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Abstract

Pulse oximetry is a non-invasive technique for measuring the amount of oxygen in

a patient’s arterial blood, as a percentage of the blood’s oxygen carrying capacity

(SpO2). This measurement is considered standard of care in the hospital for mon-

itoring the cardio-respiratory function of a patient. While it has potential uses in

ambulatory or wearable monitoring applications, pulse oximetry is particularly sus-

ceptible to motion artifact contamination. This thesis presents efforts to quantify and

model the effects of motion artifact, and automatically detect periods of poor signal

quality.

First, the effects of motion artifact on SpO2 are analyzed using motion contam-

inated data. Second, two models are identified from previous literature that may

explain the effects of motion artifact on pulse oximetry. These models are developed

analytically and evaluated using isolated motion artifact signals. Finally, three auto-

matic signal quality assessment algorithms are proposed. These algorithms are shown

to discriminate between clean and motion contaminated signals.

Overall, this thesis attempts to inform the development of software and hardware

based techniques to mitigate the effects of poor signal quality on pulse oximetry.
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Chapter 1

Introduction

Healthcare systems around the world are being challenged by increasing costs and

demand for services. Most developed countries have seen their healthcare costs rise

as a percentage of GDP in the past decade [1]. There is an increasing need to ease

the pressure on healthcare systems by moving health monitoring out of the hospital

and into the home. Advances in telemedicine and portable technology may offer a

solution to this problem [2,3].

Typical medical monitoring devices found in a hospital require interaction with

a trained practitioner in a controlled environment to ensure clinically relevant mea-

surements. Performing an electrocardiogram (ECG), electromyogram (EMG), elec-

troencephalogram (EEG), blood pressure measurement or blood-oxygen saturation

measurement require patient preparation and equipment setup. Patients are often re-

quired to remain still and quiet while tests are being performed. All of these devices

require a clinician to process signals or alarms, assess the quality of the information,

and decide how to direct patient care based on that information.

Despite the care taken by the clinician, tests performed in the hospital are only

a snapshot, and may not capture issues that only occur occasionally. This issue

demonstrates the potential benefits to medical monitoring in a continuous fashion. A
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patient’s condition can be assessed during their regular daily routines, and significant

events can be captured that may have been missed in the hospital.

Many developers of wearable health technology target the consumer electronics

market with fitness tracking devices. This has lead to an explosion of wearable devices

measuring heart rate, respiration rate, oxygen saturation, activity levels and sleep

quality [4].

There are benefits to this approach - companies are able to develop technology

for the consumer market without the cost of medical device licensing. However, the

common thread still exists - these are medical devices, and have the potential to

provide valuable data to a patient’s electronic health record without a hospital visit.

When monitoring moves into unsupervised environments, the quality and inter-

pretation of collected data can come into question. Clinicians may not be available to

supervise the use of continuous devices or act on alarms. Furthermore, ambulatory

monitoring is subject to motion artifact - signal noise caused by movement of the

patient. This may degrade the quality of the data being recorded.

To guide the advancement of wearable medical devices, it is helpful to look at the

state of existing technology in the hospital versus the consumer electronics market.

Pulse oximetry - a technique for evaluating a patient’s cardio-respiratory function -

is considered standard of care in the operating room and intensive care units, yet it

has been largely neglected in the consumer health space. A pulse oximeter estimates

a patient’s arterial blood-oxygen saturation (SaO2) non-invasively, and reports this

estimate as the peripheral capillary oxygen saturation (SpO2).
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1.1 Motivation

Pulse oximetry may be facing slow adoption in consumer devices due to its sensitivity

to motion artifact. Previous work demonstrates a decrease in measurement accuracy

and an increase in false alarms for hypoxia (low blood oxygen saturation) in the

presence of motion artifact [5, 6].

Despite the importance of measuring SpO2 in the hospital, and its possible ap-

plications in ambulatory environments, sensitivity to motion artifact makes pulse

oximetry ill suited to portable or wearable monitoring applications.

1.2 Biosignal Quality Analysis

In controlled environments, expert operators can manually detect poor quality biosig-

nals and intervene to correct the problem. As medical devices leave controlled en-

vironments and enter remote monitoring applications, the importance of automatic

signal quality analysis becomes fundamental [3]. For pulse oximetry in particular, [3]

notes that despite research into mitigation of motion artifact, little has been done to

address the cases where signal quality is so poor that useful data cannot be extracted.

Automatic biosignal quality analysis can be divided into four fundamental prob-

lems: detection of a signal contaminant, identification of the type of contaminant,

quantification of the contaminant’s effect on the signal, and mitigation [7]. This work

seeks to address some of the gaps in detection and quantification of motion artifact

in pulse oximetry, with the goal of masking the signals where artifact mitigation is

unfeasible.
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1.3 Objectives

The objective of this work is to gain understanding of the signal quality challenges

facing ambulatory pulse oximetry monitoring. Specifically, this thesis seeks to:

1. Quantify the effect of motion artifact on pulse oximetry signals.

2. Define and evaluate pulse oximetry motion artifact models proposed in the

literature.

3. Develop and evaluate multiple automatic signal quality assessment algorithms

to detect motion artifact and other signal quality issues in pulse oximetry.

1.4 Contributions

The following contributions are presented in this thesis:

Evaluation of measurement error in motion contaminated pulse oximetry

Previous work has demonstrated measurement error associated with motion artifact

in pulse oximetry [5,6]. The size of this error is highly dependent on the parameters of

the specific SpO2 calculation algorithms employed. Chapter 4 evaluates measurement

bias and variance in a set of motion contaminated signals using the conventional SpO2

calculation algorithm. These parameters are also evaluated as a function of signal to

noise ratio in artificially contaminated signals.

Analytical modelling of pulse oximetry motion artifact

Explanations for the effects of motion artifact on pulse oximetry are hypothesized in

the literature [8], but with little supporting evidence. Chapter 5 re-derives the SpO2
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algorithm to include these effects, and discusses the predicted effect of motion artifact

on SpO2 calculation. The models are evaluated using isolated motion artifact signals.

Development and evaluation of automatic signal quality assessment

If poor quality signals can be identified and ignored, the measurement error associated

with motion artifact can be mitigated. Chapter 6 proposes three simple signal qual-

ity assessment algorithms, and evaluates their performance using real and artificial

motion contaminated signals.

Portions of this work have been disseminated in the following papers:

• G. W. J. Clarke, A. D. C. Chan, and A. Adler, “Effects of motion artifact on

the blood oxygen saturation estimate in pulse oximetry,” Medical Measurements

and Applications (MeMeA), 2014 IEEE International Symposium on, pp. 14,

2014. [9]

• G. W. J. Clarke, A. D. C. Chan, and A. Adler, “Quantifying Blood-Oxygen Sat-

uration Measurement Error in Motion Contaminated Pulse Oximetry Signals,”

World Congress on Medical Physics and Biomedical Engineering, 2015. [10]

1.5 Thesis Organization

The remainder of this document is structured as follows:

Chapter 2: Provides a literature review of the basic principles of pulse oximetry.

This includes a discussion of the development of the technology up to the current

research in motion-resistant and calibration-free pulse oximetry. Gaps in the current

body of knowledge are identified.
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Chapter 3: Describes the data acquisition equipment and methodology used to

collect a dataset for this study. Additionally, the development of the digital algorithm

to calculate SpO2 from raw PPG signals is discussed.

Chapter 4: Explores the effects of motion artifact on SpO2 data. Measure-

ment accuracy and precision are quantified using real contaminated PPG signals and

artificially contaminated data.

Chapter 5: Presents possible models to explain motion-induced SpO2 hypoxia

alarms. These models are evaluated by characterizing real isolated motion artifact

signals.

Chapter 6: Details the development of multiple SpO2 signal quality analysis

algorithms. These algorithms are evaluated for their ability to identify and quantify

motion artifact in real and artificially contaminated PPG signals.

Chapter 7: Presents the conclusions of the research and provides recommenda-

tions for future work.

Appendix A: Provides a derivation of the SpO2 calculation from the Beer-

Lambert law of light absorption.

Appendix B: Provides raw data for the signal quality index (SQI) calculations

in Chapter 6.



Chapter 2

Background

This chapter provides a review of the principles of pulse oximetry and the latest

research reported in the literature. Section 2.1 provides an introduction to pulse

oximetry measurement. Section 2.2 discusses clinical and non-clinical applications

of pulse oximetry. Section 2.3 reviews previous efforts to understand the effects of

motion artifact and develop automatic signal quality assessment. Section 2.4 describes

today’s state of the art research in pulse oximetry technology.

2.1 Introduction to Pulse Oximetry

2.1.1 Oxygen Transport

Oxygen is a key ingredient in cellular respiration - the chemical processes by which

human cells generate energy. In normal human respiration, oxygen is first diffused

across the alveolar-capillary membrane from the lungs into the bloodstream. This

process is illustrated in Fig. 2.1. Oxygen molecules bind to haemoglobin (Hb) - the

main carrier of oxygen in the blood. Each haemoglobin protein can carry four oxygen

molecules.

7
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Figure 2.1: Gaseous exchange in the lung (Reproduced from [11]).

There are four species of haemoglobin found in healthy adult blood:

• Oxyhaemoglobin (HbO2) is completely saturated with oxygen.

• Deoxyhaemoglobin (Hb) is not completely saturated with oxygen.

• Methaemoglobin (MetHb) is an altered form of haemoglobin, and is unavailable

for oxygen transport.

• Carboxyhaemoglobin (COHb) is saturated with carbon monoxide, and is un-

available for oxygen transport.

The first two species (HbO2 and Hb) are functional haemoglobins, and are ei-

ther transporting or are capable of transporting oxygen. Dysfunctional haemoglobins

(MetHb and COHb) are not available for oxygen transport, and make up 1-2% of the

total haemoglobin molecules in a healthy, non-smoking adult [12].

In the arterial blood of a healthy person, greater than 95% of the total haemoglobin

molecules are carrying oxygen. This figure is known as arterial blood-oxygen satura-

tion, or SaO2, and is defined in (2.1) where [HbO2], [Hb], [metHb] and [COHb] are

the concentrations of oxy-, deoxy-, met- and carboxy- haemoglobin, respectively.
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SaO2 =
[HbO2]

[HbO2] + [Hb] + [metHb] + [COHb]
× 100% =

[HbO2]

[TotalHb]
× 100% (2.1)

Oxygen transport can be modelled as a simple supply and demand problem; if

the oxygen demand from the tissues exceeds the lungs’ capacity to supply it, SaO2

decreases. This condition of oxygen deprivation is known as hypoxia. Conditions that

limit the supply of oxygen include lung injury, airway injury or low partial pressure of

oxygen in the air. Healthy patients under general anaesthesia can experience reduced

respiratory drive, which can also limit the supply of oxygen during surgery. Conditions

increasing the demand for oxygen include intense exercise, fever and infection. In

surgery and intensive care, SaO2 is standard of care in assessing respiratory function

and diagnosing hypoxia.

SaO2 is measured using arterial blood gas analysis. This test involves sampling

blood from an artery and sending it to a lab oximeter, which uses spectroscopic

techniques to distinguish all four species of haemoglobin. However, this technique is

ill suited to emergency situations - it requires several minutes to process the sample

and obtain the results. The time delay and the invasive nature of this procedure

necessitate an alternative that is both non-invasive and better suited to continuous

monitoring.

2.1.2 Measuring SpO2 with Pulse Oximetry

SaO2 is a direct, invasive measurement of the oxygen content of the blood and requires

an arterial blood sample. SpO2 is an indirect, non-invasive estimate of SaO2 provided

by pulse oximetry. While SaO2 expresses oxygen saturation as the ratio of oxy-

haemoglobin to total haemoglobin, SpO2 considers only the functional haemoglobins.



CHAPTER 2. BACKGROUND 10

SpO2 is defined as the functional oxygen saturation as measured by pulse oximetry,

according to (2.2), where [HbO2], and [Hb] are the concentrations of oxy-, and deoxy-

haemoglobin, respectively.

SpO2 =
[HbO2]

[HbO2] + [Hb]
× 100% =

[HbO2]

[FunctionalHb]
× 100% (2.2)

Pulse oximetry measures SpO2 non-invasively and continuously by applying spec-

troscopic techniques and the Beer-Lambert law (2.3). The Beer-Lambert law describes

the transmission of light through a material as a function of incident light intensity

(I0), extinction coefficient (ε), path length of the light (l), and concentration of the

substance ([C]).

