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Abstract 

Dynamic PET is being increasingly utilized to quantify myocardial blood flow, leading to 

improved diagnostic and prognostic value for the management of coronary artery 

disease. MBF quantification assumes constant positioning of anatomical structures 

throughout image acquisition. This assumption is violated in the presence of patient 

motion and heart motion. This thesis discusses methods for motion detection in 

dynamic cardiac 82Rb PET images.  

First, we determined if positron-emitting fiducial markers can be used as surrogate 

markers for heart motion in dynamic PET images. Second, algorithms were developed to 

track fiducial marker motion. Lastly, we tested the idea that principle component 

analysis may be able to detect heart motion in dynamic 82Rb PET based on patterns in 

the residue image. 

Overall, this thesis proposes low-cost, fast, and vendor independent post-reconstruction 

dynamic 82Rb PET motion detection methods which can be used to detect motion in a 

clinical environment as a quality assurance tool.  
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1 Introduction 

Coronary artery disease (CAD) is a leading cause of death in the western and developing 

world. This disease develops when the major arteries supplying blood to the heart 

muscle (myocardium) become damaged or diseased which can ultimately lead to 

myocardial infarction. Myocardial perfusion imaging (MPI) is used clinically to identify 

patients suffering of CAD and to guide therapy. However, MPI may miss uniform 

reduction in blood flow due to balanced disease in multiple coronary arteries and 

diffused disease of the micro vascular bed. Quantitative myocardial blood flow 

measurements (MBF) can overcome this limitation by improving the sensitivity of the 

test. The gold standard non-invasive modality for MBF quantification is positron 

emission tomography (PET). A PET camera is designed to detect photons associated with 

positron-emitting isotopes injected into the patient in trace molecular quantities 

(tracer). Thus, PET images correspond to the distribution of the tracer and therefore 

map the physiologic function of the body (i.e. MBF) with regard to the tracer molecule. 

MBF PET requires dynamic imaging as the tracer distributes through the body and is 

therefore susceptible to patient motion during image acquisition. Motion detection can 

be used to increase the confidence of MBF measurements in clinical use (quality 

control) and to flag cases where MBF may not be accurate due to the presence of 

motion. 

One approach is to detect motion pre-reconstruction which requires the use of 

expensive external motion tracking equipment such as cameras and sensors to be 
1 

 



incorporated in the clinical setting which can require changes to the imaging protocol 

and calibration [1,2]. While these systems can provide real-time measures, unique 

processing steps are required for integration with the PET data during image 

reconstruction which are specific to the camera vendor. A need remains for 

development of powerful post-reconstruction methods of motion detection which are 

less expensive, simple to integrate in clinical routine, and are vendor independent.  

In this work, two post-reconstruction motion detection methods are proposed and their 

accuracy for flagging the presence of motion is evaluated. The first uses low-cost fiducial 

markers that is visible in the reconstructed image sequence and serves as a proxy for 

patient motion. The marker can be automatically tracked with high accuracy within the 

reconstructed dynamic image sequence. The second method uses principle component 

analysis to decompose the dynamic PET image sequence and the residue image can be 

visually or mathematically analyzed for evidence of heart motion.  

1.1 Objective 

The objective of this work is to develop a reliable post-reconstruction method for 

detecting the presence of undesired patient and heart motion in dynamic cardiac PET 

images for the purpose of quality control.  

1.2 Thesis Summary 

The background chapter gives an overview of the knowledge required to evaluate and 

meet the objective of this work. This chapter begins with an overview of myocardial 
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perfusion and CAD and then describes how it can be visualized with PET. The chapter 

then discusses MPI and MBF quantification and how it is used in a clinical environment. 

Lastly, the background covers the various types of motion that could potentially be 

presented in PET images with an emphasis on heart organ and patient motions. 

Chapter four evaluates whether there is a correlation between patient and heart organ 

motions during dynamic cardiac PET imaging. Patients undergoing dynamic cardiac 

Rubidium-82 PET imaging had a radioactive fiducial marker affixed to their chest during 

PET imaging. The dynamic image sequences were visually inspected, frame by frame, for 

both patient and heart motion using tailor made visualization software. Patient motion 

was deemed if the fiducial marker was observed to move in the dynamic image 

sequence. Time frame and motion-direction were recorded and analyzed for prevalence 

and concordance between patient and heart motion. While disagreement between the 

time frames and direction in which both fiducial marker and heart motion occurred was 

noted, it was concluded that fiducial markers have adequate sensitivity (89%) and 

specificity (87%) as predictors of presence of heart motion in dynamic image acquisition. 

Chapter five describes automatic algorithms for detecting fiducial marker motion in 

dynamic cardiac PET images. Two post-reconstruction algorithms were developed to 

detect inter- and intra-frame fiducial marker motion respectively. Inter-frame motion 

was defined as motion between two successive frames and intra-frame motion as 

motion within a single frame, which is manifested as a directional blur of the marker. 

The fiducial marker was first detected within the image and then accurately located by 
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using center of mass (COM) calculations. The inter-frame algorithm calculates the 

difference in COM between successive frames for each of the time frames, and 

compared against a pre-determined threshold to determine the presence of inter-frame 

motion. The intra-frame motion algorithm constructed profiles of activity fall-off with 

radial distance from the COM for each time frame in the dynamic image sequence. A 

modified-Gaussian curve was fit to each profile and a broadness parameter, B, was 

compared to a threshold value to determine presence of patient motion. The inter- and 

intra-frame algorithms using thresholds derived in this work had an accuracy of 91% and 

87% respectively compared to visual assessment as a reference standard - adequate 

performance for automated motion detection for quality assurance.  

In Chapter six we sought to evaluate an alternative and completely novel method to 

detect heart motion directly from the patient data, without the need for fiducial 

markers. Image decomposition was performed using principle component analysis (PCA) 

and the residue image (signal not described by the principle components) was visually 

and analytically interpreted for patterns indicating the presence of motion. Noise-free 

dynamic cardiac PET images were simulated with motion in various time frames and 

directions. The simulated images were decomposed and the residue images were 

visually evaluated for motion frames where potential motion was present.  

The final chapter discusses the implications of this work to this and other related 

applications. It describes future direction including applications. We conclude that 

automated fiducial motion tracking is feasible for flagging the presence of motion. While 
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a single fiducial marker is not suitable for characterizing motion and driving motion 

correction. 

1.3 Contributions 

Part of this work was presented at international meetings and published: 

• A. Sritharan, R. deKemp, R. Beanlands, A. Adler, and R. Klein, “Automatic 
Detection of Patient Motion Using Fiducial Markers in Dynamic Cardiac PET 
Images,” J Nucl Med, vol. 56, no. supplement 3, pp. 133–133, May 2015. 

 
• A. Sritharan, A. Adler, R. deKemp, R. Beanlands, and R. Klein, “Agreement 

between patient and heart motion during dynamic cardiac PET imaging,” J Nucl 
Med, vol. 55, no. supplement 1, pp. 1785–1785, May 2014. 
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2 Technical Background 

2.1 Myocardial Perfusion and Coronary Artery Disease  

The heart is a vital organ pumping blood to the lungs and body. This work requires 

continued supply of nutrients, energy, and oxygen via the blood through a network of 

arteries. The largest of these arteries are the coronary arteries which originate at the 

aortic root and bifurcate into smaller and smaller vessels, ending in the capillary bed. 

The myocardium (heart muscle) contains cardiomyocytes which contract the heart. The 

myocardium is thickest (~1 cm) in the left ventricle (LV) due to the LV having to pump 

blood into the aorta and through the body requiring a large amount of pressure. 

Consequently even with limited image spatial resolutions, the LV is a thick enough target 

for non-invasive nuclear imaging modalities. The right ventricle (~5 mm) and atrial walls 

(~2 mm) are more difficult to image, but are also being increasingly images as the spatial 

resolution of improves. Figure 2.1 illustrates the most common anatomy of the main 

coronary arteries (Left anterior descending artery [LAD], Left circumflex 

artery [LCx], Right coronary artery [RCA]) which perfuse the LV. The polar-map at the 

center of Figure 1 shows the percentage of tracer uptake in the LV. The blue region 

represents regions of low tracer uptake and therefore low blood uptake while the red 

regions represent regions of high tracer uptake associated with normal regional blood 

supply.  
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Coronary artery disease (CAD) develops gradually, leading to narrowing of the main 

coronary arteries which eventually limit the supply of blood to the myocardium and 

therefore limit tracer uptake by the myocardium. CAD is one of the leading causes of 

mortality and morbidity in western society and is increasing in prevalence in developing 

societies [3]. With proper diagnosis and intervention however, quality of life and survival 

can be increased significantly. Positron emission tomography (PET) is a sensitive and 

specific imaging modality for determining severity and extent of CAD in patient clinical 

setting [4]. 

2.2 Positron emission tomography 

Positron emission tomography (PET) imaging has emerged as a superior alternative for 

myocardial perfusion imaging (MPI) compared to SPECT. It’s superiority to SPECT was 

Figure 2.1 - Example diagram showing a polar-map of percent uptake from RCA, LCx, 
and RCA which perfuse to the LV myocardium 
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recognized due to technological advancements that result in more accurate molecular 

imaging and quantification [5]. A PET camera uses detectors all around the patient in a 

ring formation and does not require the use of physical collimators, as in SPECT, 

allowing for higher sensitivity of the camera to detected emitted radiation [5]. Therefore 

PET can detect a larger number of emitted photons which results in improved image 

quality including higher signal-to-noise ratio (SNR), superior spatial resolution and 

shorter scan times [5].  

PET using 18F-flurodeoxyglucose (FDG) has been widely adopted as the gold standard for 

sensitive and specific detection and staging of cancer, and  for assessing response to 

therapy [6] and has been the dominant clinical application of PET. Cardiac PET has been 

growing dramatically in recent years mostly using 82Rb, which has excellent imaging 

properties and can be cost effective in high patient volume clinics. 82Rb PET has a higher 

sensitivity and specificity in the detection of obstructive CAD compared to SPECT [7]. A 

recent meta-analysis study showed that 82Rb PET and SPECT had a sensitivities of 88% 

and 85% and specificities of 90% and 85% respectively [8]. This is due to PET images 

having a higher spatial resolution, reduced image noise, accurate attenuation 

correction, and higher tracer extraction by the myocardium [9]. 

A PET camera is designed to detect photons which are produced from positron-emitting 

isotopes injected into the patient. Thus PET images correspond to the distribution of the 

tracer and are associated with the physiologic function of the body with regard to the 

tracer molecule, as opposed to anatomy, as with x-ray, ultrasound and magnetic 
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resonance imaging. Current industry limitations to widespread adoption of PET is the 

high cost of the camera compared to SPECT and the potential need for an on-site 

cyclotron depending on what isotope is required for imaging [10]. 

A positron-emitting radioactive tracer is administered into the body and distributes 

based on physiologic functions. As the radioisotope label decays a positron is emitted 

which slows and annihilates with a nearby electron, producing two coincident 511 keV 

gamma rays (photons) travelling in opposite directions (collinear). The PET camera is 

composed of detectors designed to absorb and detect these photons. Each of the 

detectors is linked so when two coincident photons hit the detectors within a restricted 

time window it is registered as a coincident event. Since both coincident photons move 

in opposite directions the coincident event is assumed to have occurred along the line of 

response (LOR) between the detector pair. Using complex image reconstruction 

algorithms (e.g. filtered back projection or iterative optimization) PET can create 

tomographic images by determining where the coincident events were most likely to 

originate along the LORs. The final image is a volume consisting of many slices through 

of the field of view (FOV) of the camera. The amount of radiation emitted from a finite 

volume is proportionate to the tracer concentration. 

An advantage of PET is its accurate attenuation correction [7] along with ability to 

correct for other physical phenomenons (e.g. random and scatter events) prior-to or as 

part of image reconstruction to achieve quantitatively accurate images of tracer 

distribution. Due to the uniquely high sensitivity of PET, a trace (on the scale of nano- to 
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femto-moles) amount of this radioactive compound is required, which does not invoke a 

physiologic response – hence the name tracer. 

2.3 Myocardial perfusion Imaging 

Myocardial perfusion imaging (MPI) typically consists of imaging both at states of 

cardiac rest and stress in order to assess the ability to increase perfusion to meet 

increased oxygen demands with exercise. Cardiac stressing is typically performed either 

through physical exercise or through the use of pharmacological drugs such as 

adenosine, dipyridamole, and dobutamine [9, 11, 12]. The rest and stress images are 

interpreted together. In each image, the region of highest activity is assumed to be 

normally perfused and all other regions are compared to it. Regions with reduced tracer 

uptake (defects) are deemed to have reduced perfusion compared to the reference 

region. If regions at both stress and rest have reduced uptake then the region is 

considered to be scarred. A region with reduced uptake at stress but normal uptake at 

rest is considered to be ischemic [10].  

There are a wide variety of tracers which can be used to probe different biochemical 

processes in the body ranging from myocardial perfusion, cell signaling, lesion tracking 

and metabolic processes making PET a valuable imaging modality in various fields. MPI 

tracers are designed to have good binding affinity to the myocardium where it is taken 

up by the tissue in relation to the rate of blood flow perfusing the tissue and is retained 

in the tissue, making it a good perfusion tracer [10].  
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An important property of any tracer is its rate of radioactive decay. The half-life of a 

radioactive compound is defined by the time it takes for half of the original activity to 

decay. Short lived tracers have the benefits of reducing potentially harmful radiation 

exposure to the patient and allows for quick successive testing such as for imaging at 

states of cardiac rest and stress. However, when using short lived tracers (e.g. 82Rb) 

patients may need to be stressed pharmacologically as opposed to physical exercise. 

Table 2.1 shows the production methods of commonly used PET MPI tracers and their 

half-life.  

Table 2.1 - PET Perfusion Tracers 

Isotope Half-Life (T1/2) [min] Production MPI Tracer 

82Rb 1.3 Generator 82Rb-chloride 

13N 10.0 Cyclotron 13N-ammonia 

18F 110 Cyclotron 18F-Flurpiridaz 

11C 20.4 Cyclotron 11C-acetate 

15O 2.0 Cyclotron 15O-water 

  

Most biological compound can be labelled with 11C and 15O for PET imaging and thus 

seem as attractive labelling isotopes. However, as with most tracers that are cyclotron 

produced they can be expensive to produce and require coordination between the 

imaging staff and the cyclotron lab due to their short radioactive half-lives. 18F has a 

half-life of 2 hours and is thus the exception to the rule. Currently there are no 
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approved 18F based MPI tracers, but Flurpiridaz is in phase-3 of clinical trials [13] 13N-

ammonia is the most commonly used cyclotron produced MPI tracer and has excellent 

imaging properties, with the exception of high liver and lung uptake, which can interfere 

with interpretation of cardiac regions [14]. 13N-ammonia has a 10 minute half-life and 

therefore also requires and on-site cyclotron. 

82Rb is a short lived (76s half-life) generator produced isotope that does not require an 

on-site cyclotron. A 82Sr/82Rb generator lasts 4-8 weeks and can be used as an on-

site 82Rb source every 10 minutes allowing for a high patient throughput [15]. 82Rb is an 

analog of potassium which is required for muscle contractions. Specifically the Na+/K+ 

ATPase actively pumps in 82Rb into the myocardial tissue [10]. 82Rb uptake is thus 

dependent on the rate of blood flow to the myocardium.  

For MPI, image acquisition occurs ~2 minutes post-injection of the tracer allowing the 

tracer sufficient time for distribution, uptake and retention in the myocardium. Image 

acquisition lasts for several minutes in order to detect enough coincidence events to 

reconstruct a low-noise image.  

2.4 MPI interpretation 

Volume images of the myocardium, by convention, are reoriented to a fixed reference 

frame of the left ventricle myocardium. Series of slices in three orthogonal planes are 

displayed for interpretation. The short axis (SA), vertical long axis (VLA) and horizontal 

long axis (HLA) are demonstrated in Figure 2.2. MBF can be sampled using specialized 

12 

 



software and displayed in a polar-map format as demonstrated in Figure 2.3 with the 

apex at the center and the base radially outward, with the septal wall to the left and the 

inferior wall at the bottom of the polar-map [16]. 
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Figure 2.2 - Example rest and stress cardiac PET uptake images shown in SA, HLA, VLA 
planes. Red areas are high in activity while blue regions have lower activity. 
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Figure 2.3 - Example of polar-map. There is uptake deficiency in the stress polar-map 
shown by the blue region which normalizes at rest. The bottom three polar-maps 
represent the sum-stress, sum-rest, and sum-difference scores with a large region of 
reversible ischemia in the septal and apical territories of the LV. This pattern is 
consistent with partial obstruction of the left-anterior-descending coronary artery 

 

LV polar-maps are segmented into regions which are scored depending on their relative 

tracer uptake generating a semi-quantitative score to represent severity of the uptake 

defect. A 17-segment model is generally used which uses a scoring scale of 0 to 4 

(normal perfusion, mild reduction, moderate reduction, severe reduction, and absence 

of tracer) [17]. The scores of each segment are summed for rest and stress polar-maps 

producing global metrics of summed-rest-score (SRS) and summed-stressed-score (SSS). 

These two metrics are used to determine the severity and extent of the defect. A global 
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indicator of reversible ischemia is the summed score differences between rest and 

stress, known as the summed-difference-score (SDS). In clinical use, a SSS>3 signifies the 

presence of disease while a SRS>3 and SDS>1 signifies scarred tissue. The 17-segment 

polar-maps corresponding to these parameters can be seen in Figure 2.3. 

The main limitation to this scoring system is that the assumption that the segment with 

maximum uptake is normally perfused. If a patient has a uniform decrease in perfusion 

due to disease in multiple coronary vessels then relative uptake image interpretation is 

likely to under-estimate disease. The polar-map segments are also visually interpreted 

leading to increased variability in interpretations [18]. Lastly, minimal perfusion deficits 

can be difficult to detect when using 82Rb due to this tracers non-linear extraction 

characteristics. These limitations can be overcome using absolute myocardial blood flow 

quantification [19]. 

2.5 Myocardial perfusion blood flow quantification 

Absolute myocardial blood flow (MBF) quantifies the flow of blood in units of mL/min/ g 

(read as millilitres per minute per gram of tissue). MBF quantification requires dynamic 

imaging of the tracer as it is injected to the blood stream and distributes to the perfused 

tissues over several minutes. The ratio between MBF at stress and rest is referred to as 

myocardial flow reserve (MFR) [20] and has been shown to have better prognostic value 

than MPI when dealing with patients with suspected cases of CAD [15, 21].  
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While improved diagnostics and patient management has yet to be demonstrated with 

MBF, it has shown promise in the detection of CAD and can add value to the risk 

assessment and diagnosis of patients [22]. Patients with MFR less than a ratio of 2 are 

linked with CAD and a MFR ratio higher than 2 are linked with patients with normal 

myocardial perfusion  [22, 23], Young healthy individuals are expected to have MFR in 

the range of 3 to 5. These MFR ratio values correspond to normal rest MBF values on 

the order of 0.7 mL/min/g and stress MBF values >2 mL/min/g, but some variation in 

thresholds exists in the literature [20, 24, 25]. 

MBF quantification has been performed with most MPI tracers, but is most common 

in 82Rb PET due to convenience of use. Using a single list-mode acquisition, dynamic 

image sequences for MBF quantification can be obtained from the same injection used 

for traditional MPI therefore requiring no additional time or costs over regular 82Rb MPI. 

Dynamic cardiac PET images can image the distribution of tracer from the blood stream 

into the perfused tissue. Sampling of regions of interest (ROIs) over the dynamic 

sequence produces time-activity curves (TACs) of the changes in tracer concentration in 

the anatomical region being sampled. MBF is quantified by analysing the relationship 

between arterial blood and myocardium TACs. A dynamic image takes images at pre-set 

time points (e.g. 9x10 s, 3x30 s, 1x60 s, 2x120 s) as the tracer distributes through the 

body. Figure 2.4 shows a TAC and the region of activity being sampled. It shows the left 

ventricle and myocardium continuously being sampled as activity moves from the right 

ventricle, left ventricle, then during myocardial uptake.  
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Figure 2.4 – Time-Activity concentration curves (TACs) (bottom) sampled from 
myocardium and blood region of interest (tan and green respectively) over a dynamic 
cardiac 82Rb PET image sequence. Representative time frame images are shown on top 
with each time frame image normalized individually. 

To quantify MBF, a compartment model is used to describe the kinetic properties of 

rubidium uptake by the myocardial tissue [21]. A two-tissue-compartment model 

describes tracer extraction from the blood to the interstitial space (first compartment) 

and then into the cellular space (second compartment) in series. Using a two-tissue-
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compartment model (with three rate constants) is acceptable when trying to estimate 

MBF under noise free condition but when using more realistic noise levels, the model is 

not reliable [21]. Thus a one-tissue-compartment model (two rate constants) (Figure 

2.5) is more commonly used with the added benefit of improved processing time [20, 

26]. In general, model selection depends on the biochemical properties of the tissue 

being imaged with regards to the tracer, the image quality, the duration of imaging, and 

other factors.  

The two rate constants in the one-tissue-compartment model are K1 and k2 (Figure 2.5). 

K1 is measured in mL/min/g and is the uptake rate from the arterial blood to the 

myocardial tissue. Conversely, k2 is the washout rate from the myocardial tissue of the 

arterial blood in the units of min-1. The one-tissue-compartment model parameters are 

fitted to reduce errors between the model and measured TACs. The rate of change of 

rubidium concentrations in the tissue ROI can be expressed by a simple equation (2-1) 

where Ct(t) [Bq/mL] represents the tracers concentration in the myocardial tissue and Ca(t) 

[Bq/mL] represents the concentration of tracer in the arterial blood (which perfuses the 

tissue) with respect to time (t). ρ =  1.04 g
mL

  represents the density of myocardial tissue.   

19 

 



 

Figure 2.5 - 82Rb PET one compartmental model used for MBF quantification. Uptake 
and washout rates of tracers exchange between arterial blood and myocardial tissue 
are defined by constants K1 [mL/min/g] and k2 [min-1]. 

 
𝑑𝑑𝑑𝑑𝑡𝑡(𝑡𝑡)
𝑑𝑑𝑡𝑡

=  ρK1Ca(t)  − k2Ct(t)      2-1 
 

This equation can also be expressed as a convolution kernel (m(t)) (equation 2-3): 

𝐶𝐶𝑡𝑡(𝑡𝑡) =  𝐶𝐶𝑎𝑎(𝑡𝑡) ∗ 𝑚𝑚(𝑡𝑡)     2-2 

𝑚𝑚(𝑡𝑡) =  𝜌𝜌𝐾𝐾1 ⊗ 𝑒𝑒−𝑘𝑘2𝑡𝑡      2-3 

 
In practice, the myocardial ROI encompasses both myocardial tissue and the arterial 

structures perfusing the tissue with blood as illustrated in Figure 2.5. PET images have a 
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limited resolution therefore blood signal from outside the myocardial region may also 

spillover into the myocardium ROI which increases the amount of blood detected in the 

ROI. This is in addition to 10-20% of actual blood volume perfusing the myocardium. 

Therefore the myocardial TAC, Cm(t), is often modelled as a linear combination of both 

tracer concentration in the myocardial tissue and arterial blood as shown in equation 2-

4. Tissue recovery coefficient (RC) and total blood fraction (TBF) represent the fraction 

of ROI volume from the myocardial tissue signal and arterial blood respectively. The TBF 

accounts for the relative blood signal from both the arterial blood volume and spillover 

signal from the left ventricle (LV) cavity. 

𝐶𝐶𝑚𝑚(𝑡𝑡) = 𝑇𝑇𝑇𝑇𝑇𝑇 ∙ 𝐶𝐶𝑎𝑎(𝑡𝑡) + 𝑅𝑅𝐶𝐶 ∙ 𝐶𝐶𝑡𝑡(𝑡𝑡)    2-4 

Equations 2-2 and 2-3 can be substituted for Ct(t) in equation 2-4 to obtain: 

𝐶𝐶𝑚𝑚(𝑡𝑡) = 𝑇𝑇𝑇𝑇𝑇𝑇 ∙ 𝐶𝐶𝑎𝑎(𝑡𝑡) + 𝜌𝜌 (𝑅𝑅𝐶𝐶 ∙ 𝐾𝐾1) ∙ 𝐶𝐶𝑎𝑎(𝑡𝑡) ∗ 𝑒𝑒−𝑘𝑘2𝑡𝑡                             2-5 

From equation 2-5 it is clear that RC and K1 cannot be uniquely resolved without more 

information. Some studies have produced calibrated values for RC [4, 27]  while others 

automatically estimating RC [28, 29]. A more practical (and most commonly used) 

solution is to assume that the myocardial signal is composed entirely of myocardial 

tissue and blood signals and therefore RC can be replaced with 1-TBF [31] giving 

equation (2-6): 

𝐶𝐶𝑚𝑚(𝑡𝑡) = 𝑇𝑇𝑇𝑇𝑇𝑇 ∙ 𝐶𝐶𝑎𝑎(𝑡𝑡) + (1 − 𝑇𝑇𝑇𝑇𝑇𝑇) ∙ 𝜌𝜌 ∙ 𝐾𝐾1 ∙ 𝐶𝐶𝑎𝑎(𝑡𝑡) ∗ 𝑒𝑒−𝑘𝑘2𝑡𝑡                      2-6 
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MBF is resolved from K1 by correcting for the rate of tracer extraction, which is pre-

computed for a population. In theory the extraction function accounts for decreasing 

tracer extraction from the blood into the tissue due to reduced pressure and increased 

surface area with capillary recruitment in response to vasodilation with stress [31, 32]. 

Water diffuses freely without the use of active transport from blood into the tissue 

compartment and therefore K1 directly represents flow. Conversely, most other tracers 

such as 82Rb, 13NH3, 62Cu-PTSM, and 99mTc-sestamibi  are extracted from the blood to 

tissue using active transport and diffusion and therefore they have a lower extraction 

fraction at high flow rates  [20, 31, 32]. Extraction fractions may be represented using 

the Renkin-Crones capillary model [31, 32], and K1 is equal to the product between 

extraction fraction and MBF as shown in equation 2-7: 

𝐾𝐾1 = �1 − 𝑎𝑎 ∙ 𝑒𝑒−
𝑏𝑏

𝑀𝑀𝑀𝑀𝑀𝑀� ∙ 𝑀𝑀𝑇𝑇𝑇𝑇                                                      2-7 

In practice the a and b extraction parameters can act as calibration factors 

compensating for biases associated with the scanning protocol, image reconstruction, 

ROI definition, tracer kinetic model and quantification processes. They can be 

determined experimentally [34] or through calibration to known reference standards in 

a specific populations [21]. 

2.6 Motion Artifacts 

Dynamic imaging implicitly assumes that an ROI corresponds to a specific anatomical 

location in the patient at all time frames. This assumption is violated by the presence of 
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motion and may manifest itself as distorted TACs, but may also be inconspicuous. 

Various types of motions can exist, but for the purpose of this work we make the 

distinction between rigid and non-rigid motions. Rigid motion assumes that all the 

activity in the field of view moves together as a solid block without distorting the spatial 

relationship between any two points in the image. Non-rigid motion does not make this 

assumption and the image can warp, changing the distances and angles between points 

in the image. Motion in brain imaging  is considered rigid motion since the skull is rigid 

and firmly encapsulates the brain, while organ motion in the thorax may be non-ridged 

as the soft tissues can move in relation to one another [35]. Methods have been 

developed to correct for rigid  motion such as using event driven approaches and a 

multiple acquisition frame methods [36, 37]. It is more difficult to track non-rigid motion 

as the direction and magnitude of motion is less predictable from reference landmarks. 

Several types of non-rigid motions can exist in the context of cardiac imaging: 

2.6.1 Cardiac Motion 

As part of the heart’s function of moving blood it contracts and expands every second or 

faster. Imaging with PET over several seconds to several minutes results in additional 

blurring of the heart in the image. ECG-gating of the image acquisition is performed as 

part of MPI protocol to visualize cardiac motion, adding additional diagnostic and 

prognostic information. Each coincidence event is binned to its corresponding, ECG 

derived, cardiac phase enabling image reconstruction of each cardiac phase separately, 

resulting in cardiac-motion-free images. Using list-mode data acquisition, ECG gating can 
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be performed using the same MPI or MBF acquisitions. However, in the context of MPI 

interpretation and MBF quantification, the use cardiac gated images is not desirable as 

it leads to reduced count statistics and noisy images. 

