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Abstract

Tomographic image reconstruction is an inverse problem, where unknown parameters de-

scribing an internal volume are estimated from a set of known measurements (observations).

Tomographic images are increasingly used in diagnostic applications in medicine and other

industries, such as seismology and non-destructive testing. In many biomedical applica-

tions, the underlying anatomy contains sharp interfaces between the di�erent organs and

tissue types. Classical linear formulations of tomographic image reconstruction tend to

smooth these sharp interfaces and produce blurred, low contrast images. Alternatives

to these linear image reconstruction algorithms are edge-preserving image reconstruction

methods (EPIRM) which preserve the sharp interfaces by non-linear parameterizations.

The main aim of this thesis is to develop novel EPIRMs applied to reconstruct high

contrast, edge-preserving images which are robust against noise and data outliers. This

thesis proposes three novel variants of the EPIRM and evaluates the robustness of the

proposed EPIRMs against measurement errors.

To show the implementation of the proposed EPIRMs, Electrical Impedance Tomogra-

phy (EIT) as an instance of ill-posed, non-linear inverse problem is applied. It is desirable

to have a reconstruction algorithm with sharp image and low vulnerability to spatial noise

and data outliers, which are common measurement errors caused due to patient movement,

sweating, and loose electrode connections, in clinical applications of EIT. This thesis in-

vestigates the �rst experimental results of applying di�erence EIT to produce EIT lung

images for lung healthy and lung unhealthy patients. According to our clinical results for

EIT lung data, the proposed EPIRMs o�er sharper, lower noise and artifact lung image

when compared with the competing methods. The proposed EPIRMs reconstruct changes

in the lung volume during inhalation and exhalation cycles so that the shape of the venti-
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lated regions inside the lungs alters, in accordance with the lung volume for a mechanically

ventilated patient, from one time frame to another.

This thesis proposes an evaluation framework to qualitatively and quantitatively com-

pare the performance of four competing methods (iterative Gauss-Newton (GN) with

Tikhonov regularization term, GN with NOSER algorithm, Total Variation (TV), and

the L1 norm based inverse problem solved using the Primal-Dual Interior Point Method

(hereinafter referred to as the PDIPM) against that of the proposed EPIRMs over EIT

simulated data. The simulation results show that the proposed EPIRMs o�er the highest

accuracy in the reconstruction of two low conductive inclusions with an overall average

accuracy score of 2.57 (out of 3), vs. 1.78 for TV as the second best performing method.

Moreover, the results show that the proposed EPIRM with the sum of absolute values (L1

norm) on the image and data terms of the inverse problem o�ers the highest robustness

against measurement errors with an average robustness score of 3 (out of 3), averaged over

three di�erent measurement conditions. The PDIPM with the L1 norms on its inverse

problem terms o�ers an average robustness score of 1.33 and is the second robust method

in dealing with the uncertainties.
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Chapter 1

Introduction

This thesis is primarily concerned with the derivation, implementation and validation of

edge-preserving image reconstruction methods (EPIRM) and proposes three novel variants

of the EPIRM. The aim of the thesis is to propose mathematically sound numerical algo-

rithms to solve the problem of reconstructing an 2D cross sectional image of the internal

structures of an object so that the sharp edges of the internal structures are preserved.

This chapter describes the problems to be addressed, the objective, and the contributions

of this thesis. The review of the background materials is presented in chapters 2, 3, and 4,

where detailed references to the literature are provided.

1.1 Classical tomographic image reconstruction

Tomography is a method of constructing a cross sectional image of the internal structures

of a solid object through the measurement of a physical phenomena at the boundary

of the object. Tomography has found widespread applications in many scienti�c �elds

including: physics, chemistry, astronomy, geophysics, and medicine. Tomographic image

reconstruction often requires solving an inverse problem where the unknown image pixel
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intensities are estimated from a small amount of measured data. An inverse problem is

a process in which the unknown system parameters are inferred from a small amount of

measured data where the measured data is a�ected by inevitable measurement noise which

makes the estimation of the unknown parameters a hard task. The physical law governing

a tomographic imaging modality can be either linear, such as CT, PET, and SPECT, or

non-linear, such as near-infrared imaging, and electrical impedance tomography (EIT). The

linear or non-linear relationship between the system parameters (image pixel intensities)

and the measured data is de�ned using a forward model. In order to reconstruct an image,

classical image reconstruction algorithms typically model a non-linear forward problem

as: d = h(m), where m is the image pixel intensities, d is the measured data, and h is

the mapping function which relates the image pixel intensities m to the measured data

d. In an inverse problem, the inverse solution m is not stable. Furthermore, the inverse

solution m is sensitive to inevitable measurement noise from instrument readings. In order

to stabilize the inverse solution, the a priori information about the desired solution in

the form of one or several constraints is incorporated into the solution m to bias it. The

algorithm which incorporates the a priori information into the solution is referred to as a

regularization algorithm. To stabilize the inverse solution m, the classical regularization

algorithm minimizes the following objective function:

m̂ = argmin
m

[D(h(m)− dreal) + P (m−mprior)] (1.1)

where D(d − dreal) is a data mismatch penalty function (or data mismatch term) that

increases as the forward model h(m) is less able to predict the real data dreal, P (m) is

a penalty (or regularization) function, which is also referred to as the image term, that

increases as the inverse solution m is less likely, given the prior understanding of the model

parameters mprior. The regularization algorithm often contains a combination of residual
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norms of the solution, e.g. quadratic norm (L2 norm), or sum of absolute values (L1 norm).

For instance, the earliest approach to inverse problems was the Tikhonov regularization

method, in which D(h(m)−dreal) = ‖h(m)−dreal‖2 and P (m−mprior) = ‖m−mprior‖2. In

the Tikhonov reconstruction method, the inverse solutionm can be obtained by minimizing

the following quadratic norm based objective function:

m̂ = argmin
m

[
‖h(m)− dreal‖2 + ‖m−mprior‖2

]
(1.2)

In the following subsection, the problems challenging the classical image reconstruction

methods, such as the Tikhonov method, are brie�y described.

1.1.1 Problems of the classical linear image reconstruction

The classical linear reconstruction algorithms, such as the Tiknonov method in (1.2), have

shown good results in many cases; however, they have three main disadvantages: 1) The

classical reconstruction methods smooth out the sharp edges present in the structure inside

a medium (smoothness e�ect), 2) They are sensitive to measurement noise, and 3) They

are sensitive to data outliers.

Figure 1.1 (a) shows the sensitivity of the Tikhonov method, as an instance of the

classical image reconstruction method, to 14 dB measurement noise added to EIT sim-

ulated data. Comparing with the actual image in the �rst column of �gure 1.1 (a), the

sharp edges at the interface between the foreground and the background are smoothed out

(problem#1). The quality of the reconstructed image using the Tikhonov method, in the

second column of �gure 1.1 (a), drops in the presence of measurement noise (problem#2).

Figure 1.1 (b) shows the sensitivity of the Tikhonov method to data outliers. A data loss

(data outliers) is generated by simulating an electrode, colored in red, with loose connec-

tion to the surface of the medium. The reconstructed image in the second column of �gure
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1.1 (b) is deformed due to sensitivity to the data outliers (problem#3). As an alternative

reconstruction method, this thesis investigates EPIRMs which reformulate (1.2) to pro-

duce sharp images which are robust against the additional measurement noise and data

outliers. EPIRMs are brie�y introduced in the next section where their robustness against

measurement noise and data outliers is demonstrated.

1.2 Edge-preserving image reconstruction methods

There are many situations in medical and industrial applications where the structures

within a medium have high contrast against the background. For instance, in a CT scan,

the contrast between di�erent tissue types is seen as sharp interfaces because di�erent

tissue types have di�erent X-ray attenuation coe�cient. In such situations, it is desirable

to be able to reconstruct the sharp transitions (sharp edges) at the interface between the

structure and the background. However, the traditional reconstruction algorithms have

di�culty in dealing with the sharp transitions and smooth the sharp edges. The EPIRMs,

which are the focus of this thesis, are investigated as an alternative to the traditional re-

construction algorithms in order to deal with the discontinuities in the structure. In the

literature, the EPIRMs have been studied through the concept of discontinuities recon-

struction algorithms (Kaipio et al., 1999; Borsic et al., 2002) and shape reconstruction

algorithms (Tamburrino and Rubinacci, 2002; Bruhl, 2001; Chan and Tai, 2004; Soleimani

et al., 2006d; Dorn and Lesselier, 2009). Reconstruction using anisotropic-smoothness

�lters is an instance of the discontinuities reconstruction algorithms where the a priori

information about the discontinuities in the structure is known and applied in the recon-

struction algorithm (Kaipio et al., 1999). The discontinuities are reconstructed by relaxing

the smoothness constraints in the direction normal to the discontinuities. The drawback of

the reconstruction method using anisotropic-smoothness �lters is that it demands a priori
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information about the discontinuities. Another approach to reconstruct the discontinuities

is to apply the total variation functionals in the reconstruction algorithm, which is referred

to as the TV regularization method (Borchers, 2000). Unlike the traditional reconstruction

algorithms which apply a discrete representation of di�erential operators in conjunction

with the L2 norm in their regularization formulation, such as the one in (1.2), the TV

functional is applied as a di�erential operator which leads to a L1 norm in a TV regu-

larization method. The L1 norm based functional does not penalize the discontinuities,

a trait absent in the L2 norm based functionals utilized in the traditional reconstruction

algorithm. In chapter 2, the non-linear inverse problem in (1.2) is reformulated to contain

the TV regularization term in order to preserve the edges in the reconstructed image.

The shape reconstruction algorithms are another sub domain of the EPIRMs which

reconstruct the sharp edges in a pro�le. The shape reconstruction methods have been

studied in the context of monotonicity based shape reconstruction (Tamburrino and Rubi-

nacci, 2002), linear sampling algorithms (Bruhl, 2001), and level set (LS) (Chan and Tai,

2004; Soleimani et al., 2006d; Dorn and Lesselier, 2009). This thesis investigates the shape

reconstruction methods in the context of the LS approach. The LS technique was originally

proposed to model fast changing interfaces (Osher and Sethian, 1998; Osher and Paragios,

2003). In recent years, the application of the LS technique in scattering inverse problems

was investigated (Chan and Tai, 2004; Soleimani et al., 2006d; Dorn and Lesselier, 2009).

The level set based regularization methods (LSRM) have been studied to reconstruct the

sharp transitions (sharp edges) in a pro�le (Soleimani et al., 2006d). The main di�erence

between the LSRMs and the discontinuities reconstruction algorithms, such as the TV

regularization algorithm, is that the LSRMs apply a LS based regularization term which

constrains the shape of the structure instead of the amplitude of the pixel intensities. The

LSRMs assume that the contrast at the interface between the structure and the back-
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ground is high (sharp transition) and consider two di�erent known intensity values for the

image pixels which belong to the structure and the background. In an LSRM, the shape of

the structure is unknown and is calculated as an inverse solution. To solve the non-linear

inverse problem in (1.2) for the shape of the structure, the inverse problem is reformulated

to contain a shape based regularization term which is de�ned based on a level set function

(LSF). The LSF is a signed distance function representing the shape of the structure. The

LSF is negative inside the structure, positive outside, and zero at the boundary. Therefore,

the shape of the structure, or the boundary, is achieved at the zero level of the LSF. The

minimization of the level set based regularization problem requires the evolution of the LSF

such that in each iteration the structure moves from an initial guess toward an optimum

shape, which is close to the actual pro�le. The LS evolution is stopped when the shape

of the structure is su�ciently close to the actual pro�le. At the �nal iteration, the pixels

at which the LSF is zero constitute the boundary of the structure (shape reconstruction).

The level set approach can be applied in situations where approximate values of the param-

eters inside the structures with sharp interfaces are available; however, the sizes, shapes,

locations and geometry of the structures are unknown (Soleimani et al., 2006d). The shape

reconstruction methods have mostly been applied over simulated data in the past. This

thesis proposes two novel shape reconstruction methods, referred to as the LSRM, and the

LSPDIPM, and applies them on EIT simulated and experimental data. The mathematical

procedures to derive the proposed LSRMs are presented in chapter 5 and 7.

1.2.1 Thesis motivation

The EPIRM is considered as an alternative reconstruction algorithm to resolve the three

main problems of the traditional image reconstruction algorithms, discussed in subsection

1.1.1. This thesis explores the EPIRMs which reformulate (1.2) to contain the sum of
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absolute values (L1 norm) on either the data mismatch term, the image term or both.

In the remainder of this subsection, the aim is to illustrate the motivation of the thesis

by comparing the ability of an EPIRM and the Tikhonov method, as a classical image

reconstruction method, in preserving the sharp edges of a high contrast structure in a 2D

circular medium when there is measurement errors. Figure 1.1 shows that the EPIRM

does not smooth out the sharp edges present in the medium and indeed produces sharp

reconstructed images with high robustness against measurement noise and data outliers.

In �gure 1.1, an EIT system, described in detail in chapter 3, was applied to reconstruct

the conductivity of two low conductive, high contrast objects placed in the lower and upper

regions of a 2D circular phantom. EIT data was simulated and perturbed by measurement

errors. The �rst column in �gures 1.1 (a) and (b) shows the actual image as well as a cross

section pro�le along the bigger object, representing sharp transitions in the conductivity

amplitudes at the interface between the foreground and the background. A successful

reconstruction method retrieves these sharp transitions at the interface in the reconstructed

image when there are measurement errors in the EIT data. Figure 1.1 (a) and (b) show

the robustness comparison between the classical image reconstruction method in (1.2) and

the EPIRM under the following two measurement conditions: 1) When there is 14 dB

zero-mean Gaussian noise added to the EIT simulated data (�gure 1.1 (a)), 2) When

the connection of one electrode to the medium is loose and a data loss, or data outliers,

occurs (�gure 1.1 (b)). The data outliers are a non-Gaussian noise which was generated

by simulating a loose connection for an electrode at the surface of the medium. The EIT

reconstructed images using the Tikhonov method (the second column in the �gures) and

the EPIRM (the last column in the �gures) as well as a cross-section pro�le of the bigger

object (the second row in the �gures) are demonstrated. In �gure 1.1 (a), it is shown that

the application of the L1 norm over the image term (‖m−mprior‖1) bene�ts the EPIRM
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in terms of the robustness against the additional 14 dB zero-mean Gaussian noise to the

data (measurement condition #1). The reconstructed image using the EPIRM with the L1

norm based image term preserves the sharp edges at the interface and o�ers similar cross

section pro�le to the actual pro�le. However, the reconstructed image using the Tikhonov

method containing the L2 norms over the image term (‖m−mreal‖2) smooths out the sharp

edges and does not o�er a similar cross section pro�le to the actual pro�le. Figure 1.1 (b)
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Figure 1.1: The robustness comparison between the traditional image reconstruction
method and the edge preserving image reconstruction method. (a) In the presence of
14 dB zero-mean Gaussian noise. (b) In the presence of data outliers. The edge preserv-
ing image reconstruction method retrieves the sharp edges as shown in its cross-section
pro�le; however, the cross-section pro�le of the traditional image reconstruction method is
smoothed out and does not rebuild the sharp edges presented in the actual pro�le.

demonstrates the robustness of the EPIRM and the Tikhonov method against data outliers

(measurement condition #2). An electrode, colored in red, is not completely attached to

the surface of the medium and generates a data loss (data outliers). The results in �gure

1.1 (b) o�er that the application of the L1 norm over the data term (‖d − dreal‖1) causes

the EPIRM to become robust against the generated data outliers and able to reconstruct

an image with an edge pro�le similar to the pro�le of the actual image. However, the
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Tikhonov regularization method with the L2 norm on the data term (‖d − dreal‖2) does

not produce a sharp pro�le and its cross section pro�le is noisy and rippled. In �gure 1.1

(a) and (b), one can de�ne the resolution as the area underneath the cross section pro�le.

It can be seen that the proposed EPIRMs have higher resolution (bigger area) than the

traditional image reconstruction method with smaller area under its cross section pro�le.

1.2.2 Proposed edge-preserving image reconstruction methods

This thesis proposes three novel EPIRMs to produce sharp reconstructed images with high

robustness against noise and data outliers. The EPIRMs can be derived from a proposed

generalized regularization formulation. The proposed generalized regularization formula-

tion di�ers the classical regularization methods, such as the Tikhonov method in (1.2),

in the following aspects: 1) It independently applies the L1 and L2 norms over the data

mismatch, the regularization terms, or both, 2) To o�er sharp reconstructed images, it com-

bines the smooth properties of the L2 norm based objective functionals with the blocky

e�ect of the L1 norm based objective functionals. Chapter 5 proposes a novel LSRM, which

belongs to the bigger domain described as shape reconstruction methods in subsection 1.2,

in conjunction with the L2 norms (contribution#1). Chapter 6 discusses the proposed gen-

eralized inverse problem and derives its general inverse solution (contribution#2). Chapter

7 formulates a novel L1 norm based shape reconstruction method using the LS approach,

which is referred to as LSPDIPM, and shows the derivation of the LSPDIPM using the

proposed generalized inverse problem (contribution#3).

1.2.3 Applications of the proposed EPIRMs

The three proposed EPIRMs are useful in either medical or industrial applications where

it is important to reconstruct the interfaces between several region of interests. In medical
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application, the EPIRM is used for treatment planning, disease monitoring, or clinical

studies. In many hospitals and health providers, the standard of practice is a double

reading procedure, where a computer aided diagnostic (CAD) system helps physicians or

radiologists interpret a diagnostic image. The EPIRM can be applied in a CAD system

to reconstruct a sharp diagnostic image to assist the physicians or radiologists to plan the

treatment or to monitor the condition of a patient in intensive care unit (ICU).

The proposed EPIRMs can be applied on many imaging modalities, such as PET, and

CT scan, to preserve the sharp edges at the interface between di�erent tissues. EIT is an

imaging modality that introduces energy to the medium and measure its interaction with

the medium in order to investigate the structure or function of the medium (Adler and

Guardo, 1996). EIT reconstructs the conductivity distribution inside the medium using

surface measurements. This thesis applies EIT as an instance of an inverse problem to

show the implementation of the proposed EPIRMs. The proposed EPIRMs are applied

to EIT to monitor the air distribution inside the lungs during the incremental positive

end-expiratory pressure (PEEP) trial for mechanically ventilated patients. The objective

is to reconstruct the area of the ventilated regions inside the lungs during the incremental

PEEP trial. The applied clinical data contains EIT data of 8 lung healthy patients and 18

acute lung injury (ALI) patients. The CT equivalents of the applied clinical data were not

available to be applied as ground truth; and therefore, qualitative comparisons between the

clinical results of the proposed EPIRMs and those of the competing methods are provided.

The quantitative and qualitative comparisons are accomplished over EIT simulated data

in chapter 8.
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1.3 Objectives of this thesis

This thesis investigates novel approaches to the EPIRMs in order to improve the quality

and the contrast of the reconstructed image, as well as to enhance its robustness against

measurement noise and data outliers, which are two common issues in clinical applica-

tions of the tomography. The assessment of the proposed EPIRMs is accomplished over

EIT simulated data and EIT real data of human breathing, where the latter has been of

high importance in the EIT community in recent years. The realization of aforementioned

objectives was achieved in terms of: 1) Developing the LSRM in di�erence mode, 2) In-

vestigating the applicability of an independent combination of the L1 and L2 norms for

de�ning an inverse problem, 3) Developing a novel variant of the LSRM to allow for all

possible combinations of the L1 norms and L2 norms over the inverse problem terms, 4)

Proposing a sophisticated evaluation framework to compare the performance of the com-

peting image reconstruction algorithms with that of the proposed image reconstruction

algorithms in this thesis.

1.4 Contributions of this thesis

1.4.1 Contributions by Objectives

� Level Set based Reconstruction Method for EIT Lung Images: First Clinical Results

The previously established LSRMs were applied only to simulated data and pro-

posed in absolute mode where the absolute conductivity value for each element in

the medium was calculated. Whereas the systematic errors of EIT stay constant from

one frame to another, the reconstruction of conductivity changes between two subse-

quent frames reduces image artifacts in di�erence EIT. The di�erence EIT provides

the conductivity changes, rather than the absolute conductivity value, and is more
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suitable for EIT clinical applications. Therefore to bring high contrast EIT into rou-

tine clinical applications, it is necessary to develop a LSRM using a di�erence solver.

This thesis formulates a novel LSRM using a di�erence solver and demonstrates the

�rst clinical results of applying di�erence LSRM for EIT lung image in chapter 5.

The performance of the proposed LSRM is assessed over simulated and clinical data.

This study is presented in chapter 5 and has been published as �Level Set based

Reconstruction Algorithm for EIT Lung Images: First Clinical Results�, Peyman

Rahmati, Manuchehr Soleimani, Sven Pulletz, Inez Frerichs, and Andy Adler, Jour-

nal of Physiological Measurement, 33(5):739-50, 2012.

� A Generalized Inverse Problem with Weighted L1 and L2 Norms

The traditional inverse problems are usually de�ned by penalty terms which are

based on square �ttings (L2 norms). However in practice, the L2 norms (‖...‖)

smooth out the sharp edges present in the internal structures of a medium. An

e�ective alternative to the L2 norms, which does not smooth out the sharp edges,

is the L1 norms (|...|). This thesis formulates a novel generalized inverse problem

which mixes the L1 norms and the L2 norms on both the data and the regularization

terms of an inverse problem. An iterative minimization framework, such as primal-

dual interior point method (PDIPM), is utilized to estimate the inverse solution of

the proposed generalized inverse problem. The aim of this study is to investigate

the e�ect of di�erent combination of the L1 and L2 norms on the inverse solution

so that di�erent inverse problem applications raised in engineering, system biology,

seismology, soil study, and life science can take advantage of the achieved results.

This work is presented in Chapter 6. This work has been presented in The 36th

Annual Conference of the Canadian Medical and Biological Engineering Society. This
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study was published as �Weighted L1 and L2 Norms for Image Reconstruction: First

Clinical Results of Electrical Impedance Tomography Lung Data�, Peyman Rahmati,

Andy Adler, The 36th Annual Conference of the Canadian Medical and Biological

Engineering Society, May 2013. An extended version of these papers is presented in

chapterchap:GPDIPM.

� Level Set Technique for High Contrast Image Reconstruction.

The LSRM o�ers high contrast image reconstruction which is desirable in many

applications including medical and industrial imaging applications. This thesis for-

mulates a novel optimization framework, referred to as level set based primal-dual

interior point method (LSPDIPM), to estimate the inverse solution of a general in-

verse problem which independently contains a combination of both the L1 norms

and the L2 norms. The reconstructed images of the proposed LSPDIPM o�er high

contrast and quality when compared with those of four competing methods, GN

with Tikhonov regularization term, GN with Newton's one-step error reconstructor

(NOSER) algorithm, TV, and the L1 norm based inverse problem solved using the

PDIPM framework, referred to as the PDIPM in this thesis, over the same EIT sim-

ulated and real data. Also, the proposed LSPDIPM is successful in dealing with

measurement noise (14 dB zero-mean Gaussian noise) and strong outliers.

This work is presented in chapter 7 and has been presented in two conferences: The

36 Annual Conference of the Canadian Medical and Biological Engineering Society

(CMBES), Ottawa, Canada and XV Int. Conf. Electrical Bio-Impedance & XIV

Electrical Impedance Tomography, Germany. The results of this work were published

as�Level Set Technique for High Contrast Image Reconstruction�, Peyman Rahmati,

and Andy Adler, The 36 Annual Conference of the Canadian Medical and Biological

Engineering Society, 2013 and � A Level Set based Regularization Framework for EIT
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Image Reconstruction�, Peyman Rahmati, and Andy Adler, XV Int. Conf. Electri-

cal Bio-Impedance & XIV Electrical Impedance Tomography, Heilbad Heiligenstadt,

Germany, 2013.

� Evaluation Framework

This thesis also proposes an evaluation framework to compare the performance of

four competing reconstruction algorithms with the proposed EPIRMs. The EIT

data for two low conductive inclusions with di�erent shapes located in the upper

and lower regions of a 2D circular phantom is simulated in MATLAB using EIDORS

toolbox developed by Adler and Lionheart (2005). A feature vector, including �ve

morphological metrics and two shape descriptors, is considered to assess the image

reconstruction accuracy for each competing method. The euclidean distance between

the feature vector of a reconstruction method and that of the ground truth is calcu-

lated. The reconstruction method with the smallest euclidean distance is selected as

the best performing method with the highest reconstruction accuracy.

Moreover, the robustness of the competing image reconstruction methods against

potential uncertainties, such as measurement noise and data outliers, is evaluated. A

robustness metrics (noise measurement) is de�ned to quantitatively assess a method's

robustness against measurement errors. Chapter 8 discusses the proposed evaluation

framework and shows the achieved qualitative and quantitative comparison results.
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Chapter 2

Inverse Problems

2.1 Summary

This chapter introduces inverse problems through the concept of forward problem and

its inverse solution. The existence, uniqueness, and the stability of the inverse solution

is discussed. The inverse solution of an inverse problem with quadratic functionals (L2

norms) for linear and non-linear cases is presented. Iterative GN method is derived for a

non-linear inverse problem. The focus of this thesis is on the EPIRMs which are non-linear

inverse problem containing absolute value based functionals (L1 norms). As an instance

of the EPIRMs, the total variation (TV) regularization method which applies the sum of

absolute values (L1 norm) on its regularization term is discussed.

