For the circuit above, $V_i = 10 \text{ mV}$:

- What is V_o if the amplifier is ideal?

- What is V_o if the offset voltage, $V_{OS} = 10 \mu \text{V}$?

- What is V_o if the bias current, $I_B = 10 \text{ nA}$?

- What is V_o if the amplifier is ideal?
 Represent ideal as \bar{V}_o

 $$V_+ = \frac{27 \text{ k} \Omega}{27 + 2.7 \text{ k} \Omega} V_i = (9.090 \text{ mV}, \quad \bar{V}_o = \left(1 + \frac{27 \text{ k} \Omega}{2.7 \text{ k} \Omega}\right) V_+ = 11.000 V_+ = 99.990 \text{ mV}$$

- What is V_o if the offset voltage, $V_{OS} = 10 \mu \text{V}$?
 Use superposition to get (V_o') then add to ideal V_{OS}:

 $$V_o' = \left(1 + \frac{27 \text{ k} \Omega}{2.7 \text{ k} \Omega}\right) V_{OS} = 11.000 \times V_{OS} = 0.110 \text{ mV}$$
 $$V_o = \bar{V}_o + V_o' = 100.100 \text{ mV}$$

- What is V_o if the bias current, $I_B = 10 \text{ nA}$?
 First, use superposition to get (V_o'') for I_B into V_+. Current travels through parallel resistors.

 $$V_o'' = -(1 + \frac{27 \text{ k} \Omega}{2.7 \text{ k} \Omega}) (R_1 \parallel R_2) I_B = -11.000 \times 2.455 \text{ k} \Omega \times I_B = -0.270 \text{ mV}$$

 Next, use superposition to get (V_o''') for I_B into V_-. Current through R_1, since FB keeps V_- at ground. Note that this resistor configuration cancels I_B.

 $$V_o''' = (27 \text{ k} \Omega) I_B = 0.270 \text{ mV}$$

 $$V_o = \bar{V}_o + V_o' + V_o''' = 99.990 \text{ mV}$$
The op amp is ideal, except $f_T (= \text{Gain-Bandwidth})$ is 120 kHz.

For the circuit above, $V_i = (20 \text{ mV}) \cos(2\pi ft)$:

- What is the peak-to-peak amplitude of V_o if $f = 3 \text{ kHz}$?
- What is the peak-to-peak amplitude of V_o if $f = 30 \text{ kHz}$?

First, analyse ideal gain, \bar{V}_o

\[
V_+ = \frac{26 \text{ k}\Omega}{26 + 3.9 \text{ k}\Omega} V_i = 0.870 V_i \quad \bar{V}_o = \left(1 + \frac{26 \text{ k}\Omega}{3.9 \text{ k}\Omega}\right) V_+ = 7.667 V_+ = 6.670 V_i
\]

- What is the peak-to-peak amplitude of V_o if $f = 3 \text{ kHz}$?

 Given Gain-Bandwidth, maximum possible gain is $G = (G \cdot BW)/f = 120/3 = 40$.

 We specify a gain of 6.670 which is less than 40, so we get the specified gain.

 $V_o = 6.670 \times (20 \text{ mV}) \cos(2\pi ft)$, and peak-peak voltage is $2 \times \text{max}(V_o)$.

 Answer: 266.8 mV.

- What is the peak-to-peak amplitude of V_o if $f = 30 \text{ kHz}$?

 Given Gain-Bandwidth, maximum possible gain is $G = (G \cdot BW)/f = 120/30 = 4$.

 We specify a gain of 6.670 which is greater than 4, so we only get a gain of 4.

 $V_o = 4 \times (20 \text{ mV}) \cos(2\pi ft)$, and peak-peak voltage is $2 \times \text{max}(V_o)$.

 Answer: 160.0 mV.
For the circuit above:

- **What type of filter is this?** (high pass, low pass, band pass, band stop)

 This is a low pass filter

- Sketch the amplitude of $\frac{V_o}{V_i}$ as a function of frequency. Label the passband, stopband and roll-off rate.

- What is the cut-off frequency (f_c) and damping constant (ζ)?

 $\omega_c = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{7.3 \text{ mH} \cdot 19.4 \mu \text{F}}} = 2657.282 \text{ rad/s}, \quad f_c = 2\pi \omega_c = 16695.846 \text{ Hz}$

 and,

 $\zeta = \frac{R}{2 \sqrt{\frac{C}{L}}} = \frac{257 \text{ k} \Omega}{2 \sqrt{\frac{19.4 \mu \text{F}}{7.3 \text{ mH}}}} = 6.624$

- Sketch the amplitude of $\frac{V_o}{V_i}$ as a function of frequency. Label the passband, stopband and roll-off rate.

 $\frac{V_o}{V_i}$ starts near 1.0. After f_c, graph decreases at 40 dB/decade.