Cardiac motion and the associated motion blur results in increased partial volume loss in 

the myocardial ROIs, an effect that is compensated for through estimation of RC as part 

of MBF kinetic modeling. Pre-processing methods for non-rigid motion correction have 

been proposed. These include gated-PET acquisition during a scan which divides motion 

cycles into bins at the cost of higher noise level in the images due to a reduced photon 

count [36, 38]. A motion correction approach uses an expectation-maximization 

algorithm to simultaneously reconstruct the PET image frames while estimating (and 

correcting for) cardiac motion [39]. This approach is done during reconstruction - 

therefore it is vendor dependent, is complex requiring more computational power and 

time, and has not been demonstrated to be sufficiently robust for routine use. 

2.6.2 Respiratory Motion 

Respiratory motion is caused by the natural breathing cycle of the patient, specifically 

the movement of the diaphragm during inhalation and exhalation of their breath [40]. 

When dealing with anatomical scanning modalities such as CT it may be practical for the 

patient to hold their breath as scan times are sufficiently short. When dealing with PET 

and SPECT where scan times are several minutes long it isn’t practical to have the 

patient hold their breath [41]. Thus respiratory motion can cause degradation of spatial 

resolution which is most noticeable in cameras with high spatial resolution [41, 42]. 
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Respiratory motion can further cause mis-alignment of CT and PET datasets which can 

produce image artifacts when CT is used for attention correction (AC), which has been 

shown to occur in up to 40% of clinical cardiac PET/CT studies [6, 42]. A few methods 

have been proposed by Pourmoghaddas et al. which corrects the PET images using three 

different maps (respiratory–gated CT map, time- averaged attenuation map and an 

attenuation map which accounts for the maximum CT-number of every voxel divide by 

the max respiratory cycle)[42].  

Organs proximal to the lungs and diaphragm, including the heart, are most prone to 

respiratory motion. Even normal breathing can move organs up to 5 mm in the anterior-

posterior, 5 mm in the left-right and 20 mm in the superior-inferior directions [43]. 

Respiratory motion is also a major concern when imaging lung lesions using PET, which 

could potentially lead to missed finding and underestimation of standard uptake (SUV) 

or overestimation of the lesion volume [44].  

2.6.3 Heart Organ Motion 

Organ motion refers to incremental (to cardiac, respiratory or patient) motion of 

individual organs in the thorax such as the liver, pancreas, kidney, and the heart due to 

anatomical function (e.g. gastro-intestinal) patient relaxation or soft tissue deformation 

during image acquisition. Organ motion can cause degradation in PET images especially 

when imaging lesions on these organs. A lesion appears as a blur on the constructed PET 

image resulting in a decrease in image contrast. This can lead to an underestimation of 

the lesion uptake or and overestimation of the lesion volume [45, 46]. 
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In the context of cardiac imaging, we are concerned with “cardiac creep” – a mid-scan 

motion of the heart within the thorax as the organs gradually reposition within the 

thorax. This motion is associated with patient relaxation during the procedure as well as 

organ shifting and deformation under the force of gravity after shifting the patient from 

and upright posture (pre-scan) to supine position during the scan. This motion can be 

large resulting in inconsistent sampling of the TACs as demonstrated at the bottom of 

Figure 3.2. 

2.6.4 Patient Motion 

Patient motion is the gross movement of the body during imaging. Patient motion can 

cause more than 200% error in measured MBF values [47]. This is often due to the 

patient being unable or unwilling to hold their position for the duration of the scan. 

During cardiac PET imaging the patient is usually in supine position with their hands 

behind their head. This may be a difficult position to endure for certain patients, 

especially older patients suffering of arthritis. Coughing, fidgeting, and discomfort are 

common sources of patient motion and while certain measures can be taken to mitigate 

motion, prevalence of patient motion exceeding 29% of tests have been reported in 

large clinical populations [48].  

2.7 Summary 

MBF using PET holds tremendous promise for improving diagnosis, prognosis, and 

therapy management of CAD patients. As PET technology evolves, however, patient 
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motion is increasingly becoming a limiting factor of precision. In this work we explore 

methods to detect patient motion. 

27 

 



3 Agreement between cardiac and fiducial marker motion during 

dynamic cardiac PET imaging  

3.1 Introduction 

The work described in this chapter evaluates whether positron-emitting fiducial marker 

motion is a useful surrogate marker of heart motion in dynamic 82Rb PET image sets.  

3.2 Background  

3.2.1 Fiducial Marker 

A fiducial marker refers to any type of physical marker that can be attached to the 

patient (e.g. skin) and then tracked using an external device. Fiducial markers can be 

used as a surrogate marker of patient and/or organ motion, but may not be tightly 

correlated with the motion of an organ of interest due to tissue plasticity. While fiducial 

markers have been extensively used in the context of rigid motion (e.g. head/brain) 

across different imaging modalities [49–51], relatively little work has been done in the 

context of non-rigid motion in cardiac applications. Nevertheless some clinical 

applications do exist. One example application is tracking of respiratory motion to 

generate respiratory triggers during PET acquisition which are embedded into the raw 

PET data for further processing. The Real-time Position Management (RPM) system 

(Varian Medical Systems, Palo Alto, CA) uses two reflective fiducial markers on a light-

weight block positioned on the patient’s chest. An infrared camera detects respiratory 
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motion as the markers move due to the patient breathing  [38, 50]. Reflective fiducial 

markers have also been used to track pre-reconstruction head motion for neurological 

PET. This method used an external optical motion tracking camera during imaging. The 

motion data is aligned with the PET data and inserted into time tags within the list-mode 

data [1, 2]. The Positron Emission Tracker (PeTrack) (Carleton University, Ottawa, ON) 

system can track 22Na fiducial markers (<2mm motion – phantom study) with high 

temporal resolution using pre-reconstruction list-mode data (a PET camera generated 

list of every detected event)  [51, 52]. 

In this work we used a 37 kBq (1 μCi) Sodium-22 fiducial marker affixed non-invasively 

to a patient’s torso during dynamic cardiac PET imaging. The marker appears in the PET 

image and therefore does not require any external instrumentation for marker tracking. 

The marker appears as a roughly 6 x 6 x 6 pixel volume in the dynamic PET image (Figure 

3.1). It is important to note that the center of the marker has higher pixel intensity and 

it decreases radially outward due to the limited spatial resolution of PET. Figure 3.2 

shows an example of fiducial marker motion (top), heart motion (bottom) and the 

corresponding discontinuity in the respective time-activity curves. Since the marker 

activity is long-lived (2.6 year half-life) the marker intensity appears to exponentially 

grow over the course of the decay-corrected (76 s half-life of 82Rb) dynamic image 

sequence.  
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Figure 3.1 - Example of fiducial marker in a PET image frame. The intensity of the 
pixels decreases moving radially outward from the center of the marker due to limited 
spatial resolution of PET images. 
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Figure 3.2 - Top: Fiducial marker motion between two frames and resulting distortion 
of time-activity curve between 5-6 mins. Bottom: Heart organ motion in the same 
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direction and time as the fiducial marker motion. The cross-hair was not moved 
between frames in both images. 

We sought to determine the degree by which fiducial marker motion is correlated with 

heart motion in order to elucidate whether fiducial markers may be used as surrogates 

to detect patient motion. 

3.3  Methods  

3.3.1 Patient Cohort  

Sixty five (65) clinical patients that had undergone cardiac rest-stress dynamic 82Rb PET 

imaging at the University of Ottawa Heart Institute, National Cardiac PET Centre were 

arbitrarily selected between September 2012-August 2013 (date range of scans) for this 

study. All patients were instructed not to consume beta-blockers for 24 hours, caffeine 

for 12 hours and to refrain from food for 4 hours. All patients gave consent as approved 

by the Ottawa Heart Institute Research Ethics Board as part of the Rubidium-ARMI 

(NCT01128023) research protocol. 

Imaging was performed according to the standard clinical protocol (seen in Figure 3.4) 

for imaging of patients using a state-of-the art GE Discovery 690 VCT PET-CT scanner 

(Waukesha, WI). A 37 MBq 22Na fiducial marker (1 mm diameter) was affixed to the 

patient lower anterior-right rib with a saline bag covering to induce adequate scatter for 

the marker to not interfere with the camera’s scatter correction algorithm (CT image 

shown in Figure 3.3).  
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Figure 3.3 - Computed Tomography slice of patient in the transverse plane. The 
fiducial marker can be seen on the outside of the patient's chest. A saline bag was 
placed over the marker to avoid interference with the scatter correction algorithm. 
The marker was placed away from the heart to avoid interference with clinical 
interpretation. 

 

A low-dose 0.5 mSv normal-end-expiration CT scan lasting ~1.5 s was performed first for 

attenuation correction with the patient at resting state. Patients were then injected 

with 82Rb tracer (10 MBq/kg over 30 s interval) using a custom ‘square wave’ infusion 

system (RubyFill™, Jubilant DraxImage, Kirkland, QC) [55] and PET list-mode image 

acquisition (8 minutes) was manually started when the true count-rate exceeded 10 

kcps (kilo-counts per second). Dynamic images were reconstructed using filtered back 

projection (12 mm Hann filter) with 128x128x47 voxels of size 3.125x3.125x3.270 mm 

Saline Bag 

Fiducial Marker 
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and an isotropic spatial resolution of 10 mm FWHM into 15 time frames. Table 3.1 

describes the time length of each of the 15 times frames.  

Table 3.1 - Time frame numbers and the corresponding time frame start time and 
length time. 

Time Frame  
Number 

Time Frame  
Start Time (s) 

Time Frame  
Length (s) 

1 0 10 
2 10 10 
3 20 10 
4 30 10 
5 40 10 
6 50 10 
7 60 10 
8 70 10 
9 80 10 

10 90 30 
11 120 30 
12 150 30 
13 180 60 
14 240 120 
15 360 120 

 

A second PET acquisition followed in the same fashion as the rest imaging, but with the 

patient stressed using dipyridamole, a pharmacologic vasodilator, which was 

intravenously administered over 5 minutes at a rate of 0.14 mg/kg/min. Three minutes 

into the administration of dipyridamole the patient was injected with 82Rb a second time 

and image acquisition followed as at rest-state. A second CT scan was then completed 

for attenuation correction of the stress image. The standard clinical protocol is 

summarized in Figure 3.4 
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Table 3.2 summarizes patient information for the cohort.  

 

Figure 3.4 - Clinical rest-stress 82Rb PET/CT protocol used for methods 

 

Table 3.2 - Patient information for patient cohort used 

 
Patients 

Combined:    65 
Male:             36 
Female:         29 

Mean Age (years) 67 ±12 
Mean Weight (kg) 87 ±18 
Mean Height (m) 1.68 ±0.10 

 

3.3.2 Visual Image Analysis 

To characterize heart motion, for correction, the time frame and direction of the motion 

needs to be accurately resolved. Dynamic images were visually inspected for the 

presence of both significant heart and patient (i.e. fiducial marker) motion by comparing 

all neighbouring image frame pairs in the dynamic sequence. The 130 images (rest and 

stress) were visually evaluated using an in-house software program (FlowQuant©, 

Ottawa, ON) [14, 19] for heart and patient motion in a 128x128x47 pixel volume of 
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interest (VOI) with 15 time frames. Motion amplitude was classified as no-motion or 

significant motion (≥2 pixels). Significant motion events (≥2 pixels) were easily 

identifiable compared to mild motion (<2 pixels), in part due to the large file of view. 

Patient and heart motion could rarely be viewed in the same slices and were thus 

assessed separately.  

The presence/absence of motion, time frame and approximate direction of heart and 

patient motions was recorded. Each direction of motion was classified as X left (+), X 

right (-), Y anterior (+), Y posterior (-), Z superior (+), Z inferior (-). Multiple motion 

events could be recorded per dynamic image. The prevalence and concordance of 

patient and heart motion was analyzed from this data. Furthermore, the sensitivity and 

specificity of using fiducial markers as a surrogate marker for heart motion was 

determined. 

3.4 Results 

Either patient or heart motion was present in 40 (30.8%) of the 130 dynamic PET 

images. Patient motion was detected in 37 (28.5%) images and heart motion was 

detected in 27 (20.8%) images. 24 (18.5%) images had both patient and heart motion. 

Among all images (n=130), patient and heart motion agreement rate was 88% (cases 

without motion and with both heart and fiducial marker motions present). The 

sensitivity and specificity to predict the presence of heart motion from patient motion 

was found to be 89% and 87% respectively. See Table 3.3 for visual assessment results. 
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Table 3.3 - Presence of Patient and Heart motion in Patient Dynamic PET images 
(n=130). Significant motion was defined as ≥2 pixels. 

 Patient Motion No-Patient Motion 
Heart motion 18.5% 2.30% 

No-Heart motion 10.0% 69.2% 
 

Of the 24 images with patient and heart motion, 70.8% of these images had motion in 

the same time frame (1-15) and the same direction (x, y or z). 12.5% of the images with 

motion were in different time frames and 16.7% of the images had motion in different 

directions (See Table 3.4). 

Table 3.4 - Agreement between motion time frame and primary direction in cases with 
both patient and heart motion (n=24) 

Same  
time and direction 

Different  
time frame 

Different  
primary direction 

Total 

70.8% 12.5% 16.7% 100% 
 

3.5 Discussion 

This work investigated the relationship between heart motion and motion of skin bound 

fiducial markers. Both the heart and the fiducial markers were visible in the PET volume 

images, with the fiducial marker assumed as a surrogate marker of patient motion. 

Automatic tracking of heart motion in a dynamic cardiac image sequence can be difficult 

due to the changing tracer distribution from blood to perfused tissues while a fiducial 

marker has a relatively constant distribution across all time frames providing a more 

stable, isolated and highly visible signal to track (Figure 3.1).  
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Post-reconstruction detection of fiducial marker motion is an attractive alternative to 

pre-reconstruction fiducial marker motion detection which requires special equipment 

such as an infrared camera  [38, 50] or an optical motion tracking camera [1, 2]. The use 

of external motion tracking systems not only adds costs, but also significant complexity 

associated with motion pre-processing and non-trivial correction of the pre-

reconstructed PET measurements. Lastly, directly using list-mode data is camera/vendor 

specific, whereas a post-reconstruction algorithm is vendor independent. The 

agreement between presences of motions in the entire dynamic study was 88% for 

flagging cases with heart motion based on analysis of fiducial marker motion. In the 

subset of images which had patient and heart motion, 70.8% had motion in the same 

time frame and same direction while 16.7% had motion in different time frames and 

12.5% in different directions. Based on these results we concluded that tracking of a 

single fiducial marker is not adequate for characterizing motion and therefore guiding 

motion correction, but that fiducial marker motion can be a good predictor of the 

presence of heart motion.  

3.5.1 Motion timing 

Two classifications of motion timing were visually inspected in the images. Motion can 

manifest itself as inter-frame motion in which a mis-alignment exists between 

subsequent time frames, or as intra-frame motion in which the image is blurred due to a 

shift in patient positioning within a time frame. Inter- and intra-frame motions will 

typically coexist and depend on the time and nature of motion with respect to the time 
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frame intervals [56]. Therefore both types of motion must be detected if a robust 

automatic motion detection algorithm is developed.  

3.5.2  Multiple fiducial markers 

Multiple markers have been used to accurately characterize motion of the brain in all six 

directions [57] which could improve the characterization of heart motion and therefore 

guide motion correction. Patient rotations and translations in multiple directions cannot 

be detected with a single marker, requiring multiple markers at different anatomical 

locations. We speculate that the additional information would contribute to detection 

of a wider range of motion and may enable better characterisation of heart motion. 

3.5.3 Limitations 

Visual interpretation is vulnerable to viewer bias and errors, and is limited to qualitative 

assessment. Nevertheless, it is not possible to induce motion in clinical studies and 

another (external) reference was not available to us for this study. We did not observe 

mild motion which most likely would not be clinically significant in causing motion 

artifacts but more work and analysis must be done to verify these assumptions. Mild 

motion (<2 pixels in magnitude by our definition) was difficult to view in the full VOI 

(128x128x47 pixel volume) and inclusion in the analysis could increase the error rate in 

the visual assessment of motion. Motion less than 2 pixels in magnitude corresponds to 

<6.3 mm which is less than image spatial resolution (~10 mm). Therefore we do not 

expect motion of this magnitude to have clinically significant impact on MBF estimates 

[47]. Since this chapter evaluated the use of fiducial markers as a surrogate marker of 
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heart motion in a clinical setting, we felt that it was important to focus on clinically 

significant motion and minimizing visual assessment errors. Therefore, we only included 

significant motion events (≥2 pixels) and neglected mild motion events. 

3.6 Conclusion 

A single fiducial marker is a modest surrogate marker of heart motion time and 

direction, making it inadequate in guiding motion correction. However, fiducial markers 

have adequate sensitivity and specificity as predictors of presence of heart motion in 

dynamic image acquisitions, making it a suitable method for flagging motion artifacts. 

The next chapter describes two automatic detection methods for fiducial marker in 

dynamic PET cardiac images.  
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4 Automatic Detection of Patient Motion Using Fiducial Markers in 

Dynamic Cardiac PET Images  

4.1 Introduction 

This chapter describes automatic methods to detect inter- and intra-frame fiducial 

marker motion in dynamic cardiac PET images. Numerical-phantom based simulated 

images with known simulated motion are used to validate the algorithms. Clinical data 

are used to characterize the accuracy of these algorithms for flagging the presence of 

motion with visual interpretation serving as a gold standard.  

4.2 Background 

Motion can manifest itself as inter-frame motion in which a mis-alignment exists 

between subsequent time frames, or as intra-frame motion in which the image is 

blurred due to a shift in patient positioning within a time frame. Inter- and intra-frame 

motions typically coexist and depend on the time and nature of motion with respect to 

the time frame intervals [56]. 

While many technologies exist for tracking fiducial markers, we focused on positron-

emitting markers which can be imaged with PET and therefore are inherently integrated 

into the reconstructed images for vendor independent, post-reconstruction analysis. Of 

particular interest to our group is incorporation of motion detection into clinical MBF 

quantification software for quality control. 
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4.3 Method 

To test whether fiducial marker motion can be automatically detected two algorithms 

were designed, tested, analyzed and optimized for performance using statistical 

analysis. A series of simulated and patient dynamic images were processed as a baseline 

for the algorithms performance. The workflow for the inter- and intra-frame algorithms 

is shown in Figure 4.1 and Figure 4.2 respectively. 

 

Figure 4.1 - Workflow for design, implementation, testing and analysis of the inter-
frame motion detection algorithm 
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Figure 4.2 - Workflow for design, implementation, testing and analysis of the intra-
frame motion detection algorithm  

The specifics of the methodology are described in the following sections.  

4.3.1 Inter-frame Motion Simulations 

Fifty four noise-free non-uniform rational b-spline (NURBS)-based cardiac-torso 

(NCAT)(Johns Hopkins University, Baltimore, MD) numerical-phantom based dynamic 

image sequences were generated [56–58]. NCAT is a computer software package which 

is widely used to construct customizable high resolution dynamic PET numerical-

phantom based simulation models of the human physiology and anatomy. This program 

allows the user to assign activity to major organs. The models can also simulate eight 

different components of the heart which include the right and left, ventricle and atrial, 

blood-pool and wall activities. The model dimensions were 40cm x 40cm x 19.7cm with 

a cubic voxel size of 3.125 mm and a transverse sampling grid of 128 x 128 pixels in 63 

slices. The dynamic image sequence consisted of 15 time frames (Table 3.1) 

corresponding to 10 minutes of data. Organ time-activity curves were derived from a 
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previous clinical 82Rb dosimetry study in human patients [61] using the same blood TAC 

for the left and right chambers of the heart. A fiducial marker was simulated as a 9.375 

mm diameter sphere positioned on the right-anterior lower thorax (roughly in plane 

with the upper liver and inferior heart wall). The marker activity was exponentially 

grown with time to simulate a constant activity source in an 82Rb decay-corrected image 

sequence. An example of two slices showing the fiducial marker and myocardium can be 

seen in Figure 4.3.  

 

Figure 4.3 – Noise-free simulation model. The left image shows the transverse slice 
which contains the fiducial marker. The right image shows the transverse slice which 
contains the myocardium in the same time frame. The red areas are high activity 
regions and the blue areas are low-activity regions 
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Inter-frame (between time frames) motion was simulated as a single event in a dynamic 

image sequence at 30, 60, 80, 90, 120, 150, 180, 240, or 360 second time points with 

±9.375 mm (referred to as 1 cm) of body motion in 6 directions (+x right, -x left, +y 

posterior, -y anterior, +z superior, or -z inferior). Once motion was introduced it was not 

corrected for all the subsequent time frames, thus simulating a single motion event in 

each model. 

In clinical practice the CT is aligned with the last frame, thus all frames preceding the 

motion event would have CT attenuation correction (CTAC) mis-registration artifacts. 

However, attenuation was not simulated in this dataset so as to focus on motion alone.  

Images were blurred using a 3D Gaussian filter (8.5 mm full width at half maximum 

(FWHM)) to account for the intrinsic scanner resolution and the positron range of 82Rb. 

NCAT images were then forward projected (128 Projections) using a radon transfer 

function and then the sinogram was reconstructed using filtered back projection (FBP). 

The reconstructed images were then filtered using a 3D Gaussian filter to obtain 2 and 

10 mm FWHM spatial resolution (referred to as high and low resolution respectively). 

No noise was added to the data at any stage. An example of the simulation model in the 

transverse plane can be seen in Figure 4.3. 
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4.3.2 Patient Cohort  

The same patient cohort as described in section 3.3.1 was used for this experiment 

following the same protocols for image acquisition. The protocol is summarized in 

Figure 3.4. Table 3.2 summarizes patient information for the cohort. 

4.3.3 Visual Image Analysis 

The 130 patient images (rest and stress) were cropped to a 9x9x9 VOI containing the 

entire fiducial marker and were visually (re-)evaluated using an in-house software 

program (FlowQuant©, Ottawa, ON) [14, 19] for the presence of any patient motion 

(mild and/or significant). Patient motion was seen if there was a movement in the 

fiducial marker in the dynamic PET image. The time frame of patient motion was 

recorded on a frame-by-frame basis for inter-frame (marker motion between frames) 

and intra-frame motion (blurred motion within a time frame).  

4.3.4 Automatic Fiducial Marker Motion Detection 

Localization of the marker in the late time frame images was trivial as the marker 

activity concentration (image intensity) was much higher than that of the patient as 

demonstrated in Figure 4.4. Therefore, the maximum intensity pixel was assumed to 

correspond to the center of the marker. 
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Figure 4.4 - Fiducial marker contains most intense pixels in time frame 15. Therefore 
localization of marker occurs in this last time frame. 

4.3.4.1 Image Conditioning  

A 9x9x9 pixel volume of interest (VOI) around the fiducial marker (Figure 4.5) was 

isolated and processed to reduce the effects of interference from neighbouring patient 

activity and noise. The 3D pixel intensity plot of the transverse plane in Figure 4.5 is 

shown in Figure 4.6 with the fiducial marker at the center and patient activity spilling in 

to the marker in the left-hand corner. 

Pixel Intensity  Max Min 
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Figure 4.5 - Global (left) and local ROI (9×9 pixels) around the fiducial marker 
demonstrating background activity spilling in from the patient. This marker is taken 
from time frame 14 of an image with motion present. Spill-in activity from the patient 
is also evident. 

 

Figure 4.6 - 3D mesh-plot representing the pixel intensities of a fiducial marker in a 
9x9 pixel volume in the transverse plane with spill-in activity from the patient (left 
corner). 
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To improve the background to marker contrast, pixel intensities below a threshold value 

were set to zero. The threshold value (4-1) was set as 50% level between the minimum 

background and the peak pixel intensities in the VOI. The resulting thresholded 

transverse plane of Figure 4.6 demonstrated in Figure 4.7. 

𝑇𝑇ℎ𝑟𝑟𝑒𝑒𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 =  𝑃𝑃𝑃𝑃𝑎𝑎𝑘𝑘+𝐵𝐵𝑎𝑎𝐵𝐵𝑘𝑘𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑑𝑑
2

        (4-1) 

 

Figure 4.7 - 3D plot representing the pixel intensities of a fiducial marker in a 9x9x9 
pixel volume in the transverse plane. Fiducial marker pixels are more prominent with 
background activity set to 0.  

4.3.4.2 Marker localization  

Three-dimensional localization (xg,yg,zg) of the marker was achieved using a weighted 

center of mass (COM) calculation on the thresholded image as demonstrated in 

equation: 4-2, 4-3, and 4-4.  

𝑚𝑚𝑖𝑖 = 𝐼𝐼𝐼𝐼𝑡𝑡𝑒𝑒𝐼𝐼𝑟𝑟𝐼𝐼𝑡𝑡𝐼𝐼 𝑜𝑜𝑜𝑜 𝐼𝐼𝐼𝐼𝑜𝑜𝐼𝐼𝑖𝑖𝐼𝐼𝑜𝑜𝑖𝑖𝑎𝑎𝑜𝑜 𝑝𝑝𝐼𝐼𝑝𝑝𝑒𝑒𝑜𝑜 
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(𝑝𝑝𝑖𝑖,𝐼𝐼𝑖𝑖 , 𝑧𝑧𝑖𝑖) = 𝐿𝐿𝑜𝑜𝐿𝐿𝑎𝑎𝑡𝑡𝐼𝐼𝑜𝑜𝐼𝐼 𝑜𝑜𝑜𝑜 𝐼𝐼𝐼𝐼𝑜𝑜𝐼𝐼𝑖𝑖𝐼𝐼𝑜𝑜𝑖𝑖𝑎𝑎𝑜𝑜 𝑝𝑝𝐼𝐼𝑝𝑝𝑒𝑒𝑜𝑜 

�𝑝𝑝𝐵𝐵,𝐼𝐼𝐵𝐵, 𝑧𝑧𝐵𝐵� = 𝐿𝐿𝑜𝑜𝐿𝐿𝑎𝑎𝑡𝑡𝐼𝐼𝑜𝑜𝐼𝐼 𝑜𝑜𝑜𝑜 𝐿𝐿𝑒𝑒𝐼𝐼𝑡𝑡𝑒𝑒𝑟𝑟 𝑜𝑜𝑜𝑜 𝑚𝑚𝑎𝑎𝑟𝑟𝑟𝑟 

𝑀𝑀 =  �𝑚𝑚𝑖𝑖
𝑝𝑝

𝐵𝐵

𝑖𝑖=1

 

𝑝𝑝𝐵𝐵 =  1
𝑀𝑀
∑ 𝑚𝑚𝑖𝑖

𝑝𝑝𝑝𝑝𝑖𝑖𝐵𝐵
𝑖𝑖=1          (4-2) 

𝐼𝐼𝐵𝐵 =  1
𝑀𝑀
∑ 𝑚𝑚𝑖𝑖

𝑝𝑝𝐼𝐼𝑖𝑖𝐵𝐵
𝑖𝑖=1          (4-3) 

𝑧𝑧𝐵𝐵 =  1
𝑀𝑀
∑ 𝑚𝑚𝑖𝑖

𝑝𝑝𝑧𝑧𝑖𝑖𝐵𝐵
𝑖𝑖=1          (4-4) 

By increasing the power p more emphasis was placed on the location of high activity 

pixels compared to the less active pixels in the neighbourhood. Integer values of n 

ranging from 1 to 10 were initially used. Regardless, in cases with activity spread over 

more than one pixel an average location was resolved. COM calculations were 

performed on each time frame image independently to resolve the average position of 

the marker in 3D. 

50 

 



 

Figure 4.8 - 3D plot representing the pixel intensities of a fiducial marker in a 9x9 pixel 
volume in the transverse plane. Fiducial marker pixels have larger pixel intensities 
after being amplified by a power of n=9.  

