Tissue classification during surgical drilling using impedance spectroscopy

> EIT 2019, London, UK 3 July 2019

Yves Jegge¹, Andy Adler^{2,3}, Mareike Apelt¹, Gürkan Yilmaz², Damien Ferario², Kathleen Seidel⁴, Juan Ansó¹

¹ARTORG, Bern, Switzerland, ²CSEM, Neuchâtel, Switzerland, ³Carleton University, Ottawa, Canada, ⁴Inselspital, Bern, Switzerland

Motivation: tissue classification during surgical drilling

Figure: (Above) Pedicle screw concept. (Below) CT showing correct placement (left) and two examples of wall breaches

Tissue classification during surgical drilling using impedance Spectroscopy ... Jegge et al

Model of Cochlear implantation

Bell et al. In Vitro Accuracy Evaluation of Image-Guided Robot System for Direct Cochlear Access Otol. Neurotol. 2013 Caversaccio et al. Robotic cochlear implantation: surgical procedure and first clinical experience., Acta Otolaryngol., 2017

Experimental Configuration

Example results - Frontal

Figure: Post-operative μ CT slice (left) of the drill trajectory where red dots indicate the probe tip at points p1 ... p4.

Example results - Frontal

Figure: Impedance magnitude (left) and phase (right) for a representative trajectory. Points indicate the approach of the probe to the nerve, entering it at p4.

Example results - Frontal

Figure: Post-operative μ CT slice (left) of the drill trajectory where red dots indicate the probe tip at points p1 ... p4. |Z| (right) at three frequencies as a function of point number.

Example results - Lateral

Figure: Post-operative μ CT slice (left) of the drill trajectory where red dots indicate the probe tip at points p1 ... p5.

Example results - Lateral

Figure: Impedance magnitude (left) and phase (right) for a representative trajectory. Points indicate the approach of the probe to the nerve, entering it at p5.

Example results - Lateral

Figure: Post-operative μ CT slice (left) of the drill trajectory where red dots indicate the probe tip at points p1 ... p5. |Z| (right) at three frequencies as a function of point number.

Results and Discussion

- can ability to distinguish nerve tissue from bone
- Most useful f: 1 10 kHz
- Question:

Can we itentify **before** we reach the nerve?

Analysis is continuing to optimizing the probe sensitivity.

Modelling

Figure: FEM of probe in a uniform tissue near a lateral transition between tissue types, with electrode designs on probe and at right.

Tissue classification during surgical drilling using impedance Spectroscopy ... Jegge et al

Modelling Sensitivity – Electrode shape vs d

Tissue classification during surgical drilling using impedance Spectroscopy ... Jegge et al

Impedance vs *d* for electrode shapes

Figure: Relative change in impedance ($\Delta Z \%$) as a function of *d* (mm), for the electrode shapes on the previous page

Tissue classification during surgical drilling using impedance spectroscopy

> EIT 2019, London, UK 3 July 2019

Yves Jegge¹, Andy Adler^{2,3}, Mareike Apelt¹, Gürkan Yilmaz², Damien Ferario², Kathleen Seidel⁴, Juan Ansó¹

¹ARTORG, Bern, Switzerland, ²CSEM, Neuchâtel, Switzerland, ³Carleton University, Ottawa, Canada, ⁴Inselspital, Bern, Switzerland