2.2 Introduction

In many applications, it is desirable to relate the physical parameters m of a system to the

measured observation or data d. The unknown system parameters de�ne the properties

of the system and are not directly measurable. The experimental observations are easily
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measurable and their values depend on the value of the unknown parameters through a

linear or non-linear relationship, depending on the physical laws governing the system. If

the fundamental physics governing the system are su�ciently understood, a function h can

be speci�ed to relate m and d as follows:

d = h(m), (2.1)

where h is a linear or non-linear function that links the system parameters vector m to

the measured data or observations vector d. The equation in (2.1) is referred to as a

forward problem. In a forward problem, the data vector d is computed, given the system

parameters vector m. The inverse problem occurs when unknown or hard to determine

parameters vector of the system (m) are determined from the experimental observations

or data vector d. For example, consider a tomography problem where the velocity of the

ray (s(x)) at point x is determined from the travel time of the ray (t) in the medium. If

the velocity s(x) and the ray path l are known, the forward problem to compute the travel

time of the ray t can be written as follows:

t =

∫
l

s(x(l))dl (2.2)

In the case that the ray path l does not depend on the velocity s(x) and can be approxi-

mated as a straight line, the forward problem in (2.2) is linear.

The inverse problem is hard, when compared to simple problems with hard to measure

parameters, because it is possible to �nd many parameters vectors that mathematically �t

the observations or data points vector but indeed are not physically plausible. The di�culty

of the inverse problem, when compared with the simple problems, is that one needs to �nd

the optimal inverse solution m that 1) �ts to the data vector, 2) is plausible in terms of
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the physics governing the system, 3) is stable and consistent in the presence of noise. A

practical issue is that data vector d may contain some amount of noise, due to unexpected

in�uences on instrument readings or numerical round-o�. Therefore, it makes sense to

formulate the data as two components: 1) The noiseless data vector dtrue = h(mtrue) which

is achieved from an ideal instrument, 2) A noise component vector n. The forward model

can be rewritten as follows:

d = h(mtrue) + n, (2.3)

It is mathematically feasible that there are an in�nite number of parameters vectors m

that �t the actual data dtrue. Also, it is possible to �nd a solution m which is a�ected by a

very small amplitude noise n and has a little or no correspondence to mtrue. If any of the

following cases happen, the inverse solution m is ill-posed based on the Hadamard rules:

1) The solution does not exist, which means there is no parameters vector m that satis�es

the data vector d in (2.1), 2) The solution is not unique, which means the exact solution

exist but it is not unique and there are other solutions, aside from mtrue, that satisfy the

forward problem in (2.1), or 3) The solution is not stable and is sensitive to noise, which is

the case in many inverse problems where a small amplitude noise n in (2.3) is magni�ed in

the inverse solution. It is possible to stabilize the inversion by biasing the solution through

applying additional constraints, which is referred to as a regularization. To stabilize the

inverse solution, there are several regularization methods which are formed in terms of a

penalty norm. As it is shown in chapter 1, a generalized regularization method can be

written as:

m̂ = argmin
m

[D(h(m)− dreal) + P (m−mprior)] (2.4)

where the data mismatch term D(h(m) − dreal) and the image term P (m − mprior) are

linear or non-linear penalty functions which can be de�ned based on either quadratic

based functionals, sum of absolute values based functionals, or both. According to the
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applied penalty functions in the de�nition of a regularization method, this thesis assigns

the regularization methods to one of the following two groups : 1) Regularization for inverse

problem with quadratic functionals, 2) Regularization for inverse problem with absolute

values based functionals. Section 2.3 discusses the regularization for inverse problem with

quadratic functionals for the linear and non-linear inverse problems. Section IP-absolute

discusses the regularization for non-linear inverse problem with the sum of absolute values

based functionals through the concept of TV and presents the TV regularization method

as an iterative regularization method. The application of the primal-dual interior point

method (PDIPM) in order to minimize the sum of absolute values based functionals in the

TV regularization method is shown.

2.3 Regularization for inverse problem with quadratic

functionals

2.3.1 Linear inverse problem

In a linear case, the forward model in (2.1) is written as follows:

d = Hm (2.5)

where H = ∂d
∂m

is a matrix of all �rst-order partial derivatives of measured data d with

respect to model parameters m, which is also referred to as Jacobian matrix or the sensi-

tivity matrix. In practice, the inverse solution m is not stable and is sensitive to inevitable

measurement noise from instrument readings. Also, the inversion is ill-posed according to

Hadamard rule, which is described in the beginning of this chapter. The ill-posedness of

the inversion can be discussed through the concept of singular value decomposition (SVD).
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2.3.2 Singular value decomposition

In the singular value decomposition (SVD), an nM by nE matrix, such as the sensitivity

matrix H, is factored as follows:

H = USV T , (2.6)

where U is an nM by nM orthogonal matrix, referred to as left singular vector, V is a an

nE by nE orthogonal matrix, referred to as right singular vector, and S is an nM by nE

diagonal matrix with diagonal elements referred to as singular values of matrix H. The

singular values of matrix S are arranged in a decreasing order such that:

λ1 ≥ . . . ≥ λn ≥ 0, (2.7)

The condition number (CN) is de�ned as the ratio of the largest to smallest singular values

of matrix H as follows:

CN =
λ1

λn
, (2.8)

The ill-posedness of a problem can be demonstrated by the singular values abruptly de-

caying to zero, which generates a very large CN . A large CN indicates that an inversion

will magnify any errors in the data. In an ill-posed inverse problem, there are signi�cant

number of small singular values, close to zero, in matrix S. When matrix H is inverted to

compute the unknown system parameters m in (2.5), these small singular values become

very large, resulting in large �uctuations in the solution (unstable inverse solution). Matrix

H is usually rank de�cient, meaning that there is a substantial gap between the largest of

these small singular values and the �rst nonzero singular value, and has very large CN . To

diminish or truncate the e�ect of the small singular values in the inverse solution, a regu-

larization method is required. Truncated SVD (TSVD) is a simple regularization method

which truncates a certain number of the smallest singular values to remove their e�ect
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on the inverse solution. However, TSVD does not allow to model constraints applied in

the solution, and therefore may not guarantee a stable solution in many situations. Least

square (LS) inversion can be applied to estimate the inverse solution. In the following, the

LS inversion for a linear inverse problem is described.

2.3.3 Linear least square inversion

A classical solution to estimate the unknown parameters m can be achieved using LS

inversion as follows:

m = argmin ‖Hm− d‖2, (2.9)

However, the inverse solution of the equation in (2.9) is ill-posed according to the Hadamard

rule. In order to stabilize the inverse solution, Tikhonov regularization algorithm can be

applied to bias the solution through the incorporation of the a priori information about

the desired solution. The a priori information is added in the form of one or several LS

based objective functionals (constraints) into the solution m to resolve the ill-posedness

of the inverse solution. The Tikhonov regularized linear inverse problem is written as:

(Tikhonov, 1963)

m = argmin ‖H m− d‖2 + α‖R(m−m0)‖2, (2.10)

whereH is the sensitivity matrix, R is the regularization matrix, α > 0 is the regularization

factor, m0 is a priori estimate of the solution m. Matrix R is prior information about the

inverse solution and compensates for the missing information because of the rank de�ciency

of matrix H. The �rst term in (2.10) is called the data mismatch term and the second

term is referred to as the regularization term or the image term. The regularization factor

α increases or decreases the e�ect of matrix R. The inverse solution of (2.10) can be
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calculated by minimizing the following error function:

e = ‖(d−Hm)‖2 + α‖R(m−m0)‖2, (2.11)

To minimize the error function, the �rst derivative of the error function with respect to m

is taken as follows:

de

dm
= d

dm
[(d−Hm)t(d−Hm) + (m−m0)tR(m−m0)] = 0,

= d
dm

[dtd− 2H tH + (m−m0)tR(m−m0)] = 0, (2.12)

we have:

de

dm
= −2H td+ 2H tH + 2R(m−m0) = 0,

H tH +R(m−m0) = H td, (2.13)

It can be written:

(H tH +R)m = H td+Rm0,

m = (H tH +R)−1(H td+Rm0), (2.14)

where the last equation is the inverse solution to (2.10).

2.3.4 Non-linear inverse problem

A non-linear inverse problem with Tikhonov regularization term can be written as follows:

e = ‖d− h(m)‖2 + ‖R(m−m0)‖2, (2.15)
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where h is a non-linear function of the model parameter m. To minimize the least square

error function in (2.15), the �rst derivative of the error function with respect to m is taken

as follows:

de

dm
= d

dm
[(d− h(m))t(d− h(m)) + (m−m0)tR(m−m0)] = 0,

= d
dm

[dtd− 2h(m)th(m) + (m−m0)tR(m−m0)] = 0, (2.16)

where the Jacobian matrix (J) is de�ned as: J = ∂d
∂m

, thus we have:

de

dm
= −2J t(m)d+ 2J t(m)h(m) + 2R(m−m0) = 0,

J t(m)h(m) +R(m−m0) = J t(m)d, (2.17)

An iterative regularization method, such as iterative GN, is applied to derive the inverse

solution of the non-linear inverse problem in (2.15) using the successive linearisation. The

following shows the minimization of the non-linear inverse problem using an iterative GN.

For the non-linear case, if h(m) starts at estimate mk, then:

h(m) = J(mk)(m−mk) + h(mk), (2.18)
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Applying the notation changes of h(mk) = hk, and J(mk) = Jk:

J t(m)h(m) +R(m−m0) = J t(m)d,

J tk(Jk(m−mk) + hk) +R(m−m0) = J tkd,

J tkJk(m−mk) + J thk +R(m−m0) = J tkd,

J tkJk(m−mk) +R(m−m0) = J tk(d− hk),

J tkJk(m−mk) +R(m−m0 +mk −mk) = J tk(d− hk),

J tkJk(m−mk) +R(m−mk) +R(mk −m0) = J tk(y − hk),

J tkJk(m−mk) +R(m−mk)−R(m0 −mk) = J tk(y − hk),

J tkJk(m−mk) +R(m−mk) = J tk(y − hk) +R(m0 −mk),

(J tkJk +R)(m−mk) = J tk(d− hk) +R(m0 −mk),

m−mk = (J tkJk +R)−1(J tk(d− hk) +R(m0 −mk))

(2.19)

The solution (m) to (2.19) is described as mk+1. Therefore, ∆k+1 = mk+1 −mk.

2.4 Inverse problem with absolute values based func-

tionals

In recent years, the application of the absolute values (L1 norm) in the de�nition of inverse

problem have received noticeable attention. The L1 norm functionals are well understood

in the framework of Total Variation concept. Total Variation (TV) functionals are �rst

proposed by Rudin et al. (1992) for noise restoration or denoising applications. By de�ni-
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tion, TV measures the oscillations of a function (f) over its domain(Ω) and is formulated

as (Borchers, 2000):

TV (f) =

∫
Ω

|∇ f |, (2.20)

The popularity of TV in the context of inverse problem, when applied as a regularization

term to reduce the oscillations in a continuous or discrete function, comes from its desir-

able property to selecting a distribution of the unknown parameters that has the least total

variation from all possible parameter distributions that are consistent with the measured

data. When applied as a regularization term in an inverse problem, TV can reconstruct

sharp pro�les (non-smooth transitions) in the model space. A blocky e�ect in the re-

constructed image using the TV is produced. The blockiness occurs because the system

unknown parameters are piecewise constant coe�cients and are reconstructed as sharp

edges. In contrast, L2 norm functionals, discussed in subsection 2.3.1, only minimize con-

tinuous functions with the smoothest oscillations. Hence, the L2 norms smooth sharp edges

and create smooth pro�les in image reconstruction applications even if the actual pro�le

changes are sharp. The non-linear Tikhonov functional with TV as the regularization term

can be written as (Borsic et al., 2001):

m = argmin ‖h(m)− d‖+ α

∫
Ω

|∇ m|, (2.21)

The use of TV as the penalty term in (2.21) poses computational di�culties at the points

of non-di�erentiability where |∇ m| = 0. There are several numerical methods to minimize

the sum of absolute values or L1 norms in the literature. The Markov Chain-MonteCarlo

Method (MCMC) uses central estimators, such as MAP estimates, to minimize the L1

norm in TV regularized inverse problems (Somersalo et al., 1997; Kaipio et al., 2000;

Borsic and Adler, 2012). The advantage of the MCMC is that it does not need to take
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the di�erentiation of the objective functional to minimize the functional and instead the

minimization is accomplished through sampling the posterior probability density. However,

the sampling involves high computational e�ort (Borsic and Adler, 2012). A non-smooth

L1 norm based inverse problems can be formulated in a deterministic form according to

the traditional Tikhonov regularization formulation as follows (Borsic and Adler, 2012):

m = argmin

{
‖W (h(m)− d)‖2 + α

M∑
i=1

|Li(m−m0)|

}
, (2.22)

where W is a weighting matrix to weight the reliable observations in the measured data.

It is shown the non-smooth L1 optimization problem in (2.22) can be smoothed as (Acar

and Vogel, 1994; Dobson and Vogel, 1997):

m = argmin

{
‖W (h(m)− d)‖2 + α

M∑
i=1

√
(Li(m−m0))2 + β

}
, (2.23)

where β > 0. The smoothed inverse problem in (2.23) is di�erentiable everywhere for

β > 0. With the applied smoothing condition in (2.23), it is possible to use the tra-

ditional minimization algorithms, such as the steepest Descent or the Newton method,

to numerically solve the smoothed inverse problem (Borsic and Adler, 2012). However,

the traditional minimization methods are either slow in convergence or sensitive to the

selection of the auxiliary variable β (Borsic and Adler, 2012). One of the most e�cient

optimization method for L1 penalty problems is the Primal-Dual Interior Point (PDIPM)

method (Andersen et al., 2000). The following describes the application of the PDIPM

framework to the non-linear TV regularization method in (2.22). The assumption is that

there is no prior information about the structure and m0 = 0. A primal problem is written

as follows:

minm

{
‖(h(m)− d)‖2 + α

M∑
i=1

|Lim|

}
, (2.24)
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where,

|Lim| = maxx:|x|≤1xLim, (2.25)

where x is referred to as dual variable. By applying the (2.25) in (2.24), a dual problem,

which is equivalent to the primal problem, can be written as follows:

maxx:|x|≤1minm
{
‖(h(m)− d)‖2 + αxTLm

}
, (2.26)

An optimal point for the optimization problem minm
{
‖(h(m)− d)‖2 + αxTLm

}
can be

achieved by the �rst order conditions as below:

JT (h(m)− d) + αLTm = 0, (2.27)

where J is the Jacobian matrix. The dual problem can be rewritten as follows:

maxx:|x|≤1

{
‖(h(m)− d)‖2 + αxTLm

}
,

x : |x| ≤ 1,

JT (h(m)− d) + αLTm = 0, (2.28)

An optimal point is the one which satis�es the optimality of the primal and dual problems

simultaneously. A primal-dual gap is de�ned so that it is zero at the optimal point and

positive elsewhere:

‖(h(m)−d)‖2 +α

M∑
i=1

|Lim|−‖(h(m)−d)‖2−αxTLm = α

{
M∑
i=1

|Lim| − xTLm

}
, (2.29)
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The condition that nulls the primal-dual gap is referred to as complementary condition

and is written as:
M∑
i=1

|Lim| − xTLm = 0, (2.30)

By applying the dual feasibility |x| ≤ 1, the following is obtained:

Lim− xi|Lim| = 0; i = 1, . . . ,M (2.31)

Therefore, the PDIPM framework for the non-linear TV regularization problem in (2.24)

can be written as follows:

x : |x| ≤ 1,

JT (h(m)− d) + αLTm = 0,

Lim− xi|Lim| = 0; i = 1, . . . ,M (2.32)

The above system of equations has to be solved iteratively using an iterative method,

such an iterative GN method. However, the system is not di�erentiable at points where

Lim = 0. The centering condition is applied to resolve the non-di�erentiability issue

through replacing |Lim| by (‖Lim‖2 +β)1/2. Borsic and Adler (2012) show the e�ciency of

the PDIPM framework in minimizing a TV regularized inverse problem; four di�erent types

of inverse problems were solved using the PDIPM framework: 1) L2L2 problem, which is

the traditional Tikhonov regularization problem solved using the Newton method, 2) L1L2

problem, which uses the L1 norm on the data mismatch term of an inverse problem and

the L2 norm on the regularization term, 3) L2L1 problem, which uses the L2 norm on the

data mismatch term and the L1 norm on the regularization term, and 4) L1L1 problem,

which uses the L1 norm on the data mismatch and the L2 norm on the regularization
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term. Borsic and Adler (2012) show the implementation of the aforementioned four inverse

problems over the EIT system. They report that the L1 norm on the data mismatch

brings the highest robustness to the data outliers (loss of data), and the L1 norm on the

regularization term makes the system robust against the spatial noise. Chapter 6 in this

thesis aims to discuss a broader perspective of the possible deterministic inverse problems

by proposing a generalized non-linear inverse problem solved using the PDIPM framework.

The PDIPM framework as an iterative minimization method to solve a non-linear ill-posed

inverse problem is applied in chapter 6.
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Chapter 3

Electrical Impedance Tomography

3.1 Summary

This chapter discusses the background of Electrical Impedance Tomography (EIT) in terms

of history, theory, and applications. In section 3.3, EIT image reconstruction method

using Tikhonov regularization is described. Finally in section 3.4, EIT current streamlines,

equipotentials, and sensitivity to conductivity changes are discussed.

3.2 Electrical Impedance Tomography

Inverse problems intend to identify the unknown or hard to determine parameters in a

system from a set of measurement or observations. There are many instances of an inverse

problem in geophysics, systems biology, life science, bioinformatics, engineering, and many

other sciences. This thesis applies EIT as a standard instance of inverse problem. EIT

is an imaging modality founded in 1978 which uses simple physics rules to non-invasively

reconstruct useful images of inner structures of an object. EIT is a non-invasive, non-

ionizing and relatively inexpensive imaging modality. EIT is capable of producing a 2D or
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3D image of the conductivity distribution of a medium. EIT systems come with various

numbers of surface electrode arrays, such as 8, 16, 32, 64, depending on the application. In

a typical EIT system, one pair of electrodes injects low frequency current to the medium

and the other pairs of the electrodes collect the di�erence voltage on the surface of the

medium. Figure 3.1 shows the block diagram of a typical EIT system. There are �ve main

blocks: the phantom thorax, the current source, the ampli�ers, the data acquisition, and

the monitor. The phantom thorax includes the left and the right lungs with the resistivity

of 1000 ohm-cm, the heart with resistivity of 150 ohm-cm, and the background saline with

resistivity of 330 ohm-cm. The current source injects a current of about 300 micro amps

with low frequency of 10 kHz into the tank. The current is applied across two electrodes

and distributed through the tank. The resulting voltages at the surface of the tank are

magni�ed by the di�erence ampli�ers. The measured di�erence voltages are fed to the

data acquisition system. A frame of the measured data is then transferred to the imaging

system and the data is monitored on the screen.

3.2.1 EIT applications

EIT has been �rst applied in many geophysics applications to image the inner structures of

geological objects. The electrical conductivity of geological objects such as rocks, soils, the

�ow of contaminants, can di�er by several orders of magnitude depending on the nature

of the object. EIT uses inverse problem techniques to measure the electrical conductivity

distribution of an object based on a set of surface measurements. In geophysics, the surface

measurements are collected using several electrode arrays mounted in the ground around

the excavation zone. In biomedical imaging applications, the surface measurements are

collected using typically 16 electrodes around a patient's thorax to image the air distri-

butions inside the lungs. In studies of volcanoes, high conductivity zones under volcano
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Figure 3.1: EIT block diagram.

shows a geophysical area altered by a hydrothermal system. In soil studies, the porosity

and the degree of saturation of soil are calculated using the measured EIT electrical con-

ductivity values (Reynolds, 1997). In �uid studies, the �ow of contaminants, location of

contamination sources can be monitored using EIT electrical conductivity values (Ogilvy

et al., 2002; Binley and Daily, 2004). And in biomedical imaging applications, the low con-

ductivity values indicate the location of the inhaled air inside the lungs. The application

of EIT in monitoring the human body �rst occurred in the mid 1980s. Soon after the �rst
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applications in the medical imaging, EIT showed promising results with acceptable image

quality.

3.2.2 EIT di�culties

As discussed in chapter 2, Hadamard, in 1902, de�ned a problem as ill-posed if it does not

meet any of the following three criteria: has one solution, unique solution, and solution

depends on measurements or data. The latter often happens in EIT and causes EIT to be

an ill-posed problem. In EIT, small changes in the solution (conductivity values) will cause

noticeable changes in the resulting potentials at the boundary. There are still other issues

challenging the imaging using an EIT systems, such as electrode movement, high sensitivity

of the solution to spatial noise and outliers, convergence to the optimal solution does not

follow a pre-de�ned pattern and highly depends on the measurement conditions (signal

to noise ratio, and data quality). To stabilize the solution, a regularization technique is

applied which converts an ill posed inverse problem to a well-de�ned one. Chapter ??

discusses about linear or non-linear regularization methods to stabilize the inverse solution

of a linear or non-linear ill-posed inverse problem, respectively. In the following, Tikhonov

regularization method, which is one of the most common regularization techniques, is

described for EIT image reconstruction.

3.2.3 EIT current stimulation patterns

In EIT, the pattern of collecting di�erence voltages depends on the application. There

are several prede�ned patterns shown to be e�ective in reconstructing high quality images.

Adjacent current pattern, opposite stimulation, zigzag stimulation, and trigonometric cur-

rent pattern are some of the most common stimulation approaches. The adjacent is applied

widely in many di�erent applications. In an adjacent stimulation pattern, two stimulating
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electrodes located next to each other inject current to the medium and the other pairs of

adjacent electrodes measure the surface di�erence voltage. To achieve one complete frame

of image data, EIT injects currents as many times as there are electrodes attached around

the medium. The adjacent current pattern o�ers low spatial resolution as its sensitivity

to the potential changes in the middle of the medium is lower than its sensitivity to the

potential changes at the boundary of the medium where there are surface electrodes. The

opposite current pattern is when two electrodes, located at 180 degree from each other,

inject current to the medium and the resultant di�erent voltages are measured by the

remaining electrodes. The trigonometric stimulation pattern is the most complex current

pattern where there are 32 to 64 electrodes simultaneously injecting current to the medium.

The high number of electrodes in this pattern provide higher spatial resolution and the

simultaneous current injection causes highly uniform sensitivity matrix, meaning that the

spatial resolution does not depend on the location and is highly uniform across the image

plane.

In EIT, the number of di�erential measurements depends on the current stimulation

pattern and the number of the electrodes. For example, nE − 3 measurements are taken in

an adjacent current stimulation where nE is the number of electrodes. The measurements

of the stimulation electrodes themselves are removed from the di�erential measurements.

The total number of di�erential measurements (nM) to construct one data frame is nM =

nE(nE − 3).

3.3 EIT image reconstruction

EIT image reconstruction is the process to produce a conductivity distribution image of a

medium using the injection of current into the medium and the collection of the resulting

di�erence voltages at the boundary of the medium. EIT image reconstruction is challenging
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because the reconstruction of conductivity changes within a medium requires solving a

severely ill-posed, nonlinear inverse problem. To resolve the ill-posedness of the EIT image

reconstruction, a regularization technique is utilized, where the complexity of the applied

regularization framework depends on the requirements of the applications. The following

key challenges in EIT image reconstruction have been identi�ed:

1. Problems related to the physics of the EIT system

EIT stimulates the medium through an alternating current injected from a pair of

electrodes. The challenge is that the current stays close to the electrodes and this

causes low sensitivity of the measurements to changes inside the medium, which

makes the EIT image reconstruction an ill-posed problem.

2. Problems related to the image reconstruction algorithms

There are several other problems challenging the scientists in a variety of �elds regard-

ing the high contrast tomographic image reconstruction. The a priori information

about the inclusions can be applied to reformulate the inverse problem to contain

additional constraints based on the a priori information, referred to as regularization

terms. Many applications deal with the reconstruction and optimization of geome-

tries, such as shapes, and topologies; however, there is no natural a-priori information

on shapes or topological structures of the solution, such as number of connected com-

ponents, star-shapedness, and convexity.

Another problem is that most of the classical reconstruction algorithms, such as the

well-known Gauss-Newton (GN) method, are based on the quadratic formulations,

such as mean square errors (MSE), or equivalently the L2 norms. The L2 norms

impose smoothness constraints on solutions thereby prohibiting the reconstruction

of sharp edges in the recovered conductivity distribution. Besides, it has been shown

that the L2 norms are sensitive to measurement noise and data outliers.
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3.3.1 Solutions in the literature

� Solution for the problems related to the physics of the EIT system

To resolve the ill-posedness of EIT, a regularization technique is applied to stabilize

the inverse solution by imposing additional constraints, containing a priori knowledge

about the inverse solution. Regularization techniques usually incorporate the noise

model, conductivity and movement priori to reformulate the inverse problem for

a stable solution. There are di�erent regularization techniques, such as Tikhonov

Regularization, truncated Singular Value Decomposition (TSVD), and TV, which

have been discussed in chapter 2 in details.

� Solutions for the problems related to the image reconstruction algorithms

To resolve the lack of shape related a priori knowledge in the inverse problem, there

is the need to be �exible in representing the shapes of the unknown structures. One

promising approach to �exibly represent shapes is the level set technique which has

also been applied in this thesis. The LS technique has gained a noticeable attention in

a variety of di�erent applications ranging from computer vision, image enhancement

and segmentation to microchip fabrication. The LS has been applied for image

reconstruction in linear inverse problems, such as x-ray CT, PET, SPECT as well as

in nonlinear inverse problems, such as microwave imaging, nondestructive imaging,

near-infrared imaging, and EIT. The representation of LS as part of a solution scheme

for ill-posed inverse problems is desirable because of the high potential of LS in

reconstructing 2D or 3D images from minimal available data. The LSRM considers

the topological information of structures unknown, without the need for knowing

the number and the origin of the structures, and rebuilds the structures using the

evolution of a level set function. In chapter 5 of this thesis, a new variant of the LSRM

in di�erence mode is proposed and its performance is assessed over EIT simulated
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and human lung data.

