

Electrical Impedance Tomography for Perfusion Imaging and Monitoring

Thesis Defence Presentation

Symon Stowe

symonstowe@sce.carleton.ca

September 13, 2021

EIT for Perfusion Imaging and Monitoring **Overview**

- Background
- 2 Thesis Goals
- 3 Contributions
- 4 Methods and Results
- 6 Conclusions
- 6 Future Work

Background EIT

Electrodes on the body surface are used to inject current and measure the resulting voltages.

Thoracic EIT typically images impedance changes due to the movement of fluid in the chest.

Background Perfusion

What is perfusion?

Blood Flow

Tissue

Background EIT Measures of Perfusion

Blood perfuses into the tissue.

The perfusion signal can come from:

- Change in blood volume in the tissue
- Change in blood volume in vessels
- Physical deformation of structures due to movement
- Ballistic forces in the body
- The orientation of red blood cells (very small change)

Background EIT Perfusion Imaging

Compared to other techniques used to image perfusion EIT is:

- Fast
- Does not use ionizing radiation
- Can be used continuously
- Cost efficient

- Unclear source of cardiac-frequency (cardiosynchronous) signal
- Low amplitude of cardiac-frequency signal
- Low sensitivity in the centre of a subject

Challenges of EIT Perfusion Imaging

Not all perfusion results in a cardiac-frequency change

• e.g. Continuous flow

Non-perfusion effects can result in heart-frequency EIT signals

• e.g. Movement

- Unclear source of cardiac-frequency (cardiosynchronous) signal
- Low amplitude of cardiac-frequency signal
- Low sensitivity in the centre of a subject

Background EIT Perfusion Imaging

Example FFT of an EIT signal with only external electrodes (frequency in Hz).

- Unclear source of cardiac-frequency (cardiosynchronous) signal
- Low amplitude of cardiac-frequency signal
- Low sensitivity in the centre of a subject

Background EIT Perfusion Imaging

Sensitivity is proportional to current density.

- Unclear source of cardiac-frequency (cardiosynchronous) signal
- Low amplitude of cardiac-frequency signal
- Low sensitivity in the centre of a subject

Current State of EIT Perfusion Imaging

Bolus Injection

- A conductive contrast agent is injected
- The transit of the conductive contrast agent is imaged
- Occurs during apnoea
- Saline solution is typically used

Frequency Filtering

- The signal at the cardiac frequency is isolated
- An image of activity at the cardiac frequency is generated
- Can be done during either ventilation or apnoea

Ensemble Averaging

- Many heartbeats are averaged together
- An image of the impedance change over the averaged heartbeat is generated
- Can be done during either ventilation or apnoea

Background

Shortcomings of EIT Perfusion Measures

- Bolus-based measures cannot be used continuously and are invasive
- Filtering-based methods have low sensitivity to cardiosynchronous activity
- Low internal sensitivity

How can measures of perfusion be improved?

- Investigate the source of perfusion and cardiosynchronous EIT signals
- Increase sensitivity near where perfusion is measured

Thesis Goals

Contributions

- A mesh analysis technique to reduce error in sensitivity calculations on cylindrical meshes (Chapter 4).
- A tool to generate custom meshes of exterior and lung boundaries from CT images (Chapter 5).

- An analysis of 3D electrode placements with internal electrodes on internal sensitivity (Chapter 6).
- A method to reconstruct images using internal electrode measurements in the presence of movement (Chapter 7).

Chapter 3: Bolus- and Frequency-Based Perfusion

Chapter 3: Bolus- and Frequency-Based Perfusion Introduction

There are three common techniques to measure perfusion with EIT.

- Bolus injection
- 2 Frequency filtering
- 3 Ensemble averaging

Goals

- Compare different measures of perfusion.
- Investigate the source of cardiosynchronous EIT signals.

Chapter 3: Bolus- and Frequency-Based Perfusion Methods

- Data segment with ventilation and apnoea segments
- 7 animals, 4 postures (supine, left side, right side, prone)
- Frequency filtering (P_V) and ensemble averaging (P_A) methods used during both ventilation and apnoea
- Compared to a bolus injection during apnoea

Chapter 3: Bolus- and Frequency-Based Perfusion Results

Chapter 3: Bolus- and Frequency-Based Perfusion **Results**

- Frequency filtering corresponds better to the bolus injection compared to ensemble averaging
- Challenging to isolate the lung regions
- Large contribution from the heart in the perfusion estimate

Chapter 4: FEM Mesh Refinement for 3D EIT

Chapter 4: FEM Mesh Refinement for 3D EIT Introduction & Methods

What distribution of nodes minimizes error in the sensitivity calculation?

Chapter 4: FEM Mesh Refinement for 3D EIT Results

Chapter 5: Custom EIT Meshes

Chapter 5: Custom EIT Meshes Introduction

- A finite element model is required to reconstruct voltages into images
- The more accurate the FEM, the better the reconstruction
- More prior information regarding the body conductivity
- For some patients (ARDS) we have diagnostic CT images

Can we use this to improve EIT image reconstruction and monitoring of patients?

Chapter 5: Custom EIT Meshes Methods: Automatic Segmentation

Chapter 5: Custom EIT Meshes Methods: Manual Correction

Chapter 5: Custom EIT Meshes Methods: Meshing

Chapter 5: Custom EIT Meshes Results

Center of ventilation error relative to the CT centre of ventilation.

Custom model is lower, but not consistently.

Electrode locations are still unknown...

Chapter 6: Internal Electrode Sensitivity

Chapter 6: Internal Electrode Sensitivity Introduction

To increase sensitivity in the centre of a model internal electrodes are added.

Typical 2D and 3D configurations are compared to internal electrode configurations.

Chapter 6: Internal Electrode Sensitivity Results

Internal electrodes were used to reconstruct the target closer to actual size.

Chapter 6: Internal Electrode Sensitivity Results

With high sensitivity near the internal electrodes, small internal errors can produce large artefacts.

Chapter 7: Internal Electrode Motion Introduction

- High sensitivity near the internal probe
- A small amount of movement produces a large artefact

Chapter 7: Internal Electrode Motion Methods

For a probe is moved 5% of the tank radius:

Regular reconstruction

Reconstruction with original motion correction

Reconstructing the effect of motion only

This direction is used to generate a new model for reconstruction

Chapter 7: Internal Electrode Motion Results

5% location error

1% location error

(A)

(B)

(C)

- A No motion correction
- **B** Regular motion correction
- C Probe position correction

Actual (black) vs. reconstructed (green) target location.

Chapter 7: Internal Electrode Motion Results

Increased separability of the lungs with regular motion correction (column 2) and probe position correction (column 3)

Chapter 7: Internal Electrode Motion **Results**

Conclusion Summary

This thesis presents:

- Potential for filtering based measures of perfusion imaging
 - limited sensitivity to cardiac frequency
 - challenging to identify the lung regions
- Advanced modelling techniques to improve ventilation and lung localization
- A reconstruction technique used *in-vivo* that was able to correct for probe motion
 - Motion up to 5% of the tank radius in simulation

Conclusion Future Work

1 Collect data from a range of patients to test automatic segmentation software

- 2 Meshing tool to control mesh dissipation on complex geometry
- **3** Validation of the safety of internal electrodes for clinical use
- Incorporate internal electrode reconstruction into standard reconstruction algorithms (GREIT)

Electrical Impedance Tomography for Perfusion Imaging and Monitoring

Thesis Defence Presentation

Symon Stowe

symonstowe@sce.carleton.ca

September 13, 2021