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Abstract. Objective: Wearable devices with embedded photoplethysmography

(PPG) sensors enable continuous monitoring of cardiovascular activity, allowing for

the detection cardiovascular problems, such as arrhythmias. However, the quality of

wrist-based PPG is highly variable, and is subject to artifacts from motion and other

interferences. The goal of this paper is to evaluate the signal quality obtained from

wrist-based PPG when used in an ambulatory setting. Approach: Ambulatory data

were collected over a 24-hour period for 10 elderly, and 16 non-elderly participants.

Visual assessment is used as the gold standard for PPG signal quality, with inter-

rater agreement evaluated using Fleiss’ Kappa. With this gold standard, 5 classifiers

were evaluated using a modified 13-fold cross-validation approach. Main results: A

Random Forest quality classification algorithm showed the best performance, with an

accuracy of 74.5%, and was then used to evaluate 24-hour long ambulatory wrist-based

PPG measurements. Significance: In general, data quality was high at night, and low

during the day. Our results suggest wrist-based PPG may be best for continuous

cardiovascular monitoring applications during the night, but less useful during the day

unless methods can be identified to improve low quality signal segments.

1. Introduction

Long-term, continuous, non-invasive monitoring of cardiovascular activity in an

ambulatory setting would enable early detection of heart diseases such as arrhythmias,

thereby allowing for early interventions to help reduce emergencies such as strokes and

heart attacks.

However, prolonged, ubiquitous monitoring is impractical with electrocardiogram

(ECG) Holter monitors, the technology currently employed medically for ambulatory

use. ECG Holter monitors are cumbersome and uncomfortable due to their requirement

for electrodes and wires adhering to the thorax, and also place restrictions on the user.

Since the monitors are sensitive to water damage, users are unable to shower or swim.

As a result, users are less likely to comply with instructions to wear Holter monitors

continuously for prolonged periods, especially if they are not currently suffering from

cardiovascular problems.

A potential alternative to ECG Holter monitors is wrist-based photoplethysmogra-

phy (PPG), an optical technology that is easily embedded into wearable devices such
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as wristbands, and is already included in many commercially available smartwatches.

PPG detects local changes in blood volume by measuring the attenuation of light. PPG

waveforms consist of both a varying “AC”, and a large, constant “DC” component. The

DC component accounts for the majority of the attenuation, from the absorption of light

by the skin, bone, venous blood, and other tissues. The AC fluctuations are driven by

the cardiac cycle.

Unfortunately, the PPG signal is highly sensitive to noise-corruption, especially

due to motion (Allen 2007, Kamal et al 1989, Abdallah and Bolz 2011). Cardiovascular

parameters derived from noise-corrupted data are unreliable and could lead to inaccurate

diagnoses. This necessitates the assessment of signal quality, to ensure that noise-

corrupted signals are handled appropriately — either cleaned, or rejected prior to

cardiovascular analysis.

The signal quality algorithms employed by smartwatch vendors are proprietary, and

largely unpublished. Current PPG-analysis algorithms in smartwatches are designed

primarily for heart rate (HR) monitoring, which can use frequency-based algorithms

and do not require beat-to-beat analysis. This means that the vendor quality algorithms

correspond to different criteria to those for cardiovascular monitoring. Li and Clifford

(2012) proposed a template matching scheme using dynamic time warping to assess

quality. However, it relies on accurate beat detection for proper assessment. While

this approach may be useful for sedentary in-patient clinical finger-clip PPG signals,

beat detection is difficult when the data has large artifacts, as is the case for wristband

based PPG data collected from prolonged monitoring of mobile individuals. Morris and

Wander (2014) used a method combining segmenting and non-segmenting approaches

to derive features for classification. Their study used PPG data with motion artifacts

simulated by requiring the participants to perform certain behavioural tasks. Sukor et al

(2011) proposed a method for the detection of noise-corrupted heart beats in the PPG

signal using morphological features of the waveform, such as pulse amplitude, trough

depth difference, and pulse width. Subjects were asked to perform eight different hand

movements to simulate a variety of motion artifacts, though motions artifacts from the

finger-clip PPG sensor system may not be consistent with those present in wrist-based

PPG systems.