To resolve the smoothness of the reconstructed image, the sum of absolutes, or L1

norms, can be considered as an alternative to the least squares, or the L2 norms.

The L1 norms provide higher robustness against outliers and noise when compared

with a L2 norm based regularization method, such as the Tikhonov regularization

method. However, the application of the L1 norms is not without cost. Indeed, the

computational cost for the minimization of a L1 norm based optimization problem is

high. The challenge is that the L1 norms are not di�erentiable at the points where

their arguments are equal to zero. Therefore, it is necessary to apply a minimization

framework in order to reformulate the minimization of the L1 norm based regular-

ization methods in a way to make the derivative possible. The primal-dual interior

point method (PDIPM) was currently proposed as a minimization framework for the

L1 norms (Borsic and Adler, 2012). In chapter 7 of this thesis, a novel variant of

the PDIPM, named LS based PDIPM (LSPDIPM), to minimize the L1 norm based

functionals in an LSRM is proposed.

There are two primary reconstruction types in EIT: 1) Absolute (static) imaging which

attempts to recover an estimate of the absolute conductivity of the medium from the

measured data frame, and 2) Di�erence imaging which attempts to recover an estimate

of the change in conductivity between two times based on the change between two data

frames. Because of the advantage of the di�erence EIT in producing fairly robust image

against the measurement noise, the di�erence EIT image reconstruction has been used

throughout this thesis. There is a reference conductivity σ0 and a current conductivity

σt at time t. Di�erence EIT reconstructs σt − σ0. To reconstruct a di�erence image, the

di�erence potentials are calculated as y = vt−v0, where vt is the voltage measured at time

t, t is the time index, and v0 is the voltage average over the several number of measurements
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taken when there is no movement in the medium and the noise level is considerably low.

Figure 3.2 shows a di�erence EIT image reconstruction algorithm including �ve blocks:

Forward model, inverse model, update function, Jacobian update, and conductivity distri-

bution update block. In the following, each block is described in detail.

Real data

Simulated data

Δd= d
m-d

k

Update Function 

 Conductivity Distribution 
Computation

Forw
ard m

odel 
Inverse M

odel 

Jacobian Calculation

Figure 3.2: EIT di�erence image reconstruction algorithm.
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3.3.2 Forward model

The EIT forward problem is de�ned over a medium Ω with a closed boundary ∂Ω, an

isotropic conductivity distribution σ(x, y, z) = σ(r), and the potential distribution of φ(r)

(Tarantola, 2005). An elliptic partial di�erential equation (PDE), or equally a Laplace's

equation, relates m(r) and φ(r) with the assumption of no internal current source inside

the medium:

∇ · m∇ φ = ∇ · (J) = 0 (3.1)

where J is the current density. A numerical technique is required to solve (3.1). Finite

Element Method (FEM) as an advanced numerical method is used in EIT to convert the

problem in (3.1) into a system of linear equations. In FEM, the domain of the problem is

divided into several smaller regions, called elements. The connected elements are named

a mesh. A node is the cross point of two or more elements. The problem is solved

within the region of each element and therefore each element incorporates a portion of

the whole solution over its domain. An expansion function, controlled by a set of node

values, determines the values over an element and is zero elsewhere. A system matrix h

is constructed from the integration of element matrices which includes the value over each

element. Given the conductivity distribution inside the medium and the injecting current,

the forward solution of an EIT, which is the voltage distribution within the medium, can

be calculated using FEM. The forward solution (potential distribution) shows the expected

voltage values at the boundary and anywhere inside the medium, given the injecting current

and the conductivities. In EIT data simulation, the forward model is �rst solved for the

voltage distribution and then the inverse problem is solved to determine the conductivity

distribution when knowing the applied currents and the voltage distribution, achieved from

the forward model. By solving (3.1) for the potential distribution φ, the EIT nonlinear

38



forward model is written as follows (Tarantola, 2005):

d = h(σ) (3.2)

where σ ∈ RN , N is the number of the elements in the mesh, σ is the vector of the

conductivity quantities inside the medium, and d is the forward solution (potential values

at the boundary), and h is the system matrix or the forward conversion function.

A linearized forward problem is written when there is a small variation around σ as

follows (Tarantola, 2005):

d = Jσ + n (3.3)

where n is the uncorrelated, white Gaussian noise in the medium, J is the Jacobian matrix

(sensitivity matrix), σ is the conductivity distribution in the medium, and d is the forward

solution which are the voltage values at the boundary of the medium. The Jacobian matrix

has a dimension of nM by nE. Jacobian matrix J can be calculated as follows: A small

conductivity change δσj at the jth element in the mesh is formed to capture the voltage

change δdi caused on the ith measurement at the boundary of the medium. The entry

indexed as i, j in the Jacobian matrix is calculated as follows (Tarantola, 2005):

Jij =
δdi
δσj
|m0 (3.4)

where σ0 is the background conductivity.

3.3.3 Inverse model

Inverse model intend to identify unknown parameters in a system from a set of measure-

ment. In EIT, the electrical conductivities of a medium are the unknown parameters
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and the known measurements are the surface potentials at the boundary of the medium,

achieved from the forward model. EIT uses FEM to determine the optimal solution (con-

ductivity distribution within the medium). EIT divides the medium into small elements,

and looks for the solution within the small elements. The inverse solution is the value of

the conductivity for each element when the stimulating current and the surface voltages

are known.

The EIT inverse problem occurs when the conductivity distribution σ is calculated by

inversing the forward problem in (3.3). Therefore, the EIT inverse problem can be written

as follows (Tarantola, 2005):

σ̂ = J−1d (3.5)

The inverse solution in (3.5) is not available because the Jacobian matrix is not a square

matrix and invertible. A least squares error function ‖Jσ−d‖ can be minimized to linearly

�nd the inversion solution in (3.5) as below (Tarantola, 2005):

σ̂ =
(
JTJ

)−1
JTd (3.6)

The inverse solution in (3.6) is rank-de�cient, meaning that the number of the unknown

conductivity values is much higher than that of voltage measurements at the boundary. The

rank-de�ciency in EIT reconstruction makes the problem to be under-determined, meaning

that the problem has in�nite solutions. The regularization techniques help producing stable

inverse solutions which are discussed in the following.

The regularization techniques usually incorporate the noise model, conductivity and

movement prior to reformulating the inverse problem for a stable solution. Chapter 2

discusses di�erent regularization techniques, such as Tikhonov Regularization, GN, and

TV. Tikhonov regularization is one of the most common regularization technique which is

40



also applied in EIT image reconstruction applications. In the following subsection, EIT

image reconstruction using Tikhonov regularization is described.

3.3.4 EIT image reconstruction using Tikhonov regularization term

Tikhonov regularization is one of the most common regularization techniques using the sum

of quadratic norms of the data mismatch and the regularization term. In the linear case,

the inverse solution using Tikhonov regularization method is determined by minimizing

the following quadratic norm over the data mismatch and the regularization term with

respect to the conductivity change (Tarantola, 2005):

σ̂ = argmin
σ

[
‖Jσ − d‖2 + λ2‖σ − σ0‖2

]
(3.7)

where λ = σn
σσ

is a hyperparameter (or regularization parameter) that determines the

trade-o� between the spatial resolution and noise. σσ and σn are standard deviation of the

unknowns σ and standard deviation of the noise, respectively. σ0 is the �reasonable� image

knowna priori. As shown in chapter 2, the inverse solution is achieved by taking derivative

of the above equation as follows:

σ̂ =
(
JTJ + λ2I

)−1
JTd (3.8)

where I is the unit matrix. In (3.8), σ̂ is the solution of Tikhonov regularization. EIT image

reconstruction using iterative GN for a non-linear inverse problem is derived in subsection

2.3.4 in chapter 2.
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3.4 EIT current streamlines, equipotentials, and sensi-

tivity to conductivity changes

In this section, the EIT potential, current streamlines, equipotentials, and sensitivity to

conductivity changes (Jacobian) within a homogeneous medium are studied.

Homogeneous Medium
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Figure 3.3: EIT potential, current streamlines, and sensitivity patterns calculated for
adjacent and opposite current stimulation in a homogeneous medium.

Figure 3.3 shows the potential pattern, current streamlines, the equipotentials, and the

EIT sensitivity for the adjacent and opposite current stimulation patterns in a homogeneous

medium. The color map used to show the potential distribution within medium shows the

high potential values in dark red and the lowest ones in dark blue. As it is shown, the

potential distribution within the medium depends on the current stimulation pattern. The
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current stimulation pattern also a�ects the distribution of the equipotential lines inside

the medium. The EIT sensitivity is higher in the center of the medium for the opposite

current stimulation when compared with the sensitivity pattern for the adjacent current

stimulation. This is because in the adjacent current stimulation, the current streams close

to the injecting electrode pairs at the surface of the medium. Therefore, the sensitivity

of the EIT system to conductivity changes in the center of the medium becomes low.

For instance in an experiment to monitor a small object moving from the boundary of

the medium to the center, the EIT reconstructed image becomes highly blurred when the

object approaches the center of the medium.

In �gure 3.4, the current patterns are shown for a low conductive object when either an

adjacent stimulation pattern (�gure 3.4(a)) or an opposite stimulation pattern (�gure 3.4

(b)) is applied. Due to the sharp conductivity gradient between the background and the

inclusion, the current streamlines are deviated at the interface. The �rst column of �gure

3.4 shows both the EIT signal for a homogeneous medium (vh) in blue and the EIT signal

for a non-homogeneous medium (vi) in green. The EIT di�erence signal (vh-vi) is shown

in red. The EIT di�erence image reconstruction algorithm measures the EIT di�erence

signals and applies them in an inverse problem to reconstruct the conductivity changes

within the medium. The EIT di�erence signals for an opposite current stimulation are

shown in �gure 3.4 (b).

Figure 3.5 shows the same measurements, calculated for �gure 3.4, for a highly con-

ductive object in the medium. The current patterns show that the density of the current

streamlines is higher at the boundary of the highly conductive object than that of the cur-

rent streamlines in the background. The general pattern of the EIT di�erence signals for

the conductive and non-conductive objects shows small changes; however, the amplitude

of the di�erence signal di�ers according to the conductivity quantity of the object.
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Non-conductive Inclusion

Figure 3.4: EIT potential, current streamlines, and sensitivity patterns calculated for
adjacent and opposite current stimulation in a medium with low conductive inclusion.

Figure 3.6 represents a cross section of a human thorax taken using X-ray CT. The

current stream lines through the lungs and the heart are calculated and shown with the

blue lines. The current stream lines are bent at the interface between the lungs and the

heart because of the change in the conductivity of the tissues. The calculated equipotentials

are also demonstrated with black lines.
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Figure 3.5: EIT potential, current streamlines, and sensitivity patterns calculated for
adjacent and opposite current stimulation in a medium with highly conductive inclusion.
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Figure 3.6: The equipotentials (black lines) and current stream lines (blue lines) calculated
for a human thorax.
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Chapter 4

Lung Physiology

4.1 Summary

This thesis shows the �rst clinical results of applying the proposed EPIRM to reconstruct

the air distribution inside the lungs during the incremental Positive End-Expiratory Pres-

sure (PEEP) trial. The clinical data applied in this thesis was acquired from mechanically

ventilated patients with healthy lungs and ALI. The aim of this chapter is to review re-

lated topics regarding the human respiratory system in order to explore the mechanical

and physiological behaviour of the lungs. To realize the aforementioned objective, the fol-

lowing topics are discussed in this chapter: Lung physiology, lung mechanics, lung function

tests, and lung related diseases, such as acute respiratory distress syndrome (ARDS), its

pathophysiology, treatment options, and the obstacles.
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4.2 Lung physiology

The respiratory system consists of two portions: 1) the upper respiratory system, 2) the

lower respiratory system (Grabowski, 2000). The upper respiratory system �lters, warms

and moistens air and conducts the air into the lungs. The upper section of the respiratory

system includes the nose, and the pharynx. The lower respiratory system includes larynx,

trachea, bronchi, and lungs. The functional respiratory portion consists of the respiratory

bronchioles, alveolar ducts, alveolar sacs, and alveoli, where the gas exchange between

air and blood occurs. The pharynx, or throat, is a funnel shaped tube approximately 13

cm in length. The function of the pharynx is to conduct the air and food as well as to

act as a resonating chamber for speech sounds. The tonsils in the pharynx reinforce the

immunity system of the body against foreign invaders. The larynx, or voice box, is a short

passageway that connects the pharynx to the trachea. The duty of the larynx is to produce

the voice. The trachea is a 12 cm long tubular passageway to conduct the air to the right

and left primary bronchi. Figure 1 shows the anterior view of the upper respiratory system

and the lower respiratory system.

Figure 2 represents the anterior view of the airway branching from the trachea to the

terminal bronchioles. The right primary bronchus is shorter, more vertical and wider than

the left primary bronchus (Grabowski, 2000). The right primary bronchus goes into the

right lung and the left primary bronchus goes into the left lung. The carina is the point

where the trachea divides into right and left primary bronchi. For each lobe of the lung,

the smaller bronchi are called secondary bronchi. The right lung has three lobes while the

left lung has two (Grabowski, 2000).

The tertiary bronchi are smaller than secondary ones and divide into several smaller

branches called terminal bronchioles. The extension of the bronchioles into smaller branches

is referred to as the bronchial tree, which resembles an inverted tree. The lungs are lo-
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cated in the thoracic cavity and are separated from each other by the heart. The pleural

membrane encloses and protects the lungs. The parietal pleura are the layer that lines

the wall of the thoracic cavity and the visceral pleura cover the lungs. The pleural cavity

is the small space between the visceral and parietal pleurae. To reduce the friction be-

tween the membranes during the breathing, there is some lubricating �uid, secreted by the

membranes, in the pleural cavity (Grabowski, 2000).

Figure 3 represents the lung lobes from di�erent views. The broad inferior portion of

the lung which �ts over the convex area of the diaphragm is the base (Grabowski, 2000).

The narrow superior portion of the lung is the apex. Fissures divide the lungs into lobes.

The oblique �ssure extends inferiorly and anteriorly. The superior lobe is separated from

the inferior lobe by the oblique �ssure in the left lung. The horizontal �ssure only exists in

the right lung. The superior lobe of the right lung is subdivided by the horizontal �ssure,

forming a middle lobe. Each lobe of the lungs receives a separate secondary bronchus.

Thus, the right primary bronchus has three secondary bronchi: the superior, middle, and

inferior secondary bronchi. The left primary bronchus has two secondary bronchi: superior

and inferior secondary bronchi. The secondary bronchi give rise to the tertiary bronchi

in each lung. Lobules are very small compartments wrapped in elastic connective tissue

and include a lymphatic vessel, an arteriole, a venule, and a branch from a terminal bron-

chiole (Lumb, 2005). The terminal bronchioles subdivide into microscopic branches called

respiratory bronchioles. The respiratory bronchioles subdivide into several alveolar ducts.

There are about 25 orders of branching from trachea to the alveolar ducts including pri-

mary bronchi (�rst order branching), secondary bronchi (second order branching), and so

on down to the alveolar ducts (Lumb, 2005).

Figure 4 (a) shows a diagram of the lower part of lung. Figure 4(b) depicts alveolar sac

and the components of an alveolus. The alveolar ducts are connected to numerous alveoli
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(a)

 

(b)

Figure 4.1: Representation of alveolus structure. a) Diagram of a portion of the lung. b)
Alveolus structural components applied in gases exchange. The image is reproduced from
(Grabowski, 2000).

and alveolar sacs. An alveolus is a cup-shaped membrane with very thin wall. The wall

of the alveoli consists of two types of alveolar epithelial cells (Grabowski, 2000). Type I

alveolar cells create the lining of the alveolar wall, and the main site of gas exchange occurs

in this type of cells (Grabowski, 2000). The alveolar wall is occasionally interrupted by

type II alveolar cells, which are also called septal cells. The alveolar �uid decreases the

friction between the surface of the cells and the air (Lumb, 2005). Surfactant, included in

the alveolar �uid, keeps the alveoli elastic, reducing the tendency of the alveoli to collapse

(Grabowski, 2000). The reticular �ber and elastic �ber are in the alveolar spaces to keep

the elasticity of the alveoli. Alveolar macrophages (dust cells) remove �ne dust particles

which may be in the alveolar spaces (Grotberg, 2004). The di�usion across alveolar and

capillary walls causes the exchange of oxygen and carbon dioxide in the interface of the

alveoli and the capillary (Grotberg, 2004). The respiratory membrane, which is the site of
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gas di�usion, consists of four layers: The �rst layer contains the type I and type II alveolar

cells and associated alveolar macrophages, which constitutes the alveolar wall (Grabowski,

2000; West, 2005). The second layer is an epithelial basement membrane located under

the alveolar wall. The third layer is a capillary basement membrane which is fused to the

epithelial basement membrane, and the last layer is the endothelial cells of the capillary.

Nevertheless, the thickness of the respiratory membrane is very small, about one sixteenth

the diameter of a red blood cell. The thin respiratory membrane allows rapid gas di�usion

and also allows having 300 million alveoli in the lungs, giving alveoli surface area of 70

square meters for gas exchange (Grabowski, 2000).

The lungs receive the deoxygenated blood from the right ventricle, one of the two lower

chambers of the heart, through pulmonary arteries. The oxygenated blood, after gas

exchange in the capillaries, drains into the left atrium, one of the two upper chambers of

the heart, through the pulmonary veins. In the case of low oxygen level in the body tissue

(hypoxia), the dilation of blood vessels causes the increase in the blood �ow to the tissue

with low oxygen intake (Kutz et al., 2003). However in the case of hypoxia in the lungs,

the vasoconstriction diverts pulmonary blood from poorly ventilated areas, or collapsed

regions, to well-ventilated regions of the lungs (Kutz et al., 2003).

The process of gas exchange between the atmosphere and lung alveoli is called pulmonary

ventilation, breathing (Grabowski, 2000). The air always �ows from a region of higher

pressure to a region of lower pressure. The respiratory muscles produce an alternating

pressure di�erence between the atmosphere and the lungs. The change in the pressure

between the atmosphere and the lungs causes the air �ows in and out of the lungs (breath

in and out) (Grabowski, 2000).

The process of breathing in is called inspiration or inhalation. Inspiration occurs when

the air pressure inside the lungs is less than the air pressure outside in the atmosphere.
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Inspiration causes an increase in the volume of the lungs. The main respiratory muscle

is called the diaphragm. The diaphragm is a dome-shaped muscle located in the bottom

of the thoracic cavity. The contraction of the diaphragm causes it to �atten, creating an

increase in the volume of the cavity which allows the lungs to expand for breathing in. A

normal quiet inspiration descends the diaphragm about 1 cm with a pressure di�erence of

1-3 mm Hg and the inhalation of 500 mL of air. While a vigorous inhalation causes the

diaphragm to descend for 10 cm with a pressure di�erent of 100 mm Hg and the inhalation

of 2-3 liters of air.

 

Figure 4.2: Pressure changes in the pulmonary ventilation in three di�erent conditions: at
rest, inspiration and expiration. The image is reproduced from (Grabowski, 2000).

Expiration (exhalation) occurs when the pressure in the lungs is greater than the pres-

sure of the atmosphere. Air �ows from the area of higher pressure in the alveoli to the area

of lower pressure in the atmosphere. Unlike an inhalation, there is no muscular contraction

in the normal, unforced expiration. Instead there exists elastic recoil. The elastic recoil
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happens in the chest wall and lungs to spring back the expanded chest in the inhalation

phase. There are two forces contributed to the elastic recoil: the recoil of the stretched

elastic �bers, located in the alveoli spaces, during the inhalation phase, and the inward pull

of surface tension due to the layer of alveolar �uid. Figure 5 shows the pressure changes

in pulmonary ventilation at three stages: at rest, inspiration, and expiration.

The alveolar surface tension, the amount of the alveoli elasticity (compliance of the

lungs) , and the resistivity of the air passageway (air resistance) are three main components

which determine the rate of air �ow and the amount of e�ort needed for breathing. The

alveolar surface tension is because of the strong molecular attachment of the alveolar �uid

when compared to the molecular attachment of the air around the alveoli. The molecular

attachment gradient in the interface of air-water in the alveolar causes an inwardly directed

force which enforces the alveoli to take the smallest possible diameter in the rest. The

surfactant in the alveolar �uid reduces the surface tension of the alveolar �uid to be lower

than that of pure water. A common disease in premature infants is respiratory distress

syndrome where a de�ciency of surfactant causes the surface tension of alveolar �uid to

become very high. The increase of the alveoli surface tension leads to the production of

so many collapsed regions in the lungs due to the incapability of the alveoli to spring back

after an exhalation.

Compliance is a measure of lung elasticity and depends on two factors: elasticity and surface

tension. The elastic �bers present in the lung tissue cause the lung to easily expand, and

the surfactant in the alveolar �uid prevents the alveoli to collapse through reducing the

surface tension.

The wall of the airways, for example in the trachea and the bronchioles, shows resistivity

to the normal �ow of air into and out of the lungs. Air�ow is proportional to the pressure
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di�erence between the atmosphere and the lungs and is inversely associated to the airway

resistance. This means that to have a higher air�ow, there needs to be either lower air

resistance or a higher pressure gradient. The diameter of the airways mainly determines the

amount of resistivity. In the inhalation phase, the diameter of the bronchioles increases

to easily conduct the air into the alveoli. However in the exhalation phase, the airway

resistance of the bronchioles increases as the diameter of the bronchioles decreases.

The blood transfers oxygen and carbon dioxide in the body. Oxygen is not dissolvable in

water and about 1.5 % of oxygen is dissolved in the blood plasma (Grabowski, 2000). The

remaining oxygen contributes in chemical combination with haemoglobin inside red blood

cells. Four molecules of oxygen can bind to one haemoglobin molecule. The combination

of oxygen and haemoglobin forms oxyhemoglobin. The haemoglobin is fully saturated

when it is completely converted to oxyhemoblobin, meaning that all four capacities of

the hemoglobin are bound with oxygen molecules. One of the most important factors

determining how much oxygen combines with hemoglobin is the pressure of oxygen in the

pulmonary capillaries. The higher the pressure of oxygen, the more oxygen will combine

with hemoglobin (Kutz et al., 2003). The oxygen-hemoglobin dissociation curve is shown

in �gure 6. The curve pro�le represents the relationship between hemoglobin saturation

and the pressure of oxygen at normal body temperature. In the pulmonary capillaries, the

pressure of oxygen is in its highest value during the inhalation phase and therefore, a large

amount of oxygen binds with hemoglobin to produce fully saturated hemoglobin (Kutz

et al., 2003). In the tissue cells, the pressure of oxygen is low and the hemoglobin releases

oxygen molecules through di�usion (Grabowski, 2000; Kutz et al., 2003). A large drop in

the oxygen pressure leads to a maximum delivery of oxygen to highly active muscles. A

small amount of carbon dioxide �ows in its original form in the blood stream and a slightly

larger amount of carbon dioxide enters the plasma and bonds with hemoglobin, forming
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bicarbonate. In the tissue cells, the pressure of carbon dioxide is high and this leads to

having higher carbonate. However in the pulmonary capillaries, the pressure of carbon

dioxide is low, thus there are a lot of molecules of released carbon dioxide di�using into

the alveoli for exhalation (Kutz et al., 2003).

 

Figure 4.3: The oxygen-hemoglobin dissociation curve. The image is reproduced from
(Grabowski, 2000).

4.3 Lung mechanics

Airway resistance and lung compliance are the two most commonly used variables to assess

the mechanics of the lungs (Moussavi, 2006). The health condition of the respiratory system

depends on these parameters and they maybe a�ected by di�erent diseases, disrupting the

normal function of the respiratory system. The corresponding variables for the airway
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resistance, the pressure, and the air�ow in the electrical equivalent circuit are as follows:

the electrical resistance, the voltage, and the electrical current (Moussavi, 2006). Therefore,

the airway resistance is the pressure (voltage) over the air�ow (current). The airway

resistance is inversely proportional to the fourth power of the radius of the airway. The

airway resistance is de�ned as follows (Moussavi, 2006; Grotberg, 2004):

Rairway =
Pmouth − Palveoli

V̂
, (4.1)

where Pmouth is the pressure at the mouth (cmH2O), Palveoli is the pressure at the alveoli

(cmH2O), and V̂ is the air�ow (liter/sec). The airway resistance increases as the radius of

the airway decreases. Nevertheless, the airway resistance of the alveoli is much lower than

that of the trachea. This is because the bronchi tree has many branches in parallel making

the net e�ective resistance of the tree to be much less than that of the trachea (Moussavi,

2006).

Obstructive lungs diseases, such as asthma and bronchitis, mostly a�ect the alveoli and

the smaller bronchi and bronchioles, increasing the airway resistance (Grotberg, 2004). In

chronic asthma, the in�ammation of the bronchial epithelial cells, the accumulation of �uid

in the alveoli (edema), and the increased secretion of mucus in the air passageway (�brosis)

are common e�ects. In chronic bronchitis, the increased mucus secretion blocks the airway

and increases the airway resistance to the air �ow (Grotberg, 2004).

The lung compliance C (liter/cmH2O), indicating how elastic the lung is to be expanded

or retracted, is de�ned as follows (Moussavi, 2006):

C =
δV

δP
, (4.2)
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where V is the change in the volume in liters, and P is the change in the pressure in cmH2O.

