The circuit above is exposed to the an input voltage V_i as shown. Sketch the output, V_o. What value is V_o at 17 ms? What value is V_o at 32 ms?

Solution (all times in ms, voltages in μV):

- Sketch the output, V_o.

 At $t = 12$, $V_o = 18$. From $12 - 27$, V decreases exponentially toward 94. After 27, V_o increases towards 18.

- What value is V_o at 17 ms?

 $\tau = RC = 215 \times 22.6 = 4859 \mu$s = 4.86 ms

 At $t = 17$, $\Delta t = 5$.

 $V_o = 18 + (94 - 18)e^{-t/\tau} = 18 + 76e^{-5/4.86} = 45.16$

- What value is V_o at 32 ms?

 First, figure out V_o at $t = 27$.

 $\Delta t = 27 - 12 = 15$

 $V_o = 18 + (94 - 18)e^{-\Delta t/\tau} = 18 + 76e^{-15/4.86} = 21.47$

 Now, V_o increases from 21.47 (not 18).

 At $t = 32$, $\Delta t = 5$.

 $V_o = 94 + (21.47 - 94)e^{-t/\tau} = 94 - 72.53e^{-5/4.86} = 68.08$
Briefly (≤50 words) answer the following:

- What is the difference between a microshock and a macroshock?
- When electrodes are placed on the skin are you concerned with macroshock or microshock?
- Define the term “let-go current”.
- Why is the “let-go current” higher (on average) for a subject with higher mass?

For definitions, see in class notes from Sep 13 on “electrical safety”
The optoisolator above has an isolation voltage of 5 kV. Unfortunately, the user spills coffee on the circuit which connects the power line (120 V) to terminal D, while terminal C is at ground. The terminals A and B are connected to a circuit which is connected to the patient. Sketch where the current does (and doesn’t) flow? Explain what protection the optoisolator offers.

For definitions, see in class notes from Sep 18 on optoisolators