The op-amp is ideal, with $V_{CC} = 10\,\text{V}$ and $V_{EE} = -10\,\text{V}$.

- Sketch the input V_+ as a function of the voltage input V_i.
- Sketch the output V_o as a function of the voltage input V_i. (label times and voltages)
- What is V_o at $t = 4.2\,\text{ms}$?

All voltages in V

- Sketch the input V_+ as a function of the voltage input V_i.

 Waveform at V_+ is an decreasing exponential, starting at $V_+ = 0.55 - 0.00 = 0.55$

 $\Delta t = 4.2 - 1.3 = 2.9$

 $\tau = RC = 25.3 \times 29.4 = 743.82\,\mu\text{s} = 0.74\,\text{ms}$

 $V_+(4.2) = 0.55 e^{-\Delta t/\tau} = 0.0109$

- Sketch the output V_o as a function of the voltage input V_i. (label times and voltages)

 From V_+ to V_o is a non-inverting amplifier of gain, $G = 1 + 72/26 = 3.77$

 Waveform at V_o is an decreasing exponential, starting at $V_+ = 3.77 \times 0.55 = 2.07$

- What is V_o at $t = 4.2\,\text{ms}$?

 $V_+(4.2) = 2.07 e^{-\Delta t/\tau} = 0.041$
The op-amp is ideal, with $V_{CC} = 10\, V$ and $V_{EE} = -10\, V$.

![Circuit Diagram]

- Sketch the input V_+ as a function of the voltage input V_i.
- Sketch the output V_o as a function of the voltage input V_i. (label times and voltages)
- What is V_o at $t = 3.9\, ms$?

All voltages in mV

- Sketch the input V_+ as a function of the voltage input V_i.
 V_+ is the voltage-divider output from V_i.
 $V_+ = \left[\frac{5.4}{5.4 + 25.3}\right] V_o = 0.176 V_o$
 Thus, output goes from $V_+ = 0.176 \times 20.54 = 3.62$ to $V_+ = 0.176 \times 61.33 = 10.79$

- Sketch the output V_o as a function of the voltage input V_i. (label times and voltages)
 Gain, $G = G = 1 + (1300||1300)/20 = 33.50$
 Thus, output goes from $V_o = 0.176 \times 20.54 \times G = 121.1$ to $V_o = 0.176 \times 61.33 \times G = 361.6$

- What is V_o at $t = 3.9\, ms$?
 $V_o = 0.176 \times 61.33 \times G = 361.6$
The op-amp is ideal, with $V_{CC} = 15\, \text{V}$ and $V_{EE} = -15\, \text{V}$.
Input $V_A = -5\, \text{mV}$ (constant over time).

- Sketch the output V_o as a function of the voltage input V_i. (label times and voltages)
- What is V_o at $t = 3.9\, \text{ms}$?

All voltages in mV

- Sketch the output V_o as a function of the voltage input V_i. (label times and voltages)

This is an added circuit

$$V_o = -\left(\frac{1800}{3.8}V_A + \frac{1800}{26}V_B\right) = -(473.7V_A + 69.2V_B)$$

Thus, the output goes from

- $V_o = -[473.7(-5) + 69.2(2)] = 2230 = 2.23\, \text{V}$ to
- $V_o = -[473.7(-5) + 69.2(17)] = 1192 = 1.19\, \text{V}$

Test: Is $V_o \geq V_{CC}$ or $V_o \leq V_{EE}$?

- What is V_o at $t = 3.9\, \text{ms}$?

$V_o = -(473.7(-5) + 69.2(17) = 1192 = 1.19\, \text{V}$