Fibrosis causes the lungs to become sti�, decreasing the lung compliance (Bourke, 2003a).

The di�used liquid in the alveoli makes the alveoli walls thicker with low compliance. To

keep a normal lung volume, there will be larger pressure required (Bourke, 2003a). The

normal breath demands more e�ort and the patient commonly experiences shortness of

breath. In contrast, emphysema, which is a smoking related disease, causes the alveolar

walls to break down, making the lung compliance high. This enlarges the alveoli and

in�ates the lungs by small increases in the pressure. In chronic emphysema, part of the

alveoli is degenerated and can not contribute to ventilation (Bourke, 2003a). The enlarged

alveoli do not in�ate during inspiration, and therefore collapse during expiration.

Because of the gravitational e�ect on the lungs, the upper parts of the lungs are less re-

ceptive (compliant) to air entry during the inhalation, compared to the dependent parts

(lower parts) of the lungs. The di�erence in the lung compliance and the airway resistance

to air�ow for upper and lower parts of the normal lungs is small; however, the di�er-

ence increases for diseased lungs (Bourke, 2003b). Therefore, the lower parts of the lungs

contribute more in ventilation. The relationship between the volume-pressure is di�er-

ent during the inspiration and expiration so that the volume-pressure curve represents a

hysteresis loop, shown in �gure 7. The reason for the hysteresis is �rstly because of the

inherent behaviour of the lung tissue in the expansion and the retraction, and secondly

the fact that the intrapleural pressure in the apex and in the bottom part of the lungs

(dependent region) is di�erent (Bourke, 2003a). The lower part of the lungs has smaller

intrapleural pressure, because of the di�erent e�ect of the gravity on the di�erent regions

of the lungs, than the upper part (Bourke, 2003a). Therefore, the lower part of the lungs

expands �rst with the increase in the pressure and the upper part in�ates with the lower

part after the pressure is higher than the apex intrapleural pressure. Lung compliance has
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Figure 4.4: The hysteresis in the volume-pressure curve for the inspiration and the expi-
ration. The image is reproduced from (Moussavi, 2006).

its highest value at rest and becomes smaller as the volume increases with the increase in

the pressure (Moussavi, 2006). Therefore, it is easier to breathe in the volume where the

lungs experience the high values for compliance.

4.4 Lung function tests

The quality of breathing is checked through lung function tests (also called pulmonary

function tests) (West, 2005; Lumb, 2005). The objective of the tests are 1) determining

how much air lungs can hold, 2) how quickly air can move in and out of lungs, 3) how well

the gas exchange between the alveoli and the vessels is (the quality of putting oxygen into

and removing carbon dioxide from your blood), and 4) how strong the breathing muscles are

(West, 2005; Lumb, 2005). The common lung function tests include: spirometry, residual

volume, gas di�usion tests, body plethysmography, inhalation challenge tests, and exercise

stress tests (West, 2005; Lumb, 2005).

58



 

Figure 4.5: The di�erent lung volume during the normal ventilation and maximally venti-
lation. The image is reproduced from (Lumb, 2005).

Spirometry is one of the most commonly performed lung function tests (Lumb, 2005).

It measures both the amount and the speed of air moving out of the lungs (Lumb, 2005).

The patient breathes into a mouthpiece while his breathing is recorded by the spirometer.

A spirogram shows the recorded breathing information. The spirometry measures the

following lung function values (West, 2005; Lumb, 2005): 1) Forced vital capacity (FVC),

which measures the air amount one can exhale after as deep inhalation as possible. 2)

Forced expiratory volume (FEV), which measures the maximum air amount one can exhale

in one breath. 3) Forced expiratory �ow (FEF), which measures the air amount halfway

through an exhale. 4) Peak expiratory �ow (PEF), which is the amount of air exhaled in

one breath with force which is measured at the same time as forced vital capacity (FVC). 5)

Maximum voluntary ventilation (MVV), which is the highest air amount one can breathe

in and out during one minute. 6) Slow vital capacity (SVC), which is the measurement

of air amount one can slowly exhale after as deep inhalation as possible. 7) Total lung

capacity (TLC), which is the air amount inside lungs after a maximally deep inhalation.
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8) Functional residual capacity (FRC), which is the amount of air in the lungs after a

normal exhalation. 9) Residual volume (RV), which is the amount of air in the lungs after

a maximally deep exhalation, The RV can be measured through helium or nitrogen gas

dilution. 10) Expiratory reserve volume (ERV), which is the di�erence between the FRC

and the RV. The graphical demonstration of the lung volumes during the normal breathing

in and out as well as maximally breathing is depicted in �gure 4.5.

4.4.1 Gas di�usion tests

Gas di�usion tests measure the amount of oxygen and other gases traveling through alveoli

per minute as well as the quality of the gas exchange between the alveoli and the blood

vessels. Gas di�usion tests include (West, 2005; Lumb, 2005): 1) Arterial blood gases,

which measures the amount of oxygen and carbon dioxide in the blood circulation sys-

tem. 2) Carbon monoxide di�usion capacity (DLCO), which measures how well the lungs

transfer the carbon monoxide (CO) into the blood vessels. The patient breathes through

a mouthpiece containing a small amount of CO (West, 2005; Lumb, 2005). The amount of

the CO in the breath the patient takes out is measured and the oxygen di�usion capacity

of the lungs, how well the gas exchange happens, is estimated by knowing the CO quantity

of the inhaled air and that of the exhaled air (West, 2005; Lumb, 2005).

4.4.2 Body plethysmography

This test is common when either the total lung capacity, which is the maximum air the

lungs can take, or the absolute lung capacity is measured.

The patient sits inside a room called plethysmograph while breathing through a mouth-

piece measuring the pressure and the air �ow (West, 2005; Lumb, 2005). The TLC and

the RV can be measured using the plethysmography test (Grotberg, 2004). Figure 9 shows
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Figure 4.6: Body plethysmography. The image is reproduced from (Moussavi, 2006).

a plethysmography in the research laboratory of Manitoba university.

4.4.3 Inhalation challenge test

The patient who is su�ering from asthma or wheezing is commonly required to complete

the test (West, 2005; Lumb, 2005). The purpose of the test is to measure the response of the

airways to substances that may have caused the patient to breath heavily. An increasing

amount of methacholine or mannitol is inhaled by the patient through a nebulizer, which

is a device used to gradually deliver the substance to the patient via a mouthpiece (West,

2005; Lumb, 2005). The lung function is monitored and recorded by the spirometer during

the test (West, 2005; Lumb, 2005).

4.4.4 Exercise stress tests

The test is to monitor the lungs function during intense exercise (West, 2005; Lumb, 2005).

The spirometer monitors and evaluates the breathing of the patient during exercise (West,

2005; Lumb, 2005). The function of the lungs is evaluated during the patient resting period

after exercise.
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4.5 Pathophysiology of acute respiratory distress syn-

drome (ARDS)

Di�use alveolar damage is the main consequence of the ARDS (Bourke, 2003a). The lung

epithelial cells (type I and II cells) become in�amed, and the malfunction of the epithelial

cells causes the migration of the white blood cells into the in�amed alveoli, producing pul-

monary edema which increases the thickness of the alveoli walls (West, 2005; Lumb, 2005).

The in�amed alveoli are not able to exchange oxygen and carbon dioxide properly, leading

to hypoxia (a lack of oxygen in the body, and eventually the �brosis) (West, 2005; Lumb,

2005). The in�amed alveoli do not contribute to the lung ventilation and will eventually

collapse. The collapsed alveoli are mostly seen to be distributed in the lower lobes of the

lungs; however, the distribution of which is not even in the pruama (sepsis)-induced ARDS,

where the collapsed alveoli are scattered and less likely to be dense in a small area (Bourke,

2003a; West, 2005; Lumb, 2005). The lung mechanics (lung compliance and airways re-

sistance) change dramatically due to the ARDS (Bourke, 2003a). The transpulmonary

pressure will be higher due to the ARDS as the airspace is less than the normal condition

in the diseased alveoli. This high pulmonary pressure creates high stress on the aerated

alveoli, which contributes to the lung ventilation (Bourke, 2003a). The ARDS is a form

of respiratory failure causing excessive leakiness of the respiratory membranes and severe

hypoxia (Grabowski, 2000).

The ARDS is a common life-threatening condition with a high mortality. Mechanical

ventilation (MV) is the main means for ARDS treatment in hospitals and health care

providers (Bourke, 2003a). However, improper applications of MV easily leads to mechan-

ical ventilator-associated lung injury (VALI) and increase mortality. The setting of the

MV system is di�erent for every patient and depends on the type of the ARDS causing the
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problem and the characteristics of the symptoms. An unsuccessful setting of the MV sys-

tem may worsen the ARDS, inducing more �uid into the alveoli, making breathing harder

at a lower tidal volume (Bourke, 2003a).

There are several lung protective ventilation strategies (LPVS) to prevent the VALI in

patients in need of the MV (Bourke, 2003a). There is still the need to investigate further

into an easy to use and maintain LPVS. A continuous, non-invasive monitoring of the air

distribution in the lungs over prolonged periods of time (hours to days) can be an adequate

tool to prevent the VALI. While lung images from X-ray CT are available, dynamic changes

in the lungs cannot be monitored and also the usage of X-ray exposure to patient for the

long term can causes further complications. One promising technology to continuously

monitor the ventilated patients is EIT, which has recently seen a signi�cant and grow-

ing clinical interest for its ability to provide real time images of regional lung ventilation.

EIT applies an elastic band of surface electrodes fastened around the thorax of patient

to continuously measure the physiological parameters of the ventilation at the bedside.

The volume of the EIT system is small, making it very portable. EIT is easily installed

by a nurse or physician at the bedside and its electrode band is comfortably attached to

the patient chest. The patient breathes through the ventilator while his breathing cycle,

lung images, and physiological measures of ventilation are monitored on the screen in real

time. The real time measurement of the physiological parameters of the ventilation by

EIT helps avoid the VALI. The physician can be alarmed for further care in case of the

prognosis of a possible complication, such as the VALI. The superiorities of the EIT based

LPVS, against other imaging modalities such as CT, MRI, and PET, are the advantage

of being non-invasive over long term usage (hours to days), minimally cumbersome (using

electrodes and wires for the patient interface), very portable and light, and potentially,

reasonably low-cost (using largely low-cost electronic components). The potential users of
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the EIT based lung protective ventilation system are the children in pediatric intensive

care unit and long-stay patients in hospitals.

The positive end expiratory pressure (PEEP) is a technique to continuously produce a pos-

itive airway pressure throughout the respiratory cycle (Bourke, 2003a; Shapiro et al., 1982).

The PEEP maximizes the mean airway pressure to recruit the slow, collapsed/diseased

alveoli in the ventilation by keeping them open during the whole trial (inspiration and

expiration); however, it may cause more stress on the normal alveoli by frequent opening

and closing them (Shapiro et al., 1982).
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Chapter 5

Level Set based Reconstruction Algorithm for

EIT Lung Images: First Clinical Results

5.1 Summary

This chapter is based on the paper � Level Set based Reconstruction Algorithm

for EIT Lung Images: First Clinical Results, published in Physiol. Meas.

by Peyman Rahmati, Manuchehr Soleimani, Sven Pulletz, Inez Frerichs, and

Andy Adler (Rahmati et al., 2012b).

This chapter shows the �rst clinical results using the level set based reconstruction

algorithm for electrical impedance tomography data. The level set based reconstruction

method allows reconstruction of non-smooth interfaces between image regions, which are

typically smoothed by traditional voxel based reconstruction methods. A time di�erence

formulation of the level set based reconstruction method for 2D images is developed. The

proposed reconstruction method is applied to reconstruct clinical EIT data of a slow �ow

in�ation pressure-volume manoeuvre in lung healthy and adult lung injury patients. Images

from the level set based reconstruction method (LSRM) and the voxel based reconstruction
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method (VBRM) are compared. The results show comparable reconstructed images, but

with an improved ability to reconstruct sharp conductivity changes in the distribution of

lung ventilation using the level set based reconstruction method.

5.2 Introduction

Tomographic imaging systems seek to see the inside objects, by introducing energy and

measuring its interaction with the medium. EIT measures the internal impedance distri-

bution using surface measurements (Adler and Guardo, 1996; Adler et al., 1997). Electrical

current is applied to the medium and the voltage at the surface is measured using elec-

trodes. The impedance distribution is then estimated based on the measured voltages and

medium geometry (Adler et al., 1994). Some of typical applications of these techniques are

for geophysical imaging (Loke and Barker, 1996a,b; Church et al., 2006), process monitor-

ing (Soleimani et al., 2006a; Manwaring et al., 2008), and functional imaging of the body

(Frerichs, 2000; Frerichs et al., 2001; Gao et al., 2006; Adler et al., 2009; Frerichs et al.,

2010; Rahmati et al., 2012b; Pulletz et al., 2011).

In this chapter, the focus is on image reconstruction in EIT using the level set (LS)

approach. The LS approach has become popular because of its ability to track propagating

interfaces (Osher and Sethian, 1998; Sethian, 2002; Rahmati et al., 2012a), and more

recently it has been applied in variety of applications in inverse problems and in image

processing (Santosa, 1996; Litman et al., 1998; Dorn et al., 2000; Osher and Paragios,

2003). The LSRM is a nonlinear inversion scheme using Gauss-Newton (GN) optimization

approach to iteratively reduce a given cost functional, which is the norm of the di�erence

between the simulated and measured data. In comparison to the VBRM (Polydorides et al.,

2002), the LSRM has the advantage of introducing the conductivity of background and

that of inclusions as known priori information into the reconstruction algorithm, enabling
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it to reconstruct sharp contrasts (Soleimani et al., 2006d,a). The unknown parameters to

be recovered from the data are the size, number, shapes of the inclusions. These unknown

parameters are given as the zero LS of a higher dimensional function, called level set

function (LSF). In every iteration, the LSF is modi�ed according to an update formula to

modify the shape of the inclusion at its zero LS (see �gure 5.1 on page 72).

The LS method for shape based reconstruction is well studied in electrical and electro-

magnetic imaging for simulated and experimental tank data (Santosa, 1996; Litman et al.,

1998; Dorn et al., 2000; Boverman et al., 2003; Chan and Tai, 2004; Soleimani et al., 2006c;

Soleimani, 2007; Boverman et al., 2007; Banasiak and Soleimani, 2010); however, it has

been never shown to be used for clinical data. This study, along with our previous work

(Rahmati et al., 2012b) are the �rst implementations of the LSRM using time di�erence

data for EIT clinical data. In this study, we use a di�erence formulation of the LSRM to

reconstruct a 2D image of the distribution of lung ventilation over an in�ation manouevre

(�gure 5.4 on page 78 and �gure 5.5 on page 80).

The remainder of the chapter is organized as follows: In the next subsection, the

formulation of the image reconstruction algorithm using di�erence and absolute solvers

for EIT (subsection 5.3.1) is introduced. In subsection 5.3.2, the introduction to the LS

technique employed for solving the inverse problem of EIT lung images is discussed. The

applied human data and the setting of the EIT system are described in the introduction

chapter (chapter 1). In section 5.5, the experimental results are shown for the LSRM and

the VBRM; and the performance of the di�erence mode LSRM for monitoring human lungs

data is qualitatively and quantitatively compared with that of the VBRM.
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5.3 Methods

5.3.1 Di�erence and absolute reconstruction methods

As discussed in the previous chapter, there are two primary reconstruction types in EIT:

�absolute (static) imaging" which attempts to recover an estimate of the absolute con-

ductivity of the medium from the achieved data frame, and �di�erence imaging" which

attempts to recover an estimate of the change in conductivity between two times based

on the change between two data frames, v2 and v1. Di�erence EIT can compensate for

measurement errors which do not change between data frames. Di�erence EIT is based

on a di�erence data vector, [y]i = [v2]i − [v1]i , where i is the number of the measure-

ments,or, to increase sensitivity to small measurements, the normalized di�erence data

[y]i = ([v2]i − [v1]i)/[v1]i. Using a �nite element model (FEM), the medium is discretized

into N elements with conductivity σ. The conductivity change vector x = σ2 − σ1 is the

change between the present conductivity distribution, σ2, and that at the reference mea-

surement, σ1. The linearized di�erence forward solution for small changes in conductivities

over time is given by (Adler et al., 1996; Adler and Lionheart, 2006; Adler et al., 2007):

d = Jm+ n, (5.1)

where J is Jacobian or sensitivity matrix around the reference conductivity distribution,

de�ned by ∂d
∂m
|σ1 and n is the measurement noise, typically assumed to be an uncorrelated

white Gaussian noise. In EIT, we need to solve an inverse problem to �nd an estimate

of the conductivity, refered to as m̂. The most common approach to �nd m̂ is the use of

the Gauss-Newton (GN) algorithm for EIT reconstruction (Cheney et al., 1990). The GN

method solves the EIT inverse problem by minimizing the the following quadratic residue
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(Adler et al., 2007):

‖d− Jm̂‖2∑−1
n

+ ‖m̂−m0‖2∑−1
m
, (5.2)

where
∑−1

n and
∑

m̂−1 are the covariance matrix of measurement noise and that of

conductivity vector (m̂), respectively; and m0 represent the expected value of element

conductivity changes. By solving (5.2) for m̂, the linearized EIT inverse solution is obtained

as (see Appendix A):

x̂ = (JTJ +R)−1(JTd+Rm0), (5.3)

where R is the regularization matrix and m0 is the initial guess of the solution, which

can be assigned to zero. In the remainder of this chapter, the GN approach is considered the

reference technique. GN image reconstruction typically results in smoothed images with

blurred edges, since the regularization matrix is based on a penalty �lter for non-smooth

images.

5.3.2 Level set method

One e�ective method to allow the reconstruction of sharp images is the LS method (Dorn

et al., 2000). The classic formulation of this method assumes that the reconstructed image

can take only two conductivity values: one for background with value σb and another one

for inclusions with value σi. The regions which form the background and the inclusions

are de�ned by the LSF, Ψ: a signed distance function to identify the unknown interface

between the two conductivities. The value of the LSF is zero on the interface, negative

inside the interface, and positive outside.

Compared to the more typical VBRMs, the LSRMs allow more accurate reconstruction

of the boundary shape of step changes of conductivity (high contrast objects). This is

because most regularization schemes for the traditional methods, which are necessary for
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stabilizing the inversion, have the side-e�ect of arti�cially smoothing the reconstructed im-

ages. Therefore, these schemes are not well-suited for reconstructing high contrast objects

with sharp boundaries.

In order to arrive at a robust and e�cient shape-based inversion method, there is a

requirement to computationally model the moving shapes. The LS technique is capable

of modeling the topological changes of the boundaries (Osher and Sethian, 1998; Sethian,

2002). Figure 5.1 on page 72 shows a two phases image reconstructed using the LSRM.

The LSF Ψ has separated the zero LS surface into two regions: foreground (inclusions)

and background. The mapping function Φ projects the LSF to a 2D mesh to be applied

for inverse solution calculation using FEM. Figure 5.1 on page 72, right panel, shows the

conductivity of the inclusions in black where the LSF is negative and that of background

in white where the LSF is positive. To begin with, we need to de�ne an initial LSF,

which may be a circle on level zero; and then deform this inital LSF using a prede�ned

energy functional iteratively. Figure 5.2 on page 75 represents the steps as k represents the

iteration number. After de�ning the initial LSF, the mapping function Φ projects the LSF

to a 2D mesh to be fed to di�erence solver block to calculate the system senitivity matrix,

Jacobian (Jk), as well as di�erential potential vectors, ∆di = [dreal]i − [d(simulated)]i.

The next step is to update the energy functional via a Gauss-Newton formula, ∆LSFk.

The initial LSF is then deformed by ∆LSFk generating a new LSF. This new LSF is fed

again to di�erence solver block for another iteration if the current iteration number (k)

is not bigger than a maximum iteration number (K). In the following, the mathematical

presentation of the LSRM is discussed.

In the LSRM, the shapes which de�ne the boundaries, are represented by the zero LS

of a LSF Ψ. If D is the inclusion with conductivity σi embedded in a background with

conductivity σb, the boundary of the inclusion, which is also an interface between two
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materials, is given by the zero LS (Soleimani et al., 2006c):

∂D := {r : Ψ(r) = 0}, (5.4)

where the image parameter at each point r is (Soleimani et al., 2006c)

σ(r) =


σi for r : Ψ(r) < 0

σb for r : Ψ(r) > 0

, (5.5)

If this LSF is changed, for example by adding an update, the shapes are moved accordingly.

This update to a given LSF causes the shapes being deformed in a way which reduces an

error residue (cost functional).

The LSRM combines the general idea of GN optimization approach with a shape-based

inversion approach. To derive the LSRM, the mapping (Φ) is de�ned which assigns a

given LSF ΨD to the corresponding parameter distribution by σ = Φ(ΨD). The parameter

distribution σ has the same meaning as in the traditional GN inversion scheme. The only

di�erence is that in the shape-based situation it is considered as having only two values,

namely an �inside" value and an �outside" value. In shape-based reconstruction approach,

the LSF ΨD which divides the image into two separate areas as foreground (inclusion) and

background is looked for.

Having de�ned this mapping Φ, one can replace the iterated parameter σk, with the

following de�nition: σk = Φ(ΨD) = Φ(Ψk). Instead of the forward mapping F (σ), where

function F maps the electrical conductivity distribution to the measured data, the new GN

type approach needs to be considered in the combined mapping (Soleimani et al., 2006c):

d(Ψ) = G(Φ(Ψ)), (5.6)
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implementation, a coarse FEM was applied and the narrow band contained one element

on the inner side and outer side of the evolved boundary. In the case of a coarse FEM, the

increase in the width of the narrow band did not a�ect the quality of the reconstructed

image.

The new GN update (Soleimani et al, 2006b) is as follows (see Appendix A) :

Ψk+1 = Ψk + λ
[
(JT(LS,k)J(LS,k) + α2LTL)−1(JT(LS,k)(dreal − d(Ψk)))

]
−
[
α2LTL(Ψk −Ψint)

]
= Ψk +GNupdate

= LSF (k) + ∆LSF, (5.8)

where Ψint in the update term corresponds to the initial estimate of the LSF. There

are two parameters λ and α to be tuned in this LS formulation. Figure 5.2 on page 75

illustrates the algorithm to calculate the above update formula. The optimal choice of the

two parameters, λ and α, depends on the mesh density, the conductivity contrast and the

initial guess (Soleimani et al., 2006a). The length parameter λ and the α both a�ect the

magnitude of the LSF displacement; however, λ makes the main e�ect on the displacement,

changing the shape of inclusion, in a given update. The higher the value of λ, the higher

the LSF displacement will be.

Depending on the complexity of the internal inclusion, the evolution of the level set

function can be trapped into one or multiple local minima. The displacement parameter

(λ) can be adjusted using a genetic algorithm, which is less prone to local minima (Augusto

et al., 2009). Genetic algorithm is a computational search technique which can be applied

to estimate solutions to optimization problems (Augusto et al., 2009). Each unknown

parameter value (genes) of the initial solution (initial level set function) is generated ran-

domly. As the evolutionary process of the level set progresses, the most optimum solution

is selected using the genetic algorithm. In the next iteration of the level set function, a
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new optimum solution (generations) is generated from the previous optimum solution (re-

production) (Augusto et al., 2009). Also, shape derivatives and topological derivatives can

be formulated with level set methods in order to prevent the shape optimization algorithm

to get stuck in multiple local minima (He et al., 2007). The shape derivative measures the

sensitivity of boundary perturbations and the topological derivative measures the sensitiv-

ity of the level set functional to creating a small ball with the center of x and the radius of

r in the interior domain (He et al., 2007). The combination of the shape derivatives and

topological derivatives in the de�nition of the energy functional of a level set based image

reconstruction method can lead to a shape reconstruction algorithm with more �exibility

to topological changes and less sensitivity to local minima. In the implementation of the

proposed LSRM, a big value of the displacement parameter prevents the LSRM to stick

on the local minima. Also, the narrow band has been selected to be wide enough in order

to prevent the algorithm to be prone to the local minima.

The e�ect of the regularization parameter α depends on the choice of the regularization

operator L. An identity matrix for L increases the stability of the inversion by reduced

smoothing of the LSF. However, a �rst order di�erence operator for L will smooth the

LSF (Soleimani et al., 2006a). As α increases, the �nal LSF tends to become smoother.

A large value for α prevents the reconstruction algorithm from being able to separate

close objects (low distinguishibility). In the experiments, the choice of L as the identity

operator was made to improve distinguishibility between separate inclusions. In this im-

plementation, a value of zero has been considered for the initial guess of Ψint in the above

shape-reconstruction form.
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Jacobian(Jk) 
update

Gauss-Newton (GN) 
update
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ΔLSF(update)
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Initial guess of 
LSF (k=0)
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LSF(k+1)=LSF(k)+ΔLSF(update)

3D representation 
of level set function

Reconstructed image at k

Figure 5.2: The level set based reconstruction algorithm using di�erence solver. The
level set based reconstruction method comprises the following steps, respectively: level set
function initial guess, inverse di�erence solver, Gauss-Newton update, level set function
displacement by the given update, and iteration number increment.

5.4 Experimental data

In this thesis, the experimental data was obtained in the study described by Pulletz et al,

(2011). Brie�y, human breathing data was acquired from eight patients with healthy lungs
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(age: 41 ± 12 years, height: 177 ± 8 cm, weight: 76 ± 8 kg, mean ± std.) and eighteen

patients (age: 58 ± 14 years, height 177 ± 9 cm, weight: 80 ± 11 kg) with acute lung

injury (ALI).