 

4.3.4.3 Inter-frame Motion Detection 

Inter-frame motion was determined as the difference in COM between successive time 

frames. The motion distance (D) was calculated as the root-mean-squares of the motion 

in each Cartesian axis (X, Y, Z), demonstrated in Figure 4.9. Differences above a 

threshold amount (in mm) were determined to be significant and could be used to flag a 

case with patient motion. This distance threshold is represented by D. Figure 4.10 shows 

an example of an inter-frame report. The change in threshold (D) frame-by-frame can be 

seen from time frame 1 to time frame 15. 
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Figure 4.9 - Example of inter-frame algorithm. The top two images show two 
successive time frames and their corresponding center of masses (COM). The bottom 
image is of the two top images superimposed with the distance (D) between both 
COM 
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Figure 4.10 - Example of inter-frame motion report. A 10 mm change in COM is 
indicated between frame 10 and frame 11. The display notation is such that the first 
time frame is the reference (motion free). 

 

In order to determine the threshold motion that could reliably indicate the presence of 

motion, receiver operator characterization (ROC) analysis was performed with the 

visually assessed motion serving as a reference truth. From the ROC analysis, sensitivity 

and specificity statistics were derived. 
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4.3.4.3 Intra-frame Algorithm  

The intra-frame algorithm estimated the degree of motion within a single frame by 

measuring the extent of the blurring of the fiducial marker. The COM was found in each 

frame as described in section 4.3.4.2 and a profile of activity fall-off with distance was 

created by plotting the peak pixel intensities (I) as a function of radial distances (x) from 

the COM. Due to the pixel property of the fiducial marker the COM is generally located 

near the pixel with the highest intensity and decreases with radial distance. The pixel 

intensities were normalized so the maximum intensity pixel was set to 1. A curve 

(Equation 4-5 and demonstrated in Figure 4.11) was then fit to the image sampled 

profile.  

I(x) = �
𝟏𝟏 𝒙𝒙 < 𝒙𝒙𝟎𝟎

(𝟏𝟏 − 𝒄𝒄) × 𝒆𝒆�−𝑩𝑩(𝒙𝒙−𝒙𝒙𝟎𝟎)𝟐𝟐� + 𝒄𝒄 𝒙𝒙 ≥ 𝒙𝒙𝟎𝟎
      (4-5)  

𝑩𝑩 =  𝒍𝒍𝒍𝒍𝟐𝟐
𝒙𝒙𝟏𝟏/𝟐𝟐𝟐𝟐

 →  𝒙𝒙𝟏𝟏/𝟐𝟐 = �𝒍𝒍𝒍𝒍𝟐𝟐
𝑩𝑩

         (4-6) 
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Figure 4.11 – A function fitted to activity fall-off profile to estimate marker blur 
resulting from motion 

 

Parameter x0 is a distance (mm) parameter of the breadth of the marker prior to activity 

fall-off and accounts both for the physical size of the marker and pixel size. Parameter c 

accounted for background activity.  

The B variable is a parameter of rate (mm-2) of activity fall off with distance (breadth of 

profile) which was thresholded to determine the presence of motion blur. The 

exponential represents activity full-off with distance which is an approximation of PET 

image point-spread function. However the breadth is also dependent on by the amount 

of marker motion. Parameter B can also be converted to a more intuitive form of x1/2 
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(Equation 4-6), which is the distance in mm from where the profile is mid-intensity 

between peak and background, c. 

An image with fiducial marker blurring produces a larger x1/2 value and represents a 

larger profile breadth as demonstrated in Figure 4.12 for a case without and with 

motion blur. ROC analysis with visual impression serving as reference truth was used to 

determine an x1/2 parameter cut-off for motion detection.  

 

Figure 4.12 - Example of Intra-frame motion. The left hand image shows no motion 
with a lower x1/2 threshold and profile. The right hand image shows an example of 
intra-frame motion with a higher x1/2 threshold and its profile 

No Motion Motion 

x1/2= 5.4 mm x1/2 = 3.7 mm 
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4.3.5 Statistical Analysis 

To select optimal threshold values, ROC analysis was performed and the point on the 

curve with the shortest Euclidean distance to sensitivity=100% and specificity=100% was 

selected. Resulting sensitivities and specificities were then reported using this threshold 

along with 95% confidence intervals. The 95% confidence intervals were calculated 

using a bootstrap method where half of the image samples were randomly selected ten 

thousand times and then a ROC analysis was performed on each subset. The 95% 

confidence interval is reported as [lower bound, upper bound]. 

4.3.6 COM Weighting Optimization 

As previously stated for COM calculation, by increasing the power p more emphasis was 

placed on the location of the maximum activity pixel compared to averaging the location 

with less active, neighbouring pixels (Figure 4.8). We determined the optimal value for p 

by performing ROC analysis with each integer value of p = 1 to 10 on the entire dataset. 

A power p which resulted in both high and stable (minimal variability with power 

change) accuracy, sensitivity and specificity values for both inter- and intra-frame 

algorithms was selected for this work.  

4.4 Results 

4.4.1 Patient Data 

This study consisted of 130 images from 65 patients. All patients had at least one frame 

with intra-frame patient motion and at least one event with inter-frame motion at 
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varying magnitudes. In total there were 367 events of inter-frame patient motion out of 

1820 possible frame pairs detected visually and an additional 606 frames with intra-

frame motion blur out of 1950 frames. 

4.4.2 COM Weighting Optimization 

Inter and intra-frame sensitivity, specificity, and accuracy values are summarized in 

Figure 4.13 and Figure 4.14 respectively for varying p power values. Figure 4.13 shows 

the increase in accuracy, sensitivity and specificity as the power p increases when using 

the inter-frame algorithm on the full dataset. Figure 4.14 shows the increase in accuracy 

and sensitivity as the power p increases when using the intra-frame algorithm on the full 

dataset. Based on these results we selected p=9, which provided a stable sensitivity, 

specificity and accuracy, as the optimal value to which all subsequent results pertain.  

 

Figure 4.13 - Inter-frame motion detection accuracy, sensitivity and specificity for 
varying p power values.  
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Figure 4.14 - Intra-frame motion detection accuracy, sensitivity and specificity for 
varying p power values. 

 

4.4.3 Inter-frame Motion 

4.4.3.1 Simulation data – motion magnitude precision 

Our simulations consisted of 716 neighbouring frame pairs without motion (0 mm) and 

54 with motion (9.3750 mm). For the cases without motion, the maximum algorithm 

reported motion was 0.0139 mm whereas in the cases with motion the range of 

algorithm reported motion was between 9.3747 and 9.5399 mm. Box-plots of the 

reported motion errors are shown in Figure 4.15. The maximum motion error was less 

than 5% of the pixel size (3.125 mm). No overlap in algorithm reported motions existed 

between the two cohorts, indicating ability for perfect classification of presence of 

motion in these simulation data.  
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Figure 4.15 - Box plot showing error in algorithm reported inter-frame motion in 
simulated images with 0 and 9.3750 mm simulated motion (n=716 and 54 
respectively). The maximum motion error was less than 5% pixel size (3.125 mm). 

4.4.3.2 Patient data 

Figure 4.16 shows the ROC curve for inter-frame motion COM distance threshold and 

the optimal threshold (blue circled at D=2.7 mm) resulting in a sensitivity of 91% [89%, 

94%] and a specificity of 91% [89%, 94%]. The area under the curve was determined to 

be 0.97 with an accuracy of 91%. Algorithm versus visual detection rates are 

summarized in Table 4.1 using this D threshold value. 
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Figure 4.16 - ROC analysis for inter-frame algorithm. The blue circle represents an 
optimal threshold at D=2.7 mm. 

 

Table 4.1 - Performance of inter-frame motion detection algorithm (n=1820 frame 
pairs from 130 images) 

 Visual 
Motion 

Visual 
No Motion 

Algorithm  
Motion 

 
335 

 
126 

Algorithm  
No Motion 

 
32 

 
1327 
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4.4.4 Intra-frame Motion 

Figure 4.17 shows a ROC curve for intra-frame motion with the optimal motion 

detection threshold (blue circled at x1/2= 4.4 mm) resulting in a sensitivity of 82% [80%, 

86%] and a specificity of 90% [86%, 92%]. The area under the curve was determined to 

be 0.90 with an accuracy of 87%. Algorithm versus visual detection rates are 

summarized in Table 4.2 using this B threshold value. 

 

Figure 4.17 - ROC analysis for intra-frame algorithm. The blue circle represents a 
threshold at x1/2= 4.4 mm. 
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Table 4.2 - Performance of intra-frame motion detection algorithm (n=1950 frames in 
130 images) 

  Visual 
Motion 

Visual 
No Motion 

Algorithm 
Motion 

497 137 

Algorithm  
No Motion 

108 1208 

 

The boxplots, in Figure 4.18 , show the variance in x1/2 values for frames with and 

without intra-frame motion. The x1/2= 4.4 mm threshold obtained from the ROC analysis 

separates the two sets of data.  

 

Figure 4.18 - Boxplot describing x1/2 values which represent motion and no motion 
cases. x1/2 = 4.4 mm threshold is represented by the black line separating the two 
motion cases 

Frames without Motion Frames with Motion 
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4.5 Discussion 

This work describes and evaluates two automatic algorithms to detect fiducial marker 

motion in dynamic cardiac PET images. The inter-frame algorithm assessed marker 

motion between neighbouring time frames based on changes in marker 3D localization 

using COM approximation. The intra-frame algorithm assessed motion within an image 

frame by assessing the blurriness of the marker image. Optimal motion detection 

thresholds were empirically determined. The resulting accuracy was found to be 91% 

and 87% respectively using visual assessment as a reference truth. These accuracy rates 

are sufficiently high to be of benefit for quality control purposes in a high throughput 

clinical setting in which visualization of each dynamic sequence is not practical.  

In our study, we determined that inter-frame motion was detected with an accuracy of 

91% using a threshold of 2.7 mm COM motion between successive frames. The size of 

each voxel was 3.125 mm and the transverse plane and 3.200 mm axially and image 

spatial resolution was ~10 mm. Therefore the motion detection threshold was smaller 

than one voxel in size and well below the image spatial resolution. Since <2 voxel 

motion is unlikely to have meaningful clinical impact, it is likely that increasing the 

threshold value would result in a lower false-positive rate (improved specificity) without 

dramatically reducing sensitivity. Likewise the optimal x1/2 parameter threshold value 

for intra-frame motion detection was determined to be 4.4 mm, well below the image 

spatial resolution, with an accuracy of 87%.  Once again, using a higher x1/2 value 

64 

 



threshold could improve the algorithm specificity to detect motion without clinically 

significant detriment to sensitivity. 

 Assuming that motion less than 2 pixels in size are inconsequential the resulting inter-

frame specificity increased from 91% to 99% (or 94% for motion less than 1 pixel). 

Assuming that motion less than the image spatial resolution (10mm) are 

inconsequential the resulting intra-frame motion specificity increase from 90% to 99% 

respectively. Nevertheless, further validation is required to establish optimal threshold 

values, preferably with a reference truth such as external tracking that is able to 

quantify the magnitude of marker motion. 

4.5.1 Clinical Feasibility 

The advantage of this study over previous work is the use of a low-cost low-dose marker 

which limits radiation exposure to the patient and instrumentation complexity. The 

algorithms are implemented post-reconstruction therefore are vendor independent and 

can be used to track fiducial markers in a larger range of applications (e.g. brain, 

oncology, and organ motion) and imaging modalities are not limited to PET.  

The execution times for these algorithms were 0.9 seconds per dynamic image 

sequence on a modern laptop, including overheads such as loading image data into 

memory. Therefore, efficient integration of these algorithms into MBF quantification 

software would result in negligible incremental processing time. Furthermore, affixing 

the fiducial marker to the patient takes only seconds and does not interfere with the 

65 

 



imaging process. Thus we conclude that these algorithms may be applicable for routine 

quality control in MBF studies. 

The algorithm can be included as a separate utility for batch processing studies and 

generating quality control indicators, or more practically integrated into software 

packages for processing dynamic image sequences. While physician confidence may 

increase in cases without indicated motion, cases with motion would need more 

thorough interpretation in the context of possible motion or disregarding of dynamic 

analysis results. 

4.5.2 Other applications 

The algorithm could easily be expanded to track multiple markers by introducing 

multiple VOI around each marker. Multiple markers have been used to track head 

motion and respiratory motion to fully characterize the direction and magnitude of the 

motion to guide correction. Future work would consist of tracking multiple markers on 

the torso to determine if heart motion can be fully characterize during translational and 

rotational motion.  

The intra-frame motion detection algorithm could be applied to static (PET or SPECT) 

MPI quality control without any substantial modifications. As with dynamic imaging 

static imaging for MPI interpretation is performed over long time intervals (e.g. 6 min) in 

which patient motion can manifest itself as a directional blur which can produce uptake 
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deficits consistent with CAD [62]. Thus this algorithm can have important QC 

implications on the most commonly used procedure in nuclear medicine.  

4.5.3 Limitations and Future Work 

As previously stated, visual interpretation is vulnerable to viewer bias, errors, and is 

limited to qualitative assessment. Nevertheless, it is not possible to induce motion in 

clinical studies and another (external) reference was not available to us for this study. 

A current limitation with this study is that motion larger than the VOI (9x9x9 pixel 

volume) was not explicitly supported. This would correspond to extremely large patient 

motion in excess of 3 cm which would likely result in obvious MBF and MPI artifacts. If 

blurring of the fiducial marker exceeds the VOI it would still be detected as motion but 

error in the detected magnitude will exist. Partial movement of the marker outside the 

VOI could result in slight error in COM calculation and thus the detected magnitude of 

motion. Nevertheless, this limitation could be addressed by updating the VOI position in 

each time frame depending on COM localization in the previous frame or by increasing 

the VOI size.  We tried to reduce the effects of spill in body activity in the VOI but this is 

also a source of error when calculating the COM and thus detecting the magnitude of 

motion for both algorithms. The use of two separate algorithms to detect inter- and 

intra-frame motion may not be ideal. A potential simplification could be to superimpose 

all 15 time frame images and then attempt to detect motion using the intra-frame 

algorithm. However it is likely that sensitivity would be adversely impacted. For this 
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reason we did not evaluate the method in this work, but may be worthy to pursue in 

subsequent work. 

The authors recognize that the noise-free NCAT simulations used in this study are 

limited in their accuracy and that they did not simulate intra-frame motion. Future work 

is planned to expand the evaluation of these algorithms using more complete simulation 

models including monte-carlo simulation of emission, attenuation, scatter and 

detection, realistic noise models, iterative image reconstruction, and a broader range of 

motion models. 

A final important limitation is that this study used the same data set to optimize 

detection thresholds (p=9) and to characterize algorithm performance. Ideally, separate 

datasets would be used. However, due to the tedious work required to collect image 

data and visually assess the presence of motion in each and between time frames this 

was not performed. Follow-up characterization should be performed with a separate 

dataset. Nevertheless we believe that performance measures reported in this work are 

representative of true clinical scenarios. 

4.6 Conclusion 

We have developed and validated inter- and intra-frame motion detection algorithms to 

track fiducial markers in reconstructed dynamic PET images. These algorithms can be 

easily incorporated into analysis software as an effective added quality control measure 

without detriment to clinical workflow. 
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5 Image Decomposition Based Heart Motion Detection 

5.1 Background  

5.1.1 Matrix Decomposition – Dynamic Image Decomposition 

Dynamic images consist of 4 dimensions including 3 spatial dimensions and a time 

dimension. A pixel in a dynamic image therefore also has a time component and may be 

referred to as a dixel, representing activity in a defined volume over a sequence of time 

frames and can be represented as a vector. Image decomposition can unveil spatial 

patterns in a dynamic image based on the characteristic temporal patterns. These 

temporal patterns may be predefined (e.g. Fourier analysis, wavelet) or determined 

from the image data using models that provide a unique solution to the decomposition 

problem. 

Image decomposition techniques that are based on the temporal pattern of each dixel 

usually begin by collapsing the volume into a 2D matrix. The columns of the dataset 

matrix (Y) represent that time dimension while the rows represent the image pixels (i.e. 

spatial dimensions). The image matrix, Y, is then decomposed into two matrices: F 

represents the column wise temporal factor matrix, and S is the corresponding 

structures matrix which represents the spatial distribution of each component. The 

residual signal and random noise which is not accounted for by the components is 

represented by matrix ∈ which has the same dimensions as the original image. The 

number of components to resolve must be determined in advance and corresponds to 
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the number of columns in F and number of rows is S. The decomposition framework 

may be represented using the following equation (5-1): 

𝑌𝑌 = 𝑇𝑇𝐹𝐹+∈      5-1 

Figure 5.1 illustrates how image decomposition works mathematically. In this example 

the original image is decomposed into three components consisting of both spatial 

patterns (structures) and corresponding temporal time-curves (factors). The remaining 

signal in the original image which was not represented by the decomposed components 

is the residue image. One potential advantage of image decomposition is that it 

accounts for all dixels in the image simultaneously.  
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Figure 5.1 - Image decomposition diagram: Summed products of spatial structures and 
temporal factors (top left) produce an estimated reconstructed image sequence which 
combined with the residue image sequence represents the original raw dynamic 
image sequence (bottom). Image decomposition methods simultaneously determine 
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the structures and factors from the raw image sequence. The residue was analyzed for 
patterns indicating undesired subject motion during image acquisition. 

 

Image decomposition has been used on dynamic nuclear medical images in the past. For 

example, several studies used factor analysis of dynamic PET images to create factor 

images and TACs to estimate parameters for kinetic modelling  [61–64]. Another study 

investigated two factor analysis of dynamic structures (FADS) methods for use of semi-

automatic estimation of activity in cardiac dynamic SPECT images [67]. Image 

decomposition is not a unique method, with many different approaches available 

depending on the application and goal. 

5.1.2 Principle Component Analysis (PCA) 

Principle component analysis is a simple and commonly used decomposition method. It 

has a well-defined solution that creates eigenvectors of the covariance matrix of the 

data so as to account for as much signal (variance) in the original image matrix given the 

number of desired components [66–68]. PCA can easily and quickly be processed on a 

modern computer making it one of the most widely used methods for decomposition. 

PCA has been used for data compression and the reduction of noise in images. The 

resulting decomposition quantifies the variance represented by the Eigenvectors basis-

functions (components) through the relative magnitudes of the corresponding 

Eigenvalues of the solution.  
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5.1.3 Number of Components 

The number of factors into which the image must be decomposed must be 

predetermined. The number of desired components is mainly dependant on the quality 

of the image (degree of noise), number of prominent structures 

(organs/blood/myocardium), structure kinetics (i.e. temporal patterns) and time frame 

intervals. If too few factors are resolved, then structures with similar kinetics may be 

lumped together while too many factors can lead to structures being split into multiple 

components. Furthermore, a large number of factors makes the decomposition process 

more susceptible to noise [71].  

The number of factors can be selected based on the relative image sequence variance 

represented by each component. The relative variance is measured by the respective 

eigenvalues of the covariance matrix, determined using PCA. The eigenvalues can be 

normalized to unity sum and then cumulatively summed in decreasing order of 

magnitude to account for the total image variance accounted by n components. One 

means by which the number of components to include is resolved is using a user-

selected image variance value to include in the solution (or reject to the residue) (Figure 

5.2).  

73 

 



 

Figure 5.2: Method for selecting the number of components to resolve based on total 
cumulative variance (Eigenvalues) as determined by PCA. The user selects a desired 
total variance (range: 0-100%) and the closest number of components to achieve this 
threshold is used. 

 

Anecdotal data from previous work involving decomposition of dynamic PET [72] has 

suggested that image matrix decomposition may be able to expose the presence of 

motion as a pattern in the error image, however this hypothesis has not been explored 

in further detail. Figure 5.3 demonstrates a simulated dynamic PET image which has 

motion in its last time frame (240 s in the +x direction). This dynamic sequence (left 

most column) has been decomposed using a PCA algorithm (2 factors). The most 

important components are decomposed in the first two components (factors and 

structures) which can be seen in Figure 5.3 by the two structure columns.  It can be seen 

in the 2nd factor that the myocardial wall is visible in that decomposition stage. It is also 

important to note that the structures in the dynamic image are not fully decomposed, 
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as evident by the prominent structure (red structure in the last two time frames) in the 

residue. The structure resembles the myocardium and is consistent with heart motion in 

last time frame. In this chapter, we sought to evaluate whether dynamic image 

decomposition may be used to detect the presence of motion. 

 

 

Figure 5.3 - An example of PCA image decomposition using 2 factors in a 
simulated dynamic image sequence with motion (left). The blood and 
myocardium wall patterns can be seen in the two components. A myocardium 
structure can also be seen at in the last two time frames of the residue image 
which corresponds to simulated motion. Note the separate color scale on the 
residue image. 
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5.2 Objective 

This chapter is an early investigation of whether principle component analysis, an image 

decomposition method, holds promise for detection of heart motion in dynamic 82Rb 

PET based on patterns in the residue image. 

5.3 Methods  

To test whether heart motion could be detected using patterns in the residue of PCA 

decomposition of dynamic image data, a series of simulated and patient data were 

processed with PCA and the residue was analyzed. These datasets are described below, 

followed by a description of the analysis.  

5.3.1 Noise-free Simulation 

108 noise-free NURBS-based cardiac-torso (NCAT) [56, 57] numerical-phantom dynamic 

image sequences were generated. 54 images had ±0.9375 cm simulated motion and 54 

images had ±1.8750 cm simulated motion (referred to as 1 and 2 cm respectively). The 

images were generated using the same methods as section 4.3.1. An example of inter-

frame motion between two frames in a noise-free simulation can be seen in Figure 5.4. 
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Figure 5.4 - The transverse image shows an NCAT noise-free simulation. The image on 
the left (frame 13) is without motion and the image on the right (frame 14) is shifted 
by 2 cm in the +y direction (at 240 s). The myocardium can be seen in red. The 
crosshairs are fixed between time frames. 

 

5.3.2 Noisy Simulation 

A second, but similar set of 108 NCAT [56, 57] based dynamic image sequences were 

generated with noise. As with the noise-free simulations, NCAT dynamic images were 

forward projected (128 projections) using the radon transfer function. Noise (modeled 

for the GE advance PET scanner and a 20 cm diameter phantom) was then added to the 

sinograms using the analytical simulator ASIM (University of Washington, Seattle, WA)  

[73] and then reconstructed using iterative filtered back projection with Software for 

Time Frame: 13 Time Frame: 14 

Pixel Intensity  Max Min 
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Tomographic Image Reconstruction (STIR) [74]. ASIM is a software package which can be 

used to create noise for analytic PET simulations. STIR is an open-source software 

package that is used for tomographic image reconstruction.  Motion was simulated in 9 

times-frames (30, 60, 80, 90, 120, 150, 180, 240, or 360 s) with ±0.9375 cm (~1 cm) or 

±1.8750 cm (~2 cm) motion in 6 directions (+x right,-x left, +y posterior,-y anterior, +z 

superior,-z inferior). An example of inter-frame motion between two frames in a noisy 

simulation can be seen in Figure 5.5 and noise-free simulation is shown Figure 5.4. 

 

Figure 5.5 - The transverse image shows an NCAT noisy simulation. The image on the 
left is with no motion and the image on the right is shifted by 2 cm in the +y direction 
(at 240 s). The myocardium is shown in red. The crosshairs were not shifted between 
frames. 
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5.3.3 Patient Data 

The same patient images as in section 3.3.1 were used with visual interpretation used as 

reference truth for the presence of motion. Unlike the simulation data, motion could 

occur mid-frame, be in any direction and magnitude, and have more than one motion 

event in a dynamic image sequence. Furthermore, patient images are degraded by 

photon scatter, random events, noise and attenuation mis-registration (especially in the 

presence of motion). 

The 130 patient images (rest and stress) were cropped to a 45x45x35 VOI containing the 

entire heart and were visually (re-)evaluated using an in-house software program 

(FlowQuant©, Ottawa, ON) [14, 19] for the presence of any (mild and significant) inter-

frame heart motion. Any visible heart motion recorded including mild (<2 pixel) and 

significant (≥2 pixel) movement of the heart in the dynamic PET image between 

neighbouring frames. The time frame of heart motion was recorded on a frame-by-

frame basis. Inter-frame motion occurs between two successive frames therefore it 

cannot be detected in time frame 1. The time frames and their corresponding start time 

and length in seconds is show in Table 3.1. 
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5.3.4 Image analysis 

In each image set the heart was isolated within a 45x45x35 VOI for all noise-free, noisy 

and patient images. All the image sets were decomposed in FADSTool (University of 

Ottawa Heart Institute, Ottawa, ON) using PCA where the number of factors for 

decomposition were automatically determine so the components accounted for ≥95% 

variance in the images sequence. The residue images were then visually inspected for 

any prominent patterns resembling the myocardium using the same interactive viewing 

software as used to assess motion in the patient data. 

5.3.5 Automatic Motion Detection Using Quantification of Residue Signal  

The root mean square (RMS) of the residue activity in each time frame was used as a 

metric to automatically detect the presence of motion. RMS-time curves for noise-free 

simulations were analyzed for severe and quick changes in amplitude when motion was 

simulated. Figure 5.6 (top) demonstrates a plot of residue RMS values for each time 

frame for the case of +x 2 cm motion introduced between time frame 3-4. The 

maximum RMS was about 225 kBq/cc while the intensity in the surrounding frames is 

less than 60 kBq/cc presenting as a sharp peak of residual intensity. A similar 

observation is made in Figure 5.6 (middle) where inter-frame motion is simulated 

between time frame 10-11. A less prominent maximum RMS peak is visible in the 

middle time frames (9 and 10) compared to earlier time frames (4 and 7). Figure 5.6 

(bottom) shows motion that was introduced between time frame 14-15. Since image 

decomposition is done on a single frame and not between frames, motion would be 
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detected in the frame following the inter-frame motion event. For example, if motion 

occurred between time frame 3 and 4 the motion event should be detected in time 

frame 4. Therefore in early and middle time frames (1-11) the maximum RMS peak was 

present in the previous frame to the motion event so it was concluded that an offset of 

one time frame was required for these time frames. A script was written which 

calculated the maximum RMS value out of the 15 time frames per residue image. All 

images were processed through this residue anaylsis script and the prevalence and time 

of motion were recorded and compared to the baseline (simulated or visual assesment). 
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RMS 
kBq/cc 

Figure 5.6 - RMS of activity in each of the 15 time frames of noise-free simulation 
images. Top: Motion was introduced between time frame 3-4 in the +x direction 
with a magnitude of 2 cm. Middle: Motion was introduced between time frame 10-
11 in the +x direction with a magnitude of 2 cm. Bottom: Motion was introduced 
between time frame 14-15 in the +x direction with a magnitude of 2 cm. The red 
circle represents the maximum RMS value 

Time Frame (1-15) 
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5.4 Results 

5.4.1 Noise-free Simulation 

Figure 5.7 demonstrates dynamic sequences of transaxial slices of residual images for 

noise-free simulations with motion (+2cm x direction) at different time intervals. The 

pattern of seeing a high intensity region (red), medium intensity region (yellow) and a 

low intensity region (blue) together is consistently seen in the frames before or after 

motion is introduced. Motion in early time frame (4) and late time frames (14 and 15) 

had better pre-motion vs. post-motion frame contrast compared to motion in the 

middle time frames (e.g. motion at 7 or 9). As expected, structures resembling that of 

blood pool (early time frames) and myocardial uptake (later time frames) were more 

visually evident when dealing with 2 cm motion in comparison to 1 cm motion (data not 

shown). 
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Figure 5.7 – Residue  of noise-free NCAT phantoms with simulated motion (+2cm X 
direction) at 30s, 60s, 80s, 90s, 120s, 150s, 180s, 240s and 360s represented by the 
dashed line each in residue. Blood pool (early time frames) and the myocardium (later 
time frames) is present before or after motion is introduced. Each image is individually 
scaled between minimum and maximum intensity pixels. 

 

Table 5.1 summarizes the results from image sequence residue analysis with 1 cm 

simulated noise-free inter-frame motion events. 42 inter-frame motion events were 

accurately detected while all 54 motion events were detected within ±2 time frames. 