To understand the quality during prolonged monitoring, we identify several

questions which have not been directly answered in the literature. Previous published

works used short-time lab samples rather than 24-hour, ambulatory, wrist-based PPG

data for the development and evaluation of their proposed algorithms. Furthermore,

the gold standard for signal quality ratings, which is visual assessment, is susceptible to

subjective bias, thus necessitating a larger number of raters. Quantitative data regarding

the quality of ambulatory wrist-based PPG is also limited, despite being valuable for

designers intending to use the technology in various continuous monitoring applications.

Some of our early results were published as McCarthy et al (2016), where we found that

45% of the acquired signal from wrist-based PPG during a 24-hour period was of high

quality. However, these preliminary results relied on visual assessment of the PPG
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signal quality, thus it was only practical to assess the quality of short samples of data

throughout the 24-hour period

2. Experimental Methodology

Simultaneous wrist-based photoplethysmography (PPG) and electrocardiogram (ECG)

data was collected from 26 healthy participants for a period of 24 hours as they

performed their daily routine. The study was approved by the Carleton University

Research Ethics Board.

2.1. Participants

Participants were recruited from two broad subject sets: 1) elderly, defined as individuals

65 years of age or older, and 2) non-elderly, defined as anyone not included in the

elderly group. This enabled the evaluation of differences in the quality of wrist-based

PPG between the two groups, as the groups were expected to have different types of

activities and schedules.

For participation in this study, subjects were required to be healthy and mobile,

defined as having the ability to walk without requiring assistive devices. This

requirement was used as motion artifacts during daily activities were expected to be the

primary source of signal artifacts. The daily routines of participants with compromised

mobility would be expected to include considerably less motion than the average person.

Ten elderly participants were recruited through advertisements in relevant

newsletters and through contacts, and sixteen non-elderly participants were recruited

from university students and researchers. Further demographic information such as age,

sex and ethnicity were not collected.

2.2. Devices

PPG signals were collected using an Empatica E4 wristband (Empatica, Milan, Italy),

while ECG signals were collected using a Seer Light Extend Holter monitor (General

Electric Healthcare, Chicago, USA). The Empatica E4 is a wrist worn device, similar

to a smartwatch, equipped with other sensors such as a temperature sensor (infrared

thermopile), a 3-axis accelerometer, and a skin conductance sensor, of which the PPG

and accelerometer signals were used in this study. During the study, signals were

recorded continuously and stored on the device, with she PPG signal sampled at 64 Hz,

and the 3-axis accelerometer signal is sampled at 32 Hz‡. Simultaneously, the Holter

monitor was used to obtain the ECG signals; however, this data was not used for this

study.

‡ Empatica, E4 Wristband User Manual, 2015. https://empatica.app.box.com/v/E4-User-Manual
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2.3. Experimental Setup

Participants were asked to wear the Empatica E4 wristband and the GE Seer Light

Extend Holter monitor. The Empatica E4 wristband was worn as a wristwatch, with

the sensor facing the posterior side of the participant’s wrist on their non-dominant

arm. The non-dominant arm was expected to engage in less movement relative to the

dominant arm, potentially providing superior signal quality.

For a period of 24 hours, the participants wore both devices. As the Holter monitor

was susceptible to water damage, participants were asked not to swim or bathe. With

this exception, they were asked to continue with their daily routine as much as possible.

After the data collection period, the devices were removed and the data extracted.

The devices were cleaned with alcohol prior to use for the next participant.

2.4. Limitations of Experimental Setup

Certain limitations occurred due to scheduling. Occasionally, participants were unable

to meet with the researchers at the scheduled times, and thus, the data collection period

was sometimes slightly shorter than 24 hours. In other cases, participants were unable

to meet with the researchers the day following the device setup, and were therefore

instructed to remove and power off the devices themselves.