I = I0e
−ε[C]l (2.3)

Fig. 2.2 shows a portion of the electromagnetic radiation extinction spectra for

oxygenated and deoxygenated haemoglobin in the near-infrared region. Deoxy-

genated haemoglobin absorbs more red light (approximately 700 nm), and oxygenated

haemoglobin absorbs more infrared light (approximately 900nm). By comparing the

optical extinction at the two indicated wavelengths, a pulse oximeter can distinguish

between the two haemoglobin species. These wavelengths are selected based on loca-

tions in the spectra where there are relatively large extinction coefficient differences

between the two haemoglobin species.

A pulse oximeter uses a probe with multiple light emitting diodes (LEDs) with

different emission wavelengths and a photodetector. In a conventional probe, two

LEDs are used: red (approximately 700 nm) and infrared (approximately 900 nm).

These components can be arranged in transmissive or reflective configurations. In

the transmissive configuration, the LEDs illuminate a thin perfused tissue, such as a
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Figure 2.2: Optical extinction spectra of oxygenated haemoglobin (HbO2) and de-
oxygenated haemoglobin (Hb) [13].

fingertip or an earlobe, and the photodetector measures the light transmitted to the

other side. In the reflective configuration, the LEDs illuminate perfused tissue close

to a bone, and the photodetector detects the light reflected from the bone. Fig. 2.3

shows three pulse oximeter probes. The fingertip and earlobe probes are transmissive,

and the forehead probe is reflective.

A significant portion of the light extinction between the LEDs and photodetector

is due to tissues other than arterial blood. The contribution of each different tissue

to the overall light extinction is assumed to be additive. To isolate the effects of

arterial blood, the light signal received at the photodetector must be analyzed over a

period of time. This light signal is known as a photoplethysmograph (PPG), and is

modulated by the pulse pressure signal from the beating heart. During systole, more
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Figure 2.3: Three types of oximeter probes. Fingertip (left) and earlobe (centre)
are transmissive, and forehead (right) is reflective. (Images of Nellcor sensors
courtesy of Covidien)

blood enters the tissue and light transmission to the photodetector decreases; during

diastole blood drains and transmission increases.

The AC component of the PPG signal is assumed to be comprised solely of the

pulsating arterial blood, while the DC component is comprised of all of the light

absorbing tissues that remain constant. This is demonstrated in Fig. 2.4.

By isolating the AC component of the PPG, the light extinction due to pulsing

arterial blood is considered independent of the other tissues between the LED and

photodetector. The pulse oximeter normalizes the red and infrared PPGs by their DC

components to cancel out the effect of incident light intensity and detector wavelength

dependence. To calculate SpO2, the ratio of amplitudes of the normalized PPGs,

known as the “ratio of ratios” or R parameter, is calculated (2.4):

R =
ACRED/DCRED
ACIR/DCIR

(2.4)

R is converted to SpO2 using an empirically derived calibration curve described in

Section 2.1.3. A complete derivation of the R parameter and its relationship to SpO2,

starting from the Beer-Lambert model of light absorption, is presented in Appendix A.
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Figure 2.4: Contribution from tissues to light transmission signal. Amplitudes are
not to scale. (Adapted from [2])

2.1.3 Calibration

In Appendix A, the analytical relationship between the R parameter and SpO2 is

derived (2.5), where εX,λ is optical extinction coefficient of molecule X at wavelength

λ.

SpO2 =
εHb,Red − εHbO2,RedR

εHb,Red − εHbO2,Red + (εHbO2,Red + εHb,IR)R
(2.5)

This calibration function has a number of inherent issues. The extinction coeffi-

cients in (2.5) are dependent on the wavelength of the LED. Due to manufacturing

tolerances, different instruments may have different peak emission wavelengths and

may be subject to drift. Their light emission may also be spread over several wave-

lengths. Nitzan et al. demonstrated that a wavelength error of only ± 0.2 nm causes
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an error in the distinction coefficient, leading to an error of 0.5 % SpO2 [14]. Addi-

tionally, for any given wavelength, the extinction coefficients of haemoglobin reported

in the literature are not in perfect agreement across multiple studies [15].

Further complicating the analytical relationship in (2.5), the Beer-Lambert model

does not completely describe the light extinction signal. There are several conditions

for validity of the Beer-Lambert law. These conditions stipulate:

• The sample between the light emitter and detector must be homogeneous

• The sample must have zero turbidity (cloudiness caused by solid particles in

suspension)

• The rays of incident light must be parallel

Because these conditions are not perfectly met in pulse oximetry, the solution to

(2.5) may differ from true SpO2 values.

To overcome these issues, pulse oximeter calibration curves are derived empirically

during the design phase of the device. To derive these curves, clinical trials are

set up where healthy volunteers wear pulse oximeters, and the partial pressure of

oxygen in the inspired air is reduced temporarily. This induces a short period of

hypoxia. R values reported from the oximeter are mapped to SaO2 values calculated

from invasive arterial blood gas analysis. Reasonable accuracy can be obtained using

this procedure, but ethical considerations limit calibration below 70% SaO2. The

risk of hypoxic brain damage in the volunteers prevents researchers from inducing

low saturation, so reported SpO2 measurements at low saturations have considerable

uncertainty.
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2.2 Applications of Pulse Oximetry

2.2.1 Clinical

Pulse oximetry is indicated in any condition where a patient’s ability to transport

oxygen around the body must be assessed.

Ventilatory support is required when a patient cannot breathe independently. This

may be due to general anaesthesia, disease or injury to the lungs and airway. Pulse

oximetry is used to assess the performance of mechanical ventilation, and inform the

physician if adjustments need to be made to breathing rate, airway pressure, flow

volume, or gas mixture [16].

Pulse oximetry is used in the diagnosis of heart and lung disease, as these are the

organs responsible for oxygenating and circulating the blood. These conditions can

include heart attack, congestive heart failure, anemia, chronic obstructive pulmonary

disease (COPD), lung cancer, asthma, or pneumonia [16].

Pulse oximetry may be used in the diagnosis of sleep apnea, a condition char-

acterized by intermittent cessation of breathing during sleep [16]. This may cause a

decrease in SpO2, and the oximeter can measure the severity and duration of hypoxia.

2.2.2 Non-Clinical

There is evidence to suggest that pulse oximetry could be a useful tool for analyzing

the training of high performance athletes. Garrido-Chamorro et al. characterized

desaturation patterns of athletes while performing maximal oxygen uptake (V̇O2,max)

tests [17]. The authors hypothesize that establishing these patterns could help eval-

uate cardiorespiratory adaptation to intense exercise.

Peeling et al. measured oxygen saturation in athletes during high intensity interval

work in order to study the effect of oxygen administration during recovery [18]. They
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found that administration of hyperoxic gas decreased the time it took for oxygen

saturation to return to normal after intense exercise.

Mengelkoch et al. reviewed studies of pulse oximetry during exercise. Oxygen de-

saturation was often reported during high intensity exercise. This effect was amplified

if the athlete was at altitude, or had pre-existing conditions such as asthma [19].

Pulse oximetry is also commonly used by climbers to assess their physiological

response to hypoxic conditions at altitude. This is done to manage acclimatization

to the hypoxic air and avoid altitude sickness.

2.3 Signal Quality

The ECRI Institute, a research organization promoting evidence-based medicine and

patient safety, releases an annual report on health technology hazards to patient

safety. In its recent report, the ECRI Institute identified “Inadequate Alarm Con-

figuration Policies and Practices” as the top health technology hazard for 2015 [20].

This includes alarm fatigue, where the false alarm rate is so high that clinicians either

waste time responding to them, or ignore them and risk missing true alarms. Next

to alarm fatigue, data integrity was identified as the second most significant hazard,

whereby missing or incorrect data recorded by medical devices can misinform clinical

decisions [20]. Poor signal quality in pulse oximetry is a contributor to both of these

hazards.

2.3.1 Artifact Detection in Biological Signals

Because of the significant rate of inadequate alarms cited in the ECRI report [20],

there is research interest in implementing smarter alarm policies across a wide range

of physiological data. Rather than activating alarms based on a static threshold



CHAPTER 2. BACKGROUND 17

in a single biological signal, current research seeks to implement alarms based on

individualized trends over a wide variety of signals in order to identify clinically

significant events requiring intervention.

Avent and Charlton attribute high false alarm rates to the random nature of

biological signals, causing the failure of simple threshold-based alarms [21]. They

evaluate research in trend detection and statistical techniques to distinguish between

artifacts and clinically significant events.

In her review of false alarms in critical care units, Chambrin recommends careful

consideration of what monitors need to be used for an individual patient, as well as

careful definition of alarm conditions - including averaging times and clinically signif-

icant thresholds. She also recommends a multi-parametric approach with redundant

data to improve resilience to artifact [22].

Nizami et al. discuss methodological recommendations for detection of artifacts

in biological signals. They recommend a standardized framework for incorporating

signal quality assessment into clinical decision making, along with standardized signal

quality index (SQI) algorithms for different biological signals [23].

2.3.2 Effects of Motion Artifact in Pulse Oximetry

Investigators have studied the effects of motion artifact on pulse oximetry in clinical

settings. Barker and Shah studied the hypoxia alarm rates during motion for a number

of instruments, demonstrating false alarms caused by motion artifact [5]. Wiklund et

al. noted a 77% false alarm rate in pulse oximetry during post anaesthesia monitoring,

caused by sensor displacement, motion artifacts and poor perfusion [24]. In a study in

a paediatric intensive care unit, Lawless found 7% of pulse oximeter hypoxia alarms

were significant alarms that resulted in altered care [6].

Despite overwhelming evidence that motion artifact causes signal degradation and
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false alarms in pulse oximetry, the mechanism is poorly understood. Petterson et al.

discuss possible mechanisms by which motion artifact could cause poor signal quality

and false alarms [25]. They propose that noise is equal on the red and infrared PPG

signals, so as noise increases, R approaches 1 (approximately 85% SpO2, significantly

lower than normal), increasing the likelihood of an hypoxia alarm. They also propose

that movement of low-oxygen venous blood could be interpreted by an oximeter as

an arterial pulse, further contributing to false hypoxia alarms. The authors admit

there is little evidence supporting either of these models.

2.3.3 Signal Quality Assessment in Pulse Oximetry

Researchers have undertaken efforts to develop automatic signal quality assessment

on PPG signals. Sukor et al. described a binary signal quality classifier based on

morphology of the PPG waveform [26]. In classifying manually annotated “good” and

“poor” signals, sensitivity and specificity were reported as 89% and 77% respectively.

Karlen et al.’s SQI algorithm relies on pulse segmentation and cross-correlation of

incoming pulses with an ensemble average reference pulse [27]. The pulse segmenta-

tion algorithm showed strong performance in identifying and segmenting individual

pulses. SQI is compared to manual annotations of signal quality. Success in using the

SQI as a binary signal quality classifier is demonstrated, but the authors note that

the threshold of this classifier should be application specific.

Li et al. introduced dynamic time warping and a neural network algorithm to

develop a waveform morphology based SQI [28]. The authors noted 95% accuracy on

the binary classification of manually annotated PPGs.

All of these methods were tested against manual annotations to distinguish be-

tween good and poor quality signals. Further study is needed to determine the rela-

tionship between the signal quality and SpO2 measurement error in order to inform
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the threshold tuning of a signal quality classifier.

Some SQIs are bolstered by a multimodal approach - Silva et al. used paral-

lel electrocardiogram (ECG) to inform the PPG SQI without relying on waveform

morphology [29]. They supported their evaluation by demonstrating the correlation

between SQI and signal to noise ratio (SNR) using additive white Gaussian noise.

Many of the published SQIs are evaluated by checking the agreement in heart

rate between the PPG signal and a reference ECG. Caution must be used with this

approach - accurate heart rate measurement from PPG signals does not imply ac-

curate SpO2 measurement. In cases where the cardiac pulse is distinguishable in a

noisy PPG, the heart rate can be determined even if the PPG amplitudes are altered

(affecting SpO2). Alternatively, if noise is periodic and matches the heart rate, SpO2

can be affected without the location of the cardiac pulses being obscured.

2.4 Advances in Pulse Oximetry

2.4.1 Calibration-Free Pulse Oximetry

Recent research efforts have attempted to eradicate the dependence of pulse oximeters

on empirical calibration. The calibration curves are derived from healthy volunteers

over the normal physiological range of SpO2 values. The resulting curves may not

accurately report SpO2 in critically ill patients outside the normal physiological range.

