The circuit above is exposed to the input voltage V_i as shown. Sketch the output, V_o. What value is V_o at 18 ms? What value is V_o at 35 ms?

Solution (all times in ms, voltages in μV):

- Sketch the output, V_o.
 At $t = 13$, $V_o = 22$. From $13 - 30$, V decreases exponentially toward 96. After 30, V_o increases towards 22.

- What value is V_o at 18 ms?
 \[\tau = RC = 482 \times 28.1 = 13544.2 \mu s = 13.54 \text{ ms} \]
 At $t = 18$, $\Delta t = 5$.
 \[V_o = 22 + (96 - 22)e^{-\Delta t/\tau} = 22 + 74e^{-5/13.54} = 73.15 \]

- What value is V_o at 35 ms?
 First, figure out V_o at $t = 30$.
 $\Delta t = 30 - 13 = 17$
 \[V_o = 22 + (96 - 22)e^{-\Delta t/\tau} = 22 + 74e^{-17/13.54} = 43.08 \]
 Now, V_o increases from 43.08 (not 22).
 At $t = 35$, $\Delta t = 5$.
 \[V_o = 96 + (43.08 - 96)e^{-\Delta t/\tau} = 96 - 52.92e^{-5/13.54} = 59.42 \]
Briefly (≤50 words) answer the following:

- What is the difference between a microshock and a macroshock?
- When electrodes are placed on the skin are you concerned with macroshock or microshock?
- Define the term “let-go current”.
- Why is the “let-go current” higher (on average) for a subject with higher mass?

For definitions, see in class notes from Sep 13 on “electrical safety”
The optoisolator above has an isolation voltage of 5 kV. Unfortunately, the user spills coffee on the circuit which connects the power line (120 V) to terminal D, while terminal C is at ground. The terminals A and B are connected to a circuit which is connected to the patient. **Sketch where the current does (and doesn’t) flow? Explain what protection the optoisolator offers.**

For definitions, see in class notes from Sep 18 on optoisolators