All patients were intubated and mechanically ventilated. The experimental procedure

consisted of a low �ow in�ation pressure-volume manoeuvre applied by the respirator

(Evita XL, Draeger, Luebeck, Germany), starting at an expiratory pressure of 0 cmH2O

and ending when either a) the gas volume reached 2 L, or b) the measured airway pressure

reached 35 cmH2O. Airway gas �ow, pressure and volume were recorded at a sampling

rate of 126 Hz. EIT data was acquired on sixteen self-adhesive electrodes (Blue Sensor

L-00-S, Ambu, Ballerup, Denmark), placed at the 5th intercostal space in one transverse

plane around the thorax, while a reference electrode was placed on the abdomen. EIT

data was acquired at 25 frames per second, with an adjacent stimulation and measurement

protocol, using current stimulation at 50 kHz and 5 mArms. Overall, 477 EIT data frames

are acquired per in�ation manoeuvre.

5.5 Experimental results

Images were reconstructed on a mesh roughly conforming to the anatomy of the subject,

and the two di�erent reconstruction algorithms (the VBRM and the LSRM) were tested

on the clinical data (�gure 5.3 on the following page - �gure 5.6 on page 81). Figure 5.3 on

the following page shows the reconstructed images of ventilation in a lung healthy patient

measured based on the di�erence signal between start and end in�ation. As inspired air

increases, the resistivity of the lungs increases which has been shown as blue regions in the

reconstructed images in �gure 5.3 on the next page. The reconstructed images clarify the

di�erence between LSRM and VBRM in terms of creating sharper reconstructions with

larger contrasts at the interface between the inclusion and the background, presenting step
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Figure 5.3: The qualitative comparison between the level set based reconstruction method
and the voxel based reconstruction method in di�erence mode at the maximum airway
pressure of the in�ation manouevre for a patient with healthy lungs . (a) The lung recon-
structed image using the voxel based reconstruction method. (b) The �rst sixteen iterations
of the level set based reconstruction method for the same data as (a). (c) The �nal human
lungs reconstructed image using the level set based reconstruction method at iteration 30.

change of conductivity. The �nal reconstructed image by the LSRM represents the air

distribution inside the lungs after 30 iterations (�gure 5.3(c)). The convergence happens

quickly because the objects in the phantom are big and the initial level set function encloses

the inclusions at iteration 0. A high value of the displacement parameter (λ) speeds up

the convergence.

Figure 5.4 on the next page shows the LSRM reconstruction images for a patient with

healthy lungs over the in�ation manoeuvre measured for three di�erent times from start of

the in�ation manoeuvre: 5.17s, 10.34s, and 17.24s. The measurement times are selected to

show an initial airway pressure, a middle airway pressure, and a high airway pressure. The

reconstruction algorithms for the LSRM and the VBRM used a �nite element mesh (1600
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Figure 5.4: The clinical results of the level set based reconstruction method over the
in�ation manouevre of a patient with healthy lungs. The �rst row represents the in�ation
manoeuvre of the patient with healthy lungs, the second row is the results from the voxel
based reconstruction method, and the third row is the clinical results of the level set based
reconstruction method for the same patient. The reconstructed images are shown for three
di�erent measurement times: 5.17s (an initial airway pressure) , 10.34s (a middle airway
pressure), and 17.24s (a high airway pressure).

elements). For all images of the VBRM for the patients (�gure 5.3 on the preceding page -

�gure 5.5 on page 80), the colour axis (color map) was scaled to the same maximum value

to maximize the displayed contrast. The LSRM results, when compared with the VBRM

outcomes, show more details about the shape of the air distribution inside the lungs. The
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shape of the air distribution of the VBRM images for di�erent frames are very similar

to each other (circular shapes). However, the LSRM images clearly show the di�erence

in the shape of the air distribution for di�erent time frames. In an incremental PEEP

trial for a patient with ALI, the ventilation of the upper lung is di�erent than that of the

lower lung. This is because the mechanical properties of the lungs of patients with ALI

are not uniform, with diseased and non-distensible alveoli that may be open and ventilated

or collapsed and partially recruitable. In the case of a patient with ALI, the upper lung

expands at the onset of the incremental PEEP trial and the lower part of the lung starts

to contribute to the ventilation after the air pressure at the mouth reaches to a certain

threshold. Therefore, the shape of the ventilation should not be the same at the upper and

lower part of the lungs. The proposed LSRM shows di�erent shape representation of the

lungs ventilation for the upper and lower part of the lungs during the incremental PEEP

trial, a trait absent in the traditional VBRM.

Figure 5.5 on the following page shows the LSRM reconstruction images for an ALI

patient along the in�ation manouevre measured for the same measurement times as �g-

ure 5.4 on the previous page. The density of the meshes are the same as in �gure 5.4 on

the preceding page (1600 elements). The VBRM o�ers less changes in the shape of the

air distribution inside the lungs for the ALI patient, the second row of Figure 5.5 on the

next page. However, the LSRM better show the changes of the air distribution for di�erent

frames, the third row of Figure 5.5 on the following page.

For the VBRM, a region of interest (ROI), describing the lungs, was identi�ed as 25%

of the maximum conductivity change (Pulletz et al, , 2011). For the LSRM, the ROI

is the region with negative LSF, where there exists the inclusion. The VBRM and the

LSRM were compared by calculating the normalized summation of elements conductivities

(NSEC) over the ROI as follows:
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Figure 5.5: The clinical results of the level set based reconstruction method over the
in�ation manouevre of a patient with a heterogeneous lung disease. (a) The �rst row
represents the in�ation manouevre, the second row shows the voxel based reconstruction
method results, and the third row is the clinical results of the level set based reconstruction
method for the same patient. The reconstructed images are shown for three di�erent
measurement times: 5.17s (an initial airway pressure) , 10.34s (a middle airway pressure),
and 17.24s (a high airway pressure).

NSEC(j) =

P∑
i=1

σij

Q∑
i=1

σijmax

(5.9)

where j is the frame at which the NSEC is calculated, P is the number of the elements
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inside the ROI for the frame j, jmax is the frame at which the maximum lung in�ation

happens (maximum lung volume), and Q is the number of the elements inside the ROI

for the frame jmax. The NSEC was calculated at seven evenly spaced time points along

the in�ation manouevre. Results were presented for lung healthy (�gure 5.6(a)) and ALI

(�gure 5.6(b)) patients. For both algorithms, the NSEC increases with pressure as the lung

volume increases. The results show the NSEC curve is more non-linear for both algorithms

for the ALI than lung healthy patients, which is consistent with the higher opening pressure

of dependent lung regions in ALI patients.
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Figure 5.6: Normalized sum of element conductivities as a function of fraction of the
in�ation manouevre: (a) lung-healthy patients (b) Acute lung injury patients. In each
case, the solid lines show example patients, while the distributions show the standard
deviation over all patients in that class.
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Chapter 6

A Generalized Inverse Problem with Weighted

L1 and L2 Norms on Data and Regularization

Terms

6.1 Summary

This chapter is based on the paper �Weighted L1 and L2 Norms for Image Re-

construction: First Clinical Results of Electrical Impedance Tomography Lung

Data, The 36th Annual Conference of the Canadian Medical and Biological

Engineering Society, by Peyman Rahmati, and Andy Adler, May 2013. An

extended version of the published paper is presented in this chapter and is to

be submitted to the Journal of Inverse Problems.

Many inverse problems can be formulated in terms of either quadratic objective func-

tionals (Least Square �ttings or L2 norms), the sum of absolute values (L1 norms), or a

combination of both (L1 and L2 norms). The L1 and L2 norms can be independently ap-

plied over the data mismatch and the regularization terms (image term) of an inverse prob-
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lem to constitute four classical inverse problems (L2L2, L1L2, L2L1, and L1L1 problems).

The numerical solution and the implementation of the four classical inverse problems are

most currently studied by Borsic and Adler (2012). The minimization of the L1 norm based

penalty terms has been accomplished using primal-dual interior point method (PDIPM).

This chapter formulates a generalized inverse problem solved using the PDIPM framework,

hereinafter referred to as GPDIPM, to mix the smooth properties of the L2 norm based

objective functionals with the blocky e�ect of the L1 norm based objective functionals

on a element by element basis through a weighting strategy. The PDIPM is applied to

numerically solve the proposed generalized inverse problem. In the implementation, EIT

is used as an instance of an ill-posed, non-linear inverse problem. This chapter investigates

the e�ectiveness of di�erent combinations of weighted L2 and L1 norms in dealing with

measurement uncertainties such as measurement noise and data outliers using both EIT

simulated data and EIT human lung data. The simulated data is produced for a 2D circu-

lar mesh and EIT conductivity images are reconstructed for di�erent weighting parameters

for the L1 and L2 norms. The �rst clinical results of applying weighted L1 and L2 norms to

reconstruct 2D lungs image from EIT lung data using a 2D thorax-shape mesh are shown.

6.2 Introduction

This chapter proposes a generalized inverse problem (GPDIPM) to independently mix the

quadratic functionals (least square �ttings or the L2 norms) and the absolute value based

functionals (L1 norms) over the whole model space, which is the whole domain of the

image plane in image reconstruction applications. The aim of this chapter is to mix the

smooth properties of the L2 norm based regularization techniques with the blocky e�ect

of the L1 norm based regularization methods on a element by element basis through a

weighting strategy. The numerical solution of the proposed generalized inverse problem
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through applying the PDIPM framework is shown. The selection of weighting parameters

can be accomplished adaptively according to the prior information about the unknown

parameters; however, the weighting strategy is beyond the scope of this chapter. In the

following, the most common L2 norm based inverse problem applied for the linear and non-

linear cases are introduced. Then, the advantages of using L1 norm based minimization

problems along with the most commonly applied minimization techniques for the L1 norms

are discussed.

This chapter proposes a generalized inverse problem which mixes the L1 norms and

the L2 norms on both the data and the regularization terms of an inverse problem. The

proposed generalized inverse problem contains a big range of possible inverse problems

by introducing weighting parameters in its formulation. For instance, this chapter shows

the inverse solutions of 16 di�erent inverse problems in �gure 6.1. The classical inverse

problems such as L2L2, L1L2, L2L1, and L1L1 problems are a sub-domain of the proposed

generalized inverse problem where the weighting factors are selected accordingly. The gen-

eralized solution of the proposed inverse problem is derived using the PDIPM framework.

EIT is selected as an instance of ill-posed non-linear inverse problem. In the implementa-

tion, the EIT data is simulated for a 2D circular phantom. The EIT conductivity images

are reconstructed by applying the proposed generalized inverse solution.

This chapter discusses the e�ectiveness of di�erent combination of weighted norms (the

L1 and L2 norms) under the following four di�erent measurement conditions: 1) Without

data outliers and synthetic added noise to EIT simulated data, 2) To account for the

possible systematic and random errors occurring in EIT data acquisition process, a zero

mean Gaussian noise was added to EIT simulated data to produce a signal to noise ratio

(SNR) of 14 dB, 3) With strong data outliers, 4) With added zero mean Gaussian noise

and data outliers.
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The remaining of the chapter is organized as follows: In the next section, the proposed

generalized inverse problem is formulated and its numerical solution using the PDIPM

framework is derived. The applied experimental data are described in section 6.4. The

experimental results are presented in section 6.5. Finally, the discussion is presented in

section 6.6.

6.3 Generalized Inverse Problem with weighted L2 and

L1 norms

This section formulates a general solution for a general inverse problem using the PDIPM

framework. A general primal minimization problem can be written as set of error functions

as follows:

(P ) = argmin

{
ζ

D1∑
i=1

|fdi(m)|+ η

D2∑
j=1

|fpj(m)|+ (1− ζ) ‖gd(m)‖2 + (1− η) ‖gp(m)‖2

}
;

(6.1)

where ζ and η are weighting variables in the range [0, 1]. fd(m) is a L1 norm based

data mismatch term, fp(m) is a L1 norm based regularization term, gd(m) is a L2 norm

based data mismatch term, and gp(m) is a L2 norm based regularization term. A primal

minimization problem can be formed through any combination of the error terms de�ned

in (6.1). In the following, the general solution for the general primal problem in (6.1) is
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derived using the PDIPM framework. One can consider the following objective functions:

fd(m) = W (h(m)− d), (6.2)

fp(m) = α L (m−m0),

gd(m) = W (h(m)− d),

gp(m) = α L(m−m0),

where α is the regularization parameter, W is a weighting diagonal matrix, h(m) is the

forward measurement, d is the measured data, L is the regularization matrix, m is the

model parameter distribution or the primal variables, m0 is a reference model parameter

distribution.

The smoothed PDIPM framework can be formulated as:

Cd(m) = fdi(m)− xdi
√
fdi(m)2 + β = 0, ∀i (6.3)

Cp(m) = fpj(m)− xpj
√
fpj(m)2 + β = 0, ∀j (6.4)

|xdi| ≤ 1 , |xpj | ≤ 1 (6.5)

Fc(m) = ζ
∂

∂m
(fd(m))xd + η

∂

∂m
(fp(m))xp + (6.6)

(1− ζ)
∂

∂m
(‖gd(m)‖2) + (1− η)

∂

∂m
(‖gp(m)‖2) = 0

The derived general PD framework above is solved iteratively using an iterative method,

such as Newton method, and β decreases from points away from the region de�ned by the

boundary ‖xdi‖ ≤ 1 and ‖xpj‖ ≤ 1 at every iteration.

The Newton system to be iteratively solved to calculate the updates for the primal
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variables (m) and the dual variables (xd and xp) can be written as:


∂
δm
Fc(m) ∂

δxd
Fc(m) ∂

δxp
Fc(m)

∂
δm
Cd(m) ∂

δxd
Cd(m) ∂

δxp
Cd(m)

∂
δm
Cp(m) ∂

δxd
Cp(m) ∂

δxp
Cp(m)



δm

δxd

δxp

 = −


Fc(m)

fd(m)− (
√
fd(m)2 + β)xd

fp(m)− (
√
fp(m)2 + β)xp

 (6.7)

where f = h(m) − d, F = diag(f), X = diag(x), κ =
√
f 2 + β, E = diag(κ).g =

L(m−m0), G = diag(g), Y = diag(y), s =
√

(L(m−m0))2 + β, S = diag(s). Replacing

the objective functions de�ned in (6.3) into (6.7), the following is obtained:


2(1− ζ)JTW TWJ + 2(1− η)αLTL ζJTW ηαL

(I −XE−1F )J −E 0

(I − Y S−1G)L 0 −S



δm

δxd

δxp

 = −


Fc(m)

f − Exd

g − Sxp

 (6.8)

The primal variables (m) are updated in every iteration through a line search procedure

which is written as m(k+1) = m(k) +λmδm
(k), where k is the iteration number, δm is the up-

date value with a descend direction to the optimal point, and λ is the step length (Nocedal

and Wright, 1999). In a similar manner, the dual variables (xd and xp) are also updated in

every iteration. However, the direction of updates in the dual variables can be changed for

di�erent value of β at every iteration and may not be always ascending. Therefore, a line

search procedure is not an appropriate method to update the dual variables. The scaling

rule is proposed to update the dual variables as follows (Andersen et al., 2000):

x(k+1) = x(k) + min (1, ϕ∗) δx(k) (6.9)
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where ϕ∗ is a scalar value such that:

ϕ∗ = sup
{
ϕ :
∣∣∣x(k)
i + ϕ δx

(k)
i

∣∣∣ ≤ 1, i = 1, . . . , n
}

(6.10)

6.4 Experimental data

EIT is applied to reconstruct a conductivity distribution image of a 2D medium using the

injection of electrical current into the medium and the collection of the resulting di�erence

voltages across the electrodes attached to the boundary of the medium. EIT di�erence

imaging was simulated using 16 electrodes with adjacent current stimulation pattern on

one electrode plane discretized using a 2D circular �nite element model (FEM) for the

simulated data. A 2D human thorax-shape mesh was applied for the clinical data. The

same clinical data described in chapter 5 is applied in this study.

6.4.1 Simulated data

Figure 6.1(a) shows the 2D phantom used to generate simulated data with 1024 mesh el-

ements. The phantom contains two sharp inclusions with the two di�erent conductivity

values (0.9 S/m for the upper object and 1.1 S/m for the lower). The background conduc-

tivity value is 1 S/m. The inverse problem used the mesh density of 576 elements, which

was di�erent than the mesh density of the forward problem (1024 elements). The perfor-

mance of the proposed generalized inverse problem, referred as to GPDIPM, for di�erent

weighting parameters was assessed based on two measurement conditions: 1) To account

for the systematic errors and measurement noise of EIT data acquisition system, a zero

mean Gaussian noise was added to EIT simulated data to produce a signal to noise ratio

(SNR) of 14 dB, 2) To simulate the electrode error, caused due to electrode movement and

electrode malfunction, a measurement failure rate of 0.5% was introduced, which means
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one measurement out of 208 measurements needed for one EIT frame was missed.

6.5 Results

6.5.1 Simulated results

This study shows the EIT reconstructed images of the proposed GPDIPM framework with

di�erent selection of weighting parameters over both simulated and experimental data.

The inverse solution is calculated using the proposed GPDIPM with β = 1 × 10−12. The

stopping term to terminate the iterations depends on the value of the primal dual gap

computed in every iteration of the PDIPM. According to the experiments, 10 iterations for

the PDIPM were su�cient to reach to convergence. In the implementation, sixteen di�erent

selections for weighting parameters (ζ and η) are considered (�gure 6.1(b), 6.3-6.6). The

weighting matrix for ζ and η are selected as [0, 0.3, 0.6, 1],including small, medium, and

large weighting values. Figure 6.1 (b) presents the EIT reconstruction results for the

2D circular mesh using the proposed generalized PDIPM framework for sixteen di�erent

selection of weighting parameters. The lowest conductive region is shown in dark blue

and the highest conductive region is colored in dark red. The colors between the dark

blue and the dark red are assigned to the regions with conductivity values between the

lowest to the highest values. In �gure 6.1(b), the upper panel on the left corner shows

the result of solving the traditional L2L2 problem where [ζ, η] = [0, 0]. The lower panel

on the left corner is the solution of the L1L2 problem where [ζ, η] = [1, 0]. The upper

panel on the right corner represents the solution of the L2L1 problem; and the lower panel

on the right corner shows the conductivity distribution image for the L1L1 problem. For

every selection of weighting parameters, the hyperparameter α was tuned up using the L-

Curve method (Tarantola, 2005). Figure 6.2 shows the L-Curve plots for sixteen di�erent
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(a)

ξ
η 0 0.3 0.6 1

0

0.3

0.6

1

(b)

Figure 6.1: EIT Image reconstruction using the proposed GPDIPM with sixteen di�erent
weighting parameters for the L1 and L2 norms. (a) 2D circular mesh. (b) The reconstructed
images with di�erent weighting parameters ([ζ, η]) using EIT simulated data achieved from
the 2D mesh in �gure6.1(a). From the dark blue to the dark red, the conductivity quantities
increases.
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Figure 6.2: L-Curve method applied to tune up the regularization factor in the proposed
GPDIPM for sixteen di�erent selection of weighting parameters ([ζ, η]).

selection of the weighting parameters in the proposed GPDIPM framework. A wide range

of possible hyperparameters ([10−13, 107]) is selected and linearly divided into 35 equally

distanced bins. The data mismatch term and the image mismatch term are calculated and

normalized for each hyperparameter (bin) within the range. The normalized L-curve is

drawn and the optimum hyperparameter, corresponding to the optimal trade-o� between

the image and data residuals, is marked with a red square at the maximum curvature

of the L-curves (�gure 6.2). The horizontal axes shows the data mismatch term and

the vertical axes represents the image mismatch term. The optimum hyperparameter
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minimizes both the data and image mismatch terms simultaneously. The value of the

optimum hyperparameter is written next to the red square on each panel in �gure 6.2.

Figure 6.3 shows the reconstruction results over EIT simulated data when perturbed by a

ξ
η 0 0.3 0.6 1

0

0.3

0.6

1

Figure 6.3: EIT Image reconstruction using the proposed GPDIPM with sixteen di�erent
weighting parameters ([ζ, η]) over EIT simulated data perturbed by zero mean Gaussian
noise (-14 dB). From the dark blue to the dark red, the conductivity quantities increases.

zero mean Gaussian noise (-14 dB). As can be seen in �gure 6.3, the reconstruction quality

drops in the presence of added noise (-14 dB). Adding a zero mean Gaussian noise to EIT

simulated data, the reconstructed images with η = 0 (column 1 in �gure 6.3) become blurry

and the image quality drops. The reconstructed images with larger weighting parameters

(columns 2-4 in �gure 6.3) o�er slightly higher robustness against the added noise and still
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provide sharp edges, as weights of the L1 norms and their contributions in the solution

become higher from one column to another. A more challenging measurement condition

was tested by perturbing the EIT simulated data by noise (-14 dB) and data outliers,

where one measurement out of 208 was missed. Figure 6.4 shows the reconstructed images

ξ
η 0 0.3 0.6 1

0

0.3

0.6

1

Figure 6.4: EIT Image reconstruction using the proposed GPDIPM with weighted L1 and
L2 norms over EIT simulated data perturbed by zero mean Gaussian noise (-14 dB) and
strong data outliers. From the dark blue to the dark red, the conductivity quantities
increases.

for noise and data outliers test scenario. The weighting selection of either ζ = 0 (row 1

in �gure 6.4) or η = 0 (column 1 in �gure 6.4) does not tolerate the imposed noise and

outliers. However, the reconstructed images with weighting parameters larger than 0.3
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o�er higher robustness against noise and outliers.

6.5.2 Clinical results

ξ
η 0 0.3 0.6 1

0

0.3

0.6

1

Figure 6.5: Clinical results of applying the proposed GPDIPM with weighted L1 and L2
norms over EIT lung data achieved from a patient with healthy lungs. From the dark blue
to the dark red, the conductivity quantities increases.

This study also shows the �rst clinical results of applying weighted L1 and L2 norms

over EIT lung data achieved for a patient with healthy lungs and a patient with acute lung

injury (ALI). Positive end-expiratory pressure (PEEP) was applied on 7 patients with

healthy lungs and 18 patients with ALI (Pulletz et al., 2011). EIT lung data was acquired
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during the PEEP trial. Figure 6.5 represents di�erence EIT with the proposed GPDIPM

framework when applied to EIT lung data frame taken at the maximum airway pressure

(35 cmH2O) of the PEEP trial for a patient with healthy lungs (patient numbered 7 in our

data base). The reconstructed images in �gure 6.5 correctly show that the dependent lung

areas are evenly �lled with air for both the right and left lungs, which is expected at the

highest pressure of PEEP trial. The L2 norm based solution, located at the upper panel

on the left corner in �gure 6.5, is in fact the traditional Gauss-Newton method, where

[ζ, η] = [0, 0]. The L2 norms smooth out the solution and therefore create blobby images.

This also shows the high vulnerability of L2 norm based penalty terms to measurement

errors as they overly penalize, by squaring the mismatch terms, both measurement errors

and related conductivity changes due to the ventilation. In contrast, the L1 norm based

penalty terms sum up the absolute values of mismatch terms and therefore are less prone

to measurement errors and create sharp images with clear edges. The larger the weighting

parameters, the higher the contribution of the L1 norms in the inverse solution will be.

In �gure 6.5, the reconstructed images with larger weighting values in columns 2-4 are

sharper images due to the higher contribution of the L1 norms in the inverse solution. The

higher weighting values for image mismatch terms o�er sharper images (row 1 in �gure

6.5); however, the images su�er from data outliers (artifacts at the thorax boundary), due

to having L2 norms on the data mismatch terms (ζ = 0). The higher weighting values for

data mismatch terms (column 1 in �gure 6.5) produce robustness against data outliers;

however, the images are smoothed out, due to imposing L2 norms on the image mismatch

terms (η = 0). Figure 6.6 demonstrates the e�ect of di�erent weighting parameters (ζ

and η) on the reconstructed image from EIT lung data achieved on the in�ation limb of

PEEP trial where the airway pressure reaches to its highest value for a patient with ALI

(patient numbered 18 in the database). All reconstructed images clearly show the lungs
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Figure 6.6: Clinical results of applying the proposed GPDIPM with weighted L1 and L2
norms over EIT lung data achieved from a patient with acute lung injury (ALI). From the
dark blue to the dark red, the conductivity quantities increases.

malfunction due to a heterogeneous lung disease, which causes collapsed areas mostly in

the lung dependent areas. Also, �gure 6.6 indicates a decrease in the the lung volume,

which is not normal at the plateau of the PEEP trial during the in�ation phase.

6.6 Discussion

Positive end-expiratory pressure (PEEP) is applied in mechanically ventilated patients with

ALI to help prevent lung damage and mortality. The best level of PEEP in mechanically
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ventilated patients should be tuned regularly to prevent alveolar (air sac) strain. There are

di�erent preventive strategies to decrease the likelihood of di�erent complications due to

the application of mechanical ventilators in patients with ALI. One of the promising lung

protective ventilation strategy (LPVS) is to apply a non-invasive imaging modality as a

tool to help continuously monitor the ventilation distribution inside the lungs. While lung

images from X-ray CT are available, dynamic changes in the lungs cannot be monitored,

and X-ray exposure to patient for long term itself causes more complications. Functional

EIT is a non-invasive, inexpensive imaging modality to image the regional ventilation

distribution for long period of time. Di�erence EIT monitors lung impedance changes

during ventilation and can be applied as a tool to help tune up the PEEP level. This

study investigates the �rst clinical results of applying the GPDIPM with a combination of

weighted L1 and L2 norms to produce quality EIT lung image.

