The op-amp is ideal, with $V_{CC} = 10$ V and $V_{EE} = -10$ V.

- Sketch the input V_+ as a function of the voltage input V_i.
- Sketch the output V_o as a function of the voltage input V_i. (label times and voltages)
- What is V_o at $t = 4.4$ ms?

All voltages in V

- Sketch the input V_+ as a function of the voltage input V_i.

 Waveform at V_+ is an decreasing exponential, starting at $V_+ = 0.88 - 0.14 = 0.74$

 $\Delta t = 4.4 - 1.7 = 2.7$

 $\tau = RC = 23.1 \times 26.4 = 609.84 \mu s = 0.61$ ms

 $V_+(4.4) = 0.74e^{-\Delta t/\tau} = 0.0089$

- Sketch the output V_o as a function of the voltage input V_i. (label times and voltages)

 From V_+ to V_o is a non-inverting amplifier of gain, $G = 1 + 52/36 = 2.44$

 Waveform at V_o is an decreasing exponential, starting at $V_+ = 2.44 \times 0.74 = 1.81$

- What is V_o at $t = 4.4$ ms?

 $V_+(4.4) = 1.81e^{-\Delta t/\tau} = 0.022$
The op-amp is ideal, with $V_{CC} = 10\,\text{V}$ and $V_{EE} = -10\,\text{V}$.

- Sketch the input V_+ as a function of the voltage input V_i.
- Sketch the output V_o as a function of the voltage input V_i. (label times and voltages)
- What is V_o at $t = 4\,\text{ms}$?

All voltages in mV

- Sketch the input V_+ as a function of the voltage input V_i.
 V_+ is the voltage-divider output from V_i.

 $V_+ = [3.9/(3.9 + 23.1)] V_o = 0.144 V_o$

 Thus, output goes from $V_+ = 0.144 \times 23.76 = 3.42$ to $V_+ = 0.144 \times 62.89 = 9.06$

- Sketch the output V_o as a function of the voltage input V_i. (label times and voltages)
 Gain, $G = G = 1 + (1800\|1800)/27 = 34.33$

 Thus, output goes from $V_o = 0.144 \times 23.76 \times G = 117.5$ to $V_o = 0.144 \times 62.89 \times G = 310.9$

- What is V_o at $t = 4\,\text{ms}$?

 $V_o = 0.144 \times 62.89 \times G = 310.9$
The op-amp is ideal, with $V_{CC} = 15\,\text{V}$ and $V_{EE} = -15\,\text{V}$.

Input $V_A = -9\,\text{mV}$ (constant over time).

- Sketch the output V_o as a function of the voltage input V_i. (label times and voltages)
- What is V_o at $t = 4\,\text{ms}$?

All voltages in mV

- Sketch the output V_o as a function of the voltage input V_i. (label times and voltages)

This is an added circuit

$$V_o = -\left(\frac{1300}{3.5} V_A + \frac{1300}{36} V_B\right) = -(371.4 V_A + 36.1 V_B)$$

Thus, the output goes from $V_o = -[371.4(-9) + 36.1(16)] = 2765 = 2.77\,\text{V}$ to $V_o = -[371.4(-9) + 36.1(50)] = 1538 = 1.54\,\text{V}$

Test: Is $V_o \geq V_{CC}$ or $V_o \leq V_{EE}$?

- What is V_o at $t = 4\,\text{ms}$?

$$V_o = -(371.4(-9) + 36.1(50)) = 1538 = 1.54\,\text{V}$$