
An Embedded System for Impedance Imaging of Permafrost Changes
Alistair Boyle1 and Andy Adler2

1University of Ottawa, Ottawa, Canada, aboyle2@uottawa.ca
2Carleton University, Ottawa, Canada

Abstract: Permafrost is permanently frozen soil in the near-
surface. Impedance imaging techniques may enable moni-
toring of increased seasonal variation in land movement and
slope stability wrought by climate changes. We explore the
constraints on an open-hardware embedded system for long-
term remote monitoring of permafrost enabling preventative
action prior to a catastrophic infrastructure failure.

1 Introduction
Permafrost is a layer of permanently frozen soil (< 0◦C for
2 years) which covers 24% of the landmass in the North to
a depth of 1.5 km in some locations [1]. Changing climatic
conditions have led to structural changes in permafrost: sea-
sonal heaving of formerly stable land upon which civil in-
frastructure resides. A key indicator of these changes are
the formation of “ice wedges” as well as sub-surface pool-
ing of melt water. Electrical Impedance Tomography (EIT),
or equivalently Electrical Resistivity Tomography (ERT), is a
promising technique for monitoring these localized changes
in structure [2]. In warmer conditions, EIT systems tend to be
designed for relatively low frequencies (1 Hz) and are often
designed to be sensitive to humid soils and conductive ores.
Frozen soils have much lower conductivities and tempera-
ture dependent permittivity, meaning current will propagate
poorly unless stimulation frequencies in the 10’s or 100’s of
kHz are used [3]. This means that the hardware design ex-
perience in the biomedical EIT community can be relevant to
designing a multi-frequency system for permafrost EIT mea-
surement. We explore the design constraints for an embedded
system to be used in remote, long-term monitoring of seasonal
changes in the resistivity of permafrost layers.

We have interviewed a number of hardware experts from
the EIT community regarding their experiences designing EIT
systems. We briefly summarize the design considerations
identified during these interviews below.

2 Design Considerations Identified
An impedance imaging system can be broken down into a
number of components as shown in (fig. 1). Audio frequency
analog circuits, low frequency A/D converters, and millivolt-
range measurements imply a straight-forward design. The
components are relatively well understood but are deceptively
challenging to implement well at 100kHz frequencies [4, 5].
In implementing these functional blocks, design choices and
trade-offs must be made: frequencies of operation, noise tol-
erance, complexity, and reliability.

For products manufactured at a commercially viable scale
or remote installations where on-site maintenance costs can
be very high, reliability plays a key role. How much calibra-
tion, testability, and repeatability should be built into a system
or be available in some adjacent system?
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Figure 1: Block diagram of typical EIT hardware, consisting of (a)
a storage and communication solution, typically some form of mi-
crocontroller or embedded processor and storage connected to the
outside world, (b) digital frequency synthesis and modified Howland
current source, (c) quadrature differential measurement, (d) analog
signal chains for amplification, buffering, and filtering, (e) switch-
ing, (f) wiring, and (g) electrodes

Design decisions imply different cost, sensitivity to noise
and interference, robustness and calibration requirements.
Key challenges are to address drive, connectivity, and mea-
surement needs while limiting interactions that complicate
calibration. Quality of excitation is determined by quantiza-
tion errors, current source matching, output impedance, and
frequency range. Wiring, muxing and electrodes may limit
system performance: crosstalk, stray capacitance, and leakage
currents may be controlled with shielding. Electrode polariza-
tion can be managed through appropriate measurement strate-
gies and careful control of excitation. Differential measure-
ments are typically limited by Common Mode Rejection Ra-
tio (CMRR). Measurement accuracy and speed is further lim-
ited by filter structures, A/D dynamic range, time source jitter
and phase accuracy at measurement demodulation. Equip-
ment must be able to report on the quality of measurements,
as well as the measurements themselves. Increasing circuit
complexity in an attempt to solve some of these issues tends
to lead to increased calibration challenges.

3 Discussion
There are challenges in implementing an EIT system under
new constraints. We aim to bring together the experiences
of many in the EIT and ERT communities in designing these
systems by working towards an open-hardware platform as a
focal point for discussion of design constraints and trade-offs.
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