For the circuit above:

- What is the Differential Gain, \(G_d = \frac{V_o}{(V_B - V_A)} \)?

- What is the Common-mode Gain, \(G_{cm} = \frac{V_o}{\left(\frac{1}{2}(V_B + V_A)\right)} \)?

- What is the Common-mode Rejection Ratio (CMRR)?

All op amps are ideal with \(V_{CC} = 15 \text{ V} \) and \(V_{CC} = -15 \text{ V} \).

- What is the Differential Gain, \(G_d = \frac{V_o}{(V_B - V_A)} \)?

\[
V_o = \left(\frac{R_3 + R_4}{R_1 + R_2}\right) \left(\frac{R_3}{R_2}\right) V_B - \left(\frac{R_1}{R_2}\right) V_B
\]
\[
V_o = \left(\frac{24 + 1.7}{24 + 1.701}\right) \left(\frac{24}{1.701}\right) V_B - \left(\frac{24}{1.701}\right) V_B = 14.1171 V_B - 14.1093 V_A
\]

Set \(V_B = -V_A = 1 \text{ V} \), \(V_d = V_B - V_A = 2 \text{ V} \).

\[
G_d = \frac{V_o}{V_d} = \frac{(14.1171(1) - 14.1093(-1))}{2} = 14.1132
\]

- What is the Common-mode Gain, \(G_{cm} = \frac{V_o}{\left(\frac{1}{2}(V_B + V_A)\right)} \)?

Set \(V_B = V_A = 1 \text{ V} \), \(V_{cm} = \frac{1}{2}(V_B + V_A) = 1 \text{ V} \).

\[
G_{cm} = \frac{V_o}{V_d} = \frac{|14.1171(1) - 14.1093(1)|}{1} = 0.0078
\]

- What is the Common-mode Rejection Ratio (CMRR)?

\[
CMRR = 20 \log_{10} \frac{14.1132}{0.0078} = 65.15
\]
For the circuit above:

- Sketch V_o as a function of time.
- What is $V_x - V_y$ at $t = 45$ ms?

All op amps are ideal with $V_{CC} = 15$ V and $V_{CC} = -15$ V.

Thus:

$$V_o = \left(1 + \frac{2R_A}{R_G}\right) \left(\frac{R_1}{R_2}\right) (V_B - V_A)$$

$$V_o = \left(1 + \frac{2 \times 47}{3.1}\right) \left(\frac{54}{3.8}\right) (V_B - V_A) = 445.1 \, (V_B - V_A)$$

Thus:

<table>
<thead>
<tr>
<th>t (ms)</th>
<th>V_A (mV)</th>
<th>V_B (mV)</th>
<th>V_o(V) = $445.1(V_B - V_A)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2.1</td>
<td>4.1</td>
<td>0.890</td>
</tr>
<tr>
<td>15</td>
<td>2.7</td>
<td>4.1</td>
<td>0.623</td>
</tr>
<tr>
<td>25</td>
<td>2.1</td>
<td>4.1</td>
<td>0.890</td>
</tr>
<tr>
<td>35</td>
<td>2.1</td>
<td>6.2</td>
<td>1.825</td>
</tr>
<tr>
<td>45</td>
<td>2.1</td>
<td>4.1</td>
<td>0.890</td>
</tr>
</tbody>
</table>

- What is $V_x - V_y$ at $t = 45$ ms?

$$V_x - V_y = \left(1 + \frac{2R_A}{R_G}\right) (V_B - V_A)$$

$$V_x - V_y = 31.32 \, (V_B - V_A) = 31.32 \, (4.1 \, \text{mV} - 2.1 \, \text{mV}) = 0.063 \, \text{V}$$
For the input, V_i, below, **sketch the output**, V_o, on the same graph. Indicate voltage levels and the times of any transitions. (The op amp is idea with the indicated V_{CC} and V_{EE} values).

Non-inverting amplifier:
Gain: $G = 1 + R_1/R_2 = 1 + 48/2.7 = 18.78$

Ideally, output would swing from $-37.56 \, \text{V}$ (at $t = 0 \, \text{ms}$) to $37.56 \, \text{V}$ (at $t = 20 \, \text{ms}$).
However, output is limited to $\pm 10 \, \text{V}$.
Slope is $2 \times 37.56/20 = 1.878 \, \text{V/ms}$.
So starting at $V=0$, the limit of $10 \, \text{V}$ is reached in $\Delta t = 10 \, \text{V} / 1.878 \, \text{V/ms} = 5.325 \, \text{ms}$

Thus:

<table>
<thead>
<tr>
<th>t (ms)</th>
<th>t (ms)</th>
<th>V_o (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5.325</td>
<td>-10</td>
</tr>
<tr>
<td>10 + 5.325</td>
<td>15.32</td>
<td>+10</td>
</tr>
<tr>
<td>30 - 5.325</td>
<td>24.68</td>
<td>+10</td>
</tr>
<tr>
<td>30 + 5.325</td>
<td>35.33</td>
<td>-10</td>
</tr>
</tbody>
</table>