Reddy et al. discussed a calibration-free method similar to the analytical relation-

ship in (2.5) [30]. Their results demonstrated agreement between their calculations

and measured SaO2 values, but did not address the errors stemming from imprecise

peak wavelengths in the LEDs, or the variation of haemoglobin extinction coefficients

reported in the literature.

Nitzan et al. further refined the use of the calibration-free method [14]. Laser
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diodes were used to improve the precision and accuracy of the emission wavelength in

the probe, and SpO2 calculations were performed using multiple extinction coefficient

data sets [15]. Calculated SpO2 was strongly dependent on which extinction coefficient

data set was used.

Both of these studies demonstrate the need for precise determination of the emis-

sion spectra of the wavelengths in oximeter probes. Further research is also required

to measure the haemoglobin extinction coefficient spectra more precisely. Accurate

knowledge of the probe emission wavelengths and haemoglobin extinction coefficients

are both prerequisites to the practical adoption of calibration-free pulse oximetry.

2.4.2 Motion Resistant Pulse Oximetry

The sensitivity of pulse oximetry to motion artifact has spurred the development

of motion-resistant algorithms. Three dominant technologies are evaluated in the

literature: FAST SpO2 (Fourier Artifact Suppression Technology, Philips Medical

Systems), SET (Signal Extraction Technology, Masimo Corp.), and Oxismart (Nell-

cor) [31].

The Philips Fourier Artifact Suppression Technology (FAST SpO2) relies on iden-

tifying and isolating the PPG signal in the frequency domain. It attempts to find

the pulse rate by identifying harmonics and checking the correlation between the red

and infrared signals. Narrow filtering of the PPG signals around the pulse frequency

reduces the chance that motion artifact bandwidth will overlap with the signal band-

width [25].

The Masimo Signal Extraction Technology (SET) algorithm takes advantage of

the expected relationship between the red and infrared signals (the R value) to inform

an adaptive noise filter. For a given segment of PPG signals, adaptive noise filters

are generated for the range of R values corresponding to 0% to 100% SpO2. Applying
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these filters to the PPG signals results in the “Discrete Saturation Transform (DST)”

- a power spectrum in the SpO2 domain. The location of the peak of this spectrum

corresponds to SpO2 [8].

The Nellcor Oxismart algorithm takes advantage of the periodicity of the PPG

signal to detect individual cardiac pulses. Incoming pulses are compared to an en-

semble average of previous pulses to evaluate signal quality. The displayed SpO2

value is an average of the SpO2 measurement from several pulses, weighted by their

quality [32].

The clinical performance of each of these technologies is evaluated in an array

of studies summarized by Giuliano and Higgins in [31]. The authors conclude that

while there is no definitive evidence of the superiority of one of these technologies

over the others, the motion-resistant technologies are all shown to be improvements

over standard pulse oximetry [31].



Chapter 3

Methodology

This chapter provides an overview of the methodology common to the work in this

thesis. The research protocol was approved by the Carleton University Research

Ethics Board (#100986). Section 3.1 describes the instrumentation system that was

used to collect pulse oximetry data. Section 3.2 describes the procedures undertaken

to collect a dataset. Section 3.3 describes the method of obtaining SpO2 measurements

from raw PPG signals, and the effect of adjusting the parameters of that calculation.

Section 3.4 describes the SpO2 calculation algorithm used in this thesis.

3.1 System Overview

The data used in this thesis were collected using a standard finger probe (Nellcor DS-

100A) and an evaluation module of the Texas Instruments Integrated Analog Front

End for Low Cost Pulse Oximeters (AFE4400SPO2EVM), both pictured in Fig. 3.1.

The AFE4400 device includes the majority of analog electronics needed in a pulse

oximeter in a single integrated chip. A system diagram is shown in Fig. 3.2 [33]. This

section details each component of the pulse oximetry system.

22



CHAPTER 3. METHODOLOGY 23

(a) (b)

Figure 3.1: Photographs of a) Nellcor DS-100A pulse oximeter finger probe (courtesy
of Covidien) and b) Texas Instruments AFE4400SPO2EVM (courtesy of Texas
Instruments).

3.1.1 Receive Section

The features of the PPG signal make data acquisition difficult. According to (2.4), the

AC and DC components of the PPG must both be preserved to calculate SpO2. The

DC component of the PPG contributes greater than 99% of the signal amplitude [12].

Amplification of the signal with the purpose of gaining sufficient AC resolution can

easily saturate the analog to digital converter (ADC) with the DC signal. As a result,

analog signal amplification must be limited to avoid ADC saturation, but this can

introduce significant quantization noise in the AC component of the PPG.

The receive circuitry consists of a photodiode in the finger probe, a transimpedance

amplifier, and a delta-sigma ADC. The photodiode converts the light signal to a cur-

rent signal, and the transimpedance amplifier converts current to a voltage signal.

The delta-sigma ADC is designed to minimize quantization noise through oversam-

pling. While the maximum expected pulse rate in a PPG is less than 4 Hz, 240 beats

per minute (bpm), the photodiode is sampled at 500 Hz. The AFE4400 datasheet

claims 13 noise-free bits of resolution in the ADC [33].
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Figure 3.2: System diagram of Texas Instruments AFE4400 [33].

3.1.2 Transmit Section

LED current needs to be carefully controlled to obtain maximum PPG resolution

without saturating the ADC. Fig. 3.3 illustrates the ADC range and the upper and

lower bounds of the analog signal chain. In order to avoid saturating the tran-

simpedance amplifier, the signal must be kept between -1 and 1 volts.

Increasing the LED intensity increases the AC amplitude of the PPG, but also

increases the DC component towards the saturation level of the amplifier. In a process

similar to automatic gain control, the LED intensities are independently adjusted by
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the LED current control DAC to keep the signals at an ideal level within the ADC

range. To prevent saturation while maximizing AC amplitude, Texas Instruments

recommends an ideal DC operating point, as is indicated in Fig. 3.3.

Figure 3.3: Operating range of ADC. Adapted from [33]

3.1.3 Timing Diagram

During each main sampling period, the photodiode is sampled four times: once with

the red LED illuminated, once with both LEDs off, once with the infrared LED

illuminated, and a final sample with both LEDs off. This sampling sequence results

in a red PPG, an ambient light signal associated with the red PPG, an infrared PPG,

and an ambient light signal associated with the infrared PPG. This sequence of four

samples is performed during the main sampling period of T = 1
500

seconds, resulting

in four parallel 500 Hz signals. Refer to Fig. 3.4 for a timing diagram that illustrates

this sequence for two main sample periods.

The resulting output is two PPGs (red and infrared) and two signals representing

the ambient light level.
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Figure 3.4: Timing diagram for PPG sampling. Adapted from [33]

3.1.4 Probe

The two LEDs and photodiode are housed in a Nellcor DS-100A pulse oximeter finger

probe, pictured in Fig. 3.1. The LED wavelengths are specified at 660± 5 nm, and 905

± 5 nm. The probe interfaces with the AFE4400 evaluation module via a standard

DB-9 connector.

3.2 Data Collection

Data collection for this thesis was performed using two identical probes and two

AFE4400 evaluation modules. Data were collected from 5 healthy subjects, 3 male
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and 2 female, aged 26 ± 1 year. Data collection was performed in accordance with a

Carleton University Research Ethics Board approved protocol (#100986). Subjects

wore a finger probe on the index fingers of their left and right hands. In each of the

states described in the following subsections, the left hand remained motionless to

function as a control, while the right hand performed the required test condition.

Each tested condition provided eight total signals for each subject:

• Control: red PPG, red ambient, infrared PPG, infrared ambient

• Test: red PPG, red ambient, infrared PPG, infrared ambient

3.2.1 Clean Signal Acquisition

For the first condition, to check the agreement between the two instruments, the

subject was instructed to sit calmly and remain motionless for 60 seconds. Care was

taken to obtain high quality, contaminant-free signals. The room was darkened to

reduce ambient light interference, and the subject rested their hands on the desk to

minimize movement. The final signal was truncated to 40 seconds to remove artifacts

from the beginning of signal collection.

Due to slight natural variation in the pulse transit times between the hands,

perfect pulse to pulse synchronization was not expected between the two instruments.

However, the two instruments should agree in their SpO2 measurements. Differences

in the R parameter are attributed to differences in the physical properties of the

probes, which would be corrected by calibration in a clinical device.

3.2.2 Contaminated Signal Acquisition

A video was developed in MATLAB (The Mathworks, Natick, MA) to help subjects

generate random motion. The subject was instructed to attempt to follow a randomly
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moving point on a computer monitor with the test hand, remaining within a 20 cm

by 30 cm rectangular window. The movement speed was adjustable to change the

severity of the motion. At the highest movement intensity, the hand traversed the

window at a maximum rate of approximately 3 Hz. The control hand was covered to

eliminate the effects of the moving shadow from the test hand. Again, data collection

in each condition occurred for 60 seconds, but the final signals were truncated to 40

seconds to remove artifacts from ‘settling in’ to the movement. In some cases, subjects

inadvertently caused motion artifact in the control hand during testing. Signals were

assessed visually for adequate quality, and in these cases of motion artifact on the

control hand, the signals were discarded and re-recorded.

The following conditions were generated:

• Low speed motion - 40 seconds

• Medium speed motion - 40 seconds

• High speed motion - 40 seconds

3.2.3 Generating Isolated Noise Signal

The final tested conditions attempted to isolate the motion artifact signal from the

PPGs. The subjects wore a sphygmomanometer (blood pressure cuff), shown in

Fig. 3.5. The cuff was inflated above the subject’s systolic blood pressure, indicated

by the loss of pulsations in the PPG signal, shown in Fig. 3.6.

The cuff pressure served to temporarily occlude the brachial artery and prevent a

pulse in the finger. Since a normal PPG signal is dependent on the pulse, the signal

was eliminated and only noise remained.



CHAPTER 3. METHODOLOGY 29

Figure 3.5: Use of sphygmomanometer to attenuate PPG.

Figure 3.6: Loss of PPG signal indicates sphygmomanometer pressure above systolic
blood pressure.
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The high motion condition was repeated under this setup. The signal was trun-

cated to the portion where the sphygmomanometer was completely inflated. The

signals are 30 seconds long.

There are no strict guidelines on safe blood occlusion time to a limb [34]. However,

application of a tourniquet for 1-2 hours to occlude blood flow to a limb is common

practice during surgery [35], and most of the literature cautions against exceeding 2

hours of arterial occlusion [34]. Safety precautions for this technique include using

the minimum pressure needed to occlude the artery and minimizing time of occlusion.

Both of these precautions were observed in this study - the cuff was inflated just above

the subject’s systolic blood pressure, and only remained inflated for 30 seconds.

3.3 Calculation of R and SpO2

Despite the straightforward mathematical definition of SpO2 in Appendix A, the

signal processing method chosen to perform this calculation can significantly affect

the result. The mathematical definition does not strictly define how AC and DC

amplitudes should be calculated, nor is it necessarily robust to quantization or other

sources of noise. These issues need to be considered when developing an algorithm

to calculate R from raw PPG signals.

Data processing and analysis are performed using MATLAB software. An

overview of the data processing steps is presented in Fig. 3.7.

For each condition, the ambient light signals are first subtracted from the PPG

signals in an attempt to further mitigate the effects of ambient light. The resulting

data are low pass filtered using a fourth order zero-phase Butterworth filter (MAT-

LAB’s filtfilt command). The purpose of this filter is to eliminate out-of-band noise,
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Figure 3.7: Processing of raw PPG signals.

including quantization noise, power line interference and high frequency motion arti-

fact. Ideally, the cutoff frequency can be tuned to eliminate as much information as

possible without affecting the SpO2 measurement.

The AC component of a clean PPG signal from one of the test subjects is shown

with its frequency spectrum in Fig. 3.8. Note that the displayed PPG is the raw

photodetector output, where low amplitude corresponds to systole and high amplitude

corresponds to diastole in the cardiac cycle. A pulse oximeter typically displays this

curve inverted, but the current analysis is not affected.

The majority of the AC signal power is found in narrow bands at the cardiac

cycle frequency and its harmonics. This subject had a heart rate of about 90 bpm,

corresponding to 1.5 Hz. Stuban and Niwayama investigated the effects of the PPG

filter bandwidth, and found that the PPG could be low pass filtered just above the

cardiac cycle frequency without affecting the SpO2 measurement [36]. The effect of

the low pass filter cutoff frequency is investigated in Section 3.3.2.
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Figure 3.8: A sample PPG signal (AC component only) and its frequency spectrum.