In the clinical setting, there are several sources of errors in EIT data measurement, such

as patient movement, sweating, and loose electrode connection, which create measurement

errors. A reconstruction algorithm with sharp image and low vulnerability to potential

uncertainties, such as measurement noise and data outliers is desirable in the clinical

applications of EIT. The focus of chapter 8 is to assess and compare the robustness of four

competing methods, including di�erent combinations of the L1 and L2 norms on the data

and image terms of their inverse problem, with the proposed EPIRMs in this thesis.

Di�erent reconstruction methods can be derived from the proposed generalized inverse

problem by selecting appropriate weighting parameters in (6.1). For instance, the GN, TV,

and PDIPM are special cases of the proposed generalized inverse problem in ((6.1) where

the weighting parameters ([ζ, η]) are selected as [0, 0], [0, 1], and [1, 1], respectively. The

LSRM, proposed in chapter 5, can also be derived from the proposed generalized inverse

problem by introducing the corresponding LS parametrization in (6.1). The next chapter
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discusses the mathematical procedure to derive the LSRMs from the proposed generalized

inverse problem.

The proposed generalized inverse problem with weighted L1 and L2 norms can be

utilized in EIT clinical applications to reconstruct sharp, quality images (�gure 6.5, and

6.6). One of the main di�culties of EIT image reconstruction is the high dependency of its

inverse solution to the hyperparameter selection. In this study, the L-curve method was

implemented to tune the hyperparameter for every weighting combinations (�gure 6.2). In

the implementation, there was no compensation for the electrode movements and volume

changes of the thorax due to breathing. It is expected that the reported results in this

chapter become less noisy, especially at the proximity of the thorax boundary, if a motion

compensation algorithm is applied.
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Chapter 7

A Level Set based Primal Dual - Interior Point

Framework for Using the L1-Norm or the

L2-Norm on the Data and Regularization

Terms of Inverse Problems

7.1 Summary

This chapter is based on the papers ��Level Set Technique for High Contrast

Image Reconstruction�, Peyman Rahmati, and Andy Adler, The 36 Annual

Conference of the Canadian Medical and Biological Engineering Society, 2013;

and � A Level Set based Regularization Framework for EIT Image Recon-

struction�, Peyman Rahmati, and Andy Adler, XV Int. Conf. Electrical Bio-

Impedance and XIV Electrical Impedance Tomography, Heilbad Heiligenstadt,

Germany, 2013. An extended version of these published papers is presented in

this chapter and will be submitted to IEEE Transaction of Medical Imaging.

The level set technique is shown to generate promising results when applied to solve
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a piece-wise constant inverse problem. The common LSRM uses one level set function

and considers two di�erent conductivity quantities for the background and the inclusion.

The level set function evolves according to the Least Squares �tting (L2 norm) of the data

and the regularization terms. The evolution of the level set function continues till the

de�ned quadratic formulations become very small, providing us with the inverse problem

solution. As a more solid alternative, we can consider L1 norm either on the data term, on

the regularization term, or on the both. The L1 norm produces more robustness against

noise and outliers. The PDIPM framework is shown to be successful in minimizing the

L1 norms. In this chapter, a novel level set based PDIPM framework (LSPDIPM) for

using the L1 norm indi�erently on the data and the regularization term of an inverse

problem is proposed. The implementation of the derived inverse problem solving framework

is discussed and shown by applying the LSPDIPM to reconstruct 2D images from the

measured data (forward solution) of an electrical impedance tomography system, which is

a standard instance of an ill-posed inverse problem.

7.2 Introduction

Level set technique is shown to be a promising technique in the reconstruction of sharp

transitions in piece-wise constant inverse problem, which is an inverse problem with un-

known piece-wise parameters. In this chapter, a numerical framework to solve a piece-wise

constant inverse problem using a Level Set based Primal Dual - Interior Point Method

(LSPDIPM) is proposed. There are two main advantages to applying level set technique

in the common PDIPM framework: The level set technique is shown to preserve the edges

in high contrast medium, which results in high contrast reconstructed image with well

de�ned interfaces between the background and the foreground; also the level set technique

is capable of tracking the propagating interfaces, making it suitable for quickly changing
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mediums in real-time applications. The L1 norm on the data term of an inverse problem

is shown to provide robust estimations in the presence of data outliers. Also the L1 norm

is proved to be an adequate choice to lead to sharp reconstructions when applied on the

regularization term of an inverse problem with high level of noise.

As shown in chapters 5 and 6, the forward model indicates the relationship between

the data measurements and the model parameters and is written as:

d = h(m) (7.1)

where m is the vector of model parameters, a subset of the space of parameter values

RM , d is the vector of data measurements, a subset of the space of the data values RD.

It is common to assume that the data measurement and the model parameters follow up

a Gaussian distribution (Tarantola, 2005). A primal problem, which is the maximum a

posteriori (MAP) of the model parameters, can be written as (Borsic and Adler, 2012)

mMAP = argmin

{
D∑
i=1

|Wi(h(m)i − di)|nd + α
M∑
i=1

|Li(m−m0)|nm
}

(7.2)

where nd is the order of the Gaussian distribution for the data term, nm is the order of the

Gaussian distribution for the parameter term, σnd is the standard deviation for the data

term, σnm is the standard deviation for the parameter term,m0 is a priori information of the

model parameters, L is the Tikhonov regularization matrix, W is a diagonal matrix with

the diagonal entries of 1
(σnd )

nd
i

, and the scalar α is the Tikhonov hyperparameter (Tikhonov

and Arsenin, 1977). Depending on the choice of nm and nd, four possible primal problems

can be de�ned. L2L2 problem is when nm = nd = 2, which is the common least square

optimization problem where Gauss-Newton method is used to solve for the unknown model

parameters (Polydorides and Lionheart, 2002). L1L2 problem is when nd = 1 and nm = 2.

L2L1 problem is when nd = 2 and nm = 1. L1L1 problem is when nd = 1 and nm = 1.
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L2 norm on the model parameters assumes an inverse problem with smooth coe�cients,

while the L1 norm on the model parameters assumes a piece-wise constant inverse problem

with big step changes. Borsic and Adler (2012) show that the use of L1 norms on the data

and the regularization terms is helpful and increases the robustness of the inverse solution

against data outliers and spatial noise, respectively. The selection of model orders, nm

and nd, has to be accomplished independently according to our prior information about

the model parameters, and the observations. In the case of having big step changes in

the model parameters, the L1 norm on the model parameters and a TV regularization

generate robust inverse solutions to spatial noise (Rudin et al., 1992; Chan and Mulet,

1996; Borsic, 2002; Borsic et al., 2010). The L1 norm on the data term generates robust

estimates against data outliers (Tarantola, 2005). The L2 norm data and regularization

terms are suitable choices for inverse problem with smooth coe�cients. However in the

context of inverse problem with high step changes in the medium (piece-wise constant

inverse problem), the L1 norms on either data, the model parameters or the both are

the optimal choices. The di�culty in dealing with the L1 norm optimization problems is

where the argument of the absolute values in the MAP objective function is zero, making

the term non-di�erentiable. There are two techniques to resolve the non-di�erentiability

of the L1 norms: Bayesian (Kaipio et al., 2000), and deterministic approaches (Acar and

Vogel, 1994; Chan et al., 1995; Vogel and Oman, 1996; Dobson and Vogel, 1997). The

Bayesian approach minimizes the total variation regularization instead of minimization of

the MAP objective function. Markov Chain - Montecarlo Method is used in the Bayesian

approach to converge to the optimal solution. The main drawback of the Bayesian method

is its high number of iterations. Instead, the deterministic approaches are easier to be

computed (Chan et al., 1995; Borsic, 2002). The non-di�erentiability of the L1 norm is

resolved through using a centering condition which is the replacement of ‖W (h(m)− d)‖2
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by a quadratic norm as
√

(Li(m−m0))2 + β, with β > 0. The value of β depends on

the application. The larger the β, the less the accuracy of the sought solution (Borsic and

Adler, 2012). A very small value of β causes slow convergence (Chan et al., 1995; Borsic,

2002).

As an alternative approach, the PDIPM framework is shown promising results in the

minimization of the sum of absolute values (L1 norms) in the context of non-smooth inverse

problem (Chan et al., 1996; Andersen et al., 2000). The superiority of the PDIPM is studied

and shown against the standard minimization methods with total variation regularization

(Borsic, 2002). Borsic and Adler (2012) show the high performance of the PDIPM when

applied to minimize a MAP function with independently selected norm orders (Borsic and

Adler, 2012). Furthermore, the level set (LS) method has gained considerable attention

in the last decade because of its e�ectiveness in tracking propagating interfaces in object

tracking, image segmentation applications (Kass et al., 1998; Yezzi et al., 1997; Sethian,

2002; Rahmati et al., 2012a), and in the inverse problems (Santosa, 1996; Litman et al.,

1998; Dorn et al., 2000; Soleimani et al., 2006a; Rahmati et al., 2012b). This chapter derives

a general LS based PDIPM framework to solve the primal problem (7.2) with independently

selected norm orders, for instance [nd, nm] = [2, 2], [nd, nm] = [1, 2], [nd, nm] = [2, 1], or

[nd, nm] = [1, 1] . The application of the LS technique to solve a piece-wise constant

inverse problem using the combination of the L1 norms and L2 norms on the inverse

problem terms has not been previously studied. This chapter proposes a LS based PDIPM

framework, hereinafter called LSPDIPM, to compute the numerical solution for a L1 norms

based inverse problem. The derived LSPDIPM o�ers two main advantages: The solution

from the proposed LSPDIPM is robust against data outliers and spatial noise because of

taking advantage of the L1 norms, which is minimized using the PDIPM framework, and

the LS technique helps preserve the edges at the interfaces and reconstructs well de�ned
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shapes as inclusion with high similarity to the actual inclusion (ground truth). Electrical

Impedance Tomography (EIT) is applied as an instance of ill-posed inverse problem to

show the implementation of the derived LSPDIPM.

The remainder of the chapter is organized as follows: In the next section, the three stan-

dard inverse problems (L1L2, L2L1, and L1L1 problems) are solved using the GPDIPM,

proposed in the previous chapter (chapter 6). The proposed LSPDIPM framework is de-

rived in section 7.4. Subsection 7.4.1 formulate the LSPDIPM for the case of the inverse

problem with the L1 norm on data and the L2 norm on the regularization term (L1L2 prob-

lem). Subsection 7.4.2 derives the LSPDIPM for L2L1 problem; and the L1L1 problem is

solved using the proposed LSPDIPM in subsection 7.4.3. In section 7.5, the EIT as our

inverse problem case study is introduced. EIT reconstructed images for a L1L1 problem

solved using the derived LSPDIPM are shown in section 7.6. The derived LSPDIPM o�er

promising performance in dealing with simulated data using a 2D circular phantom.

7.3 PDIPM for standard inverse problems

The general primal minimization problem de�ned in (6.1) in chapter 6 can be written in

three ways: 1) L1L2 problem: which is when in (6.1) [ζ, η] = [1, 0], 2) L2L1 problem: which

is when in (6.1) [ζ, η] = [0, 1], and 3) L1L1 problem: which is when in (6.1) [ζ, η] = [1, 1].

In the following, the PD framework is derived for each primal problems (L1L2 problem,

L2L1 problem, and L1L1 problem).
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7.3.1 PD framework for the primal problem with L1 norm based

data mismatch term and L2 norm based regularization term

The primal formulation for the L1L2 problem is as below:

(P ) = argmin

{
D∑
i=1

|fdi(m) + ‖gp(m)‖2

}
(7.3)

the dual problem is

(D) = min
m

{
max
xd

xTd fd(m) + ‖gp(m)‖2

}
, with |xdi| ≤ 1 (7.4)

interchanging the max and the min, the following is obtained:

(D) = max
xd

min
m

{
xTd fd(m) + ‖gp(m)‖2

}
, with |xdi| ≤ 1 (7.5)

now the �rst order conditions can be applied on the primal variable:

∂

∂m

{
xTd fd(m) + ‖gp(m)‖2

}
(7.6)

the dual problem is rewritten as follows:

(D) = max
xd

{
xTd fd(m) + ‖gp(m)‖2

}
(7.7)

|xdi| ≤ 1

∂

∂m

{
xTd fd(m) + ‖gp(m)‖2

}
= 0
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the Primal-Dual gap is written as

GPD =
D∑
i=1

|fdi(m)|+ ‖gp(m)‖2 −
[
xTd fd(m) + ‖gp(m)‖2

]
=

D∑
i=1

{|fdi(m)| − xdifdi(m)} (7.8)

the smoothed Primal-Dual framework for L1L2 problem is formulated as below:

Cd(m) = fdi(m)− xdi
√
fdi(m)2 + β = 0 ∀i (7.9)

|xdi| ≤ 1 (7.10)

Fc(m) =
∂

∂m

{
xTd fd(m) + ‖gp(m)‖2

}
= 0 (7.11)

the partial derivatives of (7.9) and (7.11) with respect to ∂m and ∂x are calculated and a

set of equations can be derived to solve the L1L2 problem as follows: ∂
∂m
Fc(m) ∂

∂xd
Fc(m)

∂
∂m
Cd(m) ∂

∂xd
Cd(m)


 δm

δxd

 = −

 Fc(m)

fd(m)− (
√
fd(m)2 + β)xd

 (7.12)

the above equations are solved in an iterative manner when using a line search on the

primal updates (δm), and a step length procedure on the dual updates (δxd) .

106



7.3.2 PD framework for the primal problem with L2 norm based

data mismatch term and L1 norm based regularization term

With the same procedure explained in subsection 7.3.1, the smoothed PD framework for

the L2L1 problem can be derived as follows:

Cp(m) = fpj(m)− xpj
√
fpj(m)2 + β = 0 ∀j (7.13)

|xpj | ≤ 1 (7.14)

Fc(m) =
∂

∂m
(‖gd(m)‖2) +

∂

∂m
(xTp fp(m)) = 0 (7.15)

The system formulation for the primal update (δm) and the dual update (δxp) for the

L2L1 problem can be written as: ∂
∂m
Fc(m) ∂

∂xp
Fc(m)

∂
∂m
Cp(m) ∂

∂xp
Cp(m)


 δm

δxp

 = −

 Fc(m)

fp(m)− (
√
fp(m)2 + β)xp

 (7.16)

7.3.3 PD framework for the primal problem with L1 norm based

data mismatch term and L1 norm based regularization term

The following smoothed PD framework can be derived for the L1L1 problem:

Cd(m) = fdi(m)− xdi
√
fdi(m)2 + β = 0, ∀i (7.17)

Cp(m) = fpj(m)− xpj
√
fpj(m)2 + β = 0, ∀j (7.18)

|xdi| ≤ 1, |xpj | ≤ 1 (7.19)

Fc(m) =
∂

∂m
(fd(m))xd +

∂

∂m
(fp(m))xp = 0 (7.20)
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The Newton system for the L1L1 problem using the same procedure explained for the

GPDIPM in chapter 6 can be derived as below:
0 ∂

δxd
Fc(m) ∂

δxp
Fc(m)

∂
δm
Cd(m) ∂

δxd
Cd(m) 0

∂
δm
Cp(m) 0 ∂

δxp
Cp(m)



δm

δxd

δxp

 = −


Fc(m)

fd(m)− (
√
fd(m)2 + β)xd

fp(m)− (
√
fp(m)2 + β)xp


(7.21)

As before, the line search procedure is applied to compute the updates for the primal

variables (m); and the step length method is used to update the dual variables (xd and

xp).

7.4 Level Set based Primal Dual - Interior Point Frame-

work

In this section, a novel LS based PDIPM framework is proposed to identify the unknown

or di�cult to determine model parameters of a system de�ned as:

(P ) = argmin

{
D1∑
i=1

|fdi(m)|+
D2∑
j=1

|fpj(m)|+ ‖gd(m)‖2 + ‖gp(m)‖2

}
(7.22)

where fd(m) is a L1 norm based data mismatch term, fp(m) is a L1 norm based regu-

larization term, gd(m) is a L2 norm based data mismatch term, and gp(m) is a L2 norm

based regularization term. The proposed LS based PDIPM framework to solve the primal

problem in (7.22) is referred to as LSPDIPM. In the following, the solution of the three

standard inverse problems (L1L2 problem, L2L1 problem, and L1L1 problem) are derived

using the proposed LSPDIPM.
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7.4.1 LSPDIPM for the primal problem with L1 norm based data

mismatch term and L2 norm based regularization term

The level set function (Ψ) is a signed distance function which is zero at the optimal solution

and nonzero otherwise. The minimum distance from the optimal solution is achieved at zero

level set function. An initial zero level set function can be assumed as a circle equation. The

evolution of the level set function according to the minimization of a functional objective

function (primal problem), which can be a standard least square error function, results in

the optimal solution of an inverse problem. A mapping function (Φ) is used to project the

3D level set function into a 2D plane for the purpose of inverse solution calculation using

�nite element mesh (FEM). The level set evolution function is as follows:

Ψk+1 = Ψk + λ(∆Ψ), (7.23)

where Ψk+1 is the updated level set function, Ψk is the current level set function, ∆Ψ is the

update, Φ is the mapping function, Φ(Ψk+1) is the updated model parameter distribution,

which is the �nal inverse solution after the �nal iteration of the level set, Φ(Ψk) is the

current model parameter distribution, λ is the regularization factor or hyperparameter

which is a constant variable.

The primal formulation (P) is the error function de�ned as follows:

(P ) = argminΦ(Ψ)

[∑
i

Wi|hi(Φ(Ψ))− di|+ α‖L(Φ(Ψ)− Φ(Ψ0))‖2

]
(7.24)

where W is a weighting diagonal matrix, Wi is the i-th diagonal element, hi(Φ(Ψ)) is the

i-th forward measurement, di is the i-th measured data, L is the regularization matrix,

Φ(Ψ) is the model parameter distribution or the primal variables, Φ(Ψ0) is a reference

model parameter distribution In chapter 5, the LS Jacobian matrix (JLS) was written as
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below:

JLS =
∂d

∂Ψ
= ( ∂h

∂Φ(Ψ)
)(∂Φ(Ψ)

∂Ψ
)

= (JGN)(M), (7.25)

where ∂h
∂Φ(Ψ)

stands for the standard Gauss-Newton (GN) Jacobian matrix (JGN), and

∂Φ(Ψ)
∂Ψ

= M . Matrix M is a sparse matrix, meaning that the number of zero entries are

much higher than that of non-zeros. The standard dense-matrix operations can be highly

costly and memory consuming if applied on a large sparse matrix, such as matrix M.

To prevent from high computational costs, either specialized sparse-matrix algorithms,

designed to take advantage of the sparse structure of the matrix, need to be applied, or the

sparse matrix must be converted to a dense matrix. The latter is the procedure used in the

implementation of the proposed LSPDIPM. To make the algorithm e�cient, the Jacobian

matrix is calculated within a narrow band containing the data (non-zeros). The imaging

domain Ω is discretized using the FEM and the imaging space is divided into many smaller

regions, called elements. To construct the narrow band, the level set function, or the signed

distance function, is de�ned to be negative inside its boundary and positive outside. The

front (boundary) of the level set function is de�ned as:

ΩC(x, y) = { (x, y) | Ψ(x, y) = 0 } (7.26)

the narrow band width (ε) is denoted as:

ε = a · h ; a > 0 (7.27)

where h is the length of the element edge in the applied mesh, and a is re�ne factor which

is a small arbitrary number selected based on the density of applied mesh. A larger value
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for the re�ne factor is suitable for a �ne mesh and a smaller for a course mesh. The narrow

band (NB) is written as:

ΩNB(x, y) = { (x, y) | − ε/2 < Ψ(x, y) < ε/2} (7.28)

matrix M is non-zero within the narrow band and zero otherwise, which is the notion of

Dirac delta function. In every iteration of the level set function (Ψ), the Jacobian matrix

(JLS) for the narrow band is computed, and therefore, the computed Jacobian only contains

non-zero entries. The dimension of the matrixM is determined by the width of the narrow

band (ε). The higher the width of the narrow band, the larger the number of elements

considered for the Jacobian calculation and the bigger the size of the matrix M will be.

A dual variable xi in the range [−1, 1], depending on the absolute value of Wi(d −

h(Φ(Ψ))) is de�ned. This gives:

|Wi(h(Φ(Ψ))i − di)| = max
xi:|xi|≤1

xi(Wi(h(Φ(Ψ))i − di)) (7.29)

using the de�ned dual variable, and applying it to (P), the dual problem can be written

as:

(D) = argminΦ(Ψ)

[
maxx xTW (h(Φ(Ψ))− d) + α‖L(Φ(Ψ)− Φ(Ψ0))‖2

]
, with|x| ≤ 1

(7.30)

interchanging the max and the min, the following is achieved:

(D) = maxx argminΦ(Ψ)

[
xTW (h(Φ(Ψ))− d) + α‖L(Φ(Ψ)− Φ(Ψ0))‖2

]
, with|x| ≤ 1

(7.31)

from (7.31):
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[
xTW (h(Φ(Ψ))− d)

]
= D1, (7.32)

taking the �rst order derivative of D1 with respect to the level set function results in:

∂

∂Ψ
[D1] =

∂

∂Φ(Ψ)
[D1]

∂

∂Ψ
[Φ(Ψ)] = JTGNM

TWx = JTLSWx, (7.33)

de�ning:

∂

∂Ψ
‖L(Φ(Ψ)− Φ(Ψ0))‖2 = D2, (7.34)

taking the �rst order derivative of D2 with respect to the level set function gives:

∂

∂Ψ
[D2] = 2LTL(Φ(Ψ)− Φ(Ψ0))M = 2MTLTL(Φ(Ψ)− Φ(Ψ0)) (7.35)

so the �rst order condition for the minimization in the dual problem is:

JTLS(Φ(Ψ))Wx+ 2αMTLTL(Φ(Ψ)− Φ(Ψ0)) = 0 (7.36)

nulling the di�erence between the primal and dual problems gives us the following Primal-

Dual gap:

GPD =
D∑
i=1

|Wi(h(Φ(Ψ))i − di)|+ α‖L(Φ(Ψ)− Φ(Ψ0))‖2 −

xTW (h(Φ(Ψ))− d) + α‖L(Φ(Ψ)− Φ(Ψ0))‖2 =
D∑
i=1

{|Wi(h(Φ(Ψ))i − di)| − xiWi(h(Φ(Ψ))− d)} (7.37)

the primal-dual GPD is null if, for each i, eitherWi(h(Φ(Ψ))−d) = 0 or xi = Wi(h(Φ(Ψ))−
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d)/|Wi(h(Φ(Ψ))− d)|. The complementarity condition that nulls the PD gap is therefore:

|Wi(h(Φ(Ψ))i − di)| − xiWi(h(Φ(Ψ))− d) = 0 ∀i (7.38)

the PD framework can be written as:

M∑
i=1

|Wi(h(Φ(Ψ))− di)| − xTW (h(Φ(Ψ))− d) = 0 (7.39)

|xi| ≤ 1

JTLS(Φ(Ψ))Wx+ 2αLTL(Φ(Ψ)− Φ(Ψ)ast) = 0

which constitutes the level set based PD method applied to the primal problem de�ned

in (7.24). The smoothed version of LS based PD framework in (7.39) can be obtained

through applying the centering condition which is the replacement of |Wi(h(Φ(Ψ))−di)| by√
(Wi(h(Φ(Ψ))− di)2 + β, with β > 0. Therefore, the smoothed LS based PD framework

is achieved as:

|xi| ≤ 1, (7.40)

Fc(Φ(Ψ)) = JTLS(Φ(Ψ))Wx+ 2αMTLTL(Φ(Ψ)− Φ(Ψ0)) = 0, (7.41)

Cd(Φ(Ψ)) = (hi(Φ(Ψ))− di)− xi
√

(hi(Φ(Ψ))− di)2 + β = 0, β > 0, i = 1, . . . ,(7.42)

and the GN method is applied to solve for the primal variables (Ψ) and the dual variables

(x). To �nd the optimal solution of the above newton system, the derivatives of (7.42) and

(7.41) with respect to ∂Ψ and ∂x is calculated and the �rst order conditions are imposed.