The Empatica E4 wristband was worn as tightly as the participants felt was

comfortable. Since the tightness was based on acceptability by the participant, some

participants wore the devices more loosely than others. Those that wore the device

more loosely are likely to provide inferior signal quality, as the wristband had a greater

freedom of movement, and motion is expected to be a cause of noise corruption in the

signal.

Participants were not required to keep an activity log for the study, therefore,

their sleep and exercise times are not known. This information may have enabled

additional analysis and understanding of the data. Participant compliance during the

data collection period was not monitored.

3. Development of a gold standard classification

Establishment of the gold standard against which to compare automatically detected

features was done by selecting a subset of data and requesting manual classification

by raters based on visual assessment, which can be subjective to the raters. To better

understand the variability of ratings due to subjectivity of raters, our gold standard was

created using a compilation of ratings from 17 raters. Statistics were then computed to

quantify the extent of classification agreement between raters. Previous work relied on

2–3 raters, and did not disclose the extent of agreement between those raters (Wander

and Morris 2014, Li and Clifford 2012, Sukor et al 2011). Thus the reliability of the

gold standards used in these works cannot be assessed.
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PPG ratings were established as follows: the entire data set for each participant

was subdivided into 10-second segments. A random number generator was used to

select 39 of the segments for analysis from each of the 26 participants, resulting in a

set of 1014 non-overlapping, non-continuous PPG segments, to be used for analysis. As

the segments were chosen randomly, there were no controls to ensure equal quality-

class representation. Random selection was chosen, as there were no pre-existing

classifications that could be used to ensure equal class representation in the set. It

is expected that the random selection process would result in a class representation

roughly proportional to the class representation in the overall data.

Each 10-second segment was assigned a signal quality levels from 1 to 5, with 1

representing the lowest quality, and 5 representing the highest quality. The quality levels

were defined by the percentage of the segment for which clear pulses with discernible

peaks were identifiable. A class 5 segment must have all identifiable pulses for the

entire data segment, class 4 for at least 75% of the segment, class 3 for at least 50%

of the segment, class 2 for at least 25% of the segment, and class 1 for less than 25%

of the segment (figure 1). These criteria were motivated by the quality level definitions

used by Wander and Morris (2014), who used the number of peaks visible within the

data segment. A high quality PPG signal is expected to contain a series of pulses of

approximately uniform morphology, as shown in the class 5 quality level in figure 1.

A graphical user interface was created in Matlab for the raters to annotate the

PPG segments. The 17 raters were recruited from biomedical engineering students at

Carleton University. Each rater was provided with the definition of the quality classes,

as well as two examples of each class, as identified by the researchers. The raters could

complete the annotations over multiple sittings.

3.1. Agreement between Raters

Annotations made by the raters were compiled, and for each PPG segment, the class

chosen by a plurality of raters was used as the gold standard class for the segment.

Agreement between raters, Pi, was computed for each PPG segment using (1), the

Fleiss (1971) κ. According to this measure, Pi = 1 indicates that all raters agreed on

the classification of the segment. The Pi values from all the PPG segments were collated

together to produce the histogram in figure 2.

Pi =
1

n(n− 1)

( k∑
j=1

nij
2 − n

)
(1)

where n is the total number of raters (in this case 17), k is the number of quality classes

(5 in this case), i is the segment number, and nij is the number of raters who classified

segment i to class j.

Only 11% of the PPG segments had perfect agreement between all 17 raters. Thus

the majority of PPG segments had an element of subjectivity, despite a clear set of rules

governing class membership. Approximately 58% of the segments had a Pi > 0.5, with

the remaining 42% showing poor agreement between raters.
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Class 2
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Class 4

Class 5

Figure 1. Examples of PPG Signal belonging to class 1 (top) to class 5 (bottom). A

class 5 segment must have all identifiable pulses for the entire data segment, class 4

for at least 75% of the segment, class 3 for at least 50% of the segment, class 2 for at

least 25% of the segment, and class 1 for less than 25% of the segment.

