The circuit above is exposed to the input voltage V_i as shown. Sketch the output, V_o. What value is V_o at 20 ms? What value is V_o at 39 ms?

Solution (all times in ms, voltages in μV):

- Sketch the output, V_o.

 At $t = 15$, $V_o = 12$. From 15 – 34, V decreases exponentially toward 89. After 34, V_o increases towards 12.

- What value is V_o at 20 ms?

 $\tau = RC = 434 \times 20.3 = 8810.2 \mu s = 8.81$ ms

 At $t = 20$, $\Delta t = 5$.

 $V_o = 12 + (89 - 12)e^{-t/\tau} = 12 + 77e^{-5/8.81} = 55.65$

- What value is V_o at 39 ms?

 First, figure out V_o at $t = 34$.

 $\Delta t = 34 - 15 = 19$

 $V_o = 12 + (89 - 12)e^{-\Delta t/\tau} = 12 + 77e^{-19/8.81} = 20.91$

 Now, V_o increases from 20.91 (not 12).

 At $t = 39$, $\Delta t = 5$.

 $V_o = 89 + (20.91 - 89)e^{-t/\tau} = 89 - 68.09e^{-5/8.81} = 50.40$
Briefly (∼50 words) answer the following:

- What is the difference between a microshock and a macroshock?
- When electrodes are placed on the skin are you concerned with macroshock or microshock?
- Define the term “let-go current”.
- Why is the “let-go current” higher (on average) for a subject with higher mass?

For definitions, see in class notes from Sep 13 on “electrical safety”
The optoisolator above has an isolation voltage of 5 kV. Unfortunately, while using the circuit outside, lightening strikes, applying 500 kV to terminal C, while terminal D is at ground. The terminals A and B are connected to a circuit which is connected to the patient. **Sketch where the current does (and doesn’t) flow? Explain what protection the optoisolator offers.**

For definitions, see in class notes from Sep 18 on optoisolators