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The SVD

The Singular Value Decomposition(SVD)

I helps us to understand the ill-conditioning of a linear inverse
imaging problem

I characterizes consistent data

I gives a basis for images in order of how easy their
components are to recover

Some important inverse imaging problems an explicit analytic form
of the SVD is known. For example, for the Radon transform on a
disk the singular functions

I on the image side are Zernike disk functions

I on the data side they are Fourier basis functions in two
angular coordinates [3, Ch7].
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The quest for SVD of linear 2D EIT

I WL was advised in 1985 ‘The first thing to do in EIT is
calculate the SVD’ by Jennifer Scott at Oxford

I First calculated numerically in [2] and presented at 3rd EU
Workshop on EIT Copenhagen 1990 as keynote talk ‘What
can you see with EIT”.

I No one has diagonalised linearised EIT analytically yet

I New The spectrum is not discrete

I New For the discrete part of the spectrum right singular
functions look a bit like Zernike disk functions.

I New The non-discrete part can cause us problems with
practical EIT reconstruction
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Figure: The conference outing for the Copenhagen meeting was a trip on
the schooner Halmø. Photo credit Brian Brown
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SVD of Radon I

Let R be Radon transform integral along lines, R∗ backprojection
operator then

R∗R = (−∆)−1/2

where ∆ = ∇2 the Laplacian. On the plane R2 we can diagonalize
using the Fourier transform

g(x) = R∗R[f ](x) ĝ(ω) = |ω|−1f̂ (ω)

we say this has a continuous spectrum as any non-negative real
number is an eigenvalue. On the unit disk D = {x : ||x | ≤ 1}

R∗RZn,k =
4π

n + 1
Zn,k

so the reciprocal integers for a discrete spectrum and the Zernike
disk functions (polynomial in r and Fourier in θ) are the
eigenfunctions.
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SVD of Radon II

Figure: Zernike disk functions [3]. Zn,r (r , θ) = pn,k(r)

{
sin
cos

}
kθ where

pn,k is a polynomial of order n. They are widely used in optics to describe
lenses where they have cutesy names like ‘astigmatism and defocus’.
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The Hilbert transform I
The Hilbert transform on the real line R

H[f ](y) = P.V

∞∫
−∞

1

y − x
f (x)dx =

1

x
∗ f (x),

Ĥ[f ](ω) = −i sgn(ω)f̂ (ω)

Restricted Hilbert transform

H[f ](y) = P.V

b∫
a

1

y − x
f (x)dx , y ∈ [c , d ]

I If ( ) a = c , b = d
−→ spectrum is discrete.

I If ( ) c = b (intervals abut)

−→ we have a continuous spectrum [1].
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Linearized EIT on a disk with trig patterns I

On a unit disk

I Potential for uniform conductivity φtrigk = rktrigkθ where trig is sin
or cos.

I Fréchet derivative of forward problem at unit conductivity with
perturbation in conductivity η(r , θ)

K cos
km [η] =

∫
D

η(r , θ)∇φcos
k · ∇φcos

k rdrdθ

I to get the normal operator N = K∗K we sum over k,m this can be
explicitly summed to give a kernel function for N as a function of
r , θ, r ′, θ′

I for the case η(r) independent of theta this reduces to

4 (rr ′)2 ((rr ′)2 + 1
)

(1− (rr ′)2)3
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Linearized EIT on a disk with trig patterns II

I With some change of variables this can be written in terms of a
restricted Hilbert transform from [0, 1] to [1,∞) so we expect
spectrum of N to have a continuous part.

I The continuous part of the spectrum means that the numerical SVD
will depend on the discretization of the disk.
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Numerical results

Figure: Singular functions of EIT Jacobian of the unit disk low-order
sinusoidal patterns Left: Zernike-like Right: mesh-dependent
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Numerical results + Zernike

Figure: Singular functions of EIT Jacobian of the unit disk low-order
sinusoidal patterns Left: Zernike-like Right: mesh-dependent
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Conclusions I

I There are right singular functions of linearized EIT on the disk
that are like Zernike functions

I There are also some mesh dependent singular functions
concentrated near the boundary that we think reflect a non
discrete part of the spectrum

I With a regularized linear solution your images are likely to be
mesh dependent

I More details in forthcoming preprint...
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