To obtain a normalized measure of the strength of agreement between raters,

Fleiss’ Kappa, κ, was computed. The agreements (Pi) computed for each segment

were averaged to obtain P̄ , referred to as the extent of agreement. This value may

be compared to the expected extent of agreement was calculated if ratings were made

randomly, P̄e =
∑k

j=1 P
2
j . Fleiss’s Kappa, κ (2), is computed as the ration of the total

possible extent of agreement beyond the agreement due to random chance (1-P̄e) and



Evaluation of the Signal Quality of Wrist-Based Photoplethysmography 7

Figure 2. Histogram showing the distribution of PPG segments used for analysis,

organized by the agreement between raters per segment, Pi.

the agreement obtained in excess to random chance (P̄ − P̄e).

κ =
P̄ − P̄e

1− P̄e

(2)

For this study, we obtained, κ = 0.4605, which, according to the benchmarks

established by Landis and Koch, 1977), indicates moderate agreement between raters.

4. Feature Selection

Features were extracted from each of the 1014 ten-second data segments. Some features

were adopted from metrics recommended in previous literature, while others were

developed based on observed differences between the data belonging to the different

classes. A complete discussion of all 71 evaluated features is given by Pradhan (2017),

while this paper described the features selected for best found quality classification.

A reduction in the number of features was desired for efficiency, by eliminating poor

and unnecessary features. However, the univariate analysis of the features indicated that

no individual feature was adequate for discriminating between the five signal quality

classes. Therefore, a multivariate approach was used to identify a subset of features,

which together would provide the best class discrimination.

Using Weka (Frank et al 2016), feature selection was done with the wrapper method,

which performs various iterations with different subsets of features, and selects the subset

offering the maximum class discrimination. The wrapper method is preferred to ranker

methods as it considers feature dependencies and correlations for feature subset selection

(Guyon et al 2003). Feature dependency indicates whether multiple features together

can provide good class discrimination where each feature individually would not. Under

an individual ranker approach, such dependencies would not be considered in the feature
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assessment (Saeys et al 2007). Feature correlation identifies features which may provide

similar class discrimination information, thus making them redundant. Therefore, a

wrapper method was chosen for the feature selection process.

Wrapper methods evaluate subsets using a classifier, providing a direct link between

the feature selection and the classifiers used in the classification stage (Guyon et al 2003).

We used a random forest classifier, as it was deemed to be sufficiently complex to provide

good results for the features with poor univariate discriminability, while being simple

enough not to be computationally intensive or time consuming.

To obtain results in a reasonable time, a greedy step-wise approach was used.

While an exhaustive method is generally considered to be superior, it is computationally

intensive and therefore time consuming for searches with a high number of features, as

in this case. A drawback of the greedy step-wise approach is its susceptibility to getting

stuck in a local optimum, rather than finding the overall optimum as an exhaustive

search would (Saeys et al 2007). To mitigate this, both forward selection and backward

elimination greedy step-wise methods were applied. Backward elimination begins with

the full set of features, and attempts to remove individual features without compromising

the discriminability of the feature subset, whereas forward selection begins with no

features and works in reverse to identify the optimal subset. The performance of a

particular subset is evaluated by Weka using a merit score, in a range from 0 (worst) to

1 (best), based on the classification accuracy. Backward elimination resulted in a subset

of 70 features, with a merit score of 0.778. Forward selection resulted in 9 features, with

a merit score of 0.777. Due to the similarity in merit score for both methods, the 9

feature subset from the forward selection search was selected. Repetition of the forward

selection search can be used to strengthen the confidence in the results if repetitions

produce the same subset of features. Forward selection was repeated 3 times, with the

same 9 features being selected at each repetition. The selected features are as follows:

• Number of Peaks by Billauer’s Algorithm: This feature is the number of peaks in

the PPG signal identified using the algorithm of Billauer (2012) for peak detection.