Likewise, Table 5.2 summarizes the results using 2 cm motion. 52 inter-frame motion 

Time of Simulated Inter-motion (time frame) 
 

3-4 12-13 10-11 9-10 11-12 8-9 13-14 6-7 14-15 
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events were accurately detected while all 54 motion events were detected within ±2 

time frames.  

Table 5.1 - Detected inter-frame motion events in 1 cm noise-free simulated motion 
events. The bolded values account for perfect agreement between residue analysis 

and visual assessment. The highlighted area accounts for ±2 time frames.  N=54. Note: 
Frame 2 and 3 had no motion so are not shown and inter-frame motion cannot occur 

in time frame 1. 

   Detected Motion (time frame) 
  4 5 6 7 8 9 10 11 12 13 14 15 

 
 

Simulated 
1 cm Motion 
(time frame) 

4 6 0 0 0 0 0 0 0 0 0 0 0 
7 0 0 0 6 0 0 0 0 0 0 0 0 
9 0 0 0 6 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 6 0 0 0 0 
11 0 0 0 0 0 0 0 6 0 0 0 0 
12 0 0 0 0 0 0 0 0 6 0 0 0 
13 0 0 0 0 0 0 0 0 0 6 0 0 
14 0 0 0 0 0 0 0 0 0 0 6 0 

 15 0 0 0 0 0 0 0 0 0 0 0 6 
 

Table 5.2 - Detected inter-frame motion events in 2 cm noise-free simulated motion 
events. The bolded values account for perfect agreement between residue analysis 

and visual assessment. The highlighted area accounts for ±2 time frames.  N=54 

   Detected Motion (Time Frame) 
   4 5 6 7 8 9 10 11 12 13 14 15 

 
 

Simulated 
2 cm Motion 
(Time Frame) 

4 6 0 0 0 0 0 0 0 0 0 0 0 
7 0 0 0 6 0 0 0 0 0 0 0 0 
9 0 0 0 0 0 6 0 0 0 0 0 0 

10 0 0 0 0 0 0 6 0 0 0 0 0 
11 0 0 0 0 0 0 0 6 0 0 0 0 
12 0 0 0 0 0 0 0 0 6 0 0 0 
13 0 0 0 0 0 0 0 0 0 4 2 0 
14 0 0 0 0 0 0 0 0 0 0 6 0 

 15 0 0 0 0 0 0 0 0 0 0 0 6 
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5.4.2 Noisy Simulation 

In noisy simulations a structure resembling the myocardium was visible in the residue 

image in the frames where motion was present, similar in nature to the noise-free 

results. However, residue images (Figure 5.8) had more noise and less contrast 

compared to noise-free simulations (Figure 5.7). As with the noise-free simulations PCA 

decomposition was most effective when motion was present in early (4) and late time 

frames (14, 15) with good myocardium-to-background contrast. Structures resembling 

blood pool or the myocardium were visible in all time frames before or after the 

introduction of motion (denoted by dashed line in Figure 5.8). In middle time frames (7, 

9, 10, 11, 12, 13) the myocardium-like pattern was visible in most of the time frames 

before and after motion was introduced making localization of the time of motion non-

trivial.  
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Figure 5.8 – Example Residue of noisy NCAT phantoms with simulated motion at 30, 
60, 80, 90, 120, 150, 180, 240 and 360 s represented by the dashed line in each 
residue. Blood pool (early time frames) and the myocardium (later time frames) like 
patterns are present before or after the motion event. 

 

Table 5.3 and Table 5.4 summarize the automatic motion detection results using 1 and 2 

cm motion respectively. Of the 54 noisy simulations with 1 cm motion, 28 inter-frame 

motion events were accurately detected while 50 motion events were detected within 

±2 time frames. With 2 cm motion, 38 inter-frame motion events were accurately 

detected while 49 motion events were detected within ±2 time frames.  
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Table 5.3 - Detected inter-frame motion events in 1 cm noisy simulated motion 
events. The bolded values account for perfect agreement between residue analysis 

and visual assessment. The highlighted area accounts for ±2 time frames.  N=54 

   Detected Motion (time frame) 
  4 5 6 7 8 9 10 11 12 13 14 15 

 
 

Simulated 
1 cm Motion 
(time frame) 

4 6 0 0 0 0 0 0 0 0 0 0 0 
7 0 0 0 6 0 0 0 0 0 0 0 0 
9 0 0 0 6 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 6 0 0 0 0 
11 0 0 0 0 0 6 0 0 0 0 0 0 
12 0 0 0 3 0 0 0 0 0 0 3 0 
13 0 0 0 1 0 0 0 0 0 4 1 0 
14 0 0 0 0 0 0 0 0 0 0 6 0 

 15 0 0 0 0 0 0 0 0 0 0 0 6 
 

Table 5.4 - Detected inter-frame motion events in 2 cm noisy simulated motion 
events. The bolded values account for perfect agreement between residue analysis 

and visual assessment. The highlighted area accounts for ±2 time frames.  N=54 

   Detected Motion (time frame) 
  4 5 6 7 8 9 10 11 12 13 14 15 

 
 

Simulated 
2 cm Motion 
(time frame) 

4 6 0 0 0 0 0 0 0 0 0 0 0 
7 0 0 0 6 0 0 0 0 0 0 0 0 
9 0 0 0 4 0 2 0 0 0 0 0 0 

10 0 0 0 2 0 0 4 0 0 0 0 0 
11 0 0 0 3 0 0 1 2 0 0 0 0 
12 0 0 0 0 0 0 0 0 0 0 6 0 
13 0 0 0 0 0 0 0 0 0 6 0 0 
14 0 0 0 0 0 0 0 0 0 0 6 0 

 15 0 0 0 0 0 0 0 0 0 0 0 6 
 

5.4.3 Patient data 

This study consisted of 130 images (rest and stress) from 65 patients. All patients had at 

least one motion event at varying magnitudes and direction. In total there were 328 

inter-frame heart motion events which were visually detected out of 1820 possible 

frame pairs. Table 5.5 compares the automatically report time of motion event with 
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visually interpreted data. In cases with more than one visually detected motion event 

the closest visually assessed motion event was used. Of 130 images 60 events were 

accurately localizes to the correct time frame while 115 motion events were detected 

within ±2 time frames.  

Table 5.5 - Automatic temporal localization of inter-frame motion events vs visual 
assessment. The bolded values account for perfect agreement between residue 

analysis and visual assessment. The highlighted area accounts for ±2 time frames.    
N=130. Note: inter-frame motion cannot occur in time frame 1 

  Detected Motion (time frame) 
  2 3 4 5 6 7 8 9 10 11 12 13 14 15 

 
 
 
 

Visual 
temporal 

localization of 
motion event 
(time frame) 

 

2 7 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 1 0 0 0 0 0 0 0 0 0 0 1 0 0 
4 2 1 1 0 0 0 0 0 0 0 1 0 0 0 
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
6 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
9 1 0 0 1 0 0 0 0 1 1 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 5 1 2 0 0 
11 2 0 0 0 0 0 0 0 0 12 8 1 0 0 
12 0 0 0 0 0 0 0 0 0 2 11 13 0 0 
13 0 0 0 0 0 0 0 0 0 1 4 20 2 0 
14 2 0 0 0 0 0 0 0 0 3 1 6 1 2 
15 0 0 0 0 0 0 0 0 0 0 1 1 2 7 

 

5.5 Discussion  

To our knowledge, this work explores a completely novel motion detection strategy 

based on analysis of residual signals during dynamic image decomposition. As such, the 

results describe herein are a preliminary evaluation of the method based on simulations 

and patient data. While visual interpretation of the residual image was used to 
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scrutinize and understand motion related patterns, an automated method to temporally 

localize the motion event was also evaluated.  

In the noise-free simulations all 108/108 Inter-frame motion events were accurately 

detected to within ±2 time frame. Once noise was introduced into the simulations 

accuracy decreased, but nevertheless 99/108 motion events were detected within ±2 

time frame. Of these, motion was detected within ±2 time frame for 49/54 cases with 2 

cm motion compared to 50/54 for 1 cm motion. In a representative clinical patient 

dataset consisting of 130 images with some level of motion, only 115/328 (35%) motion 

events were detected within ±2 time frame. This is due, in part, to the automatic 

detection criterion (maximum RMS) only being able to detect a single heart motion 

event in a given image sequence. Many of the 130 patient images, however, had 

multiple times frames containing heart motion.  

Thus we concluded that even though the performance of PCA residue image based 

motion detection may be adversely affected by image noise, preliminary performance 

measurements are encouraging and further investigation of the technique may be 

warranted. Nevertheless, some concerns remain. 

5.5.1 Number of events 

 The proposed algorithm always detects a single motion event per image. Therefore, it is 

not clear how the algorithm performs with more than one motion event in a single 

image or in the absence of motion. In the case of patient images with multiple motion 
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events, we elected to use the visually determined motion event closest in frame count 

to the automatically detected motion event. This strategy clearly biases the results, 

producing higher accuracy rates. 

A strategy to distinguish between absence/presence of motion was not evaluated as 

part of this work but would be essential for clinical application. Residue analysis would 

likely be a first part of a multistep process for discriminating motion events. 

5.5.2 Event timing 

In simulation data motion events in early (4) and later time frames (11-15) were 

detected most robustly while mid-scan events were frequently missed. These findings 

were confirmed using the patient data. This could be due to the rapidly changing tracer 

distribution (from blood to tissue) in the middle time frames, making visual assess of 

heart motion more challenging.  Tracer uptake and retention by the myocardium as 

seen in the later time frames produces a more consistent structure to track.  

5.5.3 Number of Components 

In this work we selected the number of decomposition factors so as to account for ≥95% 

of the image variance. Figure 5.9 demonstrates the residue of PCA decompositions, 

using 2, 3, 4 and 5 components. The dynamic image had 2 cm motion simulated at 240 s 

(between time frame 13 and 14) in the +X direction. A myocardium shaped pattern is 

clearly present in time frames 14 and 15 when decomposing with either 2 or 5 factors. 

While a myocardium shaped residue was present using 3 and 4 factors, it is spread over 
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many time frames (both pre- and post-motion event), making it difficult to resolve the 

timing of the motion event. From this example, it is evident that the number of factors 

could have a large impact on the motion detection algorithm. From our experience, 

each image may have a unique number of factors in which the myocardium -to-

background contrast in the residue image is optimized.    

Thus further considerations should be given to the number of factors. It may also be 

possible that the number of factors required to account for a target image variance are 

indicative of the presence of motion.  

Number of Factors 

Max 

Min 
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m

e 
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2 3 4 5 

Figure 5.9 - Residue of PCA decomposition using 2, 3, 4 and 5 factors. The noise-free 
simulation consisted of 2 cm motion introduced at 240 s (dashed lined)(between time 
frame 13-14) in the +x direction 
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5.5.4 Metrics of Motion 

In this work, we relied on RMS of the residue frames to signal the presence of motion. 

Other possible metrics that may be useful to signify the presence of motion were 

evaluated in this work including minimum and maximum pixel intensities in the residue 

images. These metrics were out performed by the RMS metric and their results have 

been left out of this report for brevity. Nevertheless other metrics may be effective for 

this purpose. Future work should consider analysis of the Eigenvalues and number of 

components required account for a target image variance. Another potentially 

interesting metrics include the entropy or structural information in the residue images 

as opposed to random noise distribution. 

5.5.5 Limitations and Future Work 

This work is preliminary in nature and therefore may be seen to have numerous 

limitations. The proposed motion detection algorithm assumes the presence of a single 

motion event in a dynamic image sequence and as such does not account for images 

without motion or those with multiple motion events. While this study focused on the 

merit of using image decomposition to detect heart motion it is evident that for 

practical application these limitations must be addressed. It may be possible to 

threshold the RMS value to separate cases with and without heart motion. 
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The magnitude of heart motion was not evaluated but further evaluation could provide 

us with a motion threshold in which this detection method can accurately detect 

motion. 

 Furthermore, intra-frame heart motion was not evaluated in this study so as to simplify 

the analysis to discrete time points in the dynamic image sequence. Future work should 

include intra-frame motion to improve the accuracy of the simulation.  

5.6 Conclusion  

Preliminary data suggests that heart organ motion detection in dynamic PET using 

image decomposition may be feasible, especially in the early and late time frames. 

Further work is required to translate this method into a clinically applicable tool for 

motion detection and correction.  
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6 Summary 

6.1 Contributions 

CAD is one of the leading causes of mortality and morbidity in western society and is 

increasing in prevalence in developing societies [3]. With proper diagnosis and 

intervention however, quality of life and prognosis can be increased significantly. 

Currently, MPI is regularly used in clinical practice to detect CAD but may provide false-

negative results in severe cases where narrowing of multiple coronary arteries is present 

and in diffused disease of the microvasculature [4, 75]. In both cases the patient may 

have a uniform decrease in perfusion, in which case relative uptake images may have a 

uniform distribution consistent with healthy distribution. This limitation can be 

overcome using absolute MBF quantification [19] which quantifies the amount of blood 

flow to the myocardium in units of mL/min/g (mL/min of blood per gram of tissue). MBF 

quantification can be performed at rest and stress cardiac states and myocardial flow 

reserve (MFR) can be calculates as stress/rest ratio. MFR provides incremental 

prognostic value to physicians when dealing with patients with suspected cases of CAD 

[14, 20].  

The gold standard non-invasive modality for MBF quantification is positron emission 

tomography (PET) [4].  Dynamic cardiac PET images can image the distribution of tracer 

from the blood stream into the perfused tissue. Sampling of regions of interest (ROIs) 

over the dynamic sequence produces time-activity curves (TACs) of the changes in 
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tracer concentration over time in the anatomical region being sampled. MBF is 

quantified by analysing the relationship between arterial blood (which perfuses the 

myocardium) and myocardium TACs. Dynamic imaging implicitly assumes that an ROI 

corresponds to a specific anatomical location in the patient at all time frames. This 

assumption is violated by the presence of motion and may manifest itself as distorted 

TACs which lead to errors in MBF quantification measurements. Therefore the detection 

of gross patient motion and heart motion has clinical value for image interpretation and 

quality assurance.  

Rigid motion can be present in cardiac imaging for example of the patient shifts during 

the exams, however heart motion within the thorax is non-rigid as the soft tissues move 

in relation to one another [35] and tracking of surface markers may not always correlate 

with heart positioning. Tracking of heart motion in a dynamic cardiac image sequence 

can also be complicated by changing tracer distributions from blood to perfused tissues. 

Therefore, heart motion in cardiac PET is a complicated and unresolved problem that 

can be tackled by several approaches. 

One strategy is to correct PET data prior to reconstruction or during reconstruction, but 

this requires that additional equipment be installed and operated in a fast-paced 

imaging clinic [1, 2, 51, 53, 54]. Pre-reconstruction methods generally require that 

motion data be recorded into the PET camera list-mode data for alignment [1, 2, 51, 53, 

54]. PET camera vendors, structure and process list-mode data in proprietary ways, 

making pre-reconstruction strategies non-universal across vendors, and often between 
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instrumentation of the same vendor. Post-reconstruction approaches are advantageous 

in their vendor neutrality and can be simple to process; however not all motion related 

artifacts (e.g. attenuation mis-registration) may be correctable. Nevertheless, post-

reconstruction detection of motion may be a useful quality control tool that can be 

seamlessly incorporated into the MBF quantification workflow. Little work has been 

done on post-reconstruction non-rigid motion tracking. Gated-PET image acquisition is a 

well described method but these images are more susceptible to noise due to their 

decreased photon count [38, 76]. Fiducial markers have been used to track rigid motion 

for various imaging applications and other non-rigid motion use pre-reconstruction 

methods [49–51], however the utility of patient surface mounted fiducial markers for 

tracking deep organ motion is unclear. 

Chapter 3 of this thesis explores whether a positron-emitting fiducial marker motion is a 

useful surrogate marker of heart motion in dynamic 82Rb PET image sets. A small 22Na 

marker was affixed to patients’ skin over the lower right frontal rib. The marker could be 

clearly distinguished in the reconstructed PET images. Agreement between presences of 

motions in the entire dynamic study was 88% for flagging cases with heart motion based 

on analysis of fiducial marker motion. In the cases with motion, 16.7% had motion in 

different directions and 12.5% of the images had motion at different time points. 

Therefore it was concluded that fiducial markers can be useful in predicting the 

presence of motion but may not be ideal for characterising motion. This method of 

motion detection was non-invasive and only required the use of a low-cost low-activity 
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positron-emitting marker which can be detected in post-reconstructed dynamic PET 

images. Thus it was concluded that fiducial markers could aid in quality control of 

dynamic cardiac PET studies, especially if fiducial marker motion detection could be 

automated. 

In Chapter 4 we followed up by developing automatic detection of patient motion using 

fiducial markers. We focused on two manifestations of motion: inter-frame and intra-

frame. Inter-frame motion was defined as motion between two successive frames which 

appears as a sudden shift of the maker between frames bookending the motion event. 

Intra-frame motion is motion within a single frame, which is manifested as a directional 

blur of the marker within the affected time frame.  

Using visual assessment as our truth reference for motion and ROC analysis, we 

determined that inter-frame motion could be detected with an accuracy of 91% using a 

2.7 mm motion threshold. Therefore, the motion detection threshold was smaller than 

one voxel in size and well below the image spatial resolution. Similarly for intra-frame 

motion we resolved an optimal activity fall-off rate parameter, B, threshold value of 

0.0359 mm-2, which gave an 87% accuracy estimate This threshold value corresponds to 

a blur breadth (50% of peak) of 4.4 mm which is well below the image spatial resolution. 

We concluded that these accuracies were sufficiently high to benefit the clinic as a 

quality control tool when incorporated into the MBF quantification software.  
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The advantage automatic tracking of fiducial markers as a surrogate for heart motion is 

that it is vendor independent, is fast and simple to process, is low-cost and could be 

easily adapted for a wide range of applications. Nevertheless, this approach is limited by 

non-perfect correlation between heart and marker motions as described in Chapter 3. 

Chapter 5 discusses a completely different approach to heart motion detection, in which 

the temporal patterns in the heart image itself are analyzed for inconsistencies. The 

image is decomposed using principle component analysis (PCA) and the residue image 

(the signal not accounted for by the principal components) is analyzed for patterns that 

indicate motion. Image decomposition assumes that no motion is present in the image 

and a violation of this assumption results in additional components being generated or 

alternatively larger residue intensities and non-random patterns. 

Based on a series of simulation and patient based analyses, it was concluded that this 

method shows promise for detecting inter-frame motion in early and late time frames, 

but its utility for mid-scan motion is less clear. Furthermore, motion related patterns in 

the residue became less prominent in the presence of image noise. However, from the 

patient data we concluded that noise levels do not seem to be a major concern for this 

application.  

Image decomposition as a means of heart motion detection is, as far as we know, a 

novel approach, and this preliminary research demonstrates that it warrants further 

investigation. Nevertheless, much more work is required to make image decomposition 
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based motion detection more robust and to determine if it can also be used to 

characterize motion. 

6.2 Limitations 

6.2.1 Visual Assessment of Motion 

A major limitation of this work is the reliance on visual assessment of images for motion 

as a reference truth. A quantitative external measurement of the motion would have 

been preferable especially for validating fiducial marker motion tracking.  

Visual evaluation of mild motion of the heart is difficult even with a smaller VOI 

(45x45x35) due to the constantly changing tracer distribution. This leads to uncertainty 

of the visually assessed data and a high rate of visually detected cases of suspected 

heart motion. While mild motion may not be clinically significant it was included in the 

analysis so as to better understand the robustness of image decomposition based 

motion detection in a clinical context. Intra-frame motion of the heart is difficult to 

assess due to the nature of the images and the constantly changing tracer distribution 

throughout the dynamic cardiac PET image and was therefore was not explicitly 

addressed. Nevertheless it is safe to assume that many of the images which exhibited 

inter-frame motion also contained intra-frame motion. 

6.2.2 Simulation Data  

The use of simulation data is an attractive alternative to clinical studies as the motion is 

known in all its detail. Nevertheless, simulations may not completely model the imaging 
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process, patient physiology, and/or motion. While this work utilized noise free and noisy 

simulations, it only evaluated inter-frame motion and not intra-frame motion. This was 

partially due to the tediousness and long computer processing time required to 

generate a large cohort of simulations. While we were not able to complete intra-frame 

motion simulations in time to include in this work, we are in the process of generating 

intra-frame motion simulations to further validate the merit in the above discussed 

motion detection methods.  

A further possible improvement over this work could be the use of more accurate 

simulations including: 

•  Monte-Carlo simulations of the nuclear physics as opposed to the analytical 

noise model.  

• Addition of attenuation mis-registration artifacts to the motion effected time 

frames. 

• Separate blood TAC for the arterial and venous structures as opposed to a single 

TAC. 

• Cardiac disease models in addition to the healthy (uniform) models in this work. 

• Inclusion of rotation motion to the shift motions in this work. 

• Inclusion of non-rigid motion (i.e. shifting of the heart within the thorax. 

• Inclusion of cardiac and respiratory motions. 

• Addition of cases without motion as a negative control cohort 
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6.3 Clinical Feasibility 

Fiducial markers are low in cost and can be applied to patients without significant 

additional workload to clinical staff. Furthermore, since the markers represent a very 

low additional radiation dose no special consents would be required for clinical use. 

Thus, the use of positron-emitting fiducial markers can be clinically adopted 

immediately with the added benefit of quality control (QC) for motion, though 

appropriate analysis software would be valuable to fully make use of these markers. 

Image decomposition requires no additional costs or equipment during image 

acquisition. PCA is a fast, well documented and simple decomposition method which 

can quickly process multiple dynamic images in a short period of time, potentially 

making it a clinically attractive quality assurance tool. However, interpretation of the 

results is not straightforward and as such will likely not be clinically beneficial in the 

immediate future.  

Currently, clinics use analysis software to quantify MBF. These methods can easily be 

integrated into existing software. Alternatively complimentary automated software may 

be able to run in parallel to the MBF quantification software purely for QC purposes.  

The methods described in this work do not correct for motion but could flag patient 

images where motion is present. If motion is detected then it would warn the observing 

physician to proceed with caution and if no motion is detected then it increases 

confidence in the MBF measurements. Steps are being taken to incorporate fiducial 
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marker based automatic detection of patient motion in our clinical environment as a 

quality assurance tool.  

6.4 Other Applications 

Fiducial marker motion tracking has been used for tracking respiratory and tumour 

motion in PET images  pre-reconstruction [50–52]. Fiducial markers have been used with 

multiple imaging modalities (SPECT, MRI, CT, Ultrasound, X-Ray) for motion tracking [48, 

49, 73–77]. Most of these works deal with motion tracking of rigid motion using markers 

or tracking of lesions; thus the algorithms developed in this work can be adapted for 

these and other applications. The motion tracking algorithm is designed to track a 

consistent structure in an image volume sequence not necessary just a spherical fiducial 

marker in a dynamic PET image. The algorithm can also easily be modified to track 

motion in a sequence of 2D images. While, dynamic imaging is only a small fraction of 

imaging done in nuclear medicine it is seeing growth in MRI.  

6.4.1 Motion in Static Images 

The use of a fiducial marker and intra-frame motion detection algorithm could be 

applied to static MPI images which are acquired over extended time intervals (e.g. 2-8 

minutes in PET) and are also susceptible to motion blur artifacts. MPI is much more 

commonly performed than MBF at the moment and therefore the addition of motion 

QC could benefit a much larger cohort of patient exams. 
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6.4.2 Multiple marker tracking 

In this work we evaluated the use of a single fiducial marker for detecting the presence 

of motion. Future work could consist of tracking multiple markers to fully characterize 

motion and therefore drive patient motion correction. Furthermore, it is possible that 

multiple marker tracking could improve the accuracy (sensitivity and specificity) of 

motion detection over the use of a single marker. 

6.4.3 Motion Correction  

While this work evaluated the use of motion detection for quality control, it did not 

address motion correction. As previously stated, tracking a single fiducial marker does 

not provide sufficient information for robust motion correction; however with the use 

of multiple markers this may be possible. The use of image decomposition for motion 

correction was also not addressed in this work. Motion correction after image 

reconstruction can effectively reduce MBF error, but may not completely eliminate 

errors due to uncorrected attenuation mis-registration [47]. Nevertheless, the methods 

described in this work may be suitable for driving motion correction and therefore may 

be of interest for future work.  

6.5 Conclusion 

This thesis discusses two potential solutions for automatic motion detection in dynamic 

PET images. It was concluded that fiducial markers have adequate sensitivity and 

specificity as predictors of presence of heart motion in dynamic image acquisition. Inter- 

and intra-frame fiducial marker motion can accurately be detected automatically. This 
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method of heart motion detection should be incorporated into routine clinical use. The 

final study evaluated the merit of using image decomposition to detect heart motion 

based on the resulting residue patterns. This method showed promise in detecting cases 

with motion in noise-free, noisy and clinical patient images especially in early and late 

time frames but more work is required to determine if it can be useful for routine 

clinical use. 
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Dynamic PET is being increasingly utilized to quantify myocardial blood flow, leading to improved diagnostic and prognostic value for the management of coronary artery disease. MBF quantification assumes constant positioning of anatomical structures throughout image acquisition. This assumption is violated in the presence of patient motion and heart motion. This thesis discusses methods for motion detection in dynamic cardiac 82Rb PET images. 

First, we determined if positron-emitting fiducial markers can be used as surrogate markers for heart motion in dynamic PET images. Second, algorithms were developed to track fiducial marker motion. Lastly, we tested the idea that principle component analysis may be able to detect heart motion in dynamic 82Rb PET based on patterns in the residue image.

Overall, this thesis proposes low-cost, fast, and vendor independent post-reconstruction dynamic 82Rb PET motion detection methods which can be used to detect motion in a clinical environment as a quality assurance tool. 



[bookmark: _Toc441706036]Acknowledgements

I would like to thank:

Dr. Ran Klein for giving me this amazing opportunity. This work would not be possible without your help. I express my appreciation for your support, guidance and encouragement over the past few years.

Dr. Andy Adler for his continued belief in our research and constant feedback.

Dr. Robert deKemp for the useful comments, remarks and engagement throughout the learning process of this thesis.

Chad Hunter for all the support he provided in generating simulation data for this research.

Hanif, Adrian, and all my colleagues at the University of Ottawa Heart Institute and the Ottawa Hospital who have played important roles in the completion of this work.

My lovely sisters, Jaline, Jeavana, Jeyasri, and Ashvinie for always believing in me throughout all my endeavours. 

My friends, Atif, Baqar, Hassan, Kimo, LV, Mazen, Rohan, Saffatt, Sannan, Shady, Taz, and Zee, for your continued support and advice over the years

My parents for constantly pushing me to achieve bigger and better things and for supporting me throughout this entire process. I dedicate this thesis to the both of you.  











