For the circuit above, \(V_i = 10 \text{ mV} \):

- What is \(V_o \) if the amplifier is ideal?

- What is \(V_o \) if the offset voltage, \(V_{OS} = 10 \mu \text{V} \)?

- What is \(V_o \) if the bias current, \(I_B = 10 \text{nA} \)?

\[
V_+ = \frac{22 \text{k}\Omega}{22 + 1.6 \text{k}\Omega} V_i = (9.320 \text{ mV}) \quad \bar{V}_o = \left(1 + \frac{22 \text{k}\Omega}{1.6 \text{k}\Omega}\right) V_+ = 14.750 \text{ V}_+ = 137.470 \text{ mV}
\]

- What is \(V_o \) if the offset voltage, \(V_{OS} = 10 \mu \text{V} \)?

Use superposition to get \((V_o') \) then add to ideal \(V_{OS} \):

\[
V_o' = \left(1 + \frac{22 \text{k}\Omega}{1.6 \text{k}\Omega}\right) V_{OS} = 14.750 \times V_{OS} = 0.147 \text{ mV}
\]

\[
V_o = \bar{V}_o + V_o' = 137.617 \text{ mV}
\]

- What is \(V_o \) if the bias current, \(I_B = 10 \text{nA} \)?

First, use superposition to get \((V_o'') \) for \(I_B \) into \(V_+ \). Current travels through parallel resistors.

\[
V_o'' = -\left(1 + \frac{22 \text{k}\Omega}{1.6 \text{k}\Omega}\right) (R_1 \parallel R_2) I_B = -14.750 \times 1.492 \text{k}\Omega \times I_B = -0.220 \text{ mV}
\]

Next, use superposition to get \((V_o'') \) for \(I_B \) into \(V_- \). Current through \(R_1 \), since FB keeps \(V_- \) at ground. Note that this resistor configuration cancels \(I_B \).

\[
V_o'' = (22 \text{k}\Omega) I_B = 0.220 \text{ mV}
\]

\[
V_o = \bar{V}_o + V_o' + V_o'' = 137.470 \text{ mV}
\]
The op amp is ideal, except $f_T (= \text{Gain-Bandwidth})$ is 120 kHz.

\[\frac{26 \, \text{kΩ}}{26 + 2.5 \, \text{kΩ}} V_i = 0.912 V_i \quad \bar{V}_o = \left(1 + \frac{26 \, \text{kΩ}}{2.5 \, \text{kΩ}} \right) V_+ = 11.400 V_+ = 10.397 V_i \]

- What is the peak-to-peak amplitude of V_o if $f = 3 \, \text{kHz}$?
- What is the peak-to-peak amplitude of V_o if $f = 30 \, \text{kHz}$?

First, analyse ideal gain, \bar{V}_o

For the circuit above, $V_i = (20 \, \text{mV}) \cos(2\pi ft)$:

- What is the peak-to-peak amplitude of V_o if $f = 3 \, \text{kHz}$?
 Given Gain-Bandwidth, maximum possible gain is $G = (G \cdot BW) / f = 120 / 3 = 40$.
 We specify a gain of 10.397 which is less than 40, so we get the specified gain.
 $V_o = 10.397 \times (20 \, \text{mV}) \cos(2\pi ft)$, and peak-peak voltage is $2 \times max(V_o)$.
 Answer: 415.9 mV.

- What is the peak-to-peak amplitude of V_o if $f = 30 \, \text{kHz}$?
 Given Gain-Bandwidth, maximum possible gain is $G = (G \cdot BW) / f = 120 / 30 = 4$.
 We specify a gain of 10.397 which is greater than 4, so we only get a gain of 4.
 $V_o = 4 \times (20 \, \text{mV}) \cos(2\pi ft)$, and peak-peak voltage is $2 \times max(V_o)$.
 Answer: 160.0 mV.
For the circuit above:

- **What type of filter is this?** (high pass, low pass, band pass, band stop)
 - This is a low pass filter

- What is the cut-off frequency \(f_c \) and damping constant \(\zeta \)?

 \[
 \omega_c = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{5.0 \text{ mH} \cdot 12.6 \mu C}} = 3984.095 \text{ rad/s}, \quad f_c = 2\pi\omega_c = 25032.283 \text{ Hz}
 \]

 and,

 \[
 \zeta = \frac{R}{2\sqrt{C/L}} = \frac{258 \text{ k}\Omega}{2\sqrt{12.6 \mu\text{F}/5.0 \text{ mH}}} = 6.476
 \]

- Sketch the amplitude of \(\frac{V_o}{V_i} \) as a function of frequency. Label the passband, stopband and roll-off rate.
 - \(\frac{V_o}{V_i} \) starts near 1.0. After \(f_c \), graph decreases at 40 dB/decade.