3.3.1 Calibration

The pulse oximetry instrumentation used in these studies was not calibrated. Work

in the later chapters analyzes the relative changes in R under testing conditions.

Since absolute oxygen saturation values were not needed, absolute calibration was

unnecessary.

When R values are being compared between the test and control oximeters, the

instrument bias between the two devices is measured in-vivo using high quality con-

taminant free signals. The test-control bias is also measured for each of the motion

conditions, and compared to the instrument bias.

For illustrative purposes, some of the calculated R values in later sections will

be expressed as SpO2 values, derived using the sample calibration curve described in

(3.1) and Fig. 3.9. This curve is adapted from [12], and is considered a fairly typical

calibration curve for pulse oximeters.
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SpO2 = −33R + 118 (3.1)

Figure 3.9: Sample pulse oximeter calibration curve. Adapted from [12].

3.3.2 R Calculation Algorithm

Peak-Trough vs. RMS

Two equivalent equations for R calculation are derived in Appendix A and presented

in (3.2) and (3.3).

R =
ln(Ip/It)Red
ln(Ip/It)IR

(3.2)

R =
ACRed/DCRed
ACIR/DCIR

(3.3)
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In (3.2), the peaks and troughs of the PPG waveforms are identified. R is cal-

culated once for each identified peak and corresponding trough. This method has

difficulty with motion artifact because of its reliance on successful peak and trough

detection. Simple peak detection algorithms cannot distinguish PPG peaks from noise

peaks, as demonstrated in Fig. 3.10. A simple peak detection algorithm is successful

in identifying pulses in the clean PPG signal, pulse locations are not apparent in the

noisy PPG.

Figure 3.10: Results of basic peak detection algorithm in clean and noisy PPG.

Though (3.2) and (3.3) are mathematically equivalent, (3.3) is a preferable R

calculation algorithm because it does not rely on the success of the peak identifi-

cation algorithm. Rather than calculating amplitude based on only the peak and

trough points, every point in a given buffer contributes to the calculation of the RMS

amplitude.



CHAPTER 3. METHODOLOGY 35

Effect of Low Pass Filter Cutoff

Fig. 3.11 illustrates the effect of adjusting the low pass filter cutoff frequency in the

preprocessing stage. Sample PPG signals were recorded at an average heart rate of

60 bpm (1 Hz). At each cutoff frequency value, a complete set of calculated SpO2

values is plotted for a single PPG record. The RMS method was used to calculate R,

as described in Section 3.3.2, with a buffer length of one second.

Figure 3.11: Effect of PPG low pass filter cutoff frequency on SpO2 calculation.
SpO2 values are calculated from the motionless and high-motion data from a
single subject. Error bars indicate mean SpO2 ± one standard deviation.

Decreasing the low pass filter cutoff has no effect on the clean data until around 1

Hz, and the SpO2 estimates fall consistently between 98% and 100%. The same trend

is observed in the motion contaminated data, yet the SpO2 readings spread over a

greater range. This number is related to the heart rate - below a cutoff frequency of

1 Hz, the 60 bpm PPG signal begins to be attenuated.
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Effect of Buffer Length

Fig. 3.12 illustrates the effect of adjusting the buffer in the RMS method of R cal-

culation. Sample PPG signals were recorded at an average heart rate of 60 bpm

(1 Hz). At each buffer length value, the PPG signals are split into non-overlapping

segments and the SpO2 is calculated over the entire segment. Increasing the buffer

essentially means successive SpO2 measurements are being averaged over a longer pe-

riod of time. A short buffer can allow too much signal variation to show on the SpO2

measurement, but a long buffer can cause the instrument to take longer to respond

to drastic changes.

Figure 3.12: Effect of PPG segment length on SpO2 calculation. Error bars indicate
mean SpO2 ± one standard deviation.

Decreasing the buffer length has little effect on the clean data until around 1

second, and the SpO2 estimates fall consistently between 98% and 100%. The motion

contaminated data shows considerable variation at the low buffer lengths, but this
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variation decreases at a length between 2 and 3 seconds. This number is related to the

heart rate - below a buffer length of 1 second, the buffer cannot capture a complete

pulse of the the 60 bpm PPG signal.

3.4 Calculation of R and SpO2 in this Thesis

For the remainder of this document, R is calculated using (3.3). The DC component

is defined as the signal amplitude below 0.5 Hz, and the AC component is amplitude

above 0.5 Hz. The final R calculation block of Fig. 3.7 is illustrated in Fig. 3.13.

R is calculated using a one-second buffer to minimize the effect of averaging and

allow measurements to react quickly to changes in blood oxygen saturation.

The low pass filter in the preprocessing stage is set at 5 Hz to ensure it remains

above the maximum cardiac cycle frequency of 200 bpm (3.3 Hz).
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Figure 3.13: System diagram of R calculation algorithm. Inputs are preprocessed
red and infrared PPG segments, output is a single R value.



Chapter 4

Evaluating the Effects of Motion Artifact

4.1 Introduction

Previous clinical research suggests that motion artifact may cause a negative mea-

surement bias in pulse oximetry, leading to false hypoxia alarms [5,6,24,25]. However,

these studies were performed using commercially available pulse oximeters using pro-

prietary signal processing algorithms. The true extent of measurement errors may

be obscured by a variety of signal processing techniques, including averaging, sample

and hold, or bias correction algorithms.

The work in this chapter takes a more generic approach to understanding the

effects of motion artifact on pulse oximetry readings. The conventional SpO2 calcu-

lation algorithm is evaluated without the aid of error mitigation techniques. Some of

the results in this chapter have been disseminated in the author’s conference publi-

cations [9, 10].

The following sections detail the methodology employed to quantify motion arti-

fact, experimental results with real and artificial data, and discussion.

39
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4.2 Methodology

Using the dataset described in Section 3.2, the methodology described in this section

is aimed at observing the statistical parameters of R measurements. The parameters

of the motion contaminated data were compared to those of the clean data. A dataset

of artificially contaminated PPGs is generated to examine the relationship between

the R measurements and signal to noise ratio (SNR).

4.2.1 Real Contaminated Data

Each PPG signal is processed as described in Section 3.4, including calculation of R

and calibration. Since the R calculation occurs in one-second buffers and the signals

are 40 seconds long, 40 unique R measurements were calculated for each hand, over

each test condition. The sample calibration curve in Section 3.3.1 was applied to

convert R to SpO2.

The SpO2 values from the control signals were subtracted from the test signals to

produce an array of biases for each test condition. These values were used to calculate

the instrument bias in the motionless condition, and compare that to biases observed

in each of the movement conditions:

• Instrument Bias: The difference between the test and control SpO2 values

for the motionless condition.

• Measurement Bias: The difference between test and control SpO2 values for

each of the movement conditions.

Measurement Bias

For each subject, two-tailed Welch’s t-tests were performed to check if the mean

SpO2 biases in movement conditions were significantly different from the instrument
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bias. Welch’s t-test allows for comparison of samples of unequal variance. The null

hypothesis (H0) for any given condition states that the mean of the biases between

the test and control SpO2 values is equal to the instrument bias. Rejecting H0 implies

a measurement bias in SpO2 for the given condition.

H0 can be rejected at a significance level of α = 0.05, but since 15 tests were

performed (3 for each of the 5 subjects), a Bonferroni correction was applied to

reduce the chance of Type I error. The adjusted significance level is α = 0.003.

Measurement Variance

For each subject, a right-tailed Chi-square test of variance was performed to check

if the variance of SpO2 bias in the movement conditions was greater than that of

the motionless condition. The null hypothesis (H0) for any given condition states

that the SpO2 variance in the movement conditions is less than or equal to the SpO2

variance in the motionless condition.

H0 can be rejected at a significance level of α = 0.05, but since 15 tests were

performed (3 for each of the 5 subjects), a Bonferroni correction was applied to

reduce the chance of Type I error. The adjusted significance level is α = 0.003.

If (4.1) is satisfied, the given movement condition has significantly more measure-

ment variance than the motionless condition (H0 is rejected). In (4.1), N is equal to

the number of SpO2 measurements in each condition, s is the standard deviation of

the movement condition under test, and s0 is the standard deviation of the motionless

condition.

(N − 1)(s/s0)2 > χ2
1−α,N−1 (4.1)
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4.2.2 Artificially Contaminated Data

In order to gain tighter control of the SNR, a set of artificially contaminated signals

were generated. After DC normalization, the AC portion of the isolated noise signals

(described in Section 3.2.3) were added to the AC portion of clean PPG segments.

For each one-second buffer segment, R and SNR were calculated according to (4.2)

and (4.3).

R =
ACRed/DCRed + k(ACRed,noise/DCRed,noise)

ACIR/DCIR + k(ACIR,noise/DCIR,noise)
(4.2)

SNR = 20log10

(
ACIR/DCIR

k ∗ (ACIRnoise/DCIRnoise)

)
(4.3)

Note that the PPG and noise are DC-normalized before they are scaled and added.

This operation is valid because a real contaminated signal would not include DC

components for both the noise and the PPG; the DC component depends on the

brightness of the LEDs and ambient light.

The scaling factor k was adjusted to cover SNRs ranging from -30 to 40 dB, and

the relationship between SNR and SpO2 is plotted for each subject.

4.3 Results

4.3.1 Real Contaminated Data

Sample PPGs for each of the motion conditions are displayed in Fig. 4.1, after AC

isolation, normalization and low pass filtering. The effect of noise is visually evident.

While PPG pulses are still discernible in the movement conditions, they are obscured

compared to the motionless condition.
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Figure 4.1: Sample PPGs for each of the movement conditions tested.

Table 4.1 presents a summary of the test-control SpO2 biases. Mean and standard

deviation of the differences are reported for each movement condition for each subject.

Assuming that the SpO2 biases between test and control data fell on a Gaussian

distribution, MATLAB’s “mle” function was used to calculate the maximum likeli-

hood estimate of mean and standard deviation. Probability distribution functions
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Table 4.1: SpO2 bias between test and control data.

Subject No Motion Low Medium High

x̄ s x̄ s x̄ s x̄ s

1 -0.9976 0.1917 -1.4348 0.6975 -1.7651 0.7719 -1.7129 0.8711

2 -0.5489 0.3009 -0.8690 0.6630 -0.3507 0.4299 0.0260 1.1067

3 -0.7264 0.2561 -1.6403 0.9297 -0.7152 1.0011 -1.7531 1.6284

4 -1.8228 0.4924 -1.6077 0.8395 -0.9453 0.9176 -2.6013 1.5033

5 -1.8414 0.5723 -0.3453 0.6571 -1.1321 0.8173 -2.3340 1.2570

based on these parameters were generated. Fig. 4.2 is a plot of the probability distri-

bution functions for one of the subjects, comparing the test-control measurement bias

for the motionless and all three movement conditions. The remainder of the subjects’

plots are shown in Fig. 4.3.

Figure 4.2: Probability distributions of SpO2 biases: Subject 1.
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Figure 4.3: Probability distributions of SpO2 biases: Subjects 2-5.

The dark blue lines show the test-control SpO2 bias in the motionless condition,

indicating instrument bias. A negative instrument bias is apparent in each of the

subject’s plots. The same instruments were used for test and control for each subject,

so similar instrument biases are expected. The other three distributions represent

the measurement biases in the three tested motion conditions. Fig. 4.2 indicates the

measurement bias for all three movement conditions is different than the instrument

bias, indicating that the bias is caused by motion artifact. Tests are performed for

difference in bias and standard deviation of SpO2 measurements between motion and

motionless conditions in each subject.
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Measurement Bias

Table 4.2 presents the results of Welch’s t-test, comparing the test-control bias in each

movement condition to the bias in the motionless condition. A positive t-test implies

there was SpO2 measurement bias in the given condition that was not explained by

instrument bias.

Table 4.2: Test for SpO2 Bias During Motion.

Subject Low Motion Medium Motion High Motion

1 p = 0.0004 p < 0.0001 p < 0.0001

2 p = 0.0074 p = 0.0196 p = 0.0027

3 p < 0.0001 p = 0.9454 p = 0.0003

4 p = 0.1671 p < 0.0001 p = 0.0031

5 p < 0.0001 p < 0.0001 p = 0.0281

Shaded cells indicate statistical significance.

Statistically significant bias was found in 9 of the 15 motion conditions measured.

This test only determined the presence of a bias, not its direction; in fact, positive

and negative biases were both observed.