[bookmark: _Toc441706037]Content

Abstract	ii

Acknowledgements	iii

Content	iv

List of Tables	ix

List of Figures	xi

List of Abbreviations	xv

1	Introduction	1

1.1	Objective	2

1.2	Thesis Summary	2

1.3	Contributions	5

2	Technical Background	6

2.1	Myocardial Perfusion and Coronary Artery Disease	6

2.2	Positron emission tomography	7

2.3	Myocardial perfusion Imaging	10

2.4	MPI interpretation	12

2.5	Myocardial perfusion blood flow quantification	16

2.6	Motion Artifacts	22

2.6.1	Cardiac Motion	23

2.6.2	Respiratory Motion	24

2.6.3	Heart Organ Motion	25

2.6.4	Patient Motion	26

2.7	Summary	26

3	Agreement between cardiac and fiducial marker motion during dynamic cardiac PET imaging	28

3.1	Introduction	28

3.2	Background	28

3.2.1	Fiducial Marker	28

3.3	Methods	32

3.3.1	Patient Cohort	32

3.3.2	Visual Image Analysis	35

3.4	Results	36

3.5	Discussion	37

3.5.1	Motion timing	38

3.5.2	Multiple fiducial markers	39

3.5.3	Limitations	39

3.6	Conclusion	40

4	Automatic Detection of Patient Motion Using Fiducial Markers in Dynamic Cardiac PET Images	41

4.1	Introduction	41

4.2	Background	41

4.3	Method	42

4.3.1	Inter-frame Motion Simulations	43

4.3.2	Patient Cohort	46

4.3.3	Visual Image Analysis	46

4.3.4	Automatic Fiducial Marker Motion Detection	46

4.3.4.1	Image Conditioning	47

4.3.4.2	Marker localization	49

4.3.4.3	Inter-frame Motion Detection	51

4.3.4.3	Intra-frame Algorithm	54

4.3.5	Statistical Analysis	57

4.3.6	COM Weighting Optimization	57

4.4	Results	57

4.4.1	Patient Data	57

4.4.2	COM Weighting Optimization	58

4.4.3	Inter-frame Motion	59

4.4.3.1	Simulation data – motion magnitude precision	59

4.4.3.2	Patient data	60

4.4.4	Intra-frame Motion	62

4.5	Discussion	64

4.5.1	Clinical Feasibility	65

4.5.2	Other applications	66

4.5.3	Limitations and Future Work	67

4.6	Conclusion	68

5	Image Decomposition Based Heart Motion Detection	69

5.1	Background	69

5.1.1	Matrix Decomposition – Dynamic Image Decomposition	69

5.1.2	Principle Component Analysis (PCA)	72

5.1.3	Number of Components	73

5.2	Objective	76

5.3	Methods	76

5.3.1	Noise-free Simulation	76

5.3.2	Noisy Simulation	77

5.3.3	Patient Data	79

5.3.4	Image analysis	80

5.3.5	Automatic Motion Detection Using Quantification of Residue Signal	80

5.4	Results	83

5.4.1	Noise-free Simulation	83

5.4.2	Noisy Simulation	86

5.4.3	Patient data	88

5.5	Discussion	89

5.5.1	Number of events	90

5.5.2	Event timing	91

5.5.3	Number of Components	91

5.5.4	Metrics of Motion	93

5.5.5	Limitations and Future Work	93

5.6	Conclusion	94

6	Summary	95

6.1	Contributions	95

6.2	Limitations	100

6.2.1	Visual Assessment of Motion	100

6.2.2	Simulation Data	100

6.3	Clinical Feasibility	102

6.4	Other Applications	103

6.4.1	Motion in Static Images	103

6.4.2	Multiple marker tracking	104

6.4.3	Motion Correction	104

6.5	Conclusion	104

7	Reference	106

[bookmark: _Toc441706038][bookmark: _Ref427189898]List of Tables

Table 2.1 - PET Perfusion Tracers	11

Table 3.1 - Time frame numbers and the corresponding time frame start time and length time.	34

Table 3.2 - Patient information for patient cohort used	35

Table 3.3 - Presence of Patient and Heart motion in Patient Dynamic PET images (n=130). Significant motion was defined as ≥2 pixels.	37

Table 3.4 - Agreement between motion time frame and primary direction in cases with both patient and heart motion (n=24)	37

Table 4.1 - Performance of inter-frame motion detection algorithm (n=1820 frame pairs from 130 images)	61

Table 4.2 - Performance of intra-frame motion detection algorithm (n=1950 frames in 130 images)	63

Table 5.1 - Detected inter-frame motion events in 1 cm noise-free simulated motion events. The bolded values account for perfect agreement between residue analysis and visual assessment. The highlighted area accounts for ±2 time frames.  N=54. Note: Frame 2 and 3 had no motion so are not shown and inter-frame motion cannot occur in time frame 1.	85

Table 5.2 - Detected inter-frame motion events in 2 cm noise-free simulated motion events. The bolded values account for perfect agreement between residue analysis and visual assessment. The highlighted area accounts for ±2 time frames.  N=54	85

Table 5.3 - Detected inter-frame motion events in 1 cm noisy simulated motion events. The bolded values account for perfect agreement between residue analysis and visual assessment. The highlighted area accounts for ±2 time frames.  N=54	88

Table 5.4 - Detected inter-frame motion events in 2 cm noisy simulated motion events. The bolded values account for perfect agreement between residue analysis and visual assessment. The highlighted area accounts for ±2 time frames.  N=54	88

Table 5.5 - Automatic temporal localization of inter-frame motion events vs visual assessment. The bolded values account for perfect agreement between residue analysis and visual assessment. The highlighted area accounts for ±2 time frames.    N=130. Note: inter-frame motion cannot occur in time frame 1	89

[bookmark: _Toc441706039]List of Figures

Figure 2.1 - Example diagram showing a polar-map of percent uptake from RCA, LCx, and RCA which perfuse to the LV myocardium	7

Figure 2.2 - Example rest and stress cardiac PET uptake images shown in SA, HLA, VLA planes. Red areas are high in activity while blue regions have lower activity.	14

Figure 2.3 - Example of polar-map. There is uptake deficiency in the stress polar-map shown by the blue region which normalizes at rest. The bottom three polar-maps represent the sum-stress, sum-rest, and sum-difference scores with a large region of reversible ischemia in the septal and apical territories of the LV. This pattern is consistent with partial obstruction of the left-anterior-descending coronary artery	15

Figure 2.4 – Time-Activity concentration curves (TACs) (bottom) sampled from myocardium and blood region of interest (tan and green respectively) over a dynamic cardiac 82Rb PET image sequence. Representative time frame images are shown on top with each time frame image normalized individually.	18

Figure 2.5 - 82Rb PET one compartmental model used for MBF quantification. Uptake and washout rates of tracers exchange between arterial blood and myocardial tissue are defined by constants K1 [mL/min/g] and k2 [min-1].	20

Figure 3.1 - Example of fiducial marker in a PET image frame. The intensity of the pixels decreases moving radially outward from the center of the marker due to limited spatial resolution of PET images.	30

Figure 3.2 - Top: Fiducial marker motion between two frames and resulting distortion of time-activity curve between 5-6 mins. Bottom: Heart organ motion in the same direction and time as the fiducial marker motion. The cross-hair was not moved between frames in both images.	31

Figure 3.3 - Computed Tomography slice of patient in the transverse plane. The fiducial marker can be seen on the outside of the patient's chest. A saline bag was placed over the marker to avoid interference with the scatter correction algorithm. The marker was placed away from the heart to avoid interference with clinical interpretation.	33

Figure 3.4 - Clinical rest-stress 82Rb PET/CT protocol used for methods	35

Figure 4.1 - Workflow for design, implementation, testing and analysis of the inter-frame motion detection algorithm	42

Figure 4.2 - Workflow for design, implementation, testing and analysis of the intra-frame motion detection algorithm	43

Figure 4.3 – Noise-free simulation model. The left image shows the transverse slice which contains the fiducial marker. The right image shows the transverse slice which contains the myocardium in the same time frame. The red areas are high activity regions and the blue areas are low-activity regions	44

Figure 4.4 - Fiducial marker contains most intense pixels in time frame 15. Therefore localization of marker occurs in this last time frame.	47

Figure 4.5 - Global (left) and local ROI (9×9 pixels) around the fiducial marker demonstrating background activity spilling in from the patient. This marker is taken from time frame 14 of an image with motion present. Spill-in activity from the patient is also evident.	48

Figure 4.6 - 3D mesh-plot representing the pixel intensities of a fiducial marker in a 9x9 pixel volume in the transverse plane with spill-in activity from the patient (left corner).	48

Figure 4.7 - 3D plot representing the pixel intensities of a fiducial marker in a 9x9x9 pixel volume in the transverse plane. Fiducial marker pixels are more prominent with background activity set to 0.	49

Figure 4.8 - 3D plot representing the pixel intensities of a fiducial marker in a 9x9 pixel volume in the transverse plane. Fiducial marker pixels have larger pixel intensities after being amplified by a power of n=9.	51

Figure 4.9 - Example of inter-frame algorithm. The top two images show two successive time frames and their corresponding center of masses (COM). The bottom image is of the two top images superimposed with the distance (D) between both COM	52

Figure 4.10 - Example of inter-frame motion report. A 10 mm change in COM is indicated between frame 10 and frame 11. The display notation is such that the first time frame is the reference (motion free).	53

Figure 4.11 – A function fitted to activity fall-off profile to estimate marker blur resulting from motion	55

Figure 4.12 - Example of Intra-frame motion. The left hand image shows no motion with a lower x1/2 threshold and profile. The right hand image shows an example of intra-frame motion with a higher x1/2 threshold and its profile	56

Figure 4.13 - Inter-frame motion detection accuracy, sensitivity and specificity for varying p power values.	58

Figure 4.14 - Intra-frame motion detection accuracy, sensitivity and specificity for varying p power values.	59

Figure 4.15 - Box plot showing error in algorithm reported inter-frame motion in simulated images with 0 and 9.3750 mm simulated motion (n=716 and 54 respectively). The maximum motion error was less than 5% pixel size (3.125 mm).	60

Figure 4.16 - ROC analysis for inter-frame algorithm. The blue circle represents an optimal threshold at D=2.7 mm.	61

Figure 4.17 - ROC analysis for intra-frame algorithm. The blue circle represents a threshold at x1/2= 4.4 mm.	62

Figure 4.18 - Boxplot describing x1/2 values which represent motion and no motion cases. x1/2 = 4.4 mm threshold is represented by the black line separating the two motion cases	63

Figure 5.1 - Image decomposition diagram: Summed products of spatial structures and temporal factors (top left) produce an estimated reconstructed image sequence which combined with the residue image sequence represents the original raw dynamic image sequence (bottom). Image decomposition methods simultaneously determine the structures and factors from the raw image sequence. The residue was analyzed for patterns indicating undesired subject motion during image acquisition.	71

Figure 5.2: Method for selecting the number of components to resolve based on total cumulative variance (Eigenvalues) as determined by PCA. The user selects a desired total variance (range: 0-100%) and the closest number of components to achieve this threshold is used.	74

Figure 5.3 - An example of PCA image decomposition using 2 factors in a simulated dynamic image sequence with motion (left). The blood and myocardium wall patterns can be seen in the two components. A myocardium structure can also be seen at in the last two time frames of the residue image which corresponds to simulated motion. Note the separate color scale on the residue image.	75

Figure 5.4 - The transverse image shows an NCAT noise-free simulation. The image on the left (frame 13) is without motion and the image on the right (frame 14) is shifted by 2 cm in the +y direction (at 240 s). The myocardium can be seen in red. The crosshairs are fixed between time frames.	77

Figure 5.5 - The transverse image shows an NCAT noisy simulation. The image on the left is with no motion and the image on the right is shifted by 2 cm in the +y direction (at 240 s). The myocardium is shown in red. The crosshairs were not shifted between frames.	78

Figure 5.6 - RMS of activity in each of the 15 time frames of noise-free simulation images. Top: Motion was introduced between time frame 3-4 in the +x direction with a magnitude of 2 cm. Middle: Motion was introduced between time frame 10-11 in the +x direction with a magnitude of 2 cm. Bottom: Motion was introduced between time frame 14-15 in the +x direction with a magnitude of 2 cm. The red circle represents the maximum RMS value	82

Figure 5.7 – Residue  of noise-free NCAT phantoms with simulated motion (+2cm X direction) at 30s, 60s, 80s, 90s, 120s, 150s, 180s, 240s and 360s represented by the dashed line each in residue. Blood pool (early time frames) and the myocardium (later time frames) is present before or after motion is introduced. Each image is individually scaled between minimum and maximum intensity pixels.	84

Figure 5.8 – Example Residue of noisy NCAT phantoms with simulated motion at 30, 60, 80, 90, 120, 150, 180, 240 and 360 s represented by the dashed line in each residue. Blood pool (early time frames) and the myocardium (later time frames) like patterns are present before or after the motion event.	87

Figure 5.9 - Residue of PCA decomposition using 2, 3, 4 and 5 factors. The noise-free simulation consisted of 2 cm motion introduced at 240 s (dashed lined)(between time frame 13-14) in the +x direction	92






[bookmark: _Toc441706040]List of Abbreviations

22Na		Sodium-22

2D 		Two dimensional

3D 		Three dimensional

82Rb		Rubidium-82

CAD		Coronary artery disease

COM		Center of mass

CT 		Computed tomography

FDG		18F-flurodeoxyglucose

FOV 		Field of view

HLA		Horizontal long axis 

LAD		Left anterior descending artery 

LCx		Left circumflex artery

LV		Left ventricle

MBF		Myocardial blood flow

MPI		Myocardial perfusion imaging

MRI		Magnetic resonance imaging

NCAT		Nurbs-based Cardiac-Torso 

NURBS		Noise-free non-uniform rational b-spline

PCA		Principle component analysis

PET 		Positron emission tomography

QC		Quality control

RC		Tissue recovery coefficient 

RCA		Right coronary artery

ROC		Receiver Operating Characteristic

ROI		Region of interest

RV 		Right ventricle 

SA		Short axis 

SDS		Summed difference score

SNR		Signal-to-noise ratio

SPECT 		Single photon emission computed tomography

SRS		Summed rest score

SSS		Summed stress score

TAC		Time-activity curve

TBF		Total blood fraction

VLA		Vertical long axis 

VOI		Volume of interest 




22



[bookmark: _Toc441706041]Introduction

Coronary artery disease (CAD) is a leading cause of death in the western and developing world. This disease develops when the major arteries supplying blood to the heart muscle (myocardium) become damaged or diseased which can ultimately lead to myocardial infarction. Myocardial perfusion imaging (MPI) is used clinically to identify patients suffering of CAD and to guide therapy. However, MPI may miss uniform reduction in blood flow due to balanced disease in multiple coronary arteries and diffused disease of the micro vascular bed. Quantitative myocardial blood flow measurements (MBF) can overcome this limitation by improving the sensitivity of the test. The gold standard non-invasive modality for MBF quantification is positron emission tomography (PET). A PET camera is designed to detect photons associated with positron-emitting isotopes injected into the patient in trace molecular quantities (tracer). Thus, PET images correspond to the distribution of the tracer and therefore map the physiologic function of the body (i.e. MBF) with regard to the tracer molecule. MBF PET requires dynamic imaging as the tracer distributes through the body and is therefore susceptible to patient motion during image acquisition. Motion detection can be used to increase the confidence of MBF measurements in clinical use (quality control) and to flag cases where MBF may not be accurate due to the presence of motion.

One approach is to detect motion pre-reconstruction which requires the use of expensive external motion tracking equipment such as cameras and sensors to be incorporated in the clinical setting which can require changes to the imaging protocol and calibration [1,2]. While these systems can provide real-time measures, unique processing steps are required for integration with the PET data during image reconstruction which are specific to the camera vendor. A need remains for development of powerful post-reconstruction methods of motion detection which are less expensive, simple to integrate in clinical routine, and are vendor independent. 

In this work, two post-reconstruction motion detection methods are proposed and their accuracy for flagging the presence of motion is evaluated. The first uses low-cost fiducial markers that is visible in the reconstructed image sequence and serves as a proxy for patient motion. The marker can be automatically tracked with high accuracy within the reconstructed dynamic image sequence. The second method uses principle component analysis to decompose the dynamic PET image sequence and the residue image can be visually or mathematically analyzed for evidence of heart motion. 

[bookmark: _Toc437552768][bookmark: _Toc441706042]Objective

The objective of this work is to develop a reliable post-reconstruction method for detecting the presence of undesired patient and heart motion in dynamic cardiac PET images for the purpose of quality control. 

[bookmark: _Toc437552769][bookmark: _Toc441706043]Thesis Summary

The background chapter gives an overview of the knowledge required to evaluate and meet the objective of this work. This chapter begins with an overview of myocardial perfusion and CAD and then describes how it can be visualized with PET. The chapter then discusses MPI and MBF quantification and how it is used in a clinical environment. Lastly, the background covers the various types of motion that could potentially be presented in PET images with an emphasis on heart organ and patient motions.

Chapter four evaluates whether there is a correlation between patient and heart organ motions during dynamic cardiac PET imaging. Patients undergoing dynamic cardiac Rubidium-82 PET imaging had a radioactive fiducial marker affixed to their chest during PET imaging. The dynamic image sequences were visually inspected, frame by frame, for both patient and heart motion using tailor made visualization software. Patient motion was deemed if the fiducial marker was observed to move in the dynamic image sequence. Time frame and motion-direction were recorded and analyzed for prevalence and concordance between patient and heart motion. While disagreement between the time frames and direction in which both fiducial marker and heart motion occurred was noted, it was concluded that fiducial markers have adequate sensitivity (89%) and specificity (87%) as predictors of presence of heart motion in dynamic image acquisition.

Chapter five describes automatic algorithms for detecting fiducial marker motion in dynamic cardiac PET images. Two post-reconstruction algorithms were developed to detect inter- and intra-frame fiducial marker motion respectively. Inter-frame motion was defined as motion between two successive frames and intra-frame motion as motion within a single frame, which is manifested as a directional blur of the marker. The fiducial marker was first detected within the image and then accurately located by using center of mass (COM) calculations. The inter-frame algorithm calculates the difference in COM between successive frames for each of the time frames, and compared against a pre-determined threshold to determine the presence of inter-frame motion. The intra-frame motion algorithm constructed profiles of activity fall-off with radial distance from the COM for each time frame in the dynamic image sequence. A modified-Gaussian curve was fit to each profile and a broadness parameter, B, was compared to a threshold value to determine presence of patient motion. The inter- and intra-frame algorithms using thresholds derived in this work had an accuracy of 91% and 87% respectively compared to visual assessment as a reference standard - adequate performance for automated motion detection for quality assurance. 

In Chapter six we sought to evaluate an alternative and completely novel method to detect heart motion directly from the patient data, without the need for fiducial markers. Image decomposition was performed using principle component analysis (PCA) and the residue image (signal not described by the principle components) was visually and analytically interpreted for patterns indicating the presence of motion. Noise-free dynamic cardiac PET images were simulated with motion in various time frames and directions. The simulated images were decomposed and the residue images were visually evaluated for motion frames where potential motion was present. 

The final chapter discusses the implications of this work to this and other related applications. It describes future direction including applications. We conclude that automated fiducial motion tracking is feasible for flagging the presence of motion. While a single fiducial marker is not suitable for characterizing motion and driving motion correction.
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[bookmark: _Toc437552772][bookmark: _Toc441706046]Myocardial Perfusion and Coronary Artery Disease 

The heart is a vital organ pumping blood to the lungs and body. This work requires continued supply of nutrients, energy, and oxygen via the blood through a network of arteries. The largest of these arteries are the coronary arteries which originate at the aortic root and bifurcate into smaller and smaller vessels, ending in the capillary bed. The myocardium (heart muscle) contains cardiomyocytes which contract the heart. The myocardium is thickest (~1 cm) in the left ventricle (LV) due to the LV having to pump blood into the aorta and through the body requiring a large amount of pressure. Consequently even with limited image spatial resolutions, the LV is a thick enough target for non-invasive nuclear imaging modalities. The right ventricle (~5 mm) and atrial walls (~2 mm) are more difficult to image, but are also being increasingly images as the spatial resolution of improves. Figure 2.1 illustrates the most common anatomy of the main coronary arteries (Left anterior descending artery [LAD], Left circumflex artery [LCx], Right coronary artery [RCA]) which perfuse the LV. The polar-map at the center of Figure 1 shows the percentage of tracer uptake in the LV. The blue region represents regions of low tracer uptake and therefore low blood uptake while the red regions represent regions of high tracer uptake associated with normal regional blood supply. 
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Coronary artery disease (CAD) develops gradually, leading to narrowing of the main coronary arteries which eventually limit the supply of blood to the myocardium and therefore limit tracer uptake by the myocardium. CAD is one of the leading causes of mortality and morbidity in western society and is increasing in prevalence in developing societies [3]. With proper diagnosis and intervention however, quality of life and survival can be increased significantly. Positron emission tomography (PET) is a sensitive and specific imaging modality for determining severity and extent of CAD in patient clinical setting [4].

[bookmark: _Toc437552773][bookmark: _Toc441706047]Positron emission tomography

Positron emission tomography (PET) imaging has emerged as a superior alternative for myocardial perfusion imaging (MPI) compared to SPECT. It’s superiority to SPECT was recognized due to technological advancements that result in more accurate molecular imaging and quantification [5]. A PET camera uses detectors all around the patient in a ring formation and does not require the use of physical collimators, as in SPECT, allowing for higher sensitivity of the camera to detected emitted radiation [5]. Therefore PET can detect a larger number of emitted photons which results in improved image quality including higher signal-to-noise ratio (SNR), superior spatial resolution and shorter scan times [5]. 

PET using 18F-flurodeoxyglucose (FDG) has been widely adopted as the gold standard for sensitive and specific detection and staging of cancer, and  for assessing response to therapy [6] and has been the dominant clinical application of PET. Cardiac PET has been growing dramatically in recent years mostly using 82Rb, which has excellent imaging properties and can be cost effective in high patient volume clinics. 82Rb PET has a higher sensitivity and specificity in the detection of obstructive CAD compared to SPECT [7]. A recent meta-analysis study showed that 82Rb PET and SPECT had a sensitivities of 88% and 85% and specificities of 90% and 85% respectively [8]. This is due to PET images having a higher spatial resolution, reduced image noise, accurate attenuation correction, and higher tracer extraction by the myocardium [9].

A PET camera is designed to detect photons which are produced from positron-emitting isotopes injected into the patient. Thus PET images correspond to the distribution of the tracer and are associated with the physiologic function of the body with regard to the tracer molecule, as opposed to anatomy, as with x-ray, ultrasound and magnetic resonance imaging. Current industry limitations to widespread adoption of PET is the high cost of the camera compared to SPECT and the potential need for an on-site cyclotron depending on what isotope is required for imaging [10].

A positron-emitting radioactive tracer is administered into the body and distributes based on physiologic functions. As the radioisotope label decays a positron is emitted which slows and annihilates with a nearby electron, producing two coincident 511 keV gamma rays (photons) travelling in opposite directions (collinear). The PET camera is composed of detectors designed to absorb and detect these photons. Each of the detectors is linked so when two coincident photons hit the detectors within a restricted time window it is registered as a coincident event. Since both coincident photons move in opposite directions the coincident event is assumed to have occurred along the line of response (LOR) between the detector pair. Using complex image reconstruction algorithms (e.g. filtered back projection or iterative optimization) PET can create tomographic images by determining where the coincident events were most likely to originate along the LORs. The final image is a volume consisting of many slices through of the field of view (FOV) of the camera. The amount of radiation emitted from a finite volume is proportionate to the tracer concentration.

An advantage of PET is its accurate attenuation correction [7] along with ability to correct for other physical phenomenons (e.g. random and scatter events) prior-to or as part of image reconstruction to achieve quantitatively accurate images of tracer distribution. Due to the uniquely high sensitivity of PET, a trace (on the scale of nano- to femto-moles) amount of this radioactive compound is required, which does not invoke a physiologic response – hence the name tracer.

[bookmark: _Toc437552774][bookmark: _Toc441706048]Myocardial perfusion Imaging

Myocardial perfusion imaging (MPI) typically consists of imaging both at states of cardiac rest and stress in order to assess the ability to increase perfusion to meet increased oxygen demands with exercise. Cardiac stressing is typically performed either through physical exercise or through the use of pharmacological drugs such as adenosine, dipyridamole, and dobutamine [9, 11, 12]. The rest and stress images are interpreted together. In each image, the region of highest activity is assumed to be normally perfused and all other regions are compared to it. Regions with reduced tracer uptake (defects) are deemed to have reduced perfusion compared to the reference region. If regions at both stress and rest have reduced uptake then the region is considered to be scarred. A region with reduced uptake at stress but normal uptake at rest is considered to be ischemic [10]. 

There are a wide variety of tracers which can be used to probe different biochemical processes in the body ranging from myocardial perfusion, cell signaling, lesion tracking and metabolic processes making PET a valuable imaging modality in various fields. MPI tracers are designed to have good binding affinity to the myocardium where it is taken up by the tissue in relation to the rate of blood flow perfusing the tissue and is retained in the tissue, making it a good perfusion tracer [10]. 

An important property of any tracer is its rate of radioactive decay. The half-life of a radioactive compound is defined by the time it takes for half of the original activity to decay. Short lived tracers have the benefits of reducing potentially harmful radiation exposure to the patient and allows for quick successive testing such as for imaging at states of cardiac rest and stress. However, when using short lived tracers (e.g. 82Rb) patients may need to be stressed pharmacologically as opposed to physical exercise. Table 2.1 shows the production methods of commonly used PET MPI tracers and their half-life. 

[bookmark: _Ref427189976][bookmark: _Toc441706131]Table 2.1 - PET Perfusion Tracers

		Isotope

		Half-Life (T1/2) [min]

		Production

		MPI Tracer



		82Rb

		1.3

		Generator

		82Rb-chloride



		13N

		10.0

		Cyclotron

		13N-ammonia



		18F

		110

		Cyclotron

		18F-Flurpiridaz



		11C

		20.4

		Cyclotron

		11C-acetate



		15O

		2.0

		Cyclotron

		15O-water





 

Most biological compound can be labelled with 11C and 15O for PET imaging and thus seem as attractive labelling isotopes. However, as with most tracers that are cyclotron produced they can be expensive to produce and require coordination between the imaging staff and the cyclotron lab due to their short radioactive half-lives. 18F has a half-life of 2 hours and is thus the exception to the rule. Currently there are no approved 18F based MPI tracers, but Flurpiridaz is in phase-3 of clinical trials [13] 13N-ammonia is the most commonly used cyclotron produced MPI tracer and has excellent imaging properties, with the exception of high liver and lung uptake, which can interfere with interpretation of cardiac regions [14]. 13N-ammonia has a 10 minute half-life and therefore also requires and on-site cyclotron.

82Rb is a short lived (76s half-life) generator produced isotope that does not require an on-site cyclotron. A 82Sr/82Rb generator lasts 4-8 weeks and can be used as an on-site 82Rb source every 10 minutes allowing for a high patient throughput [15]. 82Rb is an analog of potassium which is required for muscle contractions. Specifically the Na+/K+ ATPase actively pumps in 82Rb into the myocardial tissue [10]. 82Rb uptake is thus dependent on the rate of blood flow to the myocardium. 

For MPI, image acquisition occurs ~2 minutes post-injection of the tracer allowing the tracer sufficient time for distribution, uptake and retention in the myocardium. Image acquisition lasts for several minutes in order to detect enough coincidence events to reconstruct a low-noise image. 

[bookmark: _Toc437552775][bookmark: _Toc441706049]MPI interpretation

Volume images of the myocardium, by convention, are reoriented to a fixed reference frame of the left ventricle myocardium. Series of slices in three orthogonal planes are displayed for interpretation. The short axis (SA), vertical long axis (VLA) and horizontal long axis (HLA) are demonstrated in Figure 2.2. MBF can be sampled using specialized software and displayed in a polar-map format as demonstrated in Figure 2.3 with the apex at the center and the base radially outward, with the septal wall to the left and the inferior wall at the bottom of the polar-map [16].



[bookmark: _Ref440063908][bookmark: _Toc441706144]Figure 2.2 - Example rest and stress cardiac PET uptake images shown in SA, HLA, VLA planes. Red areas are high in activity while blue regions have lower activity.



[bookmark: _Ref440063845][bookmark: _Toc441706145]Figure 2.3 - Example of polar-map. There is uptake deficiency in the stress polar-map shown by the blue region which normalizes at rest. The bottom three polar-maps represent the sum-stress, sum-rest, and sum-difference scores with a large region of reversible ischemia in the septal and apical territories of the LV. This pattern is consistent with partial obstruction of the left-anterior-descending coronary artery



LV polar-maps are segmented into regions which are scored depending on their relative tracer uptake generating a semi-quantitative score to represent severity of the uptake defect. A 17-segment model is generally used which uses a scoring scale of 0 to 4 (normal perfusion, mild reduction, moderate reduction, severe reduction, and absence of tracer) [17]. The scores of each segment are summed for rest and stress polar-maps producing global metrics of summed-rest-score (SRS) and summed-stressed-score (SSS). These two metrics are used to determine the severity and extent of the defect. A global indicator of reversible ischemia is the summed score differences between rest and stress, known as the summed-difference-score (SDS). In clinical use, a SSS>3 signifies the presence of disease while a SRS>3 and SDS>1 signifies scarred tissue. The 17-segment polar-maps corresponding to these parameters can be seen in Figure 2.3.

