1 + \frac{25 \text{ k}\Omega}{2.4 \text{ k}\Omega}\right) \left(\frac{R_1}{R_1} R_2\right) I_B = -11.417 \times 2.190 \text{ k}\Omega \times I_B = -0.250 \text{ mV}$$

 Next, use superposition to get (V''_o) for I_B into $V_−$. Current through R_1, since FB keeps $V_−$ at ground. Note that this resistor configuration cancels I_B.

 $$V''_o = (25 \text{ k}\Omega) I_B = 0.250 \text{ mV}$$

 $$V_o = \bar{V}_o + V'_o + V''_o = 104.123 \text{ mV}$$
The op amp is ideal, except \(f_T (= \text{Gain-Bandwidth}) \) is 120 kHz.

For the circuit above, \(V_i = (20 \text{ mV}) \cos(2\pi ft) \):

- What is the peak-to-peak amplitude of \(V_o \) if \(f = 3 \text{ kHz} \)?
- What is the peak-to-peak amplitude of \(V_o \) if \(f = 30 \text{ kHz} \)?

First, analyse ideal gain, \(\tilde{V}_o \)

\[
V_+ = \frac{27 \text{k}\Omega}{27 + 3.4 \text{k}\Omega} V_i = 0.888 V_i \quad \tilde{V}_o = \left(1 + \frac{27 \text{k}\Omega}{3.4 \text{k}\Omega}\right) V_+ = 8.941 V_+ = 7.940 V_i
\]

- What is the peak-to-peak amplitude of \(V_o \) if \(f = 3 \text{ kHz} \)?
 Given Gain-Bandwidth, maximum possible gain is \(G = (G \cdot BW)/f = 120/3 = 40 \).
 We specify a gain of 7.940 which is less than 40, so we get the specified gain.
 \(V_o = 7.940 \times (20 \text{ mV}) \cos(2\pi ft) \), and peak-peak voltage is \(2 \times \max(V_o) \).
 Answer: 317.6 mV.

- What is the peak-to-peak amplitude of \(V_o \) if \(f = 30 \text{ kHz} \)?
 Given Gain-Bandwidth, maximum possible gain is \(G = (G \cdot BW)/f = 120/30 = 4 \).
 We specify a gain of 7.940 which is greater than 4, so we only get a gain of 4.
 \(V_o = 4 \times (20 \text{ mV}) \cos(2\pi ft) \), and peak-peak voltage is \(2 \times \max(V_o) \).
 Answer: 160.0 mV.
For the circuit above:

- **What type of filter is this?** (high pass, low pass, band pass, band stop)

 This is a low pass filter

- What is the cut-off frequency \(f_c \) and damping constant \(\zeta \)?

 \[
 \omega_c = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{6.7 \text{ mH} \cdot 16.9 \mu\text{F}}} = 2971.798 \text{ rad/s}, \quad f_c = 2\pi\omega_c = 18671.967 \text{ Hz}
 \]

 and,

 \[
 \zeta = \frac{R}{2} \sqrt{\frac{C}{L}} = \frac{267 \text{k} \Omega}{2} \sqrt{\frac{16.9 \mu\text{F}}{6.7 \text{ mH}}} = 6.705
 \]

- Sketch the amplitude of \(\frac{V_o}{V_i} \) as a function of frequency. Label the passband, stopband and roll-off rate.

 \(\frac{V_o}{V_i} \) starts near 1.0. After \(f_c \), graph decreases at 40 dB/decade.