Accelerating Space-Time Reconstructions

Andy Adler ${ }^{1}$, Kirill Aristovich ${ }^{2}$

${ }^{1}$ Carleton University, Ottawa, Canada, ${ }^{2}$ University College London, UK

Introduction

Regularized image reconstruction uses a penalty to impose spatial smoothness. Several approaches exist to also impose temporal smoothness. We formulate spatiotemporal reconstruction to helps clarify the impact of parameter choices.

Spatio-temporal (S-T) regularized time difference EIT reconstruction can be formulated in (a) two stages (spatial then temporal) [3], (b) via an augmented S-T matrix [1], or (c) as a Kalman smoother [2]. Here we extend (b) to provide a simplified and efficient calculation.

Fig. 1: Block diagram of a geophysical EIT system with a temporal effect. Top: horizontal plane beneath surface electrodes Bottom: Space and Time Interpolation

References

[1] A Adler, T Dai, WRB Lionheart, Physiol Meas 28:S1-S11, 2007.
[2] M Vauhkonen, PA Karjalainen, JP Kaipio, IEEE T Biomed Eng 45:486-493, 1998.
[3] RJ Yerworth, I Frerichs, R Bayford, J Clin Monit Comput 31:1093-1011, 2017

Space then Time

For a frame of data, y, image x

$$
\|y-J x\|_{P}^{2}+\|x\|^{2}
$$

with solution, $\hat{x}=R y$

$$
R=\left(J^{t} J+P\right)^{-1} J^{t}
$$

A S-T formulation

$$
\left[\begin{array}{l}
y_{+} \\
y_{0} \\
y_{-}
\end{array}\right]=\left[\begin{array}{lll}
J & & \\
& J & \\
& & J
\end{array}\right]\left[\begin{array}{l}
x_{+} \\
x_{0} \\
x_{-}
\end{array}\right]
$$

Model time-correlation, Γ

$$
\left[\begin{array}{l}
\hat{x}_{+} \\
\hat{x}_{0} \\
\hat{x}_{-}
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
1 & \gamma & \gamma^{2} \\
\gamma & 1 & \gamma \\
\gamma^{2} & \gamma & 1
\end{array}\right]}_{\Gamma}\left[\begin{array}{lll}
R & & \\
& R & \\
& & R
\end{array}\right]\left[\begin{array}{l}
y_{+} \\
y_{0} \\
y_{-}
\end{array}\right]
$$

Choose f so gain $=1 ; f \rightarrow \frac{1-\gamma}{1+\gamma}$.

$$
\Gamma^{-1}=f^{\prime}\left[\begin{array}{ccr}
1 & -\gamma & 0 \\
-\gamma & 1+\gamma^{2} & -\gamma \\
0 & -\gamma & 1
\end{array}\right]
$$ where $f^{\prime}=(1-\gamma)^{-2}$

Space with Time

The augmented reconstruction matrix, \tilde{R} $[\tilde{R}]=\underbrace{\left(\left[\begin{array}{llll}J^{T} J & & \\ & & J^{T} J & \\ & & & J^{T} J\end{array}\right]+P \otimes \Gamma^{-1}\right)^{-1}}\left[\tilde{J}^{T}\right.$

$$
\left(\left[\begin{array}{lll}
J^{T} J+P & & \\
& J^{T} J+P & \\
& & J^{T} J+P
\end{array}\right]+P \otimes\left(\Gamma^{-1}-I\right)\right)^{-1}
$$

$=\left[\begin{array}{lll}R & & \\ & R & \\ & & R\end{array}\right] \underbrace{}_{\left(\begin{array}{lll}\left.\left[\begin{array}{lll}I & & \\ & I & \\ & & I\end{array}\right]+R P \otimes\left(\Gamma^{-1}-I\right)\right)^{-1} \\ & & I\end{array}+\right.}$
where $(I+\delta)^{-1} \approx 1-\delta+\delta^{2}-\delta^{3} \cdots$
Define factors:

$$
p_{i, j}=P^{j}\left[\left(\Gamma^{-1}-I\right)^{j}\right]_{i}
$$

where $[\cdot]_{i}$ is the $i^{\text {th }}$ offset from the matrix diagonal.

Representative Images

Fig 2: Simulation and Reconstruction images (on circular domain, half shown). Left: Simulation matrix, with an object moving from top (blue) to bottom (red) during three acquisition frames; the first acquisition of each frame is marked white; A : Reconstruction of a frame of data with the object still at 90° (reference image); B : Temporal ignorance (average all measures); C : Linear temporal interpolation; D : Temporal reconstruction [1].

