For the circuit above:

- What is the Differential Gain, $G_d = V_o/(V_B - V_A)$?

- What is the Common-mode Gain, $G_{cm} = V_o/\left(\frac{1}{2}(V_B + V_A)\right)$?

- What is the Common-mode Rejection Ratio (CMRR)?

All op amps are ideal with $V_{CC} = 15$ V and $V_{CC} = -15$ V.

- What is the Differential Gain, $G_d = V_o/(V_B - V_A)$?

$$V_o = \left(\frac{R_3 + R_4}{R_1 + R_2}\right) \left(\frac{R_3}{R_2}\right) V_B - \left(\frac{R_1}{R_2}\right) V_B$$

$$V_o = \left(\frac{24 + 2.0}{24 + 2.001}\right) \left(\frac{24}{2.001}\right) V_B - \left(\frac{24}{2.001}\right) V_B = 11.9995 V_B - 11.9940 V_A$$

Set $V_B = -V_A = 1$ V, $V_d = V_B - V_A = 2$ V.

$G_d = V_o/V_d = (11.9995(1) - 11.9940(-1))/2 = 11.9968$

- What is the Common-mode Gain, $G_{cm} = V_o/\left(\frac{1}{2}(V_B + V_A)\right)$?

Set $V_B = V_A = 1$ V, $V_{cm} = \frac{1}{2}(V_B + V_A) = 1$ V.

$G_{cm} = V_o/V_d = |11.9995(1) - 11.9940(1)|/1 = 0.0055$

- What is the Common-mode Rejection Ratio (CMRR)?

$CMRR = 20 \log_{10} \frac{11.9968}{0.0055} = 66.77$
For the circuit above:

- Sketch \(V_o \) as a function of time.
- What is \(V_x - V_y \) at \(t = 45 \) ms?

All op amps are ideal with \(V_{CC} = 15 \) V and \(V_{CC} = -15 \) V.

Thus:

\[
V_o = \left(1 + \frac{2R_A}{R_G}\right) \left(\frac{R_1}{R_2}\right) (V_B - V_A)
\]

\[
V_o = \left(1 + \frac{2 \times 50}{2.3}\right) \left(\frac{57}{3.5}\right) (V_B - V_A) = 724.4 (V_B - V_A)
\]

Thus:

<table>
<thead>
<tr>
<th>(t) (ms)</th>
<th>(V_A) (mV)</th>
<th>(V_B) (mV)</th>
<th>(V_o) (V) = 724.4((V_B - V_A))</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2.1</td>
<td>4.2</td>
<td>1.521</td>
</tr>
<tr>
<td>15</td>
<td>2.9</td>
<td>4.2</td>
<td>0.942</td>
</tr>
<tr>
<td>25</td>
<td>2.1</td>
<td>4.2</td>
<td>1.521</td>
</tr>
<tr>
<td>35</td>
<td>2.1</td>
<td>6.4</td>
<td>3.115</td>
</tr>
<tr>
<td>45</td>
<td>2.1</td>
<td>4.2</td>
<td>1.521</td>
</tr>
</tbody>
</table>

- What is \(V_x - V_y \) at \(t = 45 \) ms?

\[
V_x - V_y = \left(1 + \frac{2R_A}{R_G}\right) (V_B - V_A)
\]

\[
V_x - V_y = 44.48 (V_B - V_A) = 44.48 (4.2 \text{ mV} - 2.1 \text{ mV}) = 0.093 \text{ V}
\]
For the input, V_i, below, sketch the output, V_o, on the same graph. Indicate voltage levels and the times of any transitions. (The op amp is ideal with the indicated V_{CC} and V_{EE} values).

Non-inverting amplifier:
Gain: $G = 1 + R_1/R_2 = 1 + 49/3.0 = 17.33$

Ideally, output would swing from -34.66 V (at $t = 0$ ms) to 34.66 V (at $t = 20$ ms).
However, output is limited to ± 10 V.
Slope is $2 \times 34.66/20 = 1.733$ V/ms.
So starting at $V=0$, the limit of 10 V is reached in
$\Delta t = 10 V/1.733 V/ms = 5.770$ ms

<table>
<thead>
<tr>
<th>t (ms)</th>
<th>t (ms)</th>
<th>V_o (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5.770</td>
<td>-10</td>
</tr>
<tr>
<td>10</td>
<td>15.77</td>
<td>$+10$</td>
</tr>
<tr>
<td>30</td>
<td>24.23</td>
<td>$+10$</td>
</tr>
<tr>
<td>30</td>
<td>35.77</td>
<td>-10</td>
</tr>
</tbody>
</table>