Biometric Permanence: Definition and Robust Calculation

John Harvey(1), John Campbell(2), Stephen Elliott(3), Michael Brockly(3), and Andy Adler(1)

(1) Carleton University, Ottawa, Canada; (2) Bion Biometrics Ltd, Ottawa, Canada; (3) Purdue University, West Lafayette, IN, USA
Outline

• Motivation and background
• Conceptual overview and study design
• Challenges
• Matched delta methodology
• Simulation setup and results
• Preliminary experimental results
• Discussion and conclusion
Biometric IdMS deployment

• Biometrics increasingly used in long-term Identity Management Systems
 – Biometrically enabled passports
 – “Trusted Traveller” programs (NEXUS)
 – UNHCR refugee program (Accenture BIMS)

• What is the long-term performance of these systems?
Background

• Generally regard biometric features as unique and stable

• Physiological ageing factors depend on modality
 – FACE: skin texture and elasticity
 – IRIS: changes in pupillary diameter

• What is the system level impact of these physiological changes?
ISO 24745 generic RBR model

Binary classification

Imposter

Genuine

Match score

Count (or probability density)

False matches

False non-matches

t
Decision Error Tradeoff (DET)

- Decreasing convenience
- Decreasing security
Requirement

• Understand and quantify potential biometric performance degradation over time
 – Increased FMR (decreased security)
 – Increased FNMR (reduced convenience)

• Outcome will inform credential revocation and re-enrollment policies
Conceptual overview

Visit sequence

Score distributions

Decision Error Tradeoff

\[P_B(\Delta t, \text{FMR}) = \frac{1 - \text{FNMR}(\Delta t)}{1 - \text{FNMR}(0)} \]
Permanence properties

- P_B increases towards unity as $\text{FNMR} (\Delta t)$ tends towards $\text{FNMR}(0)$
 - perfectly permanent template

- P_B decreases towards zero as $\text{FNMR} (\Delta t)$ tends towards unity
 - perfectly impermanent template
Study design & protocol

- >12,000 ISO/IEC standards-compliant enrolments
- >150,000 bitmapped single-finger verification images
- ~500,000 genuine (same subject, same finger) matches
Visit matrix

<table>
<thead>
<tr>
<th></th>
<th>Verify</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enrol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2006-02</td>
<td></td>
<td>2</td>
<td>137</td>
<td>140</td>
<td>314</td>
<td>318</td>
<td>369</td>
<td>374</td>
</tr>
<tr>
<td>2</td>
<td>2006-03</td>
<td></td>
<td>-2</td>
<td>0</td>
<td>135</td>
<td>137</td>
<td>312</td>
<td>315</td>
<td>367</td>
</tr>
<tr>
<td>3</td>
<td>2008-10</td>
<td></td>
<td>-137</td>
<td>-135</td>
<td>0</td>
<td>2</td>
<td>176</td>
<td>180</td>
<td>232</td>
</tr>
<tr>
<td>4</td>
<td>2008-10</td>
<td></td>
<td>-140</td>
<td>-137</td>
<td>-2</td>
<td>0</td>
<td>174</td>
<td>178</td>
<td>230</td>
</tr>
<tr>
<td>5</td>
<td>2012-02</td>
<td></td>
<td>-314</td>
<td>-312</td>
<td>-176</td>
<td>-174</td>
<td>0</td>
<td>4</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>2012-03</td>
<td></td>
<td>-318</td>
<td>-315</td>
<td>-180</td>
<td>-178</td>
<td>-4</td>
<td>0</td>
<td>52</td>
</tr>
<tr>
<td>7</td>
<td>2013-03</td>
<td></td>
<td>-369</td>
<td>-367</td>
<td>-232</td>
<td>-230</td>
<td>-55</td>
<td>-52</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>2013-04</td>
<td></td>
<td>-374</td>
<td>-371</td>
<td>-236</td>
<td>-234</td>
<td>-60</td>
<td>-56</td>
<td>-4</td>
</tr>
</tbody>
</table>

Approximate intervals (in weeks) between visits
“Ideal” ageing behavior

• FNMR (or genuine match score) constant along diagonal of visit matrix ($\Delta t = 0$)

• Monotonic decrease in permanence (FNMR) with absolute time interval Δt
Baseline variability

Presentation averaged mean genuine scores at $\Delta t = 0$
Factors causing baseline variability

- Test operator training and acclimation
 - Ensuring optimal finger placement
- Test subject acclimation
 - Subject develops better finger placement
- Equipment degradation
 - Damaged or dirty fingerprint capture platen
- Physical environment
 - Humidity, temperature
Heurisitic model

\[\tilde{S}_{nm} = S_{nm} + a_m + b_n + W_{ji} \]

- True score between \(j^{th} \) biometric in \(n^{th} \) visit and \(i^{th} \) biometric in \(m^{th} \) visit
- Bias specific to \(n^{th} \) verification visit
- Bias specific to \(m^{th} \) enrollment visit
- Presentation averaged noise term
“Matched Delta” method

- Collect biometric templates AND verification presentations at each visit
- Match $\tilde{s}_{nm}^{ji}(\Delta t_{ji})$ and $\tilde{s}_{mn}^{ij}(\Delta t_{ij})$
- Average the forward-in-time (ji) and backward-in-time (ij) match scores
- Substantially eliminates the bias terms a_m, b_n
Visit matrix

Base1

<table>
<thead>
<tr>
<th></th>
<th>Week21</th>
<th>Year1U</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2w</td>
<td>1y</td>
</tr>
<tr>
<td>2w</td>
<td>0</td>
<td>1y</td>
</tr>
<tr>
<td>1y</td>
<td>1y</td>
<td>0</td>
</tr>
<tr>
<td>1y</td>
<td>1y</td>
<td>2w</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Base2

<table>
<thead>
<tr>
<th></th>
<th>Week22</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
Simulation goals

• Demonstrate application of method
 – Simulate large number of matches
 – Known distribution (Rayleigh)
 – Allows us to predict $P_B(\Delta t, FMR)$ analytically

• Establish convergence between new method and naïve calculation
 – Simulate an ensemble of 8-visit studies
 – Average converges to Matched Delta result?
Simulation results

- raw score distribution
- matched delta method
- analytical (Rayleigh distributions)
Ensemble convergence
Results – typical device

Permanence

Baseline ($\Delta t = 0$) score histogram

Device ID 02: capacitive semiconductor
Results – low ageing

Permanence

Baseline ($\Delta t = 0$) score histogram

Device ID 03: optical (single spectral)
Conclusion

• Biometric template ageing has serious operational implications
• It is hard to measure because of factors such as environment and acclimation
• Proposed an operational definition of Biometric Permanence $P_B(\Delta t, FMR)$
• Demonstrated an effective “Matched Delta” method to evaluate it
• Now applying to measured data