Biases were pooled across subjects and are presented in Fig. 4.4. The plot shows

x̄± s of all subjects’ SpO2 biases. None of the movement conditions show a measure-

ment bias significantly different from the instrument bias.

Measurement Variance

Table 4.3 presents the results of the Chi-square test for variance. A positive test

implies there was an increase in SpO2 measurement variance in the given condition

over the natural instrument variance. Statistically significant increases in variance
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Figure 4.4: Mean SpO2 bias across subjects. Error bars represent standard deviation
of the subject means.

Table 4.3: Test for SpO2 Variance Increase During Motion

Subject Low Motion Medium Motion High Motion

1 p < 0.0001 p < 0.0001 p < 0.0001

2 p = 0.9805 p = 0.0643 p = 0.0009

3 p < 0.0001 p < 0.0001 p < 0.0001

4 p < 0.0001 p < 0.0001 p < 0.0001

5 p = 0.2383 p < 0.0007 p < 0.0001

Shaded cells indicate statistical significance.

were found in 12 of the 15 motion conditions measured.

SpO2 standard deviations were pooled across subjects and are presented in

Fig. 4.5. The plot shows x̄ ± s of all subjects’ SpO2 standard deviations. All of



CHAPTER 4. EVALUATING THE EFFECTS OF MOTION ARTIFACT 48

the movement conditions show greater standard deviation than the motionless condi-

tion. The low and medium motion standard deviations are indistinguishable, but the

high motion standard deviation is significantly greater than low and medium motion.

Figure 4.5: Mean SpO2 standard deviation across subjects. Error bars represent
standard deviation of all subjects SpO2 standard deviations.

4.3.2 Artificially Contaminated Data

Using the artificially contaminated data described in Section 4.2.2, SpO2/SNR scat-

terplots were generated for each subject with SNR ranging from -30 to 40 dB. Each

point represents the SpO2 and SNR for a single one-second PPG segment, as defined

by (4.2) and (4.3). Fig. 4.6 is a scatterplot for one of the subjects. The red lines
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indicate the mean SpO2 ± one standard deviation of the motionless data, for com-

parison. The remainder of the subjects’ plots are shown in Fig. 4.7. The artificially

contaminated data shows relationships between SpO2 bias and SNR, and SpO2 vari-

ance and SNR. The bias and variance both begin to increase at SNRs below 20 dB

in all subjects. Some of the SpO2 values at low SNR are greater than 100% - these

erroneous values would be truncated by a pulse oximeter.

Figure 4.6: Relationship between SpO2 and SNR in artificially contaminated signals:
Subject 1. Each point represents the SpO2 and SNR of a single one-second
segment of PPG data, calculated according to (4.2) and (4.3). Red lines indicate
mean ± one standard deviation of SpO2 values in the clean signal.
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Figure 4.7: Relationship between SpO2 and SNR in artificially contaminated signals:
Subjects 2-5. Each point represents the SpO2 and SNR of a single one-second
segment of PPG data, calculated according to (4.2) and (4.3). Red lines indicate
mean ± one standard deviation of SpO2 values in the clean signal.

4.4 Discussion

4.4.1 Measurement Bias

The results from the real data showed little evidence of a systematic negative mea-

surement bias in SpO2 during motion. While the results did demonstrate biases that

were significantly different from the instrument bias in some tests, observation of
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the plots in Fig. 4.2 and Fig. 4.3 show that the biases could be positive or nega-

tive. Furthermore, when the subjects were pooled, Fig. 4.4 showed that there was no

significant bias beyond the instrument bias across subjects.

While some motion-induced biases were shown, care must be taken to distinguish

statistical significance and clinical significance. The greatest measurement bias re-

lated to motion artifact observed in Table 4.1 was 1.5 % SpO2. Since the normal

physiological range of SpO2 is > 95%, a bias of 1.5% in a healthy person may carry

little clinical significance. However, this bias becomes clinically significant for SpO2

measurements near the hypoxia alarm threshold, and could cause false alarms or

missed alarms.

The results from the artificially contaminated data, by observation of the plots in

Fig. 4.6 and Fig. 4.7 demonstrated a clear negative SpO2 measurement bias at low

SNRs. Two possible conclusions can be drawn from this observation:

1. The artificial contamination model is a poor reflection of real world results, or

2. The real data did not simulate sufficiently low SNRs to observe measurement

bias

The artificial contamination model predicted measurement biases of the same

scale as those reported in previous literature [5,6,8,25]. It is likely that the real data

collected in this study did not simulate sufficiently low SNRs to demonstrate similar

results.

This observation reflects a common issue in motion artifact studies - it is difficult

to characterize, quantify and reproduce clinically significant motion artifact. In their

meta-analysis of studies on motion tolerant pulse oximeters, Giuliano et al. note a

variety of different methodologies for simulating motion artifact, including passive

(machine generated) and active (patient generated) [31]. In reality, motion artifact
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experienced in clinical settings can stem from a variety of sources, including walking,

falling, having a seizure, or rolling over in bed. These different types of motions

may have different effects on pulse oximetry measurements, and can be difficult to

reproduce in a controlled study.

4.4.2 Measurement Variance

The results from both the real data and the artificially contaminated data showed

an increase in measurement variance during movement. Even using the conservative

Bonferroni correction to test statistical significance, 12 out of 15 tests on the real data

rejected the null hypothesis. When the variances were pooled across subjects, Fig. 4.5

shows that all three motion conditions had increased variance over the motionless

condition. While the low and medium levels had indistinguishable variances, the

high motion condition had greater variance than low and medium motion.

The results from the artificially contaminated data, by observation of the plots in

Fig. 4.6 and Fig. 4.7 demonstrated an increased SpO2 measurement variance at low

SNRs, especially below a threshold of approximately 15-20 dB. This finding supports

the finding of increased variance in the real data.

In a clinical setting, an increase in variance may be sufficient to cause hypoxia

alarms without the presence of a systematic measurement bias. This would happen if

a pulse oximeter ignored measurements above 100% SpO2, truncating the upper tail

of the normal distribution while keeping the lower values.

4.5 Chapter Summary

The real data showed an increase in variance of SpO2 measurements during motion.

This finding was corroborated by the artificially contaminated data - measurement
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variance was shown to increase as signal quality decreased.

The real data showed evidence that measurement bias is possible during motion

artifact, but there was no strong evidence for the systematic negative bias predicted

in previous literature [5, 6, 8, 25]. The difficulty in controlling the level of a subject’s

motion may have contributed to this effect. It is possible that the movement condi-

tions tested did not cause sufficient signal degradation, and as a result the predicted

effects were not observed.

The artificially contaminated data clearly showed a negative measurement bias at

low signal to noise ratios. This finding is consistent with results reported in previous

literature using real signals [5, 6, 8, 25].

An increase in measurement variance could likely be mitigated by increasing the

size of the SpO2 calculation buffer, or implementing a rolling average of several SpO2

calculations. However, these techniques would lead to a system that is less respon-

sive to sudden changes in SpO2. The trade-off between measurement accuracy and

responsiveness could be tuneable in a real system, and this threshold would likely be

application specific.

Further research is indicated in characterizing and quantifying clinically significant

motion artifact, and replicating this motion in a controlled environment. This will

allow better comparison between the real and artificially contaminated data.

Further research is also indicated in assessing the susceptibility of different types

of pulse oximeter probes to motion artifact. For example, reflective probes may show

similar or worse susceptibility to motion artifact as the transmissive probes used in

this study. However, reflective probes can record signals on parts of the body that

move less relative to the hands, such as the sternum or forehead.



Chapter 5

Analytical Models of SpO2 Error

5.1 Introduction

As discussed in Section 2.3, the vulnerability of pulse oximetry to motion artifact

is well documented [5, 6, 24, 25]. Motion artifact was shown to cause false hypoxia

alarms, typically defined as SpO2 < 90%. This indicates that motion artifact may

cause a negative bias in SpO2 measurements, or may cause sufficient variance in SpO2

measurements to produce values below the alarm threshold.

Two predominant explanations for a motion-induced measurement bias have been

proposed in the literature, but few experimental investigations have been done to

determine the extent to which they are valid [8, 25]. The first model assumes that

the noise is approximately equal on the red and infrared signals. Therefore, as noise

increases, the R ratio is dominated by Noise/Noise and approaches 1, corresponding

to SpO2 of approximately 85%. The second model assumes that movement causes

low-oxygen venous blood to become pulsatile, making the device unable to distinguish

between arterial and venous blood.

This chapter seeks to:

• Formally define the relevant assumptions and develop a mathematical definition

54
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of each model

• Calculate the effects of these assumptions on the R measurement

• Discuss the agreement between the analytical models and experimental obser-

vations

The following sections include a description of the proposed models, an analysis

of the isolated motion artifact signals, and a discussion of the relationship between

the analytical models and experimental data.

5.2 Proposed Models

In an ideal noise-free signal, the absorption of light is modulated by path length

changes through the arterial blood due to the cardiac pulse. The models described in

this section introduce a possible motion related signal modulation, state the relevant

assumptions, and calculate the predicted effect of motion on the R values.

In these models, the measured R value is assumed to be a non-linear combination

of RS and RN . RS is the ratio of red and infrared PPG signal amplitudes, and RN is

the ratio of the red and infrared noise amplitudes. For high SNR, R → RS, and for

low SNR, R→ RN .

5.2.1 Varying Path Length

This model assumes motion artifact noise is due to relative motion between the tissue

and the oximeter probe. This causes variation of the path length between the light

detector and emitters, illustrated in Fig. 5.1.

In modelling the light absorption in the oximeter probe, the Beer-Lambert equa-

tion is split into additive components for light absorption due to Hb, HbO2, and other
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Figure 5.1: Illustration of relative motion between the pulse oximeter probe and
the finger.

tissues (A.3). This is done to take advantage of the path length modulation of the

arterial blood pulsation. Arterial blood pulsation is not included in the pure noise

(RN) equation. Consequently, the Beer-Lambert equation can be expressed as a func-

tion of catch-all terms (5.1), where ελ encompasses the wavelength-dependent optical

extinction coefficients of all of the tissues in the measurement site, [C] encompasses

tissue concentrations, and l is the path length of the red or infrared light.

It = I0e
−ελ[C]l (5.1)

Similar to the derivation in Appendix A, a ∆l term is introduced (5.2). In this

case, it refers to the change in path length related to the probe shift, rather than the

cardiac cycle. Since the red and infrared LEDs are not in the exact same locations,

the change in path length may not be exactly the same for each LED. Therefore, ∆l

is wavelength dependent (∆lλ).

Ip = I0e
−ελ[C](l+∆lλ) (5.2)

The rest of the RN derivation proceeds as it does in Appendix A: calculating
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ln(Ip/It) removes the exponential function and the dependence on I0 and l (5.3).

ln(Ip/It)λ = ln

(
I0e

−ελ[C](l+∆lλ)

I0e−ελ[C]l

)
= −ελ[C]∆lλ (5.3)

Taking the ratio of this equation at two wavelengths of light removes the de-

pendence on [C]. Unlike the regular R derivation, the simplifying assumption that

the ∆l terms are equal cannot be made - movement of the probe may affect the path

lengths of the two LEDs differently. The ε terms remain, because they are wavelength

dependent.

RN =
−εRed[C]∆lRed
−εIR[C]∆lIR

=
εRed∆lRed
εIR∆lIR

(5.4)

The final RN value is close to a constant. This constant is difficult to define ana-

lytically, as there are many tissues contributing to the catchall extinction coefficients

εRed and εIR, including water, skin, fat and bone.

Since the red and infrared LEDs are not in the exact same position, the ∆l terms

in (5.4) for each wavelength will be closely related, but not identical. Therefore,

this model expects a strong, but imperfect correlation between noise on the red and

infrared channels. Consequently, some variance is introduced in the RN calculations.

5.2.2 Blood Sloshing

This model assumes the predominant cause of motion-induced measurement bias is

the result of blood movement that is unrelated to the cardiac cycle. As the hand

accelerates, the blood’s inertia causes it to resist any changes in motion, which can

cause slight deformations in the capillaries, as illustrated in Fig. 5.2.

In a clean signal, the path length through the blood is modulated by the blood
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Figure 5.2: Illustration of the effect of blood momentum.

pressure changes induced by the cardiac cycle. In this model of motion artifact,

the path length through the blood is modulated by the local blood pressure changes

induced by movement. This effect may be more apparent in the venous blood than

the arterial blood because of the lower blood pressure in the veins.