Rather than using a derivative-based approach, the algorithm identifies peaks based

on preceding values being lower than a threshold.

The algorithm searches for a peak by traversing the data segment point-by-point

while tracking the highest point encountered, until it reaches a data point that

is lower by a specified threshold. Once such a data point is reached, the current

highest point is recorded as a peak value, and the current data point recorded as the

lowest point. Then the algorithm continues traversing the data segment searching

for a trough (a valley point) in the converse way. This process is repeated as the

algorithm traverses the data segment.

This was implemented in Matlab using the peakdet function from Billauer (2012).

As seen in figure 3, a greater number of peaks were expected to be found in data

belonging to lower quality classes.

• Number of Zero-Crossings: The Zero-Crossings feature is the number of times the
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Figure 3. Example of peaks found using Billauer’s algorithm in a class 1 and class 5

PPG segments.

PPG signal crosses the x-axis (y = 0), divided by the length of the data segment.

It was expected that data segments belonging to lower classes would have a higher

zero-crossing rate. This feature was inspired by the previous work of Elgendi

(2016). Mean subtraction was not applied as the Empatica E4 wristband’s internal

computations remove baseline drift.

• Accelerometer Features: Empatica E4 wristbands contain 3-axis accelerometers

that record data at 32Hz, continuously with the PPG sensor. Low quality data

is expected to be found at times when the participant engages in arm motion.

Such motion would register on the accelerometer in the axes corresponding to the

direction of motion. The magnitude of the acceleration is computed to combine the

x, y, and z axes of the accelerometer data. When the magnitude of the acceleration

differs from the acceleration due to gravity, it is likely due to movement; hence

the accelerometer data ought to correlate with PPG signal quality. This is seen in

figure 4 (accelerometer signals), where the class 1 accelerometer signal has a larger

range and different shape than the class 5 signal. These properties were represented

using the median and the standard deviation of the accelerometer magnitude as

features. The median accelerometer is an indication of baseline deviations from

the acceleration due to gravity, while the standard deviation of the accelerometer

magnitudes is an indicator of the range of the data, and the extent to which the

data points are spread about the mean.

• Correlogram Features: It was postulated that there would be a difference in the
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Figure 4. Magnitude of accelerometer signal for class 1 and class 5 data segments.

periodicity of the PPG signals of different classes. Noise corruption due to random,

non-periodic motions were expected to result in non-periodic motion artifacts in

the PPG signal. Thus, an assessment of the periodicity of the PPG signal may

assist in class discrimination. This was done using a correlogram.

A correlogram displays the normalized autocorrelation of the PPG signal on the

y-axis, with corresponding time lags on the x-axis. Autocorrelation values could

range from +1.0, indicating perfect correlation, to zero, indicating no correlation,

to -1.0, indicating a perfect inverse correlation. Correlograms were constructed for

each data segment. The autocorrelation of the PPG data was determined at lags

of up to 3 seconds.

In the correlograms for each data segment, the first two peaks were identified

using the findpeaks function in Matlab. Peaks occur in the correlogram as the

autocorrelation rises, associated with offsets at multiples of the period of the PPG

signal. The features used were the values at the first two peaks in the correlogram.

These features were inspired by Wander and Morris (2014), and previously used in

preliminary work done by our research team (Pradhan 2017).

• Median Noise Ratio per Pulse: This feature is the median of the signal-to-noise ratio

(SNR) computed from each pulse in the PPG segment. For each pulse in the ten-

second PPG segment, (3) is applied to compute an SNR. This is an implementation

of SNR by Elgendi (2016). In this implementation, SNR is defined as the ratio of

signal variance to the noise variance. The signal variance is defined as the variance
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of the absolute value of the PPG, while the noise variance is defined as the variance

of the PPG. The median of the values of the NoiseRatio obtained from each each

pulse in the ten-second segment is used as the feature.

