The op-amp is ideal, with $V_{CC} = 10\, \text{V}$ and $V_{EE} = -10\, \text{V}$.

![Circuit Diagram]

- Sketch the input V_+ as a function of the voltage input V_i.
- Sketch the output V_o as a function of the voltage input V_i. (label times and voltages)
- What is V_o at $t = 4.7\, \text{ms}$?

All voltages in V

- Sketch the input V_+ as a function of the voltage input V_i.

 Waveform at V_+ is an decreasing exponential, starting at $V_+ = 0.58 - 0.36 = 0.22$

 $\Delta t = 4.7 - 1.9 = 2.8$

 $\tau = RC = 38.7 \times 39.0 = 1509.3\, \mu\text{s} = 1.51\, \text{ms}$

 $V_+(4.7) = 0.22e^{-\Delta t/\tau} = 0.0345$

- Sketch the output V_o as a function of the voltage input V_i. (label times and voltages)

 From V_+ to V_o is a non-inverting amplifier of gain, $G = 1 + 61/22 = 3.77$

 Waveform at V_o is an decreasing exponential, starting at $V_+ = 3.77 \times 0.22 = 0.83$

- What is V_o at $t = 4.7\, \text{ms}$?

 $V_+(4.7) = 0.83e^{-\Delta t/\tau} = 0.130$
The op-amp is ideal, with $V_{CC} = 10\, V$ and $V_{EE} = -10\, V$.

- Sketch the input V_+ as a function of the voltage input V_i.
- Sketch the output V_o as a function of the voltage input V_i. (label times and voltages)
- What is V_o at $t = 3.7\, ms$?

All voltages in mV

- Sketch the input V_+ as a function of the voltage input V_i.
 V_+ is the voltage-divider output from V_i.
 $V_+ = [4.6/(4.6 + 38.7)] V_o = 0.106 V_o$
 Thus, output goes from $V_+ = 0.106 \times 20.77 = 2.20$ to $V_+ = 0.106 \times 63.53 = 6.73$

- Sketch the output V_o as a function of the voltage input V_i. (label times and voltages)
 Gain, $G = G = 1 + (1100||1100)/38 = 15.47$
 Thus, output goes from $V_o = 0.106 \times 20.77 \times G = 34.1$ to $V_o = 0.106 \times 63.53 \times G = 104.2$

- What is V_o at $t = 3.7\, ms$?
 $V_o = 0.106 \times 63.53 \times G = 104.2$
The op-amp is ideal, with $V_{CC} = 15\, \text{V}$ and $V_{EE} = -15\, \text{V}$.
Input $V_A = -11\, \text{mV}$ (constant over time).

- Sketch the output V_o as a function of the voltage input V_i. (label times and voltages)
- What is V_o at $t = 3.7\, \text{ms}$?

All voltages in mV
- Sketch the output V_o as a function of the voltage input V_i. (label times and voltages)

 This is an added circuit

$$V_o = -\left(\frac{1500}{5.8} V_A + \frac{1500}{22} V_B\right) = -(258.6V_A + 68.2V_B)$$

Thus, the output goes from
$$V_o = -[258.6(-11) + 68.2(38)] = 253 = 0.25\, \text{V}$$
$$V_o = -[258.6(-11) + 68.2(20)] = 1481 = 1.48\, \text{V}$$

Test: Is $V_o \geq V_{CC}$ or $V_o \leq V_{EE}$?

- What is V_o at $t = 3.7\, \text{ms}$?
 $$V_o = -(258.6(-11) + 68.2(20)) = 1481 = 1.48\, \text{V}$$