This type of blood movement can cause both arterial and venous blood to con-

tribute to the PPG, in contrast to the motion-free PPG, which isolates arterial blood.

In this model, it is assumed that RN is caused solely by the movement of venous blood;

movement of arterial blood contributes to RS as if it was caused by the cardiac cycle.

The resulting RN calculation in this model is identical to the R derivation in a

clean signal; the difference is that since RN is composed of venous blood, [Hb] is

greater and [HbO2] is less than the concentrations in arterial blood (5.5).

RN =
ln(Ip/It)Red
ln(Ip/It)IR

=
εHb,Red[Hb] + εHbO2,Red[HbO2]

εHb,IR[Hb] + εHbO2,IR[HbO2]
(5.5)

The final RN value is a constant corresponding to the oxygen saturation of the

venous blood. Although venous blood saturation depends on various physiological

parameters, it is always less than arterial blood saturation. Therefore, RN will be

greater than RS.
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Since the red and infrared LEDs are not located in the exact same position in the

probe, the amount of venous blood in the path between the LEDs and photodetector

may be slightly different for each LED. Therefore, this model expects a strong, but

imperfect correlation between noise on the red and infrared channels. Consequently,

some variance will be introduced in the RN calculations.

5.3 Analysis of Isolated Motion Artifact

Thirty seconds of isolated motion artifact signals were collected from each subject, as

described in Section 3.2. Since analysis is being performed on isolated noise signals,

calculated R values correspond to RN .

Thirty seconds of clean PPG signals from each subject are used as a control, as

described in Section 3.2. Calculated R values from the clean signals correspond to

the RS.

Samples of clean PPG and isolated noise are displayed in Fig. 5.3 for comparison.

The clean PPG signals show strong correlation between red and infrared channels,

while the isolated noise is less correlated. The amplitude of the isolated noise signals

is shown at 10x the scale of the clean PPGs for visibility.

Characteristics of the control PPG and isolated motion artifact signals are pre-

sented in Table 5.1. The mean and standard deviation of RS and RN are presented,

and converted to SpO2 using the calibration curve in Section 3.3.1. The Pearson

correlation coefficient (r) was calculated to check linear correlation between the red

and infrared AC components.

The results in Table 5.1 show a clear difference in x̄R and sR between the control

PPG and isolated motion artifact signals for each subject. The SpO2 biases range
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Figure 5.3: Samples from clean PPG and isolated noise signals. Amplitude of the
isolated noise signals is shown at 10x the scale of the clean PPGs for visibility.

Table 5.1: Characteristics of Control and Isolated Motion Signals

Control PPG Isolated Motion Artifact

RS SpO2 (%) r RN SpO2 (%) r

x̄ s x̄ s x̄ s x̄ s

Subject 1 0.57 0.01 99.1 0.3 1.00 1.27 0.25 76.0 8.3 0.93

Subject 2 0.57 0.01 99.2 0.5 1.00 0.70 0.21 94.8 6.8 0.94

Subject 3 0.56 0.01 99.4 0.2 1.00 0.98 0.17 85.5 5.6 0.95

Subject 4 0.50 0.01 101.6 0.3 1.00 0.77 0.17 92.4 5.5 0.96

Subject 5 0.50 0.02 101.4 0.7 1.00 0.71 0.11 94.5 3.7 0.97

from 4% to 23%. Biases of this magnitude are considered clinically significant.

The Pearson correlation coefficient between the red and infrared channels is a

perfect 1.00 in each subject in the control PPGs. The isolated noise signals show
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strong (r > 0.9) but imperfect correlation between channels.

5.4 Discussion

The first model assumes that in pure noise, RN is a constant defined by the ratio of

red and infrared absorption coefficients. The values of these coefficients are difficult

to determine experimentally, and will be dependent on individual physiology. Strong

but imperfect correlation between channels is expected, due to the position of the

LEDs in the probe.

The second model assumes that in pure noise, RN is a constant defined by the

oxygen saturation of the venous blood. Although the saturation of venous blood is

lower than that of arterial blood, the degree to which they differ depends on individual

physiology. Strong but imperfect correlation between channels is expected, due to the

position of the LEDs in the probe.

While the two proposed models of motion artifact begin with different assump-

tions, they predict similar effects on the SpO2 signal. Because the predicted effects

are so similar, it is difficult to determine which model is correct, or if both mod-

els contribute simultaneously. The results presented in Table 5.1 provide evidence

supporting both proposed motion artifact models; both models predicted RN being

different from RS, and a decrease in correlation between red and infrared PPGs.

However, they do not provide any evidence to distinguish the two.

Much of the work in the literature on pulse oximetry motion artifact focusses on

software-based mitigation techniques. The models developed in this chapter, along

with the experimental results, help illuminate some of the physical causes of mo-

tion artifact. This work may encourage hardware-based motion artifact mitigation

strategies.
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If steps are taken to minimize relative motion between the probe and the tissue,

the effect of the varying path length model may be reduced. Furthermore, if the

probe can be redesigned to ensure that the red and infrared LEDs share a source

location, perhaps using prisms, the correlation of the red and infrared PPGs maybe

be improved, reducing SpO2 measurement variance.

Further research is indicated in validating these models, and assessing the con-

tribution of each effect to PPG signal quality. This validation work should also be

done using different types of probes. Theoretically the models should both apply to

reflective probes as well as the transmissive probes used in this study. Any probe

that may experience movement relative to the skin or movement of venous blood in

the measurement field may be described by these models.

5.5 Chapter Summary

This chapter presented two physical models of motion artifact, and analytically de-

rived their effects on the Beer-Lambert pulse oximetry model.

To experimentally verify the effects predicted by these models, the red-infrared

correlation coefficient and the R mean and standard deviation were calculated using

isolated motion artifact signals.

The experimental results showed evidence for the validity of both models, but

insufficient evidence to distinguish between the two.



Chapter 6

Automatic Signal Quality Analysis

6.1 Introduction

The previous chapters examined some of the effects of motion artifact on the pulse

oximetry readings. SpO2 values were shown to lack precision and accuracy in the

presence of motion artifact.

For diagnostic purposes, it is important to be able to detect poor quality pulse

oximetry signals and reject them, rather than risk reporting incorrect measurements.

This is particularly true in ambulatory monitoring settings, where noise is more preva-

lent. In fact, Lovell et al. identify automatic signal quality assessment as “An essential

feature for unsupervised telehealth applications” [3]. Lovell et al. also note that de-

spite the existing body of research in pulse oximetry motion artifact, little research

exists to identify the cases where signal quality is so poor that accurate SpO2 cannot

be calculated [3].

This chapter seeks to perform an automatic signal quality analysis that can predict

when a signal shows enough degradation to affect the SpO2 estimate. To accomplish

this goal, signal quality indices (SQIs) were established and calculated parallel to the

SpO2 calculation.
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The following sections detail the development of three proposed SQI algorithms,

the methodology employed to evaluate these algorithms, results of the evaluation and

a discussion of the results.

6.2 Proposed SQI Algorithms

This section presents three proposed SQI algorithms. The following constraints were

considered in developing the SQIs:

First, the SQI algorithms must rely solely on signals from the pulse oximeter with

no help from external sensors. Relying on external hardware makes it more difficult

to port the algorithms to various existing pulse oximeters; imposing this constraint

ensures the algorithms remain relatively hardware agnostic.

Second, the algorithms must not rely on pulse detection, fiducial point detection

or temporal alignment. Precise pulse segmentation and alignment is difficult in the

presence of artifact. Precise fiducial point detection is also likely to fail during motion

artifact. Ideally, the SQI calculations can be performed without depending on the

success of pulse segmentation or fiducial point detection algorithms.

Finally, the SQIs must be calculated as often as possible - ideally as often as the

SpO2 is calculated (every second, in this thesis). This ensures a fast response time

on the SQI signal to changing signal quality.

6.2.1 Preprocessing for SQI Calculation

The dataset underwent preprocessing steps common to all of the SQI algorithms

described in this section. This preprocessing was similar to the steps described in

Section 3.4.

Red, infrared, and two ambient light signals were low pass filtered at 5 Hz. The
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AC components of each signal were isolated and normalized by the DC components.

In Section 3.4, the frequency boundary between AC and DC components was set at

0.5 Hz - as high as possible without risking attenuation of the cardiac pulse frequency.

In the preprocessing for the SQIs, this boundary is set at 0.1 Hz. This is done to

increase the sensitivity of the SQI algorithms by exposing them to noise below 0.5

Hz. SQIs were calculated over one-second non-overlapping windows.

6.2.2 Cross-Correlation of PPG Segments (SQIXCORR)

The first proposed SQI, SQIXCORR, takes advantage of the quasi-periodicity of the

PPG signal by cross-correlating incoming signal segments to previous segments. Pre-

vious work by Karlen et al. established a pulse oximetry SQI that relies on pulse

segmentation and cross-correlation of incoming pulses with an ensemble average of

previous pulses [27]. Quesnel et al. established a similar SQI for electrocardiogram

signals by comparing incoming beats to an ensemble average of previous beats [37].

However, these approaches depend on beat detection and precise temporal alignment

of subsequent pulses to establish the ensemble averaged template. Automatic detec-

tion and alignment of PPG pulses can be difficult in noisy conditions. SQIXCORR

performs its analysis without the need for beat detection.

To calculate SQIXCORR, the infrared PPG signal is preprocessed as described in

Section 6.2.1. For each one-second PPG segment being tested, a template segment

is defined as the two-second PPG segment immediately prior to the test segment.

By using a two-second template, it can be ensured that the pulses in the complete

one-second test segment can be aligned with a portion of the template segment.

The template segment and test segment are normalized by their means and stan-

dard deviations to ensure that the cross-correlation calculation is affected only by

changes in waveform shape, and not amplitude. These calculations are shown in
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(6.1), where X and Y are the test and template PPG vectors, µ is mean and σ is

standard deviation.

XNORM = (X − µX)/σX

YNORM = (Y − µY )/σY

(6.1)

Since the cross-correlation is a function of time delay, the maximum of this func-

tion will provide a measure of similarity at the point where the two signals are best

aligned.

The cross-correlation between the test and template segments is calculated in

(6.2), where m is the sample index in the segments and ρXY [n] is the cross-correlation

as a function of time delay n between the segments.

max(ρXY [n]) = max

(
2fs∑
m=0

(XNORM [m])(YNORM [m+ n])

)
(6.2)

The maximum cross-correlation needs to be compared to a point of reference

representing the maximum possible signal quality. This is generated by calculat-

ing the maximum value of the autocorrelation of the two-second template segment

(max(ρY Y )), and dividing by two to correct it to a one-second equivalent. The equa-

tion is similar to (6.2), but since the maximum of the autocorrelation of a signal

occurs at a time shift n = 0, it can be simplified (6.3).

max(ρY Y [n])/2 =

(
2fs∑
m=0

(YNORM [m])2

)
/2 (6.3)

The final SQIXCORR metric is defined in (6.4). This approach assumes that the

motion artifact noise in X and Y are poorly correlated.
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SQIXCORR =
2max(ρXY )

max(ρY Y )
(6.4)

6.2.3 AC Power of Ambient Light SQIAMB

By visual inspection, the ambient light signal is affected by motion artifact. This

effect is apparent in Fig. 6.1. The ambient signal associated with the clean PPG is a

relatively steady DC value, while the ambient signal associated with the contaminated

PPG shows AC contamination of its own. When a subject moves, relative motion

between the probe and the finger can modulate the ambient light leakage to the

photodetector.

Figure 6.1: Effect of motion on ambient light signal. Signals are low pass filtered
at 5 Hz.

It is hypothesized that this property can be used to detect motion artifact in the

PPG signal. The proposed SQI (SQIAMB) is calculated using the infrared PPG and
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associated ambient light signal, as described in (6.5). For each signal segment, the

AC components of the PPG and ambient light signals are isolated and normalized

by their DC components. The reported SQI is the ratio of the RMS amplitudes of

the normalized PPG and ambient light signals. This SQI is expressed in decibels,

because the amplitude of the PPG is much greater than the amplitude of the ambient

light signal. Calculating the logarithm amplifies the effect of small increases in the

ambient light signal.

SQIAMB = 20log10

(
RMS(ACIR/DCIR)

RMS(ACIRamb/DCIRamb)

)
(6.5)

6.2.4 Correlation of Red and Infrared PPGs (SQIRICORR)

As demonstrated in Section 5.3, clean PPG signals have near-perfect linear correlation

between the red and infrared PPGs. This correlation is decreased in the isolated

motion artifact signal.