NoiseRatio =
σ2
y

σ2
|y|

(3)

where y is the PPG signal.

• Median Relative Power per Pulse: This feature is the median of the relative power

computed from each pulse in the PPG segment. This is the ratio between the power

of the Welch periodogram in the frequency range associated with good signals, 1–

2.25 Hz, and the frequency range from 0–8 Hz, computed for each pulse, then the

median of those values is taken as a feature. The relative power was computed

according to (4). This feature was inspired from work done by Elgendi (2016).

RelativePower =

∫ 2.25
1 P (f)df∫ 8
0 P (f)df

(4)

where P (f) is the power spectral density at frequency f . Using sampled data the

integrals were approximated by sums.

• Standard Deviation of Shannon Energy Per Pulse: This feature is the standard

deviation of the Shannon energy computed from each pulse in the PPG segment

(Liang et al 1997). It was computed using (5), which is the implementation used by

Elgendi (2016) and Coifman and Wickerhauser (1992). The formula was erroneously

referred to as entropy in the 2016 paper. We follow Elgendi (2016) and calculate

the Shannon energy without normalization.

ShannonEnergy = −
N∑

n=1

(
(x[n]2)

(
loge(x[n]2)

))
(5)

5. Classifier Selection

Five classifiers were evaluated using the annotated dataset and the nine features chosen

from the feature selection process. Evaluations of each of the classifiers were done using

a modified 13-fold cross validation training/testing scheme. This was done to maximize

use of the annotated dataset, while ensuring that the classifier is not overfitting to

the dataset. In 13-fold cross-validation, the dataset is divided into 13 subsets. At

each iteration of the cross validation process, one subset is used as a testing set,

while the remaining 12 subsets were used to train the classifier. This is repeated 13

times until classifier predictions have been made for each subset. Standard practice

for cross-validation is to randomize the selection of subset membership, while ensuring

class balance. However, due to concerns regarding overfitting, this process is modified.

Instead, subset membership was determined manually to ensure that data segments

from any one participant were not spread across multiple subsets. This ensures that

all 39 data segments from each participant were co-located in the same subset. Thus,
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at any given iteration, the classifier is not training and testing on data from the same

participant.

Evaluation of the classifiers yielded various accuracies, depicted in table 1. The

highest accuracy, 74.5%, was obtained from the Random Forest classifier, hence it

was selected for the final algorithm. While this is the best accuracy obtained from

the classifier analysis, it performs poorly for certain classes. However, the classes for

which the classifier performed poorly appear to have low prevalence, thereby allowing

an accuracy of 74.5%.

Random Forest is a meta-learning based approach using multiple decision tree

classifiers. Each tree is trained using a randomly selected subset of instances and

features. This allows each tree to specialise in discriminating between different subsets of

data. The final classification for an instance (a 10-second segment) is obtained through

a plurality voting system, in which each of the decision trees cast a vote. Thus, the

weaknesses of one decision tree can be compensated by the others in the forest. This

meta-learning approach is likely responsible for the higher accuracy obtained by this

classifier.

Classifier Accuracy

k -Nearest Neighbour 42.9%

Multi-Class SVM 43.5%

Näıve Bayes 63.6%

Decision Tree 66.9%

Random Forest 74.5%

Table 1. Accuracy of classifiers evaluated

6. Signal Quality over 24-hour Period

The Random Forest classifier was selected as the best choice for the signal quality

algorithm based on the work done in the previous section. The classifier was then

used to provide signal quality analysis for the full 24 hours of data collected from each

participant.

6.1. Quality Assessment Procedure

For classifier selection, a modified 13-fold cross-validation scheme was used for the

purpose of evaluating the classifier performance without overfitting. However, for this

24-hour assessment, accuracy of the results for this dataset were prioritized above

generalizability of the classifier. To that end, this classifier is trained on the entire

annotated dataset, allowing it to be trained on data from each participant, thereby

maximizing its effectiveness for the full dataset.