The main limitation to this scoring system is that the assumption that the segment with maximum uptake is normally perfused. If a patient has a uniform decrease in perfusion due to disease in multiple coronary vessels then relative uptake image interpretation is likely to under-estimate disease. The polar-map segments are also visually interpreted leading to increased variability in interpretations [18]. Lastly, minimal perfusion deficits can be difficult to detect when using 82Rb due to this tracers non-linear extraction characteristics. These limitations can be overcome using absolute myocardial blood flow quantification [19].

[bookmark: _Toc437552776][bookmark: _Toc441706050]Myocardial perfusion blood flow quantification

Absolute myocardial blood flow (MBF) quantifies the flow of blood in units of mL/min/ g (read as millilitres per minute per gram of tissue). MBF quantification requires dynamic imaging of the tracer as it is injected to the blood stream and distributes to the perfused tissues over several minutes. The ratio between MBF at stress and rest is referred to as myocardial flow reserve (MFR) [20] and has been shown to have better prognostic value than MPI when dealing with patients with suspected cases of CAD [15, 21]. 

While improved diagnostics and patient management has yet to be demonstrated with MBF, it has shown promise in the detection of CAD and can add value to the risk assessment and diagnosis of patients [22]. Patients with MFR less than a ratio of 2 are linked with CAD and a MFR ratio higher than 2 are linked with patients with normal myocardial perfusion  [22, 23], Young healthy individuals are expected to have MFR in the range of 3 to 5. These MFR ratio values correspond to normal rest MBF values on the order of 0.7 mL/min/g and stress MBF values >2 mL/min/g, but some variation in thresholds exists in the literature [20, 24, 25].

MBF quantification has been performed with most MPI tracers, but is most common in 82Rb PET due to convenience of use. Using a single list-mode acquisition, dynamic image sequences for MBF quantification can be obtained from the same injection used for traditional MPI therefore requiring no additional time or costs over regular 82Rb MPI.

Dynamic cardiac PET images can image the distribution of tracer from the blood stream into the perfused tissue. Sampling of regions of interest (ROIs) over the dynamic sequence produces time-activity curves (TACs) of the changes in tracer concentration in the anatomical region being sampled. MBF is quantified by analysing the relationship between arterial blood and myocardium TACs. A dynamic image takes images at pre-set time points (e.g. 9x10 s, 3x30 s, 1x60 s, 2x120 s) as the tracer distributes through the body. Figure 2.4 shows a TAC and the region of activity being sampled. It shows the left ventricle and myocardium continuously being sampled as activity moves from the right ventricle, left ventricle, then during myocardial uptake. 
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[bookmark: _Ref427189827][bookmark: _Toc428399718][bookmark: _Toc437555930][bookmark: _Toc441706146]Figure 2.4 – Time-Activity concentration curves (TACs) (bottom) sampled from myocardium and blood region of interest (tan and green respectively) over a dynamic cardiac 82Rb PET image sequence. Representative time frame images are shown on top with each time frame image normalized individually.

To quantify MBF, a compartment model is used to describe the kinetic properties of rubidium uptake by the myocardial tissue [21]. A two-tissue-compartment model describes tracer extraction from the blood to the interstitial space (first compartment) and then into the cellular space (second compartment) in series. Using a two-tissue-compartment model (with three rate constants) is acceptable when trying to estimate MBF under noise free condition but when using more realistic noise levels, the model is not reliable [21]. Thus a one-tissue-compartment model (two rate constants) (Figure 2.5) is more commonly used with the added benefit of improved processing time [20, 26]. In general, model selection depends on the biochemical properties of the tissue being imaged with regards to the tracer, the image quality, the duration of imaging, and other factors. 

The two rate constants in the one-tissue-compartment model are K1 and k2 (Figure 2.5). K1 is measured in mL/min/g and is the uptake rate from the arterial blood to the myocardial tissue. Conversely, k2 is the washout rate from the myocardial tissue of the arterial blood in the units of min-1. The one-tissue-compartment model parameters are fitted to reduce errors between the model and measured TACs. The rate of change of rubidium concentrations in the tissue ROI can be expressed by a simple equation (2-1) where Ct(t) [Bq/mL] represents the tracers concentration in the myocardial tissue and Ca(t) [Bq/mL] represents the concentration of tracer in the arterial blood (which perfuses the tissue) with respect to time (t).  represents the density of myocardial tissue.  
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[bookmark: _Ref427189805][bookmark: _Toc428399719][bookmark: _Toc437555931][bookmark: _Toc441706147]Figure 2.5 - 82Rb PET one compartmental model used for MBF quantification. Uptake and washout rates of tracers exchange between arterial blood and myocardial tissue are defined by constants K1 [mL/min/g] and k2 [min-1].
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This equation can also be expressed as a convolution kernel (m(t)) (equation 2-3):
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In practice, the myocardial ROI encompasses both myocardial tissue and the arterial structures perfusing the tissue with blood as illustrated in Figure 2.5. PET images have a limited resolution therefore blood signal from outside the myocardial region may also spillover into the myocardium ROI which increases the amount of blood detected in the ROI. This is in addition to 10-20% of actual blood volume perfusing the myocardium. Therefore the myocardial TAC, Cm(t), is often modelled as a linear combination of both tracer concentration in the myocardial tissue and arterial blood as shown in equation 2-4. Tissue recovery coefficient (RC) and total blood fraction (TBF) represent the fraction of ROI volume from the myocardial tissue signal and arterial blood respectively. The TBF accounts for the relative blood signal from both the arterial blood volume and spillover signal from the left ventricle (LV) cavity.
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Equations 2-2 and 2-3 can be substituted for Ct(t) in equation 2-4 to obtain:

                             2-5

From equation 2-5 it is clear that RC and K1 cannot be uniquely resolved without more information. Some studies have produced calibrated values for RC [4, 27]  while others automatically estimating RC [28, 29]. A more practical (and most commonly used) solution is to assume that the myocardial signal is composed entirely of myocardial tissue and blood signals and therefore RC can be replaced with 1-TBF [31] giving equation (2-6):

                      2-6

[bookmark: _GoBack]MBF is resolved from K1 by correcting for the rate of tracer extraction, which is pre-computed for a population. In theory the extraction function accounts for decreasing tracer extraction from the blood into the tissue due to reduced pressure and increased surface area with capillary recruitment in response to vasodilation with stress [31, 32]. Water diffuses freely without the use of active transport from blood into the tissue compartment and therefore K1 directly represents flow. Conversely, most other tracers such as 82Rb, 13NH3, 62Cu-PTSM, and 99mTc-sestamibi  are extracted from the blood to tissue using active transport and diffusion and therefore they have a lower extraction fraction at high flow rates  [20, 31, 32]. Extraction fractions may be represented using the Renkin-Crones capillary model [31, 32], and K1 is equal to the product between extraction fraction and MBF as shown in equation 2-7:

                                                      2-7

In practice the a and b extraction parameters can act as calibration factors compensating for biases associated with the scanning protocol, image reconstruction, ROI definition, tracer kinetic model and quantification processes. They can be determined experimentally [34] or through calibration to known reference standards in a specific populations [21].

[bookmark: _Toc437552777][bookmark: _Toc441706051]Motion Artifacts

Dynamic imaging implicitly assumes that an ROI corresponds to a specific anatomical location in the patient at all time frames. This assumption is violated by the presence of motion and may manifest itself as distorted TACs, but may also be inconspicuous. Various types of motions can exist, but for the purpose of this work we make the distinction between rigid and non-rigid motions. Rigid motion assumes that all the activity in the field of view moves together as a solid block without distorting the spatial relationship between any two points in the image. Non-rigid motion does not make this assumption and the image can warp, changing the distances and angles between points in the image. Motion in brain imaging  is considered rigid motion since the skull is rigid and firmly encapsulates the brain, while organ motion in the thorax may be non-ridged as the soft tissues can move in relation to one another [35]. Methods have been developed to correct for rigid  motion such as using event driven approaches and a multiple acquisition frame methods [36, 37]. It is more difficult to track non-rigid motion as the direction and magnitude of motion is less predictable from reference landmarks. Several types of non-rigid motions can exist in the context of cardiac imaging:

[bookmark: _Toc437552778][bookmark: _Toc441706052]Cardiac Motion

As part of the heart’s function of moving blood it contracts and expands every second or faster. Imaging with PET over several seconds to several minutes results in additional blurring of the heart in the image. ECG-gating of the image acquisition is performed as part of MPI protocol to visualize cardiac motion, adding additional diagnostic and prognostic information. Each coincidence event is binned to its corresponding, ECG derived, cardiac phase enabling image reconstruction of each cardiac phase separately, resulting in cardiac-motion-free images. Using list-mode data acquisition, ECG gating can be performed using the same MPI or MBF acquisitions. However, in the context of MPI interpretation and MBF quantification, the use cardiac gated images is not desirable as it leads to reduced count statistics and noisy images.

Cardiac motion and the associated motion blur results in increased partial volume loss in the myocardial ROIs, an effect that is compensated for through estimation of RC as part of MBF kinetic modeling. Pre-processing methods for non-rigid motion correction have been proposed. These include gated-PET acquisition during a scan which divides motion cycles into bins at the cost of higher noise level in the images due to a reduced photon count [36, 38]. A motion correction approach uses an expectation-maximization algorithm to simultaneously reconstruct the PET image frames while estimating (and correcting for) cardiac motion [39]. This approach is done during reconstruction - therefore it is vendor dependent, is complex requiring more computational power and time, and has not been demonstrated to be sufficiently robust for routine use.

[bookmark: _Toc437552779][bookmark: _Toc441706053]Respiratory Motion

Respiratory motion is caused by the natural breathing cycle of the patient, specifically the movement of the diaphragm during inhalation and exhalation of their breath [40]. When dealing with anatomical scanning modalities such as CT it may be practical for the patient to hold their breath as scan times are sufficiently short. When dealing with PET and SPECT where scan times are several minutes long it isn’t practical to have the patient hold their breath [41]. Thus respiratory motion can cause degradation of spatial resolution which is most noticeable in cameras with high spatial resolution [41, 42]. Respiratory motion can further cause mis-alignment of CT and PET datasets which can produce image artifacts when CT is used for attention correction (AC), which has been shown to occur in up to 40% of clinical cardiac PET/CT studies [6, 42]. A few methods have been proposed by Pourmoghaddas et al. which corrects the PET images using three different maps (respiratory–gated CT map, time- averaged attenuation map and an attenuation map which accounts for the maximum CT-number of every voxel divide by the max respiratory cycle)[42]. 

Organs proximal to the lungs and diaphragm, including the heart, are most prone to respiratory motion. Even normal breathing can move organs up to 5 mm in the anterior-posterior, 5 mm in the left-right and 20 mm in the superior-inferior directions [43]. Respiratory motion is also a major concern when imaging lung lesions using PET, which could potentially lead to missed finding and underestimation of standard uptake (SUV) or overestimation of the lesion volume [44]. 

[bookmark: _Toc437552780][bookmark: _Toc441706054]Heart Organ Motion

Organ motion refers to incremental (to cardiac, respiratory or patient) motion of individual organs in the thorax such as the liver, pancreas, kidney, and the heart due to anatomical function (e.g. gastro-intestinal) patient relaxation or soft tissue deformation during image acquisition. Organ motion can cause degradation in PET images especially when imaging lesions on these organs. A lesion appears as a blur on the constructed PET image resulting in a decrease in image contrast. This can lead to an underestimation of the lesion uptake or and overestimation of the lesion volume [45, 46].

In the context of cardiac imaging, we are concerned with “cardiac creep” – a mid-scan motion of the heart within the thorax as the organs gradually reposition within the thorax. This motion is associated with patient relaxation during the procedure as well as organ shifting and deformation under the force of gravity after shifting the patient from and upright posture (pre-scan) to supine position during the scan. This motion can be large resulting in inconsistent sampling of the TACs as demonstrated at the bottom of Figure 3.2.

[bookmark: _Toc437552781][bookmark: _Toc441706055]Patient Motion

Patient motion is the gross movement of the body during imaging. Patient motion can cause more than 200% error in measured MBF values [47]. This is often due to the patient being unable or unwilling to hold their position for the duration of the scan. During cardiac PET imaging the patient is usually in supine position with their hands behind their head. This may be a difficult position to endure for certain patients, especially older patients suffering of arthritis. Coughing, fidgeting, and discomfort are common sources of patient motion and while certain measures can be taken to mitigate motion, prevalence of patient motion exceeding 29% of tests have been reported in large clinical populations [48]. 

[bookmark: _Toc437552782][bookmark: _Toc441706056]Summary

MBF using PET holds tremendous promise for improving diagnosis, prognosis, and therapy management of CAD patients. As PET technology evolves, however, patient motion is increasingly becoming a limiting factor of precision. In this work we explore methods to detect patient motion.

1 [bookmark: _Toc436987507][bookmark: _Toc437552783][bookmark: _Toc441706057]Agreement between cardiac and fiducial marker motion during dynamic cardiac PET imaging 

1. [bookmark: _Toc436987508][bookmark: _Toc437552784][bookmark: _Toc441706058]Introduction

The work described in this chapter evaluates whether positron-emitting fiducial marker motion is a useful surrogate marker of heart motion in dynamic 82Rb PET image sets. 

1. [bookmark: _Toc436987509][bookmark: _Toc437552785][bookmark: _Toc441706059][bookmark: _Toc436987510][bookmark: _Toc437552786]Background 

[bookmark: _Toc441706060]Fiducial Marker

A fiducial marker refers to any type of physical marker that can be attached to the patient (e.g. skin) and then tracked using an external device. Fiducial markers can be used as a surrogate marker of patient and/or organ motion, but may not be tightly correlated with the motion of an organ of interest due to tissue plasticity. While fiducial markers have been extensively used in the context of rigid motion (e.g. head/brain) across different imaging modalities [49–51], relatively little work has been done in the context of non-rigid motion in cardiac applications. Nevertheless some clinical applications do exist. One example application is tracking of respiratory motion to generate respiratory triggers during PET acquisition which are embedded into the raw PET data for further processing. The Real-time Position Management (RPM) system (Varian Medical Systems, Palo Alto, CA) uses two reflective fiducial markers on a light-weight block positioned on the patient’s chest. An infrared camera detects respiratory motion as the markers move due to the patient breathing  [38, 50]. Reflective fiducial markers have also been used to track pre-reconstruction head motion for neurological PET. This method used an external optical motion tracking camera during imaging. The motion data is aligned with the PET data and inserted into time tags within the list-mode data [1, 2]. The Positron Emission Tracker (PeTrack) (Carleton University, Ottawa, ON) system can track 22Na fiducial markers (<2mm motion – phantom study) with high temporal resolution using pre-reconstruction list-mode data (a PET camera generated list of every detected event)  [51, 52].

In this work we used a 37 kBq (1 μCi) Sodium-22 fiducial marker affixed non-invasively to a patient’s torso during dynamic cardiac PET imaging. The marker appears in the PET image and therefore does not require any external instrumentation for marker tracking. The marker appears as a roughly 6 x 6 x 6 pixel volume in the dynamic PET image (Figure 3.1). It is important to note that the center of the marker has higher pixel intensity and it decreases radially outward due to the limited spatial resolution of PET. Figure 3.2 shows an example of fiducial marker motion (top), heart motion (bottom) and the corresponding discontinuity in the respective time-activity curves. Since the marker activity is long-lived (2.6 year half-life) the marker intensity appears to exponentially grow over the course of the decay-corrected (76 s half-life of 82Rb) dynamic image sequence. 



[bookmark: _Ref427189618][bookmark: _Toc428399721][bookmark: _Toc437555933][bookmark: _Toc441706148]Figure 3.1 - Example of fiducial marker in a PET image frame. The intensity of the pixels decreases moving radially outward from the center of the marker due to limited spatial resolution of PET images.
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[bookmark: _Ref439379422][bookmark: _Toc441706149]Figure 3.2 - Top: Fiducial marker motion between two frames and resulting distortion of time-activity curve between 5-6 mins. Bottom: Heart organ motion in the same direction and time as the fiducial marker motion. The cross-hair was not moved between frames in both images.

We sought to determine the degree by which fiducial marker motion is correlated with heart motion in order to elucidate whether fiducial markers may be used as surrogates to detect patient motion.

[bookmark: _Toc436987511][bookmark: _Toc437552787][bookmark: _Toc441706061] Methods 

[bookmark: _Toc436987512][bookmark: _Toc437552788][bookmark: _Ref439334286][bookmark: _Ref439794040][bookmark: _Toc441706062]Patient Cohort 

[bookmark: _Toc436987513][bookmark: _Toc437552789]Sixty five (65) clinical patients that had undergone cardiac rest-stress dynamic 82Rb PET imaging at the University of Ottawa Heart Institute, National Cardiac PET Centre were arbitrarily selected between September 2012-August 2013 (date range of scans) for this study. All patients were instructed not to consume beta-blockers for 24 hours, caffeine for 12 hours and to refrain from food for 4 hours. All patients gave consent as approved by the Ottawa Heart Institute Research Ethics Board as part of the Rubidium-ARMI (NCT01128023) research protocol.

Imaging was performed according to the standard clinical protocol (seen in Figure 3.4) for imaging of patients using a state-of-the art GE Discovery 690 VCT PET-CT scanner (Waukesha, WI). A 37 MBq 22Na fiducial marker (1 mm diameter) was affixed to the patient lower anterior-right rib with a saline bag covering to induce adequate scatter for the marker to not interfere with the camera’s scatter correction algorithm (CT image shown in Figure 3.3). 
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[bookmark: _Ref439864036][bookmark: _Toc441706150]Figure 3.3 - Computed Tomography slice of patient in the transverse plane. The fiducial marker can be seen on the outside of the patient's chest. A saline bag was placed over the marker to avoid interference with the scatter correction algorithm. The marker was placed away from the heart to avoid interference with clinical interpretation.



A low-dose 0.5 mSv normal-end-expiration CT scan lasting ~1.5 s was performed first for attenuation correction with the patient at resting state. Patients were then injected with 82Rb tracer (10 MBq/kg over 30 s interval) using a custom ‘square wave’ infusion system (RubyFill™, Jubilant DraxImage, Kirkland, QC) [55] and PET list-mode image acquisition (8 minutes) was manually started when the true count-rate exceeded 10 kcps (kilo-counts per second). Dynamic images were reconstructed using filtered back projection (12 mm Hann filter) with 128x128x47 voxels of size 3.125x3.125x3.270 mm and an isotropic spatial resolution of 10 mm FWHM into 15 time frames. Table 3.1 describes the time length of each of the 15 times frames. 

[bookmark: _Ref439976468][bookmark: _Toc441706132]Table 3.1 - Time frame numbers and the corresponding time frame start time and length time.

		Time Frame 

Number

		Time Frame 

Start Time (s)

		Time Frame 

Length (s)



		1

		0

		10



		2

		10

		10



		3

		20

		10



		4

		30

		10



		5

		40

		10



		6

		50

		10



		7

		60

		10



		8

		70

		10



		9

		80

		10



		10

		90

		30



		11

		120

		30



		12

		150

		30



		13

		180

		60



		14

		240

		120



		15

		360

		120







A second PET acquisition followed in the same fashion as the rest imaging, but with the patient stressed using dipyridamole, a pharmacologic vasodilator, which was intravenously administered over 5 minutes at a rate of 0.14 mg/kg/min. Three minutes into the administration of dipyridamole the patient was injected with 82Rb a second time and image acquisition followed as at rest-state. A second CT scan was then completed for attenuation correction of the stress image. The standard clinical protocol is summarized in Figure 3.4

Table 3.2 summarizes patient information for the cohort. 
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[bookmark: _Ref439334434][bookmark: _Toc441706151]Figure 3.4 - Clinical rest-stress 82Rb PET/CT protocol used for methods

[bookmark: _Ref439337881][bookmark: _Ref439337743]

[bookmark: _Ref439794086][bookmark: _Toc441706133]Table 3.2 - Patient information for patient cohort used

		

Patients

		Combined:    65

Male:             36

Female:         29



		Mean Age (years)

		67 ±12



		Mean Weight (kg)

		87 ±18



		Mean Height (m)

		1.68 ±0.10







[bookmark: _Toc441706063]Visual Image Analysis

To characterize heart motion, for correction, the time frame and direction of the motion needs to be accurately resolved. Dynamic images were visually inspected for the presence of both significant heart and patient (i.e. fiducial marker) motion by comparing all neighbouring image frame pairs in the dynamic sequence. The 130 images (rest and stress) were visually evaluated using an in-house software program (FlowQuant©, Ottawa, ON) [14, 19] for heart and patient motion in a 128x128x47 pixel volume of interest (VOI) with 15 time frames. Motion amplitude was classified as no-motion or significant motion (≥2 pixels). Significant motion events (≥2 pixels) were easily identifiable compared to mild motion (<2 pixels), in part due to the large file of view. Patient and heart motion could rarely be viewed in the same slices and were thus assessed separately. 

The presence/absence of motion, time frame and approximate direction of heart and patient motions was recorded. Each direction of motion was classified as X left (+), X right (-), Y anterior (+), Y posterior (-), Z superior (+), Z inferior (-). Multiple motion events could be recorded per dynamic image. The prevalence and concordance of patient and heart motion was analyzed from this data. Furthermore, the sensitivity and specificity of using fiducial markers as a surrogate marker for heart motion was determined.

[bookmark: _Toc436987514][bookmark: _Toc437552790][bookmark: _Toc441706064]Results

Either patient or heart motion was present in 40 (30.8%) of the 130 dynamic PET images. Patient motion was detected in 37 (28.5%) images and heart motion was detected in 27 (20.8%) images. 24 (18.5%) images had both patient and heart motion. Among all images (n=130), patient and heart motion agreement rate was 88% (cases without motion and with both heart and fiducial marker motions present). The sensitivity and specificity to predict the presence of heart motion from patient motion was found to be 89% and 87% respectively. See Table 3.3 for visual assessment results.

[bookmark: _Ref437556084][bookmark: _Toc441706134]Table 3.3 - Presence of Patient and Heart motion in Patient Dynamic PET images (n=130). Significant motion was defined as ≥2 pixels.

		

		Patient Motion

		No-Patient Motion



		Heart motion

		18.5%

		2.30%



		No-Heart motion

		10.0%

		69.2%



		





Of the 24 images with patient and heart motion, 70.8% of these images had motion in the same time frame (1-15) and the same direction (x, y or z). 12.5% of the images with motion were in different time frames and 16.7% of the images had motion in different directions (See Table 3.4).

[bookmark: _Ref436337418][bookmark: _Toc441706135]Table 3.4 - Agreement between motion time frame and primary direction in cases with both patient and heart motion (n=24)

		Same 

time and direction

		Different 

time frame

		Different 

primary direction

		Total



		70.8%

		12.5%

		16.7%

		100%







[bookmark: _Toc436987515][bookmark: _Toc437552791][bookmark: _Toc441706065]Discussion

This work investigated the relationship between heart motion and motion of skin bound fiducial markers. Both the heart and the fiducial markers were visible in the PET volume images, with the fiducial marker assumed as a surrogate marker of patient motion. Automatic tracking of heart motion in a dynamic cardiac image sequence can be difficult due to the changing tracer distribution from blood to perfused tissues while a fiducial marker has a relatively constant distribution across all time frames providing a more stable, isolated and highly visible signal to track (Figure 3.1). 

Post-reconstruction detection of fiducial marker motion is an attractive alternative to pre-reconstruction fiducial marker motion detection which requires special equipment such as an infrared camera  [38, 50] or an optical motion tracking camera [1, 2]. The use of external motion tracking systems not only adds costs, but also significant complexity associated with motion pre-processing and non-trivial correction of the pre-reconstructed PET measurements. Lastly, directly using list-mode data is camera/vendor specific, whereas a post-reconstruction algorithm is vendor independent. The agreement between presences of motions in the entire dynamic study was 88% for flagging cases with heart motion based on analysis of fiducial marker motion. In the subset of images which had patient and heart motion, 70.8% had motion in the same time frame and same direction while 16.7% had motion in different time frames and 12.5% in different directions. Based on these results we concluded that tracking of a single fiducial marker is not adequate for characterizing motion and therefore guiding motion correction, but that fiducial marker motion can be a good predictor of the presence of heart motion. 

1. [bookmark: _Toc436987516][bookmark: _Toc437552792][bookmark: _Toc441706066]Motion timing

Two classifications of motion timing were visually inspected in the images. Motion can manifest itself as inter-frame motion in which a mis-alignment exists between subsequent time frames, or as intra-frame motion in which the image is blurred due to a shift in patient positioning within a time frame. Inter- and intra-frame motions will typically coexist and depend on the time and nature of motion with respect to the time frame intervals [56]. Therefore both types of motion must be detected if a robust automatic motion detection algorithm is developed. 

[bookmark: _Toc436987517][bookmark: _Toc437552793][bookmark: _Toc441706067] Multiple fiducial markers

Multiple markers have been used to accurately characterize motion of the brain in all six directions [57] which could improve the characterization of heart motion and therefore guide motion correction. Patient rotations and translations in multiple directions cannot be detected with a single marker, requiring multiple markers at different anatomical locations. We speculate that the additional information would contribute to detection of a wider range of motion and may enable better characterisation of heart motion.

[bookmark: _Toc441706068]Limitations

Visual interpretation is vulnerable to viewer bias and errors, and is limited to qualitative assessment. Nevertheless, it is not possible to induce motion in clinical studies and another (external) reference was not available to us for this study. We did not observe mild motion which most likely would not be clinically significant in causing motion artifacts but more work and analysis must be done to verify these assumptions. Mild motion (<2 pixels in magnitude by our definition) was difficult to view in the full VOI (128x128x47 pixel volume) and inclusion in the analysis could increase the error rate in the visual assessment of motion. Motion less than 2 pixels in magnitude corresponds to <6.3 mm which is less than image spatial resolution (~10 mm). Therefore we do not expect motion of this magnitude to have clinically significant impact on MBF estimates [47]. Since this chapter evaluated the use of fiducial markers as a surrogate marker of heart motion in a clinical setting, we felt that it was important to focus on clinically significant motion and minimizing visual assessment errors. Therefore, we only included significant motion events (≥2 pixels) and neglected mild motion events.

[bookmark: _Toc436987518][bookmark: _Toc437552794][bookmark: _Toc441706069]Conclusion

A single fiducial marker is a modest surrogate marker of heart motion time and direction, making it inadequate in guiding motion correction. However, fiducial markers have adequate sensitivity and specificity as predictors of presence of heart motion in dynamic image acquisitions, making it a suitable method for flagging motion artifacts. The next chapter describes two automatic detection methods for fiducial marker in dynamic PET cardiac images. 

2 [bookmark: _Toc437552795][bookmark: _Toc441706070]Automatic Detection of Patient Motion Using Fiducial Markers in Dynamic Cardiac PET Images 

[bookmark: _Toc441706071]Introduction

This chapter describes automatic methods to detect inter- and intra-frame fiducial marker motion in dynamic cardiac PET images. Numerical-phantom based simulated images with known simulated motion are used to validate the algorithms. Clinical data are used to characterize the accuracy of these algorithms for flagging the presence of motion with visual interpretation serving as a gold standard. 

[bookmark: _Toc441706072]Background

Motion can manifest itself as inter-frame motion in which a mis-alignment exists between subsequent time frames, or as intra-frame motion in which the image is blurred due to a shift in patient positioning within a time frame. Inter- and intra-frame motions typically coexist and depend on the time and nature of motion with respect to the time frame intervals [56].

While many technologies exist for tracking fiducial markers, we focused on positron-emitting markers which can be imaged with PET and therefore are inherently integrated into the reconstructed images for vendor independent, post-reconstruction analysis. Of particular interest to our group is incorporation of motion detection into clinical MBF quantification software for quality control.

[bookmark: _Toc441706073]Method

To test whether fiducial marker motion can be automatically detected two algorithms were designed, tested, analyzed and optimized for performance using statistical analysis. A series of simulated and patient dynamic images were processed as a baseline for the algorithms performance. The workflow for the inter- and intra-frame algorithms is shown in Figure 4.1 and Figure 4.2 respectively.

