Focusing EIT reconstructions using two electrode planes

Bartłomiej Grychtol1 Johannes Peter Schramel2 Ulrike Auer2 Martina Mosing3 Christina Braun2 Andreas Waldmann4 Stephan Böhm4 Andy Adler5

1Fraunhofer PAMB, Mannheim, Germany 2Vetmeduni Vienna, Austria 3School of Veterinary and Life Sciences, Murdoch University, Perth, Australia 4Swisstom AG, Landquart, Switzerland 5Carleton University, Ottawa, Canada

EIT 2017
June 21–24, Dartmouth College
Hanover, New Hampshire, USA
Background

EIT with a single electrode plane
Background

EIT with a single electrode plane

→

EIT with multiple electrode planes

Grychtol et al.

2017/06/22
Background

EIT with a single electrode plane

EIT with multiple electrode planes
Background

EIT with a single electrode plane

EIT with multiple electrode planes
Single vs multiple electrode planes

Single plane: 1×32
- Off-plane sensitivity
- Well understood

Multiple planes: 2×16
+ Better off-plane sensitivity
- Less well studied (plane separation, stim patterns, . . .)

Each vertical pixel is calculated with respect to the on-plane value, and shown by the contours (indicating 95%, 90%, 75%, 50% and 25% of the maximum).
Goal: better in-plane imaging

Can we use 2×16 placement to give better single slice measurements?
Goal: better in-plane imaging

Can we use 2×16 placement to give better single slice measurements?

Use this to study (heterogeneous) horse lungs:
- gravity-related pressure changes
- abdomen (with lots of gas) diagonally under lungs
- equine asthma \rightarrow inhomogeneous lung changes
Methods: Data collection

- 1×32 belt
- 2×16 belt

Focusing EIT reconstructions using two electrode planes

Grychtol et al

2017/06/22
Methods: Electrodes

- Electrode belt: 1×32 or 2×16
- EIT system: Swisstim BBVet (32 elec at 50 frames/s)
- Stim/meas pattern: 1×32 (skip 4)

- Stim/meas pattern: 2×16 (skip 4 “square” pattern)
Methods: 3D Reconstruction

Focusing EIT reconstructions using two electrode planes Grychtol et al 2017/06/22
Cross-sectional images

Focusing EIT reconstructions using two electrode planes

Grychtol et al 2017/06/22
Simulation images

Focusing EIT reconstructions using two electrode planes Grychtol et al 2017/06/22
Vertical resolution vs. Plane separation (s)

1×32
s = 0.0

2×16
s = 0.1
s = 0.2
s = 0.3

NF=0.5

NF=2.0

50%
75%

Focusing EIT reconstructions using two electrode planes Grychtol et al 2017/06/22
Discussion

- 2×16 seems to be a good way to do single plane images
- Appears to have improved slice width
- "Drop-in" replacement for 1×32 Reconstruction Matrix
Discussion

- 2×16 seems to be a good way to do single plane images
- Appears to have improved slice width
- "Drop-in" replacement for 1×32 Reconstruction Matrix
- Need tests & experience to recommend
 - Plane separation
 - Stim/meas patterns
 - How to choose reconstruction parameters (λ)
 - Effect of electrode errors
 - Efficient algorithm calculation
Discussion

- 2×16 seems to be a good way to do single plane images
- Appears to have improved slice width
- “Drop-in” replacement for 1×32 Reconstruction Matrix
- Need tests & experience to recommend
 - Plane separation
 - Stim/meas patterns
 - How to choose reconstruction parameters (λ)
 - Effect of electrode errors
 - Efficient algorithm calculation
- Next step: experiments
 - Move abdominal gas (out-of-plane)
 - Evaluate effect on EIT images
Discussion

- 2×16 seems to be a good way to do single plane images
- Appears to have improved slice width
- “Drop-in” replacement for 1×32 Reconstruction Matrix
- Need tests & experience to recommend
 - Plane separation
 - Stim/meas patterns
 - How to choose reconstruction parameters (λ)
 - Effect of electrode errors
 - Efficient algorithm calculation
- Next step: experiments
 - Move abdominal gas (out-of-plane)
 - Evaluate effect on EIT images
- Need a better term: “stimulation & measurement patterns”