This selected data was divided into continuous, 10 second, non-overlapping

segments. The 9 features identified from the feature selection process were computed
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for all data segments. Based on these features, the Random Forest classifier provided

signal quality ratings for each data segment.

6.2. Quality Assessment Results

The quality ratings for participants were compiled and overall, only 34.8% of the data

belonged to class 5 (noise-free). While this is a small proportion of the total data, 34.8%

the quality of the signal for that portion is clean enough to be used for cardiovascular

analysis. For both non-elderly and elderly participants, a plurality of the data belonged

to class 1, representing the most noise corrupted data. This supports the assumption

that low signal quality is caused by movement, as the device is located on the wrist,

a site which experiences significant motion throughout daily activities. Class 5 data is

more prevalent among the elderly subjects, with 38.6% of the data belonging to class 5,

compared to only 32.5% for the non-elderly subjects. While mobility was an inclusion

criterion for the selection of participants, differences in activity level between the two

subject sets were likely responsible for this disparity in data quality. The proportion of

class 1 data between the groups is within one percentage point. It was expected that

elderly individuals would engage in fewer, less motion-intensive activities throughout

the day. Another 15.8% of the PPG data, which belonged to either classes 3 or 4, and

could potentially be cleaned sufficiently to derive cardiovascular parameters, thereby

enabling 50.6% of the data collected in an ambulatory setting to be useful.

6.3. Quality by Time of Day

To enable a more extensive analysis of the results, the data is subdivided by time of day

for both non-elderly and elderly subject sets. The choice of these specific subdivisions

were based on a previous work (McCarthy et al 2016). A visualization of the signal

quality over 24 hours is shown in figure 5. This is an area plot in which the percentage

of data belonging to each class, averaged for each 10-minute, non-overlapping time

interval, is depicted in a vertically stacked manner. The area occupied by each colour

represents the percentage occurrence of its associated class. The plot starts at beginning

of the night period, at 22h (10:00pm), and continues for a full 24 hours.

The best data quality was obtained for both subject sets during the night period,

from 22h to 7h, which is associated with lower levels of activity as the participants were

likely asleep. Also, lower levels of activity were expected at times immediately preceding

and succeeding sleep. The markers in figure 5 identify the only time period for which

class 5 data consists of more than 50% of the data. This period is seven hours for the

non-elderly subject set, and eight hours and ten minutes for the elderly subject set,

though it ought to be noted that the elderly subject set has a brief spike in class 1 data

at around 7h. The elderly subject set has a longer period during which high quality

data is available; however, the results show a higher rate of class 5 data for non-elderly

individuals at night. Likely, this is an indication that elderly individuals on average have
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Signal Quality over 24-hour Period for Non-Elderly Demographic

00:25  to  07:25

22:00 00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00
0

20

40

60

80

100
P

er
ce

nt
ag

e 
of

 D
at

a

Signal Quality over 24-hour Period for Elderly Demographic

23:45  to  07:55

22:00 00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00

Time (hh:mm)

0

20

40

60

80

100

P
er

ce
nt

ag
e 

of
 D

at
a

Class 1 Class 2 Class 3 Class 4 Class 5

Figure 5. Quality of the PPG over the course of 24 hours for non-elderly and elderly

subject sets. The data in the plot is averaged to every ten minutes. The vertical lines

delineate the only zones in which class 5 data consists of over 50% of the data.

a longer sleep duration, though may wake up at night more often, thereby resulting in

lower rates of class 5 data.

A notable difference between the two subject sets in the portion of class 5 data

during the afternoon and evening periods is seen in the visualization in figure 5. The

elderly subject set has a class 5 portion 14.9 and 17.3 percentage points higher than the

non-elderly category, for the afternoon and evening time periods, respectively. This is

likely due to the relatively lower activity levels expected among the elderly subject set.

Despite this, only slightly over a quarter of their data during these periods is class 5.

