The circuit above is exposed to the input voltage V_i as shown. Sketch the output, V_o. What value is V_o at 20 ms? What value is V_o at 39 ms?

Solution (all times in ms, voltages in μV):

- **Sketch the output, V_o.**

 At $t = 15$, $V_o = 14$. From $15 - 34$, V decreases exponentially toward 98. After 34, V_o increases toward 14.

- **What value is V_o at 20 ms?**

 $\tau = RC = 331 \times 23.2 = 7679.2 \mu s = 7.68$ ms

 At $t = 20$, $\Delta t = 5$.

 $V_o = 14 + (98 - 14)e^{-t/\tau} = 14 + 84e^{-5/7.68} = 57.81$

- **What value is V_o at 39 ms?**

 First, figure out V_o at $t = 34$.

 $\Delta t = 34 - 15 = 19$

 $V_o = 14 + (98 - 14)e^{-\Delta t/\tau} = 14 + 84e^{-19/7.68} = 21.08$

 Now, V_o increases from 21.08 (not 14).

 At $t = 39$, $\Delta t = 5$.

 $V_o = 98 + (21.08 - 98)e^{-t/\tau} = 98 - 76.92e^{-5/7.68} = 57.89$
Briefly (≤50 words) answer the following:

- What is the difference between a microshock and a macroshock?
- When electrodes are placed on the skin are you concerned with macroshock or microshock?
- Define the term “let-go current”.
- Why is the “let-go current” higher (on average) for a subject with higher mass?

For definitions, see in class notes from Sep 13 on “electrical safety”
The optoisolator above has an isolation voltage of 5 kV. Unfortunately, while using the circuit outside, lightening strikes, applying 500 kV to terminal C, while terminal D is at ground. The terminals A and B are connected to a circuit which is connected to the patient. Sketch where the current does (and doesn’t) flow? Explain what protection the optoisolator offers.

For definitions, see in class notes from Sep 18 on optoisolators