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Abstract: We examine the relationship between measure-
ment noise and reconstructed images. For linearised EIT
reconstruction, the location and distribution of artefacts can
be identified exactly for known noise distributions, or ap-
proximately for arbitrary distributions. These intricate arte-
fact models help explain how experienced users can often
identify “bad” measurements in real-world data.

1 Introduction
Noise exists in all real-world data: undesired fluctuations in
measured signal. There are a wide variety of noise sources,
many of which are not well modelled by Gaussian distri-
butions. For example certain models of quantization, clip-
ping, burst, thermal, and shot noise are non-Gaussian. EIT
measurement noise affects reconstructed conductivity im-
ages leading to artefacts. Structured noise can result in per-
sistent artefacts which are difficult to identify from single
images and are not removed by temporal filtering.

2 Methods
A single-step Gauss Newton EIT reconstruction matrix
Q for measurements b contaminated by additive (non-
parametric) noise η gives an image x where
x = (JTWJ+ λ2R)−1JTW(b+ η) = Q(b+ η) (1)

= x(b) + x(η) with x(b) = Qb ; x(η) = Qη

for Jacobian J, inverse measurement covariance W, and
regularization R adjusted by hyperparameter λ. The un-
contaminated measurements b give the image x(b), while
noise generates a distribution of additive changes to the im-
age x(η).

To calculate the distribution of noise afflicted images,
a typical technique is the Bootstrap Method [1], where the
mean of all images x̂(η), after random sampling of measure-
ment noise η with replacement, gives a generalized distri-
bution for sampled noise ηj where x̂(η) = 1

m

∑m
j Q/j ηj

over many noise samples m � 100 will tend to a Gaus-
sian distribution courtesy of the central limit theorem. With
many measurements, Leave-One-Out (LOO) will give sim-
ilar results to the bootstrap.

We see immediately that we need only calculate x(b)

once and in fact, it only shifts our distribution’s centre.
We can see the individual components of our measurement
noise translated into an image distribution as a linear com-
bination of measurements. Furthermore, the bootstrap re-
sampling of measurements is not adding additional infor-
mation, but is instead converting a point estimate into an
approximately continuous distribution. If instead we exam-
ine each measurement’s noise distribution individually and
transform that distribution into the image domain through
the reconstruction matrix Q, we have an exact probabil-
ity distribution for the reconstructed image x(η) = Qη =

Q
∑
k ekDk =

∑
k x

(η)
k , for ek = [0 . . . 1 . . . 0]T and 1

at the k row. The sum of the images gives a probabilistic
“mixture model” which fully describes the variation in the
reconstruction due to measurement noise.
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Figure 1: The PDF (blue) for a voxel (black triangle) changes de-
pending on which measurements are dropped, in this case based
on leaving out an electrode. Taking the sum of the PDFs (red)
shows a distinct peak near the true conductivity. Removing single
measurements (LOO) or bootstrap gives distributions driven by the
central limit theorem (grey dashed, scaled to red line). Tikhonov
regularized, GN-1 step images were reconstructed from noisy data
η = N (0, c/10) and electrode#10 η = N (0, c) with c = std(b).
The linear mixture of distributions Q changes depending on regu-
larization λ (upper versus lower images/plots). Reconstruction at
λ for particular samples of noise (right) give a conductivity which
is most often the max of the grey-dashed plot to the left, but the
correct solution is at the red peak; (above) reduced regularization
λGCV /4 produces distributions with greater variance, than (be-
low) for λGCV ; λ by L-curve λL and GCV λGCV are similar.

3 Observations and Conclusions
The effects of each measurement noise are separable and
are captured by a scalar distribution. The scalar distribu-
tions form a linear mixture [2] through the reconstruction
Q (Figure 1). The distribution of noise artefacts is solely a
function of the reconstruction matrix Q and the noise dis-
tribution η. The combination of all k noise distributions Dk

gives a specific image artefact distribution per voxel.
Greater regularization λ reduces noise variance in the

overall mixture model, but does not necessarily “suppress”
particular measurements. Noisy images are a mixture of
scaled and offset distributions. Regions that are particularly
sensitive to a single group of measurements allow isolation
of that measurement’s noise distribution and allow direct
diagnosis of “bad” measurements.

This work demonstrates an efficient and direct method
for computing the effect of noise on images and is an en-
abling tool for identifying noise distributions in artefact
affected images using time-series data which may not be
amenable to temporal filtering.
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