Inter-frame Motion Algorithm Workflow



[bookmark: _Ref439872234][bookmark: _Toc441706152]Figure 4.1 - Workflow for design, implementation, testing and analysis of the inter-frame motion detection algorithm

Intra-frame Motion Algorithm Workflow



[bookmark: _Ref439872242][bookmark: _Toc441706153]Figure 4.2 - Workflow for design, implementation, testing and analysis of the intra-frame motion detection algorithm 

The specifics of the methodology are described in the following sections. 

0. [bookmark: _Ref439557572][bookmark: _Ref439557573][bookmark: _Toc441706074]Inter-frame Motion Simulations

Fifty four noise-free non-uniform rational b-spline (NURBS)-based cardiac-torso (NCAT)(Johns Hopkins University, Baltimore, MD) numerical-phantom based dynamic image sequences were generated [56–58]. NCAT is a computer software package which is widely used to construct customizable high resolution dynamic PET numerical-phantom based simulation models of the human physiology and anatomy. This program allows the user to assign activity to major organs. The models can also simulate eight different components of the heart which include the right and left, ventricle and atrial, blood-pool and wall activities. The model dimensions were 40cm x 40cm x 19.7cm with a cubic voxel size of 3.125 mm and a transverse sampling grid of 128 x 128 pixels in 63 slices. The dynamic image sequence consisted of 15 time frames (Table 3.1) corresponding to 10 minutes of data. Organ time-activity curves were derived from a previous clinical 82Rb dosimetry study in human patients [61] using the same blood TAC for the left and right chambers of the heart. A fiducial marker was simulated as a 9.375 mm diameter sphere positioned on the right-anterior lower thorax (roughly in plane with the upper liver and inferior heart wall). The marker activity was exponentially grown with time to simulate a constant activity source in an 82Rb decay-corrected image sequence. An example of two slices showing the fiducial marker and myocardium can be seen in Figure 4.3. 
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[bookmark: _Ref436961331][bookmark: _Toc441706154]Figure 4.3 – Noise-free simulation model. The left image shows the transverse slice which contains the fiducial marker. The right image shows the transverse slice which contains the myocardium in the same time frame. The red areas are high activity regions and the blue areas are low-activity regions

Inter-frame (between time frames) motion was simulated as a single event in a dynamic image sequence at 30, 60, 80, 90, 120, 150, 180, 240, or 360 second time points with ±9.375 mm (referred to as 1 cm) of body motion in 6 directions (+x right, -x left, +y posterior, -y anterior, +z superior, or -z inferior). Once motion was introduced it was not corrected for all the subsequent time frames, thus simulating a single motion event in each model.

In clinical practice the CT is aligned with the last frame, thus all frames preceding the motion event would have CT attenuation correction (CTAC) mis-registration artifacts. However, attenuation was not simulated in this dataset so as to focus on motion alone. 

Images were blurred using a 3D Gaussian filter (8.5 mm full width at half maximum (FWHM)) to account for the intrinsic scanner resolution and the positron range of 82Rb. NCAT images were then forward projected (128 Projections) using a radon transfer function and then the sinogram was reconstructed using filtered back projection (FBP). The reconstructed images were then filtered using a 3D Gaussian filter to obtain 2 and 10 mm FWHM spatial resolution (referred to as high and low resolution respectively). No noise was added to the data at any stage. An example of the simulation model in the transverse plane can be seen in Figure 4.3.



[bookmark: _Toc441706075]Patient Cohort 

The same patient cohort as described in section 3.3.1 was used for this experiment following the same protocols for image acquisition. The protocol is summarized in Figure 3.4. Table 3.2 summarizes patient information for the cohort.

[bookmark: _Toc441706076]Visual Image Analysis

The 130 patient images (rest and stress) were cropped to a 9x9x9 VOI containing the entire fiducial marker and were visually (re-)evaluated using an in-house software program (FlowQuant©, Ottawa, ON) [14, 19] for the presence of any patient motion (mild and/or significant). Patient motion was seen if there was a movement in the fiducial marker in the dynamic PET image. The time frame of patient motion was recorded on a frame-by-frame basis for inter-frame (marker motion between frames) and intra-frame motion (blurred motion within a time frame). 

[bookmark: _Toc441706077]Automatic Fiducial Marker Motion Detection

Localization of the marker in the late time frame images was trivial as the marker activity concentration (image intensity) was much higher than that of the patient as demonstrated in Figure 4.4. Therefore, the maximum intensity pixel was assumed to correspond to the center of the marker.
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[bookmark: _Ref439948229][bookmark: _Toc441706155]Figure 4.4 - Fiducial marker contains most intense pixels in time frame 15. Therefore localization of marker occurs in this last time frame.

[bookmark: _Toc441706078]Image Conditioning 

A 9x9x9 pixel volume of interest (VOI) around the fiducial marker (Figure 4.5) was isolated and processed to reduce the effects of interference from neighbouring patient activity and noise. The 3D pixel intensity plot of the transverse plane in Figure 4.5 is shown in Figure 4.6 with the fiducial marker at the center and patient activity spilling in to the marker in the left-hand corner.
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[bookmark: _Ref436951594][bookmark: _Toc441706156]Figure 4.5 - Global (left) and local ROI (9×9 pixels) around the fiducial marker demonstrating background activity spilling in from the patient. This marker is taken from time frame 14 of an image with motion present. Spill-in activity from the patient is also evident.

[image: ]

[bookmark: _Ref436952816][bookmark: _Toc441706157]Figure 4.6 - 3D mesh-plot representing the pixel intensities of a fiducial marker in a 9x9 pixel volume in the transverse plane with spill-in activity from the patient (left corner).

To improve the background to marker contrast, pixel intensities below a threshold value were set to zero. The threshold value (4-1) was set as 50% level between the minimum background and the peak pixel intensities in the VOI. The resulting thresholded transverse plane of Figure 4.6 demonstrated in Figure 4.7.

 							(4-1)

[image: ]

[bookmark: _Ref436952880][bookmark: _Toc441706158]Figure 4.7 - 3D plot representing the pixel intensities of a fiducial marker in a 9x9x9 pixel volume in the transverse plane. Fiducial marker pixels are more prominent with background activity set to 0. 

[bookmark: _Toc441706079][bookmark: _Ref438380921]Marker localization 

Three-dimensional localization (xg,yg,zg) of the marker was achieved using a weighted center of mass (COM) calculation on the thresholded image as demonstrated in equation: 4-2, 4-3, and 4-4. 









									(4-2)

									(4-3)

									(4-4)

By increasing the power p more emphasis was placed on the location of high activity pixels compared to the less active pixels in the neighbourhood. Integer values of n ranging from 1 to 10 were initially used. Regardless, in cases with activity spread over more than one pixel an average location was resolved. COM calculations were performed on each time frame image independently to resolve the average position of the marker in 3D.

[image: ]

[bookmark: _Ref436953226][bookmark: _Toc441706159]Figure 4.8 - 3D plot representing the pixel intensities of a fiducial marker in a 9x9 pixel volume in the transverse plane. Fiducial marker pixels have larger pixel intensities after being amplified by a power of n=9. 



[bookmark: _Toc441706080]Inter-frame Motion Detection

Inter-frame motion was determined as the difference in COM between successive time frames. The motion distance (D) was calculated as the root-mean-squares of the motion in each Cartesian axis (X, Y, Z), demonstrated in Figure 4.9. Differences above a threshold amount (in mm) were determined to be significant and could be used to flag a case with patient motion. This distance threshold is represented by D. Figure 4.10 shows an example of an inter-frame report. The change in threshold (D) frame-by-frame can be seen from time frame 1 to time frame 15.
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[bookmark: _Ref439899095][bookmark: _Toc441706160]Figure 4.9 - Example of inter-frame algorithm. The top two images show two successive time frames and their corresponding center of masses (COM). The bottom image is of the two top images superimposed with the distance (D) between both COM

[image: ]

[bookmark: _Ref436957602][bookmark: _Toc441706161]Figure 4.10 - Example of inter-frame motion report. A 10 mm change in COM is indicated between frame 10 and frame 11. The display notation is such that the first time frame is the reference (motion free).



In order to determine the threshold motion that could reliably indicate the presence of motion, receiver operator characterization (ROC) analysis was performed with the visually assessed motion serving as a reference truth. From the ROC analysis, sensitivity and specificity statistics were derived.



0. [bookmark: _Toc441706081]Intra-frame Algorithm 

The intra-frame algorithm estimated the degree of motion within a single frame by measuring the extent of the blurring of the fiducial marker. The COM was found in each frame as described in section 4.3.4.2 and a profile of activity fall-off with distance was created by plotting the peak pixel intensities (I) as a function of radial distances (x) from the COM. Due to the pixel property of the fiducial marker the COM is generally located near the pixel with the highest intensity and decreases with radial distance. The pixel intensities were normalized so the maximum intensity pixel was set to 1. A curve (Equation 4-5 and demonstrated in Figure 4.11) was then fit to the image sampled profile. 

I(x) = 						(4-5)	

								 (4-6)

								

[image: ]

[bookmark: _Ref439892249][bookmark: _Toc441706162]Figure 4.11 – A function fitted to activity fall-off profile to estimate marker blur resulting from motion



Parameter x0 is a distance (mm) parameter of the breadth of the marker prior to activity fall-off and accounts both for the physical size of the marker and pixel size. Parameter c accounted for background activity. 

The B variable is a parameter of rate (mm-2) of activity fall off with distance (breadth of profile) which was thresholded to determine the presence of motion blur. The exponential represents activity full-off with distance which is an approximation of PET image point-spread function. However the breadth is also dependent on by the amount of marker motion. Parameter B can also be converted to a more intuitive form of x1/2 (Equation 4-6), which is the distance in mm from where the profile is mid-intensity between peak and background, c.

An image with fiducial marker blurring produces a larger x1/2 value and represents a larger profile breadth as demonstrated in Figure 4.12 for a case without and with motion blur. ROC analysis with visual impression serving as reference truth was used to determine an x1/2 parameter cut-off for motion detection. 
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[bookmark: _Ref436958009][bookmark: _Toc441706163]Figure 4.12 - Example of Intra-frame motion. The left hand image shows no motion with a lower x1/2 threshold and profile. The right hand image shows an example of intra-frame motion with a higher x1/2 threshold and its profile

[bookmark: _Toc441706082]Statistical Analysis

To select optimal threshold values, ROC analysis was performed and the point on the curve with the shortest Euclidean distance to sensitivity=100% and specificity=100% was selected. Resulting sensitivities and specificities were then reported using this threshold along with 95% confidence intervals. The 95% confidence intervals were calculated using a bootstrap method where half of the image samples were randomly selected ten thousand times and then a ROC analysis was performed on each subset. The 95% confidence interval is reported as [lower bound, upper bound].

[bookmark: _Toc441706083]COM Weighting Optimization

As previously stated for COM calculation, by increasing the power p more emphasis was placed on the location of the maximum activity pixel compared to averaging the location with less active, neighbouring pixels (Figure 4.8). We determined the optimal value for p by performing ROC analysis with each integer value of p = 1 to 10 on the entire dataset. A power p which resulted in both high and stable (minimal variability with power change) accuracy, sensitivity and specificity values for both inter- and intra-frame algorithms was selected for this work. 

[bookmark: _Toc441706084]Results

0. [bookmark: _Toc441706085]Patient Data

This study consisted of 130 images from 65 patients. All patients had at least one frame with intra-frame patient motion and at least one event with inter-frame motion at varying magnitudes. In total there were 367 events of inter-frame patient motion out of 1820 possible frame pairs detected visually and an additional 606 frames with intra-frame motion blur out of 1950 frames.

[bookmark: _Toc441706086]COM Weighting Optimization

Inter and intra-frame sensitivity, specificity, and accuracy values are summarized in Figure 4.13 and Figure 4.14 respectively for varying p power values. Figure 4.13 shows the increase in accuracy, sensitivity and specificity as the power p increases when using the inter-frame algorithm on the full dataset. Figure 4.14 shows the increase in accuracy and sensitivity as the power p increases when using the intra-frame algorithm on the full dataset. Based on these results we selected p=9, which provided a stable sensitivity, specificity and accuracy, as the optimal value to which all subsequent results pertain. 
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[bookmark: _Ref436952977][bookmark: _Toc441706164]Figure 4.13 - Inter-frame motion detection accuracy, sensitivity and specificity for varying p power values. 
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[bookmark: _Ref436953007][bookmark: _Toc441706165]Figure 4.14 - Intra-frame motion detection accuracy, sensitivity and specificity for varying p power values.



[bookmark: _Toc441706087]Inter-frame Motion

[bookmark: _Toc441706088]Simulation data – motion magnitude precision

Our simulations consisted of 716 neighbouring frame pairs without motion (0 mm) and 54 with motion (9.3750 mm). For the cases without motion, the maximum algorithm reported motion was 0.0139 mm whereas in the cases with motion the range of algorithm reported motion was between 9.3747 and 9.5399 mm. Box-plots of the reported motion errors are shown in Figure 4.15. The maximum motion error was less than 5% of the pixel size (3.125 mm). No overlap in algorithm reported motions existed between the two cohorts, indicating ability for perfect classification of presence of motion in these simulation data. 
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[bookmark: _Ref438385837][bookmark: _Toc441706166]Figure 4.15 - Box plot showing error in algorithm reported inter-frame motion in simulated images with 0 and 9.3750 mm simulated motion (n=716 and 54 respectively). The maximum motion error was less than 5% pixel size (3.125 mm).

[bookmark: _Toc441706089]Patient data

Figure 4.16 shows the ROC curve for inter-frame motion COM distance threshold and the optimal threshold (blue circled at D=2.7 mm) resulting in a sensitivity of 91% [89%, 94%] and a specificity of 91% [89%, 94%]. The area under the curve was determined to be 0.97 with an accuracy of 91%. Algorithm versus visual detection rates are summarized in Table 4.1 using this D threshold value.








[image: ]

[bookmark: _Ref436955165][bookmark: _Toc441706167]Figure 4.16 - ROC analysis for inter-frame algorithm. The blue circle represents an optimal threshold at D=2.7 mm.



[bookmark: _Ref437122885][bookmark: _Toc441706136]Table 4.1 - Performance of inter-frame motion detection algorithm (n=1820 frame pairs from 130 images)

		

		Visual

Motion

		Visual

No Motion



		Algorithm 

Motion

		

335

		

126



		Algorithm 

No Motion

		

32

		

1327







[bookmark: _Toc441706090]Intra-frame Motion

Figure 4.17 shows a ROC curve for intra-frame motion with the optimal motion detection threshold (blue circled at x1/2= 4.4 mm) resulting in a sensitivity of 82% [80%, 86%] and a specificity of 90% [86%, 92%]. The area under the curve was determined to be 0.90 with an accuracy of 87%. Algorithm versus visual detection rates are summarized in Table 4.2 using this B threshold value.

[image: ]

[bookmark: _Ref436958050][bookmark: _Toc441706168]Figure 4.17 - ROC analysis for intra-frame algorithm. The blue circle represents a threshold at x1/2= 4.4 mm.



[bookmark: _Ref437123014][bookmark: _Toc441706137]Table 4.2 - Performance of intra-frame motion detection algorithm (n=1950 frames in 130 images)

		 

		Visual

Motion

		Visual

No Motion



		Algorithm

Motion

		497

		137



		Algorithm 

No Motion

		108

		1208







The boxplots, in Figure 4.18 , show the variance in x1/2 values for frames with and without intra-frame motion. The x1/2= 4.4 mm threshold obtained from the ROC analysis separates the two sets of data. 
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[bookmark: _Ref438601804][bookmark: _Toc441706169]Figure 4.18 - Boxplot describing x1/2 values which represent motion and no motion cases. x1/2 = 4.4 mm threshold is represented by the black line separating the two motion cases

[bookmark: _Toc441706091]Discussion

This work describes and evaluates two automatic algorithms to detect fiducial marker motion in dynamic cardiac PET images. The inter-frame algorithm assessed marker motion between neighbouring time frames based on changes in marker 3D localization using COM approximation. The intra-frame algorithm assessed motion within an image frame by assessing the blurriness of the marker image. Optimal motion detection thresholds were empirically determined. The resulting accuracy was found to be 91% and 87% respectively using visual assessment as a reference truth. These accuracy rates are sufficiently high to be of benefit for quality control purposes in a high throughput clinical setting in which visualization of each dynamic sequence is not practical. 

In our study, we determined that inter-frame motion was detected with an accuracy of 91% using a threshold of 2.7 mm COM motion between successive frames. The size of each voxel was 3.125 mm and the transverse plane and 3.200 mm axially and image spatial resolution was ~10 mm. Therefore the motion detection threshold was smaller than one voxel in size and well below the image spatial resolution. Since <2 voxel motion is unlikely to have meaningful clinical impact, it is likely that increasing the threshold value would result in a lower false-positive rate (improved specificity) without dramatically reducing sensitivity. Likewise the optimal x1/2 parameter threshold value for intra-frame motion detection was determined to be 4.4 mm, well below the image spatial resolution, with an accuracy of 87%.  Once again, using a higher x1/2 value threshold could improve the algorithm specificity to detect motion without clinically significant detriment to sensitivity.

 Assuming that motion less than 2 pixels in size are inconsequential the resulting inter-frame specificity increased from 91% to 99% (or 94% for motion less than 1 pixel). Assuming that motion less than the image spatial resolution (10mm) are inconsequential the resulting intra-frame motion specificity increase from 90% to 99% respectively. Nevertheless, further validation is required to establish optimal threshold values, preferably with a reference truth such as external tracking that is able to quantify the magnitude of marker motion.

[bookmark: _Toc441706092]Clinical Feasibility

The advantage of this study over previous work is the use of a low-cost low-dose marker which limits radiation exposure to the patient and instrumentation complexity. The algorithms are implemented post-reconstruction therefore are vendor independent and can be used to track fiducial markers in a larger range of applications (e.g. brain, oncology, and organ motion) and imaging modalities are not limited to PET. 

The execution times for these algorithms were 0.9 seconds per dynamic image sequence on a modern laptop, including overheads such as loading image data into memory. Therefore, efficient integration of these algorithms into MBF quantification software would result in negligible incremental processing time. Furthermore, affixing the fiducial marker to the patient takes only seconds and does not interfere with the imaging process. Thus we conclude that these algorithms may be applicable for routine quality control in MBF studies.

The algorithm can be included as a separate utility for batch processing studies and generating quality control indicators, or more practically integrated into software packages for processing dynamic image sequences. While physician confidence may increase in cases without indicated motion, cases with motion would need more thorough interpretation in the context of possible motion or disregarding of dynamic analysis results.

[bookmark: _Toc441706093]Other applications

The algorithm could easily be expanded to track multiple markers by introducing multiple VOI around each marker. Multiple markers have been used to track head motion and respiratory motion to fully characterize the direction and magnitude of the motion to guide correction. Future work would consist of tracking multiple markers on the torso to determine if heart motion can be fully characterize during translational and rotational motion. 

The intra-frame motion detection algorithm could be applied to static (PET or SPECT) MPI quality control without any substantial modifications. As with dynamic imaging static imaging for MPI interpretation is performed over long time intervals (e.g. 6 min) in which patient motion can manifest itself as a directional blur which can produce uptake deficits consistent with CAD [62]. Thus this algorithm can have important QC implications on the most commonly used procedure in nuclear medicine. 

[bookmark: _Toc441706094]Limitations and Future Work

As previously stated, visual interpretation is vulnerable to viewer bias, errors, and is limited to qualitative assessment. Nevertheless, it is not possible to induce motion in clinical studies and another (external) reference was not available to us for this study.

A current limitation with this study is that motion larger than the VOI (9x9x9 pixel volume) was not explicitly supported. This would correspond to extremely large patient motion in excess of 3 cm which would likely result in obvious MBF and MPI artifacts. If blurring of the fiducial marker exceeds the VOI it would still be detected as motion but error in the detected magnitude will exist. Partial movement of the marker outside the VOI could result in slight error in COM calculation and thus the detected magnitude of motion. Nevertheless, this limitation could be addressed by updating the VOI position in each time frame depending on COM localization in the previous frame or by increasing the VOI size.  We tried to reduce the effects of spill in body activity in the VOI but this is also a source of error when calculating the COM and thus detecting the magnitude of motion for both algorithms. The use of two separate algorithms to detect inter- and intra-frame motion may not be ideal. A potential simplification could be to superimpose all 15 time frame images and then attempt to detect motion using the intra-frame algorithm. However it is likely that sensitivity would be adversely impacted. For this reason we did not evaluate the method in this work, but may be worthy to pursue in subsequent work.

The authors recognize that the noise-free NCAT simulations used in this study are limited in their accuracy and that they did not simulate intra-frame motion. Future work is planned to expand the evaluation of these algorithms using more complete simulation models including monte-carlo simulation of emission, attenuation, scatter and detection, realistic noise models, iterative image reconstruction, and a broader range of motion models.

A final important limitation is that this study used the same data set to optimize detection thresholds (p=9) and to characterize algorithm performance. Ideally, separate datasets would be used. However, due to the tedious work required to collect image data and visually assess the presence of motion in each and between time frames this was not performed. Follow-up characterization should be performed with a separate dataset. Nevertheless we believe that performance measures reported in this work are representative of true clinical scenarios.

[bookmark: _Toc441706095]Conclusion

We have developed and validated inter- and intra-frame motion detection algorithms to track fiducial markers in reconstructed dynamic PET images. These algorithms can be easily incorporated into analysis software as an effective added quality control measure without detriment to clinical workflow.

3 [bookmark: _Toc437552800][bookmark: _Toc439534759][bookmark: _Toc441706096]Image Decomposition Based Heart Motion Detection

3.1 [bookmark: _Toc437552801][bookmark: _Toc439534760][bookmark: _Toc441706097]Background 

[bookmark: _Toc437552802][bookmark: _Toc439534761][bookmark: _Toc441706098]Matrix Decomposition – Dynamic Image Decomposition

Dynamic images consist of 4 dimensions including 3 spatial dimensions and a time dimension. A pixel in a dynamic image therefore also has a time component and may be referred to as a dixel, representing activity in a defined volume over a sequence of time frames and can be represented as a vector. Image decomposition can unveil spatial patterns in a dynamic image based on the characteristic temporal patterns. These temporal patterns may be predefined (e.g. Fourier analysis, wavelet) or determined from the image data using models that provide a unique solution to the decomposition problem.

Image decomposition techniques that are based on the temporal pattern of each dixel usually begin by collapsing the volume into a 2D matrix. The columns of the dataset matrix (Y) represent that time dimension while the rows represent the image pixels (i.e. spatial dimensions). The image matrix, Y, is then decomposed into two matrices: F represents the column wise temporal factor matrix, and S is the corresponding structures matrix which represents the spatial distribution of each component. The residual signal and random noise which is not accounted for by the components is represented by matrix  which has the same dimensions as the original image. The number of components to resolve must be determined in advance and corresponds to the number of columns in F and number of rows is S. The decomposition framework may be represented using the following equation (5-1):

						5-1

Figure 5.1 illustrates how image decomposition works mathematically. In this example the original image is decomposed into three components consisting of both spatial patterns (structures) and corresponding temporal time-curves (factors). The remaining signal in the original image which was not represented by the decomposed components is the residue image. One potential advantage of image decomposition is that it accounts for all dixels in the image simultaneously. 
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[bookmark: _Ref429081717][bookmark: _Toc437555936][bookmark: _Toc439534803][bookmark: _Toc441706170]Figure 5.1 - Image decomposition diagram: Summed products of spatial structures and temporal factors (top left) produce an estimated reconstructed image sequence which combined with the residue image sequence represents the original raw dynamic image sequence (bottom). Image decomposition methods simultaneously determine the structures and factors from the raw image sequence. The residue was analyzed for patterns indicating undesired subject motion during image acquisition.



Image decomposition has been used on dynamic nuclear medical images in the past. For example, several studies used factor analysis of dynamic PET images to create factor images and TACs to estimate parameters for kinetic modelling  [61–64]. Another study investigated two factor analysis of dynamic structures (FADS) methods for use of semi-automatic estimation of activity in cardiac dynamic SPECT images [67]. Image decomposition is not a unique method, with many different approaches available depending on the application and goal.

[bookmark: _Toc437552803][bookmark: _Toc439534762][bookmark: _Toc441706099]Principle Component Analysis (PCA)

Principle component analysis is a simple and commonly used decomposition method. It has a well-defined solution that creates eigenvectors of the covariance matrix of the data so as to account for as much signal (variance) in the original image matrix given the number of desired components [66–68]. PCA can easily and quickly be processed on a modern computer making it one of the most widely used methods for decomposition. PCA has been used for data compression and the reduction of noise in images. The resulting decomposition quantifies the variance represented by the Eigenvectors basis-functions (components) through the relative magnitudes of the corresponding Eigenvalues of the solution. 

[bookmark: _Toc441706100]Number of Components

The number of factors into which the image must be decomposed must be predetermined. The number of desired components is mainly dependant on the quality of the image (degree of noise), number of prominent structures (organs/blood/myocardium), structure kinetics (i.e. temporal patterns) and time frame intervals. If too few factors are resolved, then structures with similar kinetics may be lumped together while too many factors can lead to structures being split into multiple components. Furthermore, a large number of factors makes the decomposition process more susceptible to noise [71]. 

The number of factors can be selected based on the relative image sequence variance represented by each component. The relative variance is measured by the respective eigenvalues of the covariance matrix, determined using PCA. The eigenvalues can be normalized to unity sum and then cumulatively summed in decreasing order of magnitude to account for the total image variance accounted by n components. One means by which the number of components to include is resolved is using a user-selected image variance value to include in the solution (or reject to the residue) (Figure 5.2). 
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[bookmark: _Ref439685702][bookmark: _Toc441706171]Figure 5.2: Method for selecting the number of components to resolve based on total cumulative variance (Eigenvalues) as determined by PCA. The user selects a desired total variance (range: 0-100%) and the closest number of components to achieve this threshold is used.



Anecdotal data from previous work involving decomposition of dynamic PET [72] has suggested that image matrix decomposition may be able to expose the presence of motion as a pattern in the error image, however this hypothesis has not been explored in further detail. Figure 5.3 demonstrates a simulated dynamic PET image which has motion in its last time frame (240 s in the +x direction). This dynamic sequence (left most column) has been decomposed using a PCA algorithm (2 factors). The most important components are decomposed in the first two components (factors and structures) which can be seen in Figure 5.3 by the two structure columns.  It can be seen in the 2nd factor that the myocardial wall is visible in that decomposition stage. It is also important to note that the structures in the dynamic image are not fully decomposed, as evident by the prominent structure (red structure in the last two time frames) in the residue. The structure resembles the myocardium and is consistent with heart motion in last time frame. In this chapter, we sought to evaluate whether dynamic image decomposition may be used to detect the presence of motion.
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[bookmark: _Ref431210873][bookmark: _Toc437553005][bookmark: _Toc437555937][bookmark: _Toc439534804][bookmark: _Toc441706172]Figure 5.3 - An example of PCA image decomposition using 2 factors in a simulated dynamic image sequence with motion (left). The blood and myocardium wall patterns can be seen in the two components. A myocardium structure can also be seen at in the last two time frames of the residue image which corresponds to simulated motion. Note the separate color scale on the residue image.



3.2 [bookmark: _Toc441706101][bookmark: _Toc431211158][bookmark: _Toc437552804][bookmark: _Toc439534763]Objective

This chapter is an early investigation of whether principle component analysis, an image decomposition method, holds promise for detection of heart motion in dynamic 82Rb PET based on patterns in the residue image.

3.3 [bookmark: _Toc441706102]Methods 

To test whether heart motion could be detected using patterns in the residue of PCA decomposition of dynamic image data, a series of simulated and patient data were processed with PCA and the residue was analyzed. These datasets are described below, followed by a description of the analysis. 