From (7.41):
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∂

∂Ψ

[
JTLS(Φ(Ψ))Wx+ 2αMTLTL(Φ(Ψ)− Φ(Ψ0))

]
=

∂

∂Φ(Ψ)

[
JTLS(Φ(Ψ))Wx

] ∂

∂Ψ
[Φ(Ψ)] +

∂

∂Φ(Ψ)

[
2αMTLTL(Φ(Ψ)− Φ(Ψ0))

] ∂

∂Ψ
[Φ(Ψ)] = 2αMTLTLM, (7.43)

and,

∂

∂x

[
JTLS(Φ(Ψ))Wx+ 2αMTLTL(Φ(Ψ)− Φ(Ψ0))

]
= JTLS(Φ(Ψ))W, (7.44)

for (7.42):

∂

∂Ψ

[
(hi(Φ(Ψ))− di)− xi

√
(hi(Φ(Ψ))− di)2 + β

]
=

∂

∂Ψ
[(hi(Φ(Ψ))− di)]− xi

∂

∂Ψ

[√
(hi(Φ(Ψ))− di)2 + β

]
(7.45)

and also:
∂

∂Ψ
[(hi(Φ(Ψ))− di)] = JLS(Φ(Ψ)), (7.46)

∂

∂Ψ

[√
(hi(Φ(Ψ))− di)2 + β

]
= E−1FJLS(Φ(Ψ)), (7.47)

where fi = hi(Φ(Ψ))− di, F = diag(fi), X = diag(xi), ηi =
√
f 2
i + β, E = diag(ηi). and

thus:

∂

∂Ψ

[
(hi(Φ(Ψ))− di)− xi

√
(hi(Φ(Ψ))− di)2 + β

]
= (7.48)

JLS(Φ(Ψ))−XE−1FJLS(Φ(Ψ)) = (I −XE−1F )JLS(Φ(Ψ))
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where I is the identity matrix. The partial derivatives of (7.42) with respect to ∂x are:

∂

∂x

[
(hi(Φ(Ψ))− di)− xi

√
(hi(Φ(Ψ))− di)2 + β

]
= −E, (7.49)

if it is assumed that the Jacobian (JLS(Φ(Ψ))) is constant and does not depend on the

primal variables (Φ(Ψ))) at every iteration of the LS based PD framework, the Newton

system for solving the primal problem using the derived LSPDIPM can be written as

follows:

 2αMTLTLM JTLSW

(I −XE−1F )JLS −E


 δΨ

δx

 = −

 JTLSWx+ 2αMTLTL(Φ(Ψ)− Φ(Ψ0))

f − Ex


(7.50)

The dependency of JLS on Ψ is dropped in the derived LS based PD framework. The

derived set of equations in (7.50) are iteratively solved for the primal variables (δΨ) and

the dual variables (δx) using an iterative method such as Newton method. The updates

of the primal and dual variables can be separately written as follows:

δΨ = −[JTLSWE−1(I −XE−1F )JLS + 2αMTLTLM ]−1× (7.51a)

[JTLSWE−1f − 2αMTLTL(Φ(Ψ)− Φ(Ψ0))]

δx = E−1(f − Ex) + E−1(I −XE−1F )JLSδΨ; (7.51b)

a traditional line search procedure (Nocedal and Wright, 1999) can be applied to �nd an

appropriate step length λΨ resulting in the update Ψ(k+1) = Ψ(k) +λΨδΨ
(k), where k is the

iteration number. A scaling rule is applied to compute the updates for the dual variables

(x).
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7.4.2 LSPDIPM for for the primal problem with L2 norm based

data mismatch term and L1 norm based regularization term

In this subsection, the Newton system for the L2L1 problem using the derived LSPDIPM

is derived. In a similar manner explained in subsection 7.4.1, the LS based PD framework

for the L2L1 problem can be obtained as below:

Cp(Φ(Ψ)) = Lj(Φ(Ψ)− Φ(Ψ0))− yj
√

(Lj(Φ(Ψ)− Φ(Ψ0)2 + β = 0 ∀j (7.52)

|yj| ≤ 1 (7.53)

Fc(Φ(Ψ)) = 2 JTLS(Φ(Ψ))W TW (h(Φ(Ψ))− d) + αMTLTy = 0 (7.54)

where y is the dual variable, and gj = LjΦ(Ψ), G = diag(gj), Y = diag(yj), sj =√
(LjΦ(Ψ))2 + β, S = diag(sj). In a similar manner explained in subsection 7.4.1, the

Newton system can be written as:

 2 JTLSW
TWJLS αMTLT

(I − Y S−1G)LM −S


 δΨ

δy

 = −

 2 JTLSW
TW (h(Φ(Ψ))− d) + αMTLTy

g − Sy


(7.55)

the primal and dual updates are:

δΨ = −[2JTLSW
TWJLS + αMTLTS−1(I − Y S−1G)LM ]−1× (7.56a)

[2JTLSW
TW (h(Φ(Ψ))− d) + αMTLTS−1g]

δy = S−1(g − Sy) + S−1(I − Y S−1G)LMδΨ (7.56b)

a line search is used on the primal updates (δΨ), a step length procedure on the dual

updates (y), and the above equations are iterated to convergence.
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7.4.3 LSPDIPM for the primal problem with L1 norm based data

mismatch term and L1 norm based regularization term

In this subsection, the Newton system for the L1L1 problem using the derived LSPDIPM

is derived. In a similar manner explained in subsection 7.4.1, the smoothed LS based PD

framework for the L1L1 problem can be obtained as below:

Cd(Φ(Ψ)) = (hi(Φ(Ψ))− di)− xi
√

(hi(Φ(Ψ))− di)2 + β = 0, ∀i (7.57)

Cp(Φ(Ψ)) = Lj(Φ(Ψ)− Φ(Ψ)∗)− yj
√

(Lj(Φ(Ψ)− Φ(Ψ)∗))2 + β = 0, ∀j (7.58)

|xi| ≤ 1, |yj| ≤ 1 (7.59)

Fc(Φ(Ψ) = JTLS(Φ(Ψ))Wx+ αMTLTy = 0 (7.60)

where y and x are the dual variables. The Newton system to be iteratively solved for

the primal and dual variables is:
0 JTLSW αMTLT

(I −XE−1F )JLS −E 0

(I − Y S−1G)LM 0 −S



δΨ

δx

δy

 = −


JTLSWx+ αMTLTy

f − Ex

g − Sy

 (7.61)

As for the previous cases, updates for the primal variables and for the two sets of the dual

variables can be computed separately as follows:

δΨ = −[JTLSWE−1(I −XE−1F )JLS + αMTLTS−1(I − Y S−1G)LM ]−1× (7.62a)

[JTLSWE−1f + αMTLTS−1g]

δx = E−1(f − Ex) + E−1(I −XE−1F ) JLS δΨ (7.62b)

δy = S−1(g − Sy) + S−1(I − Y S−1G) LM δΨ (7.62c)
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The traditional line search is utilized to update on the primal variables and a step length

procedure is used to compute the updates of the two dual variables.

7.5 Simulated Data

In the simulation, the proposed LSPDIPM was applied to reconstruct images from the

simulated data of EIT, as a highly ill-posed and challenging inverse problem. Di�erence

EIT was simulated with 16 electrodes on a one electrode plane discretized using a circular

FEM. Figure 1 shows the 2D phantom applied to generate simulated data with 1024 mesh

elements. The phantom contains two sharp inclusions with the same conductivity located

in the upper and the lower part of the mesh. The background conductivity value is 1 S/m

and the inclusions have the conductivity of 0.9 S/m. The inverse problem used a mesh

density of 576 elements, which was di�erent to the mesh density of the forward problem

(1024 elements).

7.6 Results

This chapter shows the EIT reconstructed images of the proposed LSPDIPM when applied

to solve a primal problem with the L1 norms on both the data mismatch and the regular-

ization terms (L1L1 problem). The reason for choosing the L1L1 formulation is because

the L1 norms has been shown to o�er the highest robustness to spatial noise and outliers

(Borsic and Adler, 2012). The inverse solution is calculated using the proposed LSPDIPM

with β = 1×10−12. The stopping term for terminating the iterations depends on the value

of the primal dual gap computed in every iteration of the LSPDIPM. The single cycle of the

proposed LSPDIPM approach requires almost the same computational cost than the GN

approach or the PDIPM framework. The only di�erence is the number of iterations that
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(a) (b) (c)

Figure 7.1: EIT Image reconstruction using the proposed LSRM. (a) 2D phantom. (b)
The iterations of the LSPDIPM from iteration 1 (the upper corner in the left hand side)
to 20 (the lower corner in the right hand side). (c) The �nal reconstructed image.

each method requires to reach to convergence. According to the results, the GN approach

needs 3 to 5 iterations to reach to convergence, vs. 10 to 20 iterations for the PDIPM

and 10 to 20 iterations for the proposed LSPDIPM. Figure 7.1(a) shows the applied 2D

phantom with two inclusions with conductivity of 0.9 S/m. The reconstructed images for

every iteration of the LSPDIPM are shown in �gure 7.1(b). The �nal reconstructed image

using the LSPDIPM is demonstrated in �gure 7.1(c).

In the next chapter, I compare the the performance of the proposed LSPDIPM with

four competing regularization methods, GN with Tikhonov regularization term, GN with

NOSER algorithm, TV, and the PDIPM with L1 norms on the data mismatch and reg-

ularization terms. To account for the possible systematic and random errors occurring

in EIT data acquisition process, four possible measurement conditions are considered as

follows: 1) when there is no noise and no data outliers, 2) with the presence of additive

14 dB Gaussian noise, 3) with the presence of strong data outliers, and 4) when there are
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both the 14 dB Gaussian noise and data outliers. The proposed LSPDIPM is the winning

method which is not highly su�ered from the measurement noise and data outliers. The

reconstruction images of the LSPDIPM are sharp images with little image artifacts, where

the EIT simulated data is perturbed by synthetic additive of 14 dB Gaussian noise and

strong data outliers. The proposed LSPDIPM are also compared against the competing

methods over EIT human lung data. The LSPDIPM o�ers high contrast, low noise lung

image with highly well de�ned ventilated regions when comparing with the competing

methods.

Moreover, the robustness of the reconstruction methods against the measurement errors

are quantitatively evaluated in the next chapter and the proposed LSPDIPM shows the

highest robustness when compared with the competing methods.
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Chapter 8

Evaluation Framework to Compare the

Performance of the State of the Art Image

Reconstruction Algorithms with that of the

Proposed Image Reconstruction Methods

This chapter assesses qualitatively and quantitatively the performance of the proposed

reconstruction methods in this thesis when compared with four competing methods. The

robustness of the proposed reconstruction methods against noise and data outliers are

measured and compared with that of competing methods under the same measurement

conditions. The four competing methods are:

� Iterative GN with Tikhonov regularization term: which applies L2 norms on

both the data and image terms of the inverse problem,

� GN with Noser algorithm: which calculates the inverse solution faster when

compared with Tikhonov regularization method and applies the L2 norms on the

data and image terms,

� Total variation method: which is known to be e�ective in the reconstruction of
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sharp interfaces due to applying the L1 norm on the image term (the data term is

based on the L2 norm),

� L1 norm based inverse problem using the PDIPM framework: which is

referred to as the PDIPM method in this thesis and has been proposed by Borsic

and Adler (2012). The PDIPM applies the L1 norms on both the data and image

terms of the inverse problem. It has been shown that the PDIPM is bene�cial to

rebuild the sharp interfaces in the medium and also it is robust against noise and

data outliers due to applying the L1 norms (Borsic and Adler, 2012).

The quantitative comparisons between competing methods are accomplished by applying

�ve morphological features and two shape features to assess the accuracy of the recon-

structed images, obtained from EIT simulated data, when compared with the real pro�le

(ground truth). To evaluate the robustness of the reconstruction methods against the

potential uncertainties, such as measurement noise and data outliers, a robustness metric

(noise measurement) is considered which measures the extent to which a random input

measurement noise is ampli�ed in the reconstructed image (output).

8.1 Simulated data

The comparison between the reconstruction methods was accomplished over EIT simulated

data. The di�erence EIT system is simulated with 16 electrodes on one electrode plane

discretized using a circular FEM. Figure 8.1 shows the 2D phantom applied to generate EIT

simulated data with 1024 mesh elements. The phantom contains two sharp inclusions with

the same conductivity located in the upper and the lower part of the mesh. Two objects

with di�erent shapes (big object and narrow object) are selected in order to challenge

the performance of the applied image reconstruction methods in reconstructing a correct
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shape. The applied phantom is already implemented and used in EIDORS, which provides

free software algorithms for tomographic imaging and di�usion based optical tomography

(Adler and Lionheart, 2005). The narrower the object, the harder the reconstruction will

be. This is because the traditional image reconstruction methods fail to reconstruct the

shape of a high contrast inclusion and usually create a blubby shape. When compared with

a big circular object, a narrow object challenges more an image reconstruction method in

producing an accurate shape representation of the object. The conductivity value of the

homogeneous background is 1 S
m

and the inclusions have the conductivity of 0.5 S
m
. The

inverse problem used the mesh density of 576 elements, which was di�erent than the mesh

density of the forward problem (1024 elements). For every reconstruction method, the

optimum hyperparameter is selected using the L-curve method. For the four competing

methods, a post-processing is also accomplished to obtain an ROI, which de�nes the main

inclusions in the medium.

Figure 8.1: 2D circular phantom used to generate EIT simulated data.

8.2 Quantitative comparison results

To evaluate the accuracy of the reconstructed images obtained from the competing recon-

struction methods as well as the proposed ones, a quantitative evaluation using morpholog-
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ical and shape features is accomplished. The proposed LSRMs automatically reconstructs

the main inclusions (ROIs) in the medium with high contrasts. Therefore, there is no

need to a post processing for the proposed LSRMs in order to produce the ROI. For the

four competing methods, a binary image to determine the ROI in the image is generated.

The ROI is de�ned to contain those pixels which have an amplitude more or equal to

10% of either the highest amplitude in the image containing a highly conductive inclusion

when compared with the background conductivity, or the lowest amplitude in the image

including an inclusion with lower conductivity than the background. The ROI is de�ned

as follows:

ROI =


{(x, y)|I(x, y) ≥ 10

100
Imax}, High conductive inclusion

{(x, y)|I(x, y) ≤ 10
100

Imin}, Low conductive inclusion

, (8.1)

where I(x, y) is the pixel amplitude at coordination (x, y), Imax is the maximum amplitude

in the image, and Imin is the minimum amplitude in the image. The following �ve mor-

phological features are considered to evaluate the accuracy of the reconstructed images:

Area (A): which is a scalar indicating the number of the pixels in the ROI.

Perimeter (P): which is a scalar calculating the distance around the border of the ROI.

Axis Ratio (AR): which is a scalar computed as follows:

AR =
LMajor

LMinor

, (8.2)

where LMajor is a scalar and calculated as the length of the major axis of an ellipse that

possesses the same normalized second central moments as the ROI, LMinor is a scalar and

measured as the length of the minor axis of an ellipse that has the same normalized second

central moment as the ROI.

Eccentricity (ECC): which is a scalar showing the extend to which an ROI deviates from
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being circular. The eccentricity is de�ned as:

ECC =
D

L
, (8.3)

where D is the distance between the focus points (foci) of an ellipse enclosing the ROI,

and L is the ellipse major axis length.

Bounding box (BB): is the smallest box enclosing the ROI. The bounding box is formed

as:

BB = [x, y, w, h], (8.4)

where x and y are the coordination of the upper-left corner of the bounding box and the

w and h are the width and the height of the bounding box.

The two shape features are as follows:

Compactness(CF): which is a normalized shape feature calculated as:

CF = 1− 4πA

P 2
, (8.5)

where P and A are the perimeter and the area of the ROI, respectively.

Overlap (OV): which is a scalar identifying the overlap between two ROIs as follows:

OV =
|A ∩B|
|A ∪B|

, (8.6)

where A is the ground truth, and B is the ROI obtained by the reconstruction algorithm.

OV = 1 when A and B match perfectly.

Table 8.1 shows the �ve morphological features (A,P,AR,ECC,BB) as well as the

two shape features (CF,OV ) calculated for the four competing methods (GN, Noser,

TV, and PDIPM) and the proposed LSRMs (LSPDIPML2−L2 and LSPDIPML1−L1).The

LSPDIPML2−L2 applies the L2 norms on the data and image terms of the inverse prob-
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Table 8.1: Quantitative comparison between the reconstruction methods using statistical
metrics

Reconstruction
Inclusion

Morphological Features Shape Features
Algorithms Area Perimeter Axis-Ratio Eccentricity Bounding-Box Compactness Overlap

Ground Truth
Big object 734 113 1.889 0.848 [10.5,32.5,44,22] 0.2747 1

Narrow object 200 82.4 3.571 0.960 [14.5,10.5,36,11] 0.6301 1

Tikhonov
Big object 925 142 1.757 0.822 [8.5,28.5,48,27] 0.4262 0.7781

Narrow object 421 111 2.415 0.910 [14.5,7.5,36,17] 0.5654 0.4681

Noser
Big object 964 144 1.692 0.807 [9.5,28.5,46,28] 0.4148 0.7578

Narrow object 432 91.6 2.291 0.9 [14.5,8.5,36,17] 0.3530 0.4630

TV
Big object 682 104 1.859 0.843 [12.5,32.5,40,21] 0.2067 0.9292

Narrow object 370 84.3 2.66 0.927 [14.5,8.5,36,14] 0.3455 0.5405

PDIPM
Big object 780 121 1.709 0.811 [9.5,32.5,46,25] 0.3307 0.8878

Narrow object 481 96.2 2.099 0.879 [14.5,7.5,36,18] 0.3466 0.4158

LSPDIPML2L2
Big object 676 137 1.854 0.843 [11.5,29.5,42,24] 0.55 0.889

Narrow object 188 78.4 3.604 0.961 [15.5,11.5,34,10] 0.6159 0.8131

LSPDIPML1L1
Big object 602 98.8 1.92 0.854 [12.5,32.5,39,20] 0.2245 0.8202

Narrow object 321 82.4 2.701 0.929 [14.5,11.5,35,14] 0.4063 0.4158

lem which was discussed in chapter 5 and the LSPDIPML1−L1 utilizes the L1 norms on

the inverse problem terms, discussed in chapter 7. The PDIPM is a special state of the

proposed GPDIPM, discussed in chapter 6, where the weighting parameters are selected

as [ζ, η]=[1, 1]. For every feature in table 8.1, three winning methods are highlighted in

light gray, medium gray, and dark gray according to their performance. The method which

o�ers the closest feature quantity to the feature value of the ground truth is selected as

the best performing method. The highest score of 3 is assigned to the method and its cell

in table8.1 is shaded in light gray. The cells for the second best performing method is

shaded in medium gray and a score of 2 is assigned to the method. Finally, the cell for the

third best performing method is colored in dark gray and a score of 1 is assigned to the

method. A similar procedure is applied to all seven features in table 8.1 and the scores are

stored to be plotted for the performance comparison. In the case of bounding-box feature,

the method with the vector which has the smallest Euclidean distance to the vector of the

ground truth is selected as the winning method. Figure 8.2 represents the scores for the
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top three best performing methods in the reconstruction of the big object in the medium.

The LS and TV with an average score of 2.14 , averaged over the seven features, o�er the

best performance in the reconstruction of the big object. The PDIPM is the second best

performing method with an average score of 1.71. For the big object reconstruction, the

GN with Tikhonov regularization method and the GN with the Noser algorithm are not

as competitive as the LS, TV, and PDIPM and therefore have not been plotted.
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Figure 8.2: Top three best performing reconstruction methods in the reconstruction of the
big object in the medium.The higher the score, the higher the reconstruction performance
will be. The horizontal axes is the seven features listed in table 8.1

.

Figure 8.3 shows the top three methods (LS, TV, and Tikhonov) which performs well

in the reconstruction of the narrow object in the medium. The LS is the winning method

with an average score of 3, averaged over the seven features. The LS is always the winning

method in the reconstruction of the narrow object and o�ers the closest feature values to

the feature quantities of the ground truth. Speci�cally, the LSPDIPML2−L2 outperforms

the competing methods with a feature vector of [188, 78.4, 3.604, 0.961, [15.5, 11.5, 34, 10],

0.6159, 0.8131] which is close to the feature vector of the ground truth [200, 82.4, 3.571,

0.960, [14.5, 10.5, 36, 11], 0.6301, 1]. The TV is the second best performing method in the
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reconstruction of the narrow object with an average score of 1.42. The GN with Tikhonov

regularization term is the third best performing method with an average score of 0.42. In

total, the proposed LSRM o�ers the highest overall average accuracy score of 2.57 (out of

3), averaged over the achieved accuracy scores in the reconstruction of the big and narrow

objects. The TV is the second best performing method with an overall average accuracy

score of 1.78. In �gure 8.2 and �gure 8.3, the LSRM has the highest score of 3 for the shape

feature CF . The highest score for the shape features verify that the LSRMs preserve the

shape of the inclusions. In the following section, the qualitative analysis again con�rms

that the LSRMs provides a better shape representation of the inclusions, which is indeed

more similar to the actual pro�le (ground truth) in the medium, when compared with the

competing methods, see �gure 8.4.
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Figure 8.3: Top three best performing reconstruction methods in the reconstruction of the
narrow object in the medium.The higher the score, the higher the reconstruction perfor-
mance will be. The horizontal axes is the seven features listed in table 8.1

.
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8.3 Qualitative comparison results

Figure 8.4 compares the performance of the developed LS-PDIPMs with the four state of

the art regularization methods. The ROIs for the four competing methods are achieved

according to the formulation in (8.1). To account for the possible systematic and random

errors occurring in EIT data acquisition process, four possible measurement conditions is

considered as follows:

measurement condition#1: which is when there is no measurement noise and no data

outliers (�gure 8.4(a)),

measurement condition#2: which is when an additional 14 dB zero-mean Gaussian

noise is added to EIT simulated data (�gure 8.4(b)),

measurement condition#3: which is when there is loss in EIT data due to the presence

of strong data outliers (�gure 8.4(c)),

measurement condition#4: which is when there are both the 14 dB zero-mean Gaussian

noise and data outliers (�gure 8.4(d)).

The quantitative performance of the six reconstruction methods when there is no noise

and data outliers, the �rst row of �gure 8.4, is previously compared in table 8.1. The

visual analysis of the reconstructed images from the six methods, presented in the �rst

row of �gure 8.4, indicates that the methods o�er an acceptable reconstruction results

with two inclusions in the upper and lower section of the medium, which is similar to the

actual pro�le in �gure 8.1. However when compared with other competing methods, the

LSPDIPML2−L2 method visually provides a better shape representation of the inclusion,

especially for the narrow object such that the reconstructed pro�le is highly similar to the

actual pro�le. In the presence of measurement conditions#3, 4, GN methods fail and do not

provide understandable reconstruction results. TV is slightly robust to the measurement

condition#2 (�gure 8.4(b)); however, it fails in the presence of data outliers (�gure 8.4(c)).
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PDIPM shows robust results when either noise or data outliers are present (�gure 8.4(b)

and (c)); however, it fails when the EIT simulated data is perturbed with 14 dB Gaussian

noise and strong data outliers (�gure 8.4(d)). The proposed LSPDIPML2−L2 is sensitive

to the additional noise and data outliers due to the application of the L2 norms in its

implementation. The proposed LSPDIPML1−L1 is the winning method which applies the

L1 norms on the data and image terms of the inverse problem and therefore does not highly

su�er from the measurement noise and data outliers (�gure 8.4(d)). The reconstruction

images of the LSPDIPML1−L1 (the last column in �gure 8.4) are sharp images with little

image artifacts, where the EIT simulated data is perturbed by synthetic additive of 14

dB Gaussian noise and strong data outliers. The proposed LSPDIPM was also compared

against the competing methods over EIT human lung data (�gure 8.4 (e)). The LSPDIPM

o�ers a high contrast, low noise lung image with well de�ned ventilated regions when

comparing with the competing methods. The PDIPM with the L1 norms and the TV

show high contrast images; however, fail to properly de�ne the shape of the ventilation

and o�ers a uniform air distribution for the upper and the lower parts of the lungs, which are

normally not ventilated uniformly in tidal volume. The LSPDIPML1−L1 show a plausible

representation of the lung ventilation in the tidal volume so that the upper and lower part

of the lungs are not uniformly ventilated.

8.4 Method robustness against potential uncertainties

In this section, the robustness of the four competing reconstruction methods and the two

proposed reconstruction methods are evaluated against potential uncertainties, such as

measurement noise and data outliers. The measurement conditions #2, 3, and 4 are

considered and the robustness of each method is assessed against the applied measurement

condition. The noise measurement (NM) is considered as the robustness metric to measure
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the robustness against the possible uncertainties. The NM determines the extend to which

a reconstructed image (output) is a�ected by a random measurement noise (n), occurring

in the input, and is de�ned as follows:

NM =
area(I∆)

‖n‖
; I∆ = xor(ROIt, ROIn), (8.7)

where area(I∆) is a scalar identifying the number of the pixels in the di�erence image I∆,

the ROIt is the ROI achieved from the reconstructed image when there is no noise and

data outliers, ROIn is the ROI obtained from the reconstructed image in the presence of

either the noise, data outliers or the both. The NM can be calculated in dB as follows:

NMB = 10 log(NM), (8.8)

Table 8.2 shows the quantities of the two robustness metrics (NM, NMB) for the four

competing methods as well as the proposed reconstruction methods (LSPDIPML2−L2 and

LSPDIPML1−L1) under three di�erent measurement conditions ( measurement condition#

2,3, and 4). In most of the measurement conditions, the proposed LSRMs and the PDIPM

shows the highest robustness against the uncertainties with lower quantities for the NM and

the NMB when compared with other competing methods. In table 8.2, the two successful

methods with high robustness against the uncertainties are scored and shaded. For every

measurement condition, the cells of the method which possesses the lowest values for the

NM and the NMB are colored in light gray and a score of 3 is assigned to the method. The

cells of the second method which is successful in dealing with the uncertainties are colored in

medium gray and a score of 2 is assigned to the method. In all the measurement conditions,

the LSPDIPML1−L1 o�ers the lowest values for the NM and the NMB and is considered as

the winning method with an average robustness score of 3, averaged over three di�erent

measurement conditions. The PDIPM with an average robustness score of 1.33 is the second
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Table 8.2: Robustness measurement for di�erent image reconstruction methods

Measurement Reconstruction Robustness Metrics
Conditions Algorithms NM NMB (dB)

Additional Noise
Tikhonov 3551 81.7
Noser 2219 77.04
TV 4006 82.95
PDIPM 2718 79.07
LSPDIPML2L2 2408 77.86
LSPDIPML1L1 1398 72.42

Data Outliers
Tikhonov 1020 69.2
Noser 882 67.8
TV 1133 70.3
PDIPM 112 47.1
LSPDIPML2L2 919 68.2
LSPDIPML1L1 79 43.6

Noise and Outliers
Tikhonov 973 68.8
Noser 862 67.6
TV 874 67.7
PDIPM 414 60.2
LSPDIPML2L2 929 68.3
LSPDIPML1L1 307 57.2

successful method with a high robustness against the applied uncertainties. In table 8.2,

the objective is to measure the robustness of di�erent image reconstruction methods against

the same measurement condition. Each measurement condition is independently generated,

which means that each sample of the noise is di�erent from one measurement condition

to another. Therefore, the values for the NMB should be compared between di�erent

image reconstruction methods which have the same measurement condition. The visual

analysis of the reconstructed images in �gure 8.4 veri�es that the LSPDIPML1−L1 (the last

column in �gure 8.4) always reconstructs the two inclusions under di�erent measurement

conditions. After the LSPDIPML1−L1, it is the PDIPM ( the fourth column in �gure 8.4)

which o�ers high robustness against the measurement errors. The reason for the high
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robustness against the uncertainties for the LSPDIPML1−L1 and the PDIPM is because

they apply the sum of absolutes (or L1 norms) on the data and image term of the inverse

problem.