It is hypothesized that this property can be use to detect motion artifact in the

PPG signal. The proposed SQI (SQIRICORR) is calculated using the red and infrared

PPG signals, as described in (6.6). For each signal segment, the AC components of

the PPGs are isolated and normalized by their DC components. The reported SQI

in (6.6) is the Pearson Correlation Coefficient (r), where x and y are red and infrared

PPGs, respectively, x̄ and ȳ are means, and σx and σy are standard deviations.

SQIRICORR = r =

∑
(xi − x̄)(yi − ȳ)

σxσy
(6.6)
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6.3 Methodology

6.3.1 Real Contaminated Data

The SQI algorithms were tested on the PPG signals collected from each subject.

Although the movement conditions were not strictly controlled and are not necessar-

ily comparable between subjects, a successful SQI algorithm should show a general

negative trend with increasing movement intensity.

An SQI is calculated for each one-second segment of each test signal. The mean

and standard deviation of the SQIs in each movement condition for each subject are

calculated.

The performance of each SQI algorithm was tested on two binary classification

problems - motionless vs. low motion PPG, and motionless vs. high motion PPG.

This test was done using the data pooled from all subjects.

Finally, a Spearman rank correlation coefficient was calculated for each SQI algo-

rithm, to test for a monotonic correlation between SQI and movement intensity.

6.3.2 Artificially Contaminated Data

The artificially contaminated data was used to examine the relationship between the

true SNR and SQI scores. After DC normalization, the AC portion of the isolated

noise signals were scaled and added to the AC portion of clean PPGs.

The true SNR for each one-second signal segment was calculated according to

(6.7):

SNR = 20log10

(
ACIR/DCIR

k ∗ (ACIRnoise/DCIRnoise)

)
(6.7)

SQIXCORR and SQIRICORR scores were calculated and tested for a monotonic



CHAPTER 6. AUTOMATIC SIGNAL QUALITY ANALYSIS 70

correlation with the true SNR using Spearman’s rank correlation coefficient. SQIAMB

is not evaluated with this methodology, as the SQI score is directly related to the AC

amplitude of the ambient light signal, which is artificially scaled in the contamination

process.

6.4 Results

6.4.1 Real Contaminated Data

For each SQI algorithm, mean and standard deviation of the SQIs across all subjects

are calculated. The scores for SQIXCORR, SQIAMB and SQIRICORR are displayed in

Fig. 6.2. The mean and standard deviation of SQI scores for each subject and each

movement condition are reported in Appendix B. All three SQI algorithms successfully

discriminate between motionless and movement conditions, but do not discriminate

between the three levels of motion tested.

The strength of the monotonic correlation between SQI scores and movement

intensity was evaluated for each algorithm using Spearman’s rank correlation coeffi-

cient (rS). The results are displayed in Table 6.1. All three algorithms showed weak

monotonic relationships with movement intensity.

Table 6.1: Spearman’s rank correlation between SQI and movement intensity

SQI Algorithm rS

SQIXCORR 0.33

SQIAMB 0.49

SQIRICORR 0.49
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Figure 6.2: Comparison of SQI subject means in real motion contaminated data.
Error bars represent standard deviation of subject means.
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The receiver operating characteristic (ROC) curves for classification between mo-

tionless and high motion are presented in Fig. 6.3. SQIAMB had the greatest per-

formance across threshold levels with an area under the curve of AUC = 0.91.

SQIRICORR and SQIXCORR followed, with AUC = 0.88 and AUC = 0.84 respec-

tively. At some specific thresholds (false positive rate 0.2-0.4), the performance of

SQIRICORR exceeds that of SQIAMB.

The ROC curves for classification between motionless and low motion are pre-

sented in Fig. 6.4. Again, SQIAMB had the highest greatest performance across

threshold levels with an area under curve of AUC = 0.90. SQIXCORR and SQIRICORR

followed, with AUC = 0.71 and AUC = 0.67 respectively. SQIAMB also had the most

consistent performance, while SQIXCORR and SQIRICORR both performed worse

in the low movement condition.
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Figure 6.3: ROC curves for classification of motionless and high motion data.

To demonstrate implementation of SpO2 calculation with parallel SQI, an example

signal was generated using segments of real data from one subject. The signal consists

of ten seconds motionless, ten seconds of low motion, ten seconds motionless and ten

seconds of high motion. SpO2 calculations are shown with SQI scores from each

algorithm in Fig. 6.5. No shading indicates motionless data, yellow indicates low

motion and green indicates high motion. Periods of motion are marked by an increase

in SpO2 variance. SQIAMB decreases significantly for both movement conditions but

does not discriminate between the two. SQIRICORR decreases slightly for the low

motion condition and significantly for the high motion. SQIXCORR decreases slightly

for the movement conditions but does not strongly discriminate between the two.
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Figure 6.4: ROC curves for classification of motionless and low motion data.
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Figure 6.5: SpO2 calculation with parallel SQIs. No shading indicates motionless
data, yellow indicates low motion and green indicates high motion.
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6.4.2 Artificially Contaminated Data

Pooled-subject scatterplots of SNR vs. SQI using the artificially contaminated data

set are presented for SQIXCORR and SQIRICORR in Fig. 6.6 and Fig. 6.7 respectively.

SQIXCORR and SQIRICORR scores show positive monotonic correlation with SNR,

rS = 0.66 and rS = 0.54 respectively.

Figure 6.6: Correlation between SQIXCORR and SNR in artificially contaminated
data. Each point represents SQIXCORR and SNR calculated for a single one-
second PPG segment.
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Figure 6.7: Correlation between SQIRICORR and SNR in artificially contaminated
data. Each point represents SQIRICORR and SNR calculated for a single one-
second PPG segment.

6.5 Discussion

All three proposed algorithms met the criteria stated in Section 6.2. They rely solely

on signals produced by standard pulse oximeters, they do not rely on fiducial point de-

tection or temporal pulse alignment, and they are calculated every second. SQIXCORR

requires two seconds of reference data before the first SQI can be calculated on the

third second, but SQIAMB and SQIRICORR can begin reporting scores immediately.

The proposed SQI algorithms were shown to successfully discriminate between

motionless and movement conditions. SQIAMB showed the best overall performance

in both binary classification tasks, with very little performance loss when the motion

intensity was reduced. All three algorithms showed weak monotonic relationships

between SQI and movement intensity, as indicated by Spearman’s rank correlation
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coefficient.

In clinical applications, an SQI may be used to mask false alarms caused by low

signal quality. In this scenario, falsely identifying a segment as being contaminated

is costly and could lead to masking true alarms. To avoid this, the false positive rate

should be minimized. At thresholds that minimize false positives, SQIAMB performs

particularly well. Outside the clinical environment, the tradeoff between true positive

rate and false positive rate is application specific, and can be tuned by adjusting the

SQI threshold.

SQIXCORR and SQIRICORR were tested for correlation with true SNR in artifi-

cially contaminated signals. SQIXCORR showed a stronger monotonic relationship

with true SNR (rS = 0.66) than SQIRICORR (rS = 0.54), which indicates that

SQIXCORR may be better at quantifying motion artifact, rather than just detect-

ing it.

The one-second buffer for SQI calculations ideally included at least one complete

PPG pulse. This would not be the case for subjects with heart rates below 60 bpm.

Since SQIAMB and SQIRICORR do not rely on the periodicity of the PPG signal,

they would likely be relatively unaffected by low heart rates. SQIXCORR would likely

see a performance decrease, as incomplete segments would be more likely to generate

spurious correlations.

Similar to calculation of SpO2, SQI calculation may benefit from averaging mea-

surements over a longer period of time. Implementing a rolling average of several SQI

calculations could mitigate some of the variance in the calculations. However, these

techniques would lead to a system that is less responsive to sudden changes in SQI.

The trade-off between SQI accuracy and responsiveness could be tuneable in a real

system, and this threshold would likely be application specific.

In real life applications, the SQI threshold adjustment cannot be considered in
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isolation. Two binary classification problems need to be approached in sequence.

The first problem was addressed in this chapter - “Is the given PPG segment of

sufficient quality to be further analyzed?”. If the signal has sufficient quality, the

second problem is “Should the given PPG segment trigger an alarm?”. The thresholds

for these two classifiers must be considered in tandem to reduce the false alarm rate

of the overall system. This approach has precedent in the biometric security industry,

where a system must first decide if a reasonable quality biometric sample has been

recorded before an authentication decision can be made [38].

Further research is indicated in correlating SQI scores with SpO2 measurement

uncertainty. Since different applications have different levels of acceptable SpO2 er-

ror, understanding the relationship between SQI and SpO2 error is necessary to set

appropriate classification thresholds. This work may need to be repeated for different

types of pulse oximeter probes. While transmissive and reflective probes generate

very similar PPG waveforms, they may react differently to motion and alter the PPG

waveform in unique ways.

Further research may also be indicated in using supplemental signals to deter-

mine SQI. For example, an accelerometer on the probe would give an indication of

motion intensity. Supplemental electrocardiogram signals could help identify individ-

ual pulses to do a pulse-by-pulse SQI calculation. The downside to this approach is

the extra hardware and software complexity needed. The techniques proposed in this

thesis can be implemented in existing pulse oximetry hardware with minimal impact

on complexity and ease of use.

Unfortunately, there is no way to implement these proposed SQI algorithms on

existing pulse oximeters, as they all require access to the raw signals being measured.

Implementation in a clinical environment would require integration by a partner pulse

oximeter manufacturer, where an SQI level could be calculated and displayed on the

Geoff
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device alongside SpO2, as well as integrated into the alarm settings.

6.6 Chapter Summary

This chapter presented three automatic signal quality assessment algorithms, which

were then evaluated by their ability to classify clean and motion contaminated data.

Two of the algorithms were evaluated for correlation with true SNR in artificially

contaminated signals.

SQIAMB demonstrated the best performance in classifying clean and motion con-

taminated PPGs. Its performance was not significantly degraded when the classi-

fication challenge was increased by using the low motion signals. SQIXCORR and

SQIRICORR both performed reasonably well in identifying high motion signals, but

classification performance was degraded for the low motion signals.

Further study is indicated to correlate SQI scores with SpO2 measurement uncer-

tainty to help determine appropriate application-specific classification thresholds.



Chapter 7

Conclusions and Future Work

In this thesis, the signal quality challenges facing ambulatory pulse oximetry mon-

itoring were addressed. This included exploring the effects of motion artifact on

SpO2 measurements, modelling proposed origins of motion artifact, and developing

automatic signal quality assessment algorithms.

7.1 Summary of Findings

7.1.1 Effects of Motion Artifact on SpO2 Measurement

Previous work has demonstrated measurement error associated with motion artifact

in pulse oximetry [5, 6]. The size of this error is dependent on the parameters of the

specific SpO2 calculation algorithms employed, and the characteristics and intensity of

motion artifact. In their meta analysis of motion-resistant pulse oximeters, Giuliano

et al. noted a lack of consistency in motion artifact generation methodology [31].

In Chapter 4, measurement bias and variance in a set of motion contaminated

signals was evaluated using the conventional SpO2 calculation algorithm. While the

results suggested motion artifact could cause inaccurate SpO2 measurements, the data

did not support findings of a systematic negative bias reported in previous literature.
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SpO2 measurement bias and variance were also evaluated as a function of signal

to noise ratio in artificially contaminated signals. These results showed evidence for

a negative SpO2 bias at low signal to noise ratios.

The discrepancy between results using real data and artificially contaminated data

is notable. It is likely that that the real data collected in this study did not simulate

sufficiently low SNRs to show the trend identified in the artificial contamination model

and in previous literature.

7.1.2 Analytical Models of Pulse Oximetry Motion Artifact

Two hypotheses for the source of motion artifact are discussed in the literature [8],

and were further explored in Chapter 5. The models developed in Chapter 5 started

with a proposed motion artifact origin, and derived the effects of the origin on the

SpO2 calculation algorithm. The predicted effects were compared to real isolated

motion artifact signals.

Both models predicted SpO2 measurement bias and an increase in variance in

motion contaminated signals. The results showed evidence for a negative SpO2 bias

and an increase in variance. Furthermore, the results support both models of motion

artifact - the varying path length model and the blood sloshing model. The results

presented no evidence to distinguish the two models, but it is plausible that both

contribute to the motion artifact signal.