[bookmark: _Toc437552805][bookmark: _Toc439534764][bookmark: _Toc441706103]Noise-free Simulation

108 noise-free NURBS-based cardiac-torso (NCAT) [56, 57] numerical-phantom dynamic image sequences were generated. 54 images had ±0.9375 cm simulated motion and 54 images had ±1.8750 cm simulated motion (referred to as 1 and 2 cm respectively). The images were generated using the same methods as section 4.3.1. An example of inter-frame motion between two frames in a noise-free simulation can be seen in Figure 5.4.
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[bookmark: _Ref431934569][bookmark: _Toc437555938][bookmark: _Toc441706173]Figure 5.4 - The transverse image shows an NCAT noise-free simulation. The image on the left (frame 13) is without motion and the image on the right (frame 14) is shifted by 2 cm in the +y direction (at 240 s). The myocardium can be seen in red. The crosshairs are fixed between time frames.



[bookmark: _Toc437552806][bookmark: _Toc439534765][bookmark: _Toc441706104]Noisy Simulation

A second, but similar set of 108 NCAT [56, 57] based dynamic image sequences were generated with noise. As with the noise-free simulations, NCAT dynamic images were forward projected (128 projections) using the radon transfer function. Noise (modeled for the GE advance PET scanner and a 20 cm diameter phantom) was then added to the sinograms using the analytical simulator ASIM (University of Washington, Seattle, WA)  [73] and then reconstructed using iterative filtered back projection with Software for Tomographic Image Reconstruction (STIR) [74]. ASIM is a software package which can be used to create noise for analytic PET simulations. STIR is an open-source software package that is used for tomographic image reconstruction.  Motion was simulated in 9 times-frames (30, 60, 80, 90, 120, 150, 180, 240, or 360 s) with ±0.9375 cm (~1 cm) or ±1.8750 cm (~2 cm) motion in 6 directions (+x right,-x left, +y posterior,-y anterior, +z superior,-z inferior). An example of inter-frame motion between two frames in a noisy simulation can be seen in Figure 5.5 and noise-free simulation is shown Figure 5.4.
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[bookmark: _Ref439549444][bookmark: _Toc437555939][bookmark: _Toc439534806][bookmark: _Toc441706174]Figure 5.5 - The transverse image shows an NCAT noisy simulation. The image on the left is with no motion and the image on the right is shifted by 2 cm in the +y direction (at 240 s). The myocardium is shown in red. The crosshairs were not shifted between frames.

[bookmark: _Toc437552807][bookmark: _Toc439534766][bookmark: _Toc441706105]Patient Data

The same patient images as in section 3.3.1 were used with visual interpretation used as reference truth for the presence of motion. Unlike the simulation data, motion could occur mid-frame, be in any direction and magnitude, and have more than one motion event in a dynamic image sequence. Furthermore, patient images are degraded by photon scatter, random events, noise and attenuation mis-registration (especially in the presence of motion).

The 130 patient images (rest and stress) were cropped to a 45x45x35 VOI containing the entire heart and were visually (re-)evaluated using an in-house software program (FlowQuant©, Ottawa, ON) [14, 19] for the presence of any (mild and significant) inter-frame heart motion. Any visible heart motion recorded including mild (<2 pixel) and significant (≥2 pixel) movement of the heart in the dynamic PET image between neighbouring frames. The time frame of heart motion was recorded on a frame-by-frame basis. Inter-frame motion occurs between two successive frames therefore it cannot be detected in time frame 1. The time frames and their corresponding start time and length in seconds is show in Table 3.1.









[bookmark: _Toc437552808][bookmark: _Toc439534769][bookmark: _Toc441706106]Image analysis

In each image set the heart was isolated within a 45x45x35 VOI for all noise-free, noisy and patient images. All the image sets were decomposed in FADSTool (University of Ottawa Heart Institute, Ottawa, ON) using PCA where the number of factors for decomposition were automatically determine so the components accounted for ≥95% variance in the images sequence. The residue images were then visually inspected for any prominent patterns resembling the myocardium using the same interactive viewing software as used to assess motion in the patient data.

[bookmark: _Toc441706107]Automatic Motion Detection Using Quantification of Residue Signal 

The root mean square (RMS) of the residue activity in each time frame was used as a metric to automatically detect the presence of motion. RMS-time curves for noise-free simulations were analyzed for severe and quick changes in amplitude when motion was simulated. Figure 5.6 (top) demonstrates a plot of residue RMS values for each time frame for the case of +x 2 cm motion introduced between time frame 3-4. The maximum RMS was about 225 kBq/cc while the intensity in the surrounding frames is less than 60 kBq/cc presenting as a sharp peak of residual intensity. A similar observation is made in Figure 5.6 (middle) where inter-frame motion is simulated between time frame 10-11. A less prominent maximum RMS peak is visible in the middle time frames (9 and 10) compared to earlier time frames (4 and 7). Figure 5.6 (bottom) shows motion that was introduced between time frame 14-15. Since image decomposition is done on a single frame and not between frames, motion would be detected in the frame following the inter-frame motion event. For example, if motion occurred between time frame 3 and 4 the motion event should be detected in time frame 4. Therefore in early and middle time frames (1-11) the maximum RMS peak was present in the previous frame to the motion event so it was concluded that an offset of one time frame was required for these time frames. A script was written which calculated the maximum RMS value out of the 15 time frames per residue image. All images were processed through this residue anaylsis script and the prevalence and time of motion were recorded and compared to the baseline (simulated or visual assesment).

[bookmark: _Ref439632204][bookmark: _Toc441706175]Figure 5.6 - RMS of activity in each of the 15 time frames of noise-free simulation images. Top: Motion was introduced between time frame 3-4 in the +x direction with a magnitude of 2 cm. Middle: Motion was introduced between time frame 10-11 in the +x direction with a magnitude of 2 cm. Bottom: Motion was introduced between time frame 14-15 in the +x direction with a magnitude of 2 cm. The red circle represents the maximum RMS value
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3.4 [bookmark: _Toc437552809][bookmark: _Toc439534771][bookmark: _Toc441706108]Results

[bookmark: _Toc437552810][bookmark: _Toc439534774][bookmark: _Toc441706109]Noise-free Simulation

Figure 5.7 demonstrates dynamic sequences of transaxial slices of residual images for noise-free simulations with motion (+2cm x direction) at different time intervals. The pattern of seeing a high intensity region (red), medium intensity region (yellow) and a low intensity region (blue) together is consistently seen in the frames before or after motion is introduced. Motion in early time frame (4) and late time frames (14 and 15) had better pre-motion vs. post-motion frame contrast compared to motion in the middle time frames (e.g. motion at 7 or 9). As expected, structures resembling that of blood pool (early time frames) and myocardial uptake (later time frames) were more visually evident when dealing with 2 cm motion in comparison to 1 cm motion (data not shown).
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[bookmark: _Ref432511858][bookmark: _Toc437555944][bookmark: _Toc439534813][bookmark: _Toc441706176]Figure 5.7 – Residue  of noise-free NCAT phantoms with simulated motion (+2cm X direction) at 30s, 60s, 80s, 90s, 120s, 150s, 180s, 240s and 360s represented by the dashed line each in residue. Blood pool (early time frames) and the myocardium (later time frames) is present before or after motion is introduced. Each image is individually scaled between minimum and maximum intensity pixels.



Table 5.1 summarizes the results from image sequence residue analysis with 1 cm simulated noise-free inter-frame motion events. 42 inter-frame motion events were accurately detected while all 54 motion events were detected within ±2 time frames. Likewise, Table 5.2 summarizes the results using 2 cm motion. 52 inter-frame motion events were accurately detected while all 54 motion events were detected within ±2 time frames. 

[bookmark: _Ref439544064][bookmark: _Ref439544057][bookmark: _Toc441706138]Table 5.1 - Detected inter-frame motion events in 1 cm noise-free simulated motion events. The bolded values account for perfect agreement between residue analysis and visual assessment. The highlighted area accounts for ±2 time frames.  N=54. Note: Frame 2 and 3 had no motion so are not shown and inter-frame motion cannot occur in time frame 1.
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[bookmark: _Ref439780311][bookmark: _Ref439780306][bookmark: _Toc441706139]Table 5.2 - Detected inter-frame motion events in 2 cm noise-free simulated motion events. The bolded values account for perfect agreement between residue analysis and visual assessment. The highlighted area accounts for ±2 time frames.  N=54
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[bookmark: _Toc437552811][bookmark: _Toc439534775][bookmark: _Toc441706110]Noisy Simulation

In noisy simulations a structure resembling the myocardium was visible in the residue image in the frames where motion was present, similar in nature to the noise-free results. However, residue images (Figure 5.8) had more noise and less contrast compared to noise-free simulations (Figure 5.7). As with the noise-free simulations PCA decomposition was most effective when motion was present in early (4) and late time frames (14, 15) with good myocardium-to-background contrast. Structures resembling blood pool or the myocardium were visible in all time frames before or after the introduction of motion (denoted by dashed line in Figure 5.8). In middle time frames (7, 9, 10, 11, 12, 13) the myocardium-like pattern was visible in most of the time frames before and after motion was introduced making localization of the time of motion non-trivial. 
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[bookmark: _Ref432513500][bookmark: _Toc437555945][bookmark: _Toc439534814][bookmark: _Toc441706177]Figure 5.8 – Example Residue of noisy NCAT phantoms with simulated motion at 30, 60, 80, 90, 120, 150, 180, 240 and 360 s represented by the dashed line in each residue. Blood pool (early time frames) and the myocardium (later time frames) like patterns are present before or after the motion event.



Table 5.3 and Table 5.4 summarize the automatic motion detection results using 1 and 2 cm motion respectively. Of the 54 noisy simulations with 1 cm motion, 28 inter-frame motion events were accurately detected while 50 motion events were detected within ±2 time frames. With 2 cm motion, 38 inter-frame motion events were accurately detected while 49 motion events were detected within ±2 time frames. 

[bookmark: _Ref439781737][bookmark: _Toc439778386][bookmark: _Toc441706140][bookmark: _Ref439546154]Table 5.3 - Detected inter-frame motion events in 1 cm noisy simulated motion events. The bolded values account for perfect agreement between residue analysis and visual assessment. The highlighted area accounts for ±2 time frames.  N=54
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[bookmark: _Ref439781750][bookmark: _Toc441706141]Table 5.4 - Detected inter-frame motion events in 2 cm noisy simulated motion events. The bolded values account for perfect agreement between residue analysis and visual assessment. The highlighted area accounts for ±2 time frames.  N=54
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[bookmark: _Toc441706111]Patient data

This study consisted of 130 images (rest and stress) from 65 patients. All patients had at least one motion event at varying magnitudes and direction. In total there were 328 inter-frame heart motion events which were visually detected out of 1820 possible frame pairs. Table 5.5 compares the automatically report time of motion event with visually interpreted data. In cases with more than one visually detected motion event the closest visually assessed motion event was used. Of 130 images 60 events were accurately localizes to the correct time frame while 115 motion events were detected within ±2 time frames. 

[bookmark: _Ref439546845][bookmark: _Toc441706142]Table 5.5 - Automatic temporal localization of inter-frame motion events vs visual assessment. The bolded values account for perfect agreement between residue analysis and visual assessment. The highlighted area accounts for ±2 time frames.    N=130. Note: inter-frame motion cannot occur in time frame 1
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[bookmark: _Toc437552812]

3.5 [bookmark: _Toc439534776][bookmark: _Toc441706112]Discussion 

To our knowledge, this work explores a completely novel motion detection strategy based on analysis of residual signals during dynamic image decomposition. As such, the results describe herein are a preliminary evaluation of the method based on simulations and patient data. While visual interpretation of the residual image was used to scrutinize and understand motion related patterns, an automated method to temporally localize the motion event was also evaluated. 

In the noise-free simulations all 108/108 Inter-frame motion events were accurately detected to within ±2 time frame. Once noise was introduced into the simulations accuracy decreased, but nevertheless 99/108 motion events were detected within ±2 time frame. Of these, motion was detected within ±2 time frame for 49/54 cases with 2 cm motion compared to 50/54 for 1 cm motion. In a representative clinical patient dataset consisting of 130 images with some level of motion, only 115/328 (35%) motion events were detected within ±2 time frame. This is due, in part, to the automatic detection criterion (maximum RMS) only being able to detect a single heart motion event in a given image sequence. Many of the 130 patient images, however, had multiple times frames containing heart motion. 

Thus we concluded that even though the performance of PCA residue image based motion detection may be adversely affected by image noise, preliminary performance measurements are encouraging and further investigation of the technique may be warranted. Nevertheless, some concerns remain.

[bookmark: _Toc441706113]Number of events

 The proposed algorithm always detects a single motion event per image. Therefore, it is not clear how the algorithm performs with more than one motion event in a single image or in the absence of motion. In the case of patient images with multiple motion events, we elected to use the visually determined motion event closest in frame count to the automatically detected motion event. This strategy clearly biases the results, producing higher accuracy rates.

A strategy to distinguish between absence/presence of motion was not evaluated as part of this work but would be essential for clinical application. Residue analysis would likely be a first part of a multistep process for discriminating motion events.

[bookmark: _Toc441706114]Event timing

In simulation data motion events in early (4) and later time frames (11-15) were detected most robustly while mid-scan events were frequently missed. These findings were confirmed using the patient data. This could be due to the rapidly changing tracer distribution (from blood to tissue) in the middle time frames, making visual assess of heart motion more challenging.  Tracer uptake and retention by the myocardium as seen in the later time frames produces a more consistent structure to track. 

[bookmark: _Toc441706115]Number of Components

In this work we selected the number of decomposition factors so as to account for ≥95% of the image variance. Figure 5.9 demonstrates the residue of PCA decompositions, using 2, 3, 4 and 5 components. The dynamic image had 2 cm motion simulated at 240 s (between time frame 13 and 14) in the +X direction. A myocardium shaped pattern is clearly present in time frames 14 and 15 when decomposing with either 2 or 5 factors. While a myocardium shaped residue was present using 3 and 4 factors, it is spread over many time frames (both pre- and post-motion event), making it difficult to resolve the timing of the motion event. From this example, it is evident that the number of factors could have a large impact on the motion detection algorithm. From our experience, each image may have a unique number of factors in which the myocardium -to-background contrast in the residue image is optimized.   

Thus further considerations should be given to the number of factors. It may also be possible that the number of factors required to account for a target image variance are indicative of the presence of motion. Number of Factors
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[bookmark: _Ref440210164][bookmark: _Toc441706178]Figure 5.9 - Residue of PCA decomposition using 2, 3, 4 and 5 factors. The noise-free simulation consisted of 2 cm motion introduced at 240 s (dashed lined)(between time frame 13-14) in the +x direction





[bookmark: _Toc441706116]Metrics of Motion

In this work, we relied on RMS of the residue frames to signal the presence of motion. Other possible metrics that may be useful to signify the presence of motion were evaluated in this work including minimum and maximum pixel intensities in the residue images. These metrics were out performed by the RMS metric and their results have been left out of this report for brevity. Nevertheless other metrics may be effective for this purpose. Future work should consider analysis of the Eigenvalues and number of components required account for a target image variance. Another potentially interesting metrics include the entropy or structural information in the residue images as opposed to random noise distribution.

[bookmark: _Toc441706117]Limitations and Future Work

This work is preliminary in nature and therefore may be seen to have numerous limitations. The proposed motion detection algorithm assumes the presence of a single motion event in a dynamic image sequence and as such does not account for images without motion or those with multiple motion events. While this study focused on the merit of using image decomposition to detect heart motion it is evident that for practical application these limitations must be addressed. It may be possible to threshold the RMS value to separate cases with and without heart motion.

The magnitude of heart motion was not evaluated but further evaluation could provide us with a motion threshold in which this detection method can accurately detect motion.

 Furthermore, intra-frame heart motion was not evaluated in this study so as to simplify the analysis to discrete time points in the dynamic image sequence. Future work should include intra-frame motion to improve the accuracy of the simulation. 

3.6 [bookmark: _Toc441706118]Conclusion 

Preliminary data suggests that heart organ motion detection in dynamic PET using image decomposition may be feasible, especially in the early and late time frames. Further work is required to translate this method into a clinically applicable tool for motion detection and correction. 




[bookmark: _Toc441706119]Summary

[bookmark: _Toc441706120]Contributions

CAD is one of the leading causes of mortality and morbidity in western society and is increasing in prevalence in developing societies [3]. With proper diagnosis and intervention however, quality of life and prognosis can be increased significantly. Currently, MPI is regularly used in clinical practice to detect CAD but may provide false-negative results in severe cases where narrowing of multiple coronary arteries is present and in diffused disease of the microvasculature [4, 75]. In both cases the patient may have a uniform decrease in perfusion, in which case relative uptake images may have a uniform distribution consistent with healthy distribution. This limitation can be overcome using absolute MBF quantification [19] which quantifies the amount of blood flow to the myocardium in units of mL/min/g (mL/min of blood per gram of tissue). MBF quantification can be performed at rest and stress cardiac states and myocardial flow reserve (MFR) can be calculates as stress/rest ratio. MFR provides incremental prognostic value to physicians when dealing with patients with suspected cases of CAD [14, 20]. 

The gold standard non-invasive modality for MBF quantification is positron emission tomography (PET) [4].  Dynamic cardiac PET images can image the distribution of tracer from the blood stream into the perfused tissue. Sampling of regions of interest (ROIs) over the dynamic sequence produces time-activity curves (TACs) of the changes in tracer concentration over time in the anatomical region being sampled. MBF is quantified by analysing the relationship between arterial blood (which perfuses the myocardium) and myocardium TACs. Dynamic imaging implicitly assumes that an ROI corresponds to a specific anatomical location in the patient at all time frames. This assumption is violated by the presence of motion and may manifest itself as distorted TACs which lead to errors in MBF quantification measurements. Therefore the detection of gross patient motion and heart motion has clinical value for image interpretation and quality assurance. 

Rigid motion can be present in cardiac imaging for example of the patient shifts during the exams, however heart motion within the thorax is non-rigid as the soft tissues move in relation to one another [35] and tracking of surface markers may not always correlate with heart positioning. Tracking of heart motion in a dynamic cardiac image sequence can also be complicated by changing tracer distributions from blood to perfused tissues. Therefore, heart motion in cardiac PET is a complicated and unresolved problem that can be tackled by several approaches.

One strategy is to correct PET data prior to reconstruction or during reconstruction, but this requires that additional equipment be installed and operated in a fast-paced imaging clinic [1, 2, 51, 53, 54]. Pre-reconstruction methods generally require that motion data be recorded into the PET camera list-mode data for alignment [1, 2, 51, 53, 54]. PET camera vendors, structure and process list-mode data in proprietary ways, making pre-reconstruction strategies non-universal across vendors, and often between instrumentation of the same vendor. Post-reconstruction approaches are advantageous in their vendor neutrality and can be simple to process; however not all motion related artifacts (e.g. attenuation mis-registration) may be correctable. Nevertheless, post-reconstruction detection of motion may be a useful quality control tool that can be seamlessly incorporated into the MBF quantification workflow. Little work has been done on post-reconstruction non-rigid motion tracking. Gated-PET image acquisition is a well described method but these images are more susceptible to noise due to their decreased photon count [38, 76]. Fiducial markers have been used to track rigid motion for various imaging applications and other non-rigid motion use pre-reconstruction methods [49–51], however the utility of patient surface mounted fiducial markers for tracking deep organ motion is unclear.

Chapter 3 of this thesis explores whether a positron-emitting fiducial marker motion is a useful surrogate marker of heart motion in dynamic 82Rb PET image sets. A small 22Na marker was affixed to patients’ skin over the lower right frontal rib. The marker could be clearly distinguished in the reconstructed PET images. Agreement between presences of motions in the entire dynamic study was 88% for flagging cases with heart motion based on analysis of fiducial marker motion. In the cases with motion, 16.7% had motion in different directions and 12.5% of the images had motion at different time points. Therefore it was concluded that fiducial markers can be useful in predicting the presence of motion but may not be ideal for characterising motion. This method of motion detection was non-invasive and only required the use of a low-cost low-activity positron-emitting marker which can be detected in post-reconstructed dynamic PET images. Thus it was concluded that fiducial markers could aid in quality control of dynamic cardiac PET studies, especially if fiducial marker motion detection could be automated.

In Chapter 4 we followed up by developing automatic detection of patient motion using fiducial markers. We focused on two manifestations of motion: inter-frame and intra-frame. Inter-frame motion was defined as motion between two successive frames which appears as a sudden shift of the maker between frames bookending the motion event. Intra-frame motion is motion within a single frame, which is manifested as a directional blur of the marker within the affected time frame. 

Using visual assessment as our truth reference for motion and ROC analysis, we determined that inter-frame motion could be detected with an accuracy of 91% using a 2.7 mm motion threshold. Therefore, the motion detection threshold was smaller than one voxel in size and well below the image spatial resolution. Similarly for intra-frame motion we resolved an optimal activity fall-off rate parameter, B, threshold value of 0.0359 mm-2, which gave an 87% accuracy estimate This threshold value corresponds to a blur breadth (50% of peak) of 4.4 mm which is well below the image spatial resolution. We concluded that these accuracies were sufficiently high to benefit the clinic as a quality control tool when incorporated into the MBF quantification software. 

The advantage automatic tracking of fiducial markers as a surrogate for heart motion is that it is vendor independent, is fast and simple to process, is low-cost and could be easily adapted for a wide range of applications. Nevertheless, this approach is limited by non-perfect correlation between heart and marker motions as described in Chapter 3.

Chapter 5 discusses a completely different approach to heart motion detection, in which the temporal patterns in the heart image itself are analyzed for inconsistencies. The image is decomposed using principle component analysis (PCA) and the residue image (the signal not accounted for by the principal components) is analyzed for patterns that indicate motion. Image decomposition assumes that no motion is present in the image and a violation of this assumption results in additional components being generated or alternatively larger residue intensities and non-random patterns.

Based on a series of simulation and patient based analyses, it was concluded that this method shows promise for detecting inter-frame motion in early and late time frames, but its utility for mid-scan motion is less clear. Furthermore, motion related patterns in the residue became less prominent in the presence of image noise. However, from the patient data we concluded that noise levels do not seem to be a major concern for this application. 

Image decomposition as a means of heart motion detection is, as far as we know, a novel approach, and this preliminary research demonstrates that it warrants further investigation. Nevertheless, much more work is required to make image decomposition based motion detection more robust and to determine if it can also be used to characterize motion.

[bookmark: _Toc441706121]Limitations

[bookmark: _Toc441706122]Visual Assessment of Motion

A major limitation of this work is the reliance on visual assessment of images for motion as a reference truth. A quantitative external measurement of the motion would have been preferable especially for validating fiducial marker motion tracking. 

Visual evaluation of mild motion of the heart is difficult even with a smaller VOI (45x45x35) due to the constantly changing tracer distribution. This leads to uncertainty of the visually assessed data and a high rate of visually detected cases of suspected heart motion. While mild motion may not be clinically significant it was included in the analysis so as to better understand the robustness of image decomposition based motion detection in a clinical context. Intra-frame motion of the heart is difficult to assess due to the nature of the images and the constantly changing tracer distribution throughout the dynamic cardiac PET image and was therefore was not explicitly addressed. Nevertheless it is safe to assume that many of the images which exhibited inter-frame motion also contained intra-frame motion.

[bookmark: _Toc441706123]Simulation Data 

The use of simulation data is an attractive alternative to clinical studies as the motion is known in all its detail. Nevertheless, simulations may not completely model the imaging process, patient physiology, and/or motion. While this work utilized noise free and noisy simulations, it only evaluated inter-frame motion and not intra-frame motion. This was partially due to the tediousness and long computer processing time required to generate a large cohort of simulations. While we were not able to complete intra-frame motion simulations in time to include in this work, we are in the process of generating intra-frame motion simulations to further validate the merit in the above discussed motion detection methods. 

A further possible improvement over this work could be the use of more accurate simulations including:

·  Monte-Carlo simulations of the nuclear physics as opposed to the analytical noise model. 

· Addition of attenuation mis-registration artifacts to the motion effected time frames.

· Separate blood TAC for the arterial and venous structures as opposed to a single TAC.

· Cardiac disease models in addition to the healthy (uniform) models in this work.

· Inclusion of rotation motion to the shift motions in this work.

· Inclusion of non-rigid motion (i.e. shifting of the heart within the thorax.

· Inclusion of cardiac and respiratory motions.

· Addition of cases without motion as a negative control cohort

[bookmark: _Toc441706124]Clinical Feasibility

Fiducial markers are low in cost and can be applied to patients without significant additional workload to clinical staff. Furthermore, since the markers represent a very low additional radiation dose no special consents would be required for clinical use. Thus, the use of positron-emitting fiducial markers can be clinically adopted immediately with the added benefit of quality control (QC) for motion, though appropriate analysis software would be valuable to fully make use of these markers.

Image decomposition requires no additional costs or equipment during image acquisition. PCA is a fast, well documented and simple decomposition method which can quickly process multiple dynamic images in a short period of time, potentially making it a clinically attractive quality assurance tool. However, interpretation of the results is not straightforward and as such will likely not be clinically beneficial in the immediate future. 

Currently, clinics use analysis software to quantify MBF. These methods can easily be integrated into existing software. Alternatively complimentary automated software may be able to run in parallel to the MBF quantification software purely for QC purposes. 

The methods described in this work do not correct for motion but could flag patient images where motion is present. If motion is detected then it would warn the observing physician to proceed with caution and if no motion is detected then it increases confidence in the MBF measurements. Steps are being taken to incorporate fiducial marker based automatic detection of patient motion in our clinical environment as a quality assurance tool. 

[bookmark: _Toc441706125]Other Applications

Fiducial marker motion tracking has been used for tracking respiratory and tumour motion in PET images  pre-reconstruction [50–52]. Fiducial markers have been used with multiple imaging modalities (SPECT, MRI, CT, Ultrasound, X-Ray) for motion tracking [48, 49, 73–77]. Most of these works deal with motion tracking of rigid motion using markers or tracking of lesions; thus the algorithms developed in this work can be adapted for these and other applications. The motion tracking algorithm is designed to track a consistent structure in an image volume sequence not necessary just a spherical fiducial marker in a dynamic PET image. The algorithm can also easily be modified to track motion in a sequence of 2D images. While, dynamic imaging is only a small fraction of imaging done in nuclear medicine it is seeing growth in MRI. 

[bookmark: _Toc441706126]Motion in Static Images

The use of a fiducial marker and intra-frame motion detection algorithm could be applied to static MPI images which are acquired over extended time intervals (e.g. 2-8 minutes in PET) and are also susceptible to motion blur artifacts. MPI is much more commonly performed than MBF at the moment and therefore the addition of motion QC could benefit a much larger cohort of patient exams.

[bookmark: _Toc441706127]Multiple marker tracking

In this work we evaluated the use of a single fiducial marker for detecting the presence of motion. Future work could consist of tracking multiple markers to fully characterize motion and therefore drive patient motion correction. Furthermore, it is possible that multiple marker tracking could improve the accuracy (sensitivity and specificity) of motion detection over the use of a single marker.

[bookmark: _Toc441706128]Motion Correction 

While this work evaluated the use of motion detection for quality control, it did not address motion correction. As previously stated, tracking a single fiducial marker does not provide sufficient information for robust motion correction; however with the use of multiple markers this may be possible. The use of image decomposition for motion correction was also not addressed in this work. Motion correction after image reconstruction can effectively reduce MBF error, but may not completely eliminate errors due to uncorrected attenuation mis-registration [47]. Nevertheless, the methods described in this work may be suitable for driving motion correction and therefore may be of interest for future work. 

[bookmark: _Toc441706129]Conclusion

This thesis discusses two potential solutions for automatic motion detection in dynamic PET images. It was concluded that fiducial markers have adequate sensitivity and specificity as predictors of presence of heart motion in dynamic image acquisition. Inter- and intra-frame fiducial marker motion can accurately be detected automatically. This method of heart motion detection should be incorporated into routine clinical use. The final study evaluated the merit of using image decomposition to detect heart motion based on the resulting residue patterns. This method showed promise in detecting cases with motion in noise-free, noisy and clinical patient images especially in early and late time frames but more work is required to determine if it can be useful for routine clinical use.
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