8.5 Discussion

This chapter proposes an evaluation framework to compare the performance of the image

reconstruction methods with that of the proposed image reconstruction methods in this

thesis. The proposed evaluation frameworks requires an ROI to be de�ned over the image

plane for the four competing methods. The ROI acts similar to a low pass �lter and helps

remove the possible image artifacts due to either inherent speci�cations of the reconstruc-

tion algorithm or any possible error in the selection of the optimum hyperparameter. The

ROI calculation is considered as a post-processing procedure which indeed acts in favor of

the four competing reconstruction methods in the reconstruction of sharper images with

well de�ned boundaries. For instance, the post-processing of the four competing methods

removes the ringing e�ects (the regions surrounding the main inclusions including pixel

amplitudes with the opposite sign to those of the main inclusions), and the small image

artifacts close to the medium boundary where the surface electrodes are placed.

Two low conductive inclusions with di�erent shapes (one big inclusion, one narrow

inclusion) were simulated in a 2D circular phantom and the morphological and shape fea-

tures are applied to determine the reconstruction accuracy of the competing reconstruction

methods. Due to taking advantage of the LS technique in the reconstruction of the in-

clusion, the proposed LSRMs precisely reconstruct the shape of the narrow inclusion (e.g.

the LSPDIPML2−L2 in the �rst row of �gure 8.4) and achieve the highest score of 3 in

�gure 8.3, while the competing methods mostly over-segment the narrow inclusion. The

accuracy measurements for the proposed EPIRMs are achieved for a coarse mesh (578
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elements). The accuracy values increases if a �ne mesh is applied; however, in the cost of

higher computational time.
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Figure 8.4: Qualitative comparison between the competing methods and the proposed level
set based reconstruction methods.
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Chapter 9

Conclusion and Future Work

This thesis aims at the improvement of image reconstruction algorithms in terms of the

image quality and robustness against potential uncertainties, such as measurement noise

and data outliers, by proposing three novel variants of the EPIRMs. This thesis shows

that the proposed EPIRMs can be applied to practical inverse problems, such as clinical

EIT data (chapter 5), to produce plausible images. The results suggest that such edge

preserving approaches help address the blurring of edges inherent in regularized algorithms.

The proposed EPIRMs show promising results to help spur interest in using novel edge-

preserving algorithms to practical inverse problem applications.

This thesis proposes a generalized inverse problem solving framework (GPDIPM), dis-

cussed in chapter 6, which o�ers a general primal problem including more constraints

over the inverse problem terms through introducing weighting parameters. The proposed

GPDIPM can be helpful to understand the e�ect of di�erent combinations of the L1 and

L2 norms on the reconstructed image. The clinical results show that the GPDIPM is

useful to determine certain spatial inhomogeneities in lung function, which may occur in

ALI patients. This thesis shows the mathematical procedure to derive the four standard

combinations of the L1 and L2 norms (L2L2, L1L2,L2L1, and L1L1 primal problems).

The derivation of the LSRM using the proposed GPDIPM is also discussed in chapter 7.
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The inverse solutions for the four standard primal problems are also calculated using the

proposed LSPDIPM.

9.1 Conclusions

The aims of this thesis are achieved through the realization of the following four objectives:

� A level set based reconstruction method using a di�erence solver.

In chapter 5, this thesis proposes the LSRM in di�erence mode for clinical EIT data of

patient ventilation over the in�ation manouevre. The �rst clinical results of applying

the LSRM to monitor the air distribution inside the lungs using EIT are investigated.

The objective is to measure the shape of the lung ventilation during an incremental

PEEP trial in the situation that there is no natural a priori information about the

shape of the lung ventilation. The assumption of having a priori shape information

about the shape and location of the lungs may not be possible in the case that the

a priori information can not be achieved using an X-ray (CT) image, due to the

vulnerability of a patient to the X-ray radiation.

In the proposed di�erence mode LSRM, the inverse solution of Gauss-Newton formula

updates the sensitivity matrix and consequently the LSF with every iteration. In the

�rst iteration, the Ψ is chosen as initial guess. The initial guess is an arbitrary

function, for example the de�nition of a circle. The updated LSF converges to a

conductivity map that minimizes the error between measured and simulated data.

The minimization of the error function �nally leads to the division of the medium

into two regions: the background and the foreground. The di�erence imaging LSRM

depicts the capability of �nding the big conductivity changes at the interface between

lung and the background (�gure 5.3 on page 77). A narrow band level set method is
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followed up, such as the value of the level set function is thresholded and it is zero

at the interface between two materials. The advantage of the narrow band level set

method is that it allows the shape evolution without the need to re-formulate the

geometrical boundaries of the inclusions. The mapping function is used to discourage

the reconstruction of the disconnected contours located at di�erent levels. The update

sensitivity matrix has been calculated on a narrow band region, involving the elements

sharing an edge with the interface between foreground and background (see �gure 5.2

on page 75). The narrow band region causes the LSRM runs faster when comparing

with the LSRM calculating the sensitivity matrix over the whole elements for every

iteration.

To achieve a more accurate interface where there are more than two highly di�erent

conductivities inside the medium, such as lungs, heart, and the peripheral tissues, it

is suggested to apply two di�erent LSFs in de�ning the medium (Dorn and Lesselier,

2009; DeCezaro et al., 2009).

The results represent that the di�erence formulation of LSRM is suitable to be applied

for clinical EIT data of patient ventilation over lung in�ation(�gure 5.3 on page 77,

�gure 5.4 on page 78, �gure 5.5 on page 80). Comparing with the VBRM, the LSRM

shows high contrast lung images corresponding to the physiologically known shape of

lung air distribution in these patients (�gure 5.4 on page 78, third row, and �gure 5.5

on page 80, third row).The NSEC curves (�gure 5.6 on page 81) are similar in shape in

the LSRM to the VBRM, but show a slower start at the low lung in�ation, re�ecting

perhaps some non-linearity for small conductivity changes.

� A generalized primal-dual interior point method.

In chapter 6, this thesis derives a generalized inverse problem framework which mixes

the L1 norms and the L2 norms on both the data and the regularization terms of an
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inverse problem. To reach to the maximum generality, the norms are weighted to en-

close the maximum number of possible categories of inverse problems. The classical

inverse problems such as L2L2, L1L2, L2L1, and L1L1 problems are a sub-domain of

the proposed generalized inverse problem where the weighting factors are selected ac-

cordingly. The generalized solution of the proposed inverse problem is derived using

the PDIPM framework. EIT is selected as an instance of ill-posed non-linear inverse

problem. The chapter discusses the e�ectiveness of di�erent combination of weighted

norms (L1 and L2 norms) under two di�erent measurement conditions on EIT sim-

ulated data (added noise and outliers). Moreover, the performance of the proposed

GPDIPM is assessed on clinical data achieved from the EIT system. This chapter

shows that the achieved clinical results of the proposed GPDIPM are plausible and

also found that the assignment of larger values to the weighting parameters (ζ and

η) is bene�cial to produce sharp and less noisy images in clinical application of EIT

for lung imaging.

� A level set based primal-dual interior point method.

In chapter 7, this thesis derives a novel level set based regularization method, called

LSPDIPM, that allows any possible combination of norms (L1 norm or L2 norm) on

the data term and the regularization term. The proposed LSPDIPM incorporates the

bene�t of applying level set technique to reconstruct sharp images as well as using

the L1 norms in the formulation of inverse problems. The L1 norm in inverse problem

is bene�cial because it provides high robustness against outliers and spatial noise.

However, the L1 norm is not di�erentiable everywhere. In the derived LSPDIPM, the

non-di�erentiability of L1 norm based term in the primal problems has been resolved

through the centering condition.

Moreover, the numerical solution of three standard inverse problems (L1L2 problem,
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L2L1 problem, and L1L1 problem) are calculated using the proposed LSPDIPM

framework.

The proposed LSPDIPM can be applied to solve inverse problems raised in many

sciences. This thesis shows the implementation of the proposed LSPDIPM using

Electrical Impedance Tomography as a test case. Electrical Impedance Tomography

is an ill-posed inverse problem used to image the spatial distribution of electrical con-

ductivity within a volume. I believe that the proposed LSPDIPM can be successfully

applied in a variety of inverse problem applications.

� A solid evaluation framework to compare the performance of the image

reconstruction methods.

Finally in chapter 8, this thesis proposes a solid evaluation framework to qualita-

tively and quantitatively compare the performance of the proposed edge-preserving

image reconstruction algorithms, discussed in chapters 5, 6, and 7, with that of four

competing methods. The four competing methods considered for the comparison are

as follows: 1) GN with Tikhonov regularization term, 2) GN with Noser algorithm,

3) Total variation method, and 4) The PDIPM. The proposed edge preserving image

reconstruction methods o�er the highest accuracy in the reconstruction of two low

conductive inclusions with an overall average accuracy score of 2.57 (out of 3), vs.

1.78 for TV as the second best performing method. The robustness of the methods

against potential uncertainties, such as measurement noise and data outliers, was

assessed using two robustness metrics (noise factor, and noise �gure). The results

represent that the proposed edge preserving image reconstruction method with the

L1 norms on the image and data terms of the inverse problem o�ers the highest

robustness against measurement errors with an average robustness score of 3 (out of

3), averaged over three di�erent measurement conditions. The PDIPM with the L1
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norms on the data and image terms o�ers an average robustness score of 1.33 and

is the second robust method in dealing with the uncertainties. The qualitative com-

parison in �gure 8.4 on page 135 also con�rms the achieved quantitative robustness

results. A visual analysis over the last column of �gure 8.4 on page 135 veri�es that

the reconstructed inclusions form the LSPDIPM with the L1 norms on the data and

image terms of the inverse problem are more similar to the actual inclusions (ground

truth) in the presence of both zero-mean Gaussian noise and data outliers, when

compared with the reconstructed inclusions from other competing methods.

The computational complexity of the proposed EPIRMs can be compared with that

of the traditional GN method in terms of the number of the iterations required to

reach to convergence. According to the experimental results, the proposed EPIRMs

need 15 to 20 iterations to reach to convergence, vs. 3 to 5 iterations for the non-linear

GN method.

9.2 Future work

This thesis proposes three novel variants of the EPIRMs in chapters 5, 6, and 7. The idea

of applying the LS technique to solve an inverse problem has been studied for a decade

now. This thesis applies the LS technique to calculate the inverse solution of a non linear

inverse problem containing di�erent combinations of the L1 and L2 norms, applied inde-

pendently over the inverse problem terms. In chapters 5, and 7, the LS parameterizations

are introduced into a non linear inverse problem to reconstruct sharp interfaces. During

the contextual development of this thesis, several interesting research areas to discover the

bene�ts of applying the LS technique to an inverse problem have been concerned. The fol-

lowing subjects are most signi�cant areas of future work that can be considered bene�cial

in improving the capabilities and integrity of the proposed EPIRMs.
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� Deformable model regularization method.

In the literature, there are several studies which focus on the undesired e�ect of the

electrode displacements in the EIT reconstructed image. To resolve the e�ect of the

electrode displacements, the traditional regularization method is reformulated in or-

der to calculate the electrode displacements as part of the inverse solution (Lionheart,

1998; Kiber et al., 1990; Kolehmainen et al., 2005). The electrode displacements

are compensated for in the reconstruction methods proposed by Blott et al. (1998);

Kolehmainen et al. (2005). An iterative inverse problem to calculate the deformable

boundary shape is investigated in the past by Blott et al. (1998). However due to the

boundary movement, it is not only the electrodes which change their coordinations

but the nodes inside the mesh too. Therefore, it is essential for the reconstruction al-

gorithm to take into account the calculation of the following three model parameters

from the measured data: 1) The conductivity image, 2) The electrode displacements,

and 3) The node displacements inside the mesh. The formulation of such recon-

struction method is proposed as an extended research work for this thesis. In the

following, the idea of calculating the three aforementioned model parameters in the

framework of a non-linear inverse problem is brie�y presented.

The proposed deformable model regularization method is described for an EIT sys-

tem which is considered as a non-linear inverse problem. A model of a conductive

medium can be obtained through applying the FEM to divide the medium into Ne

elements and Nn nodes. The electrodes are shown as nodes at the boundary of

the mesh and the number of the electrodes is determined by NE. Di�erence EIT

is considered due to its bene�t in reconstructing the conductivity changes in the

tissues in medical applications, which is prone to high level of measurement errors

such as electrode movements and shape deformation. The di�erence data vector at
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frame t1 is calculated as: Vt1 = vt2 − vt1, where vt1 and vt2 are vectors of di�erential

voltage measurements, with a dimension of NE × 1 at frame t1 and t2, respectively.

The conductivity changes vector is written as: ∆σt1 = σt2 − σt1, where σt1 and σt2

are the conductivity vectors, with a dimension of Ne × 1, at frame t1 and t2, re-

spectively. Shape deformation causes two displacements in the model: 1) Electrode

displacements, 2) Node displacement. An electrode displacement vector de and a

node displacement vector dn for the described model between frame t1 and t2 can be

written as:

dke = (xkt2 − x
k
t1

)̂i + (ykt2 − y
k
t1

)̂j + (zkt2 − z
k
t1

)k̂; k = 1, . . . , NE,

dln = (xlt2 − x
l
t1

)̂i + (ylt2 − y
l
t1

)̂j + (zlt2 − z
l
t1

)k̂; l = 1, . . . , Ne, (9.1)

where (xkt1 , y
k
t1
, zkt1), and (xkt2 , y

k
t2
, zkt2) are the node coordinates of the electrode num-

bered k at the boundary of the medium at frames t1 and t2, respectively, (xlt1 , y
l
t1
, zlt1),

and (xlt2 , y
l
t2
, zlt2) are the node coordinates of the element numbered l inside the

medium at frames t1 and t2, respectively.

A forward deformable model can be written as follows:

V = h(m), (9.2)

where V is the di�erence data vector, h is the forward operator based on the FEM,

m is the system parameters which includes: 1) The conductivity changes image σ,

2) Node displacement dn, and 3) Electrode displacement de,. Matrix m is assembled

as three sub-matrices as follows:

m = [σdnde]
T , (9.3)
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where m is a single column vector with the length of (Nk + NDNn + NDNE), ND is

the dimension of the FEM and is 2 for 2D mesh and 3 for 3D mesh. The objective is

to reconstruct an image, modeled as m, which represents the conductivity changes,

node displacements, and the electrode displacements using an inverse calculation

framework. In the following the inverse calculation for the forward deformable model

in (9.2) is described.

An inverse solution for the forward deformable model can be written using the reg-

ularized MAP method (Polydorides, 2002):

mMAP = (JT
∑−1

n
J +

∑−1

m
)−1(JT

∑−1

n
V +

∑−1

m
mprior), (9.4)

where J is a Jacobian matrix,
∑−1

m is the a priori covariance estimates of the image

m,
∑−1

n is the a priori covariance estimates of measurement noise n, and mprior

is the a priori bias for the inverse solution which is zero in the case there is no a

priori information, which is the assumption in the rest of the inverse calculation

procedure. Similar to the image matrix, the Jacobian matrix J is constituted as

three sub-matrices as follows:

J = [JσJNJE], (9.5)

where Jσ is a sensitivity matrix to the conductivity changes with the dimension

of [NM × Ne], JN is a sensitivity matrix to the node displacements with the size

[NM × Nn], and JE is a sensitivity matrix to the electrode displacements with the
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size of [NM ×NE]. The Jacobian sub-matrices Jσ, JN , and JE can be written as:

Jσ =


∂V1
∂σ1

. . . ∂V1
∂σNe

. . . . . . . . .

∂VNM
∂σ1

. . .
∂VNM
∂σNe

 JN =


∂V1
∂N1

. . . ∂V1
∂NNDNn

. . . . . . . . .

∂VNM
∂N1

. . .
∂VNM

∂NNDNn

 , JE =


∂V1
∂E1

. . . ∂V1
∂ENDNE

. . . . . . . . .

∂VNM
∂E1

. . .
∂VNM

∂ENDNE


(9.6)

Each Jacobian sub-matrix can be calculated using the perturbation method. For

example, JN is the ratio of the change in the measured data to a very small displace-

ment of nodes along dimension ND. The Jacobian matrix J can be calculated using

the forward model with a small perturbation m→ m+ ∆m as follows:

J =
h(m+ ∆m)

∆m
, (9.7)

where the single column vectors m = [σdnde], and ∆m = [∆σ∆dn∆de]. An assump-

tion of an additive zero-mean Gaussian noise with the following statistical properties:

En = 0, and EnnT =
∑

n = w2
nI, where wn is a scaling factor of the noise amplitude

and I is an identity matrix, can be considered. The a priori covariance estimates

of the image
∑

m = Em2. A regularization matrix R =
∑−1

m with the size of

[Ne+NDNn+NDNE×Ne+NDNn+NDNE] and a weighting matrix W =
∑−1

n with

the size of [NM ×NM ] are de�ned. In the case that the conductivity elements, node

displacement components, and electrode displacement components are uncorrelated,

the cross-correlation between σ, dn, and de is zero and the regularization matrix can

be written as follows:

R =


R∗σ 0 0

0 R∗N 0

0 0 R∗E

 (9.8)

where R∗σ is the covariance sub-matrix with the size of [Ne×Ne] for the conductivity

145



change image, R∗N is the covariance sub-matrix with the size of [NDNn × NDNn]

for the node displacements, and R∗E is the covariance sub-matrix with the size of

[NDNE ×NDNE] for the electrode displacements. The covariance of the image m is

written as: ∑−1

m
= R =

1

w2
σ

Rσ +
1

w2
N

RN +
1

w2
E

RE, (9.9)

where wσ, wN , and wE are the a priori amplitude of conductivity change image, node

displacement, and electrode displacement, respectively, and:

Rσ =


R∗σ 0 0

0 0 0

0 0 0

 , RN =


0 0 0

0 R∗N 0

0 0 0

 , Rσ =


Rσ 0 0

0 0 0

0 0 R∗E

 , (9.10)

Adler and Guardo (1996) proposes a discrete Laplacian �lter, which acts as a spatial

high pass �lter, for R∗σ such that the diagonal elements of the matrix R∗σ are set to

ND + 1, the o�-diagonal, adjacent elements with ND shared nodes are set to -1 , and

other elements are set to zero. The same idea can be applied for R∗N , and R
∗
E. In

(Soleimani et al., 2006b), the inter-element displacement correlation are assumed to

be non-zero and therefore the electrode displacement covariance matrix is constituted

as follows: The diagonal elements in R∗E are set to 2.1, the o�-diagonal elements for

adjacent electrodes are set to -1, and are otherwise set to 0. The node displacement

covariance matrix R∗N can be formed as follows: The diagonal elements in R∗N are set

to 2.1, the o�-diagonal elements for adjacent nodes are set to -1, and are otherwise

set to 0. By introducing the covariance matrices into (9.4), the regularized MAP

solution for the deformable model can be obtained as:

mMAP = (JT
1

w2
n

IJ +
1

w2
σ

Rσ +
1

w2
N

RN +
1

w2
E

RE)−1(JT
1

w2
n

IV +
1

w2
n

Imprior), (9.11)
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Assuming that there is no a priori information to bias the solution, i.e. mprior = 0,

the inverse solution is as:

mMAP = (JT
1

w2
n

IJ +
1

w2
σ

Rσ +
1

w2
N

RN +
1

w2
E

RE)−1JT
1

w2
n

IV

= (JTJ +
w2
n

w2
σ

Rσ +
w2
n

w2
N

RN +
w2
n

w2
E

RE)−1JTV

= (JTJ +
w2
n

w2
σ

(Rσ +
w2
σ

w2
N

RN +
w2
σ

w2
E

RE))−1JTV, (9.12)

we de�ne:

λ =
wn
wσ
, η =

wσ
wN

, ζ =
wσ
wE

, (9.13)

where λ is Tikhonov regularization factor, or hyperparameter, η is the node displace-

ment regularization factor, ζ is the electrode displacement regularization factor. By

replacing the regularization factors into (9.12), the inverse solution of the proposed

deformable model regularization method is achieved as:

mMAP = (JTJ + λ2(Rσ + η2RN + ζ2RE))−1JTV

= (JTJ + λ2Rα)−1JTV, (9.14)
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where Rα = Rσ + η2RN + ζ2RE is the regularization matrix and can be written as:

[Rα](i,j) =



ND + 1 i = j & i ≤ Ne

−1 elements i,j are adjacent & i ≤ Ne

2.1η2 i = j & i > Ne

−η2 nodes i, j are adjacent & i > Ne

2.1ζ2 i = j & Ne < i ≤ (Ne +NDNn)

−ζ2 electrodes i, j are adjacent & Nt < i ≤ (Nt +NDNE)

0 otherwise.

,

(9.15)

where Nt = Ne +NDNn.

� Shape reconstruction using a level set based deformable regularization

method.

The LS technique is well-known to track fast changing interfaces and is able to recon-

struct topological changes in a structure. This thesis applies the proposed LSRMs

on EIT lung data to reconstruct the air distribution inside the lungs. However, the

reconstruction algorithms apply a �xed thorax model to reconstruct the ventilated

regions inside the lungs. In a practical situation, the thorax volume changes by

breathing in and out. It is bene�cial to simulate a deformable thorax model so that

all elements within the model have displacement in accordance to the breathing. It is

expected that a signi�cant imaging enhancement is achieved by applying a deformable

thorax model. To realize an level set based deformable regularization method, the

level set parameterizations, introduced in chapter 5, have to introduced into the pro-

posed deformable regularization method in (9.14). Given the di�erence measurement
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data V , an image m = [Φ(Ψ)dnde] with the size of [(Nk + NDNn + NDNE) × 1] is

reconstructed, where Ψ is the level set function and Φ is the applied mapping func-

tion which assigns the given Ψ to the corresponding conductivity distribution σ by

σ = Φ(Ψ). The proposed level set based deformable regularization method applies

the level set technique, described in chapter 5, to reconstruct the conductivity change

image Φ(Ψ). The reconstruction of node displacement dn and electrode displacement

de is accomplished with the same procedure explained in the previous section. By

introducing the level set parameterizations into the forward model V = h(Φ(Ψ)), the

inverse solution of the proposed level set based deformable regularization method

using the MAP estimator can be obtained as:

mMAP = (J̃T J̃ + λ2(RΨ + η2RN + ζ2RE))−1J̃TV (9.16)

where J̃ = [JLSJNJE]. JN , and JE is computed with the same procedure explained

in the previous section for the proposed deformable regularization method; however,

JLS has to be calculated using the following chain rule as:

JLS =
∂V

∂Ψ
= (

∂h

∂Φ(Ψ)
)(
∂Φ(Ψ)

∂Ψ
) = (Jσ)(M), (9.17)

where ∂h
∂Φ(Ψ)

stands for the traditional Tikhonov sensitivity matrix (Jσ), and ∂Φ(Ψ)
∂Ψ

=

M .

� A hybrid regularization framework.

The common LSRM is applied to solve an inverse problem with constant piece-wise

coe�cients using one level set function and considers the assumption of having two

di�erent pixel illumination values for the background and the inclusion (two constant

piece-wise coe�cients). The assumption of constant piece-wise pixel illumination val-
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ues is to discriminate between two regions with sharp intensity transition; however,

it may not be a realistic assumption when there are smooth conductivity gradients

inside each region as well. A hybrid regularization method (HRM), which is a two

steps solution, to solve ill-posed, non-linear inverse problem containing both sharp

and smooth coe�cients can be proposed. The proposed HRM acts in a similar way as

a source type inversion method (Dorn et al., 2000), which divides a non-linear inverse

problem into two stand-alone subproblems. The �rst step of the proposed hybrid

inversion framework plays the role of an initializing procedure for the second step. In

the �rst stage, the LSRM with one level set function is applied to determine an ROI,

de�ned as the region with sharpest interface. Then in the second stage, an inverse

solver with penalty terms based on the sum of absolute values (L1 norms), which are

highly robust against measurement errors, is applied to reconstruct the smooth in-

tensity values inside the determined ROI. The generated forward solution in the �nal

iteration of the level set is fed to the second stage where the L1 norm based penalty

terms are minimized using the PDIPM framework. The PDIPM framework has been

shown to be a successful optimization framework in minimizing the L1 norms. To

show the implementation of the proposed HRM and to assess its performance, EIT

system, as an instance of ill-posed, non-linear inverse problem, can be applied. It is

expected that the EIT reconstructed images using the proposed HRM maintain the

sharp edges as well as the smooth intensity variations, a trait absent in all previously

established LSRMs. A preliminarily study has been already accomplished on the

proposed HRM. The achieved results were published in a conference paper entitled

as A Hybrid Regularization Method for Image Reconstruction of Electrical Impedance

Tomography, Peyman Rahmati, and Andy Adler, 17th International Conference on

Image Processing, Computer Vision, and Pattern Recognition, Las Vegas, US, 2013.
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