Thus, even for elderly individuals, wrist-based PPG technology may not be suitable for

continuous monitoring during the day.

7. Discussion

7.1. Limitations

Various limitations were identified in the methodology of the study with regards to the

subjects and the data.

The study recruited only mobile subjects, as the scope of the research was to

ascertain whether the technology could be used during daily activities. Thus, a segment
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of the elderly population which is not mobile, was not included in the study. Higher

proportions of class 5 data would be expected in this population segment, for whom it

may be a feasible alternative to traditional modalities such as ECG Holter monitors.

Simple class definitions were used to ensure that segments could be easily classified

by raters. However, given the subjectivity of visual scoring and the moderate agreement

between raters obtained from this study, future studies may opt for stricter class

definitions to potentially achieve improvements in rater agreement. Increases in the

number of raters may also be trialed in an effort to improve the design of the visual

assessment.

The data segments selected for the establishment of the gold standard were

chosen randomly from each participant, with 39 ten-second segments being chosen per

participant. This random selection resulted in a class imbalance in the data set which

was ultimately used in the training and testing of the classifier. Thus, the classifier

was trained on more data from classes 1 and 5, compared to the other classes, and

performed better at correctly identifying segments of those classes. As a preliminary

study, the entire data set was used to maximize the amount of data used to train the

classifier. However, future studies could be performed to assess the impact of using a

class-balanced training set. This could be achieved by selecting a class-balanced subset

from the gold standard data set, and may improve the classifier’s accuracy for class 2,3,

and 4 data.

The effectiveness of pulse segmentation algorithms used for obtaining the various

per pulse statistics was likely inferior in class 1 data segments. Data segments corrupted

by motion artifacts would be expected to have a larger number of peaks, which may

erroneously be identified as pulses by the pulse segmentation algorithms. However,

the lower effectiveness of pulse segmentation for class 1 segments may have been

advantageous to the class discriminability, as the per pulse statistics would have yielded

different values for these noise peaks. This is demonstrated by the inclusion of these

features during feature selection.

Inherent limitations are present in the Median Relative Power per Pulse feature,

as the relatively low sampling rate of 64 Hz does not allow for high per pulse frequency

resolution.

Identification of these methodological limitations form an essential component of

this preliminary study, as they can be leveraged for the future development of improved

study designs.

7.2. Continuous Ambulatory Monitoring Potential

Signal quality of wrist-based photoplethysmography (PPG) technology was evaluated,

as a potential tool for continuous, non-invasive cardiovascular monitoring.

Evaluation of wrist-based PPG technology for continuous, ambulatory use

established that the technology provides high quality (class 5) data for only 34.8%

of the day, on an average. This in itself may not be sufficient for the detection of
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cardiovascular illnesses, however, time analysis of the signal quality reveals that the

signal quality improves considerably during periods associated with sleep. Thus, while

wrist-based PPG may be unsuitable for continuous monitoring during daily use, it has

to the potential to be used in more limited applications, such as night-time monitoring.

Despite this limitation, the technology may offer some benefits for early detection if

applied for preventative cardiovascular monitoring in relatively lower risk individuals for

whom ECG Holter monitoring would not normally be considered due to its cumbersome

nature.

Potential improvements may be made to the signal quality through the use of signal

processing and hardware adjustments. Future work may seek to identify effective signal

processing techniques for the mitigation or elimination of the noise introduced to the

signal due to motion artifacts and other sources. Hardware adjustments in the form of

LED size, placement, wavelength, light intensity, angle, and the number of LEDs can

be studied further for optimal noise reduction. Dynamic feedback systems may also be

developed to continuously adjust the LED light intensity or the photodiode sensitivity

based to optimize the quality of the obtained signal, potentially even incorporating the

accelerometer signal.

Owing to its user-friendliness compared to ECG Holter monitors, wrist-based PPG

has potential for long-term ambulatory monitoring. However, the results from this study

show that signal quality from the device under test is insufficient in many cases where

continuous monitoring is desired.
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