7.1.3 Automatic Signal Quality Assessment

Three automatic signal quality assessment algorithms were developed with the goal

of facilitating implementation on existing pulse oximeters. In order to achieve this

goal, the algorithms were designed to rely solely on the signals generated by the pulse
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oximeter, and do not require external sensors. They do not rely on beat detection,

fiducial point detection, or precise temporal alignment of pulses. Finally, to ensure

rapid reaction to changes in signal quality, scores were generated for every one-second

segment of the PPG.

All three SQI algorithms performed well classifying motionless vs. high motion

signals. The SQIAMB algorithm maintained its level of performance when classifying

low motion signals, while SQIXCORR and SQIRICORR showed reduced performance.

None of the algorithms were able to differentiate between the three different movement

conditions. All three algorithms demonstrated weak monotonic relationships between

SQI and movement intensity. These issues with the SQI algorithms may be caused

by lack of differentiation of the movement intensity levels in the data.

SQIXCORR and SQIRICORR were also tested for correlation with true SNR in

artificially contaminated signals. Despite their similar performance in the binary

classification problem, SQIXCORR showed a stronger monotonic relationship with

true SNR.

7.2 Implications for Future Work

7.2.1 Effects of Motion Artifact on SpO2 Measurement

Both the real and artificially contaminated data showed evidence of inaccurate SpO2

measurements during periods of motion. In the hospital, clinicians using pulse oxime-

try are taught to make subjective evaluations of the PPG tracing when interpreting

SpO2 data. In many remote monitoring applications, this subjective analysis of sig-

nal quality is lost. Since signal quality is strongly linked to SpO2 accuracy, parallel

signal quality assessment algorithms are indicated in applications where subjective

assessment by a clinician is infeasible.
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Further study is indicated in developing methodologies to evaluate motion resis-

tant pulse oximetry and signal quality assessment algorithms. This thesis noted issues

in characterizing, quantifying and reproducing clinically significant motion artifact.

7.2.2 Analytical Models of Pulse Oximetry Motion Artifact

Researching the mechanisms of motion artifact is an important exercise. Much of the

research in pulse oximetry motion artifact focusses on mitigation in post-processing

algorithms. However, a better understanding of the origins of motion artifact may

influence research into mitigation at the source.

The models suggest design considerations for motion artifact resistant probes.

To minimize the relative movement between the probe and the finger, lightweight,

flexible, snugly-fitting probes are indicated. To minimize the effects of the offset red

and infrared LEDs, prisms can be employed to ensure that incident light from the

two LEDs follows the exact same path.

7.2.3 Automatic Signal Quality Assessment

All three proposed SQIs were shown to discriminate between motionless and motion

conditions in the dataset. However, they may fail to quantify the intensity of motion

artifact. This was evidenced by poor discrimination between motion conditions in

the real data, weak correlations between SQI and movement intensity, and the weak

correlations of SQIXCORR and SQIRICORR to SNR in the artificially contaminated

data.

Further research is indicated in understanding the relationship between SQI scores

and SpO2 measurement uncertainty. Understanding this relationship is necessary to

establish appropriate application-specific classification thresholds.
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Appendix A

Derivation of SpO2 from Beer-Lambert

Law

The goal is to derive SpO2, the percentage of haemoglobin that is saturated with oxy-

gen. [HbO2] and [Hb] are the molar concentrations of oxygenated and deoxygenated

haemoglobin, respectively.

SpO2 =
[HbO2]

[HbO2] + [Hb]
× 100% (A.1)

A.1 Beer-Lambert Model

The Beer-Lambert law describes the attenuation of light transmitted through a sub-

stance. It describes emitted light intensity I, as a function of incident intensity I0,

the wavelength-dependent optical extinction coefficient ε, path length of the light l,

and concentration of the substance [C].

I = I0e
−ελ[C]l (A.2)

When light is shone through the finger, there are many tissues with different path
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lengths, concentrations and extinction coefficients contributing to the light attenua-

tion. The right hand side of this equation can be split into components: attenuation

due to arterial Hb, attenuation due to arterial HbO2, and attenuation due to other

tissues. Their contributions to the overall light extinction is assumed to be additive.

This equation applies between pulses of arterial blood, at the trough of the PPG

signal (It). lb is the path length through the arterial blood, and ltissue is the path

length through other tissues.

It = I0e
−εtissue[tissue]ltissue−εHb[Hb]lb−εHbO2[HbO2]lb (A.3)

A.2 Isolation of Absorption Due to Arterial Blood

Pulse oximetry uses the pulsating nature of arterial blood to isolate the Hb and HbO2

terms. When an arterial blood pulse enters the finger, the arteries dilate and the

path length through the arterial blood changes slightly (∆l). A new light absorption

equation can be set up for the light attenuation at the peak of the arterial pulse (Ip).

Ip = I0e
−εtissue[tissue]ltissue−εHb[Hb](lb+∆l)−εHbO2[HbO2](lb+∆l) (A.4)

Dividing (A.4) by (A.3) isolates the the Hb and HbO2 terms by cancelling out the

effects of other tissues and the power of the incident light.

ln(Ip/It) = εHb[Hb]∆l + εHbO2[HbO2]∆l (A.5)
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A.3 Obtaining R and SpO2

The dependence on ∆l needs to be eliminated. Since extinction coefficients εHb and

εHbO2 are functions of the incident wavelength, changing the incident wavelength

produces a new equation. Typically, red and infrared wavelengths are used. The

next step is calculation of the R parameter, which is obtained by dividing (A.5) by

the corresponding equation using another wavelength of light. Subscripts R and IR

represent red and infrared wavelengths.

R =
ln(Ip/It)Red
ln(Ip/It)IR

=
εHb,Red[Hb] + εHbO2,Red[HbO2]

εHb,IR[Hb] + εHbO2,IR[HbO2]
(A.6)

Combining (A.6) and (A.1) yields the relationship between R and SpO2.

SpO2 =
εHb,Red − εHbO2,RedR

εHb,Red − εHbO2,Red + (εHbO2,Red + εHb,IR)R
(A.7)

Because each of the extinction coefficients (ε) is a constant at a specific wavelength

of light, the relation in (A.7) can be used to calculate SpO2 directly. In practice

however, R values are mapped to SpO2 values using empirical calibration. This is

because the ε values are functions of wavelength, and manufacturing tolerances in the

LEDs will cause these numbers to vary.

A.4 Alternate Form of R

Since Ip−It is the AC PPG amplitude, R can alternatively be described as the ratio of

the AC components of the red and infrared PPGs, normalized by the DC components

(A.8).

R =
ln(Ip/It)Red
ln(Ip/It)IR

=
ACRed/DCRed
ACIR/DCIR

(A.8)



Appendix B

SQI Scores for Motion Contaminated

Signals

Chapter 6 proposes three automatic signal quality assessment algorithms. These

algorithms produce a single SQI value for each second of pulse oximeter data.

The mean and standard deviation SQIs for each subject in each movement con-

dition are reported in the tables below. Results for SQIXCORR, SQIAMB and

SQIRICORR are reported in Tables B.1, B.2 and B.3 respectively.

Table B.1: Mean and standard deviation of SQIXCORR scores

Subject No Motion Low Medium High

x̄ s x̄ s x̄ s x̄ s

1 0.97 0.09 0.86 0.21 0.93 0.14 0.89 0.13

2 0.95 0.10 0.89 0.16 0.76 0.13 0.76 0.12

3 1.00 0.05 0.86 0.15 0.91 0.11 0.84 0.15

4 0.99 0.06 0.91 0.13 0.92 0.12 0.84 0.12

5 1.02 0.03 0.94 0.10 0.91 0.13 0.87 0.10
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Table B.2: Mean and standard deviation of SQIAMB scores

Subject No Motion Low Medium High

x̄ s x̄ s x̄ s x̄ s

1 29.2 3.1 20.6 3.8 18.0 3.3 13.6 2.7

2 33.2 1.9 20.3 3.9 20.9 4.1 22.7 3.8

3 29.7 2.7 6.9 3.7 8.9 3.3 9.6 3.5

4 14.8 2.5 5.2 4.1 8.1 3.4 -1.0 3.4

5 20.4 3.1 3.9 4.5 5.0 3.3 3.3 3.3

Table B.3: Mean and standard deviation of SQIRICORR scores

Subject No Motion Low Medium High

x̄ s x̄ s x̄ s x̄ s

1 0.9994 0.0003 0.9983 0.0019 0.9953 0.0036 0.9936 0.0044

2 0.9993 0.0002 0.9991 0.0006 0.9994 0.0005 0.9986 0.0015

3 0.9991 0.0004 0.9946 0.0104 0.9340 0.1946 0.9918 0.0104

4 0.9979 0.0014 0.9974 0.0027 0.9971 0.0021 0.9760 0.0159

5 0.9985 0.0004 0.9975 0.0028 0.9963 0.0035 0.9854 0.0434


	Abstract
	Acknowledgments
	Statement of Originality
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	 1 Introduction
	1.1 Motivation
	1.2 Biosignal Quality Analysis
	1.3 Objectives
	1.4 Contributions
	1.5 Thesis Organization

	 2 Background
	2.1 Introduction to Pulse Oximetry
	2.1.1 Oxygen Transport
	2.1.2 Measuring SpO2 with Pulse Oximetry
	2.1.3 Calibration

	2.2 Applications of Pulse Oximetry
	2.2.1 Clinical
	2.2.2 Non-Clinical

	2.3 Signal Quality
	2.3.1 Artifact Detection in Biological Signals
	2.3.2 Effects of Motion Artifact in Pulse Oximetry
	2.3.3 Signal Quality Assessment in Pulse Oximetry

	2.4 Advances in Pulse Oximetry
	2.4.1 Calibration-Free Pulse Oximetry
	2.4.2 Motion Resistant Pulse Oximetry


	 3 Methodology
	3.1 System Overview
	3.1.1 Receive Section
	3.1.2 Transmit Section
	3.1.3 Timing Diagram
	3.1.4 Probe

	3.2 Data Collection
	3.2.1 Clean Signal Acquisition
	3.2.2 Contaminated Signal Acquisition
	3.2.3 Generating Isolated Noise Signal

	3.3 Calculation of R and SpO2
	3.3.1 Calibration
	3.3.2 R Calculation Algorithm

	3.4 Calculation of R and SpO2 in this Thesis

	 4 Evaluating the Effects of Motion Artifact
	4.1 Introduction
	4.2 Methodology
	4.2.1 Real Contaminated Data
	4.2.2 Artificially Contaminated Data

	4.3 Results
	4.3.1 Real Contaminated Data
	4.3.2 Artificially Contaminated Data

	4.4 Discussion
	4.4.1 Measurement Bias
	4.4.2 Measurement Variance

	4.5 Chapter Summary

	 5 Analytical Models of SpO2 Error
	5.1 Introduction
	5.2 Proposed Models
	5.2.1 Varying Path Length
	5.2.2 Blood Sloshing

	5.3 Analysis of Isolated Motion Artifact
	5.4 Discussion
	5.5 Chapter Summary

	 6 Automatic Signal Quality Analysis
	6.1 Introduction
	6.2 Proposed SQI Algorithms
	6.2.1 Preprocessing for SQI Calculation
	6.2.2 Cross-Correlation of PPG Segments (SQIXCORR)
	6.2.3 AC Power of Ambient Light SQIAMB
	6.2.4 Correlation of Red and Infrared PPGs (SQIRICORR)

	6.3 Methodology
	6.3.1 Real Contaminated Data
	6.3.2 Artificially Contaminated Data

	6.4 Results
	6.4.1 Real Contaminated Data
	6.4.2 Artificially Contaminated Data

	6.5 Discussion
	6.6 Chapter Summary

	 7 Conclusions and Future Work
	7.1 Summary of Findings
	7.1.1 Effects of Motion Artifact on SpO2 Measurement
	7.1.2 Analytical Models of Pulse Oximetry Motion Artifact
	7.1.3 Automatic Signal Quality Assessment

	7.2 Implications for Future Work
	7.2.1 Effects of Motion Artifact on SpO2 Measurement
	7.2.2 Analytical Models of Pulse Oximetry Motion Artifact
	7.2.3 Automatic Signal Quality Assessment


	List of References
	Appendix A Derivation of SpO2 from Beer-Lambert Law
	A.1 Beer-Lambert Model
	A.2 Isolation of Absorption Due to Arterial Blood
	A.3 Obtaining R and SpO2
	A.4 Alternate Form of R

	Appendix B SQI Scores for Motion Contaminated Signals

