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Abstract

Ventilator Induced Lung Injury (VILI) is a serious condition caused by sub-optimal

settings of mechanical ventilation in Acute Lung Injury (ALI) patients. The main con-

tributors to VILI are 1) cyclic opening and closing of collapsed lung tissue which occur

at low pressure and 2) overdistension of lung tissue which occur at high pressures. The

key clinical measure to reduce VILI is selecting an appropriate Positive-End Expira-

tory Pressure (PEEP) to make a balance between keeping lung units open while not

overdistending them. Electrical Impedance Tomography (EIT) provides regional lung

air volume information which promises to help improve clinical selection of PEEP.

The goal of this thesis is to develop automated methods to analyse EIT data to select

a PEEP value. A novel algorithm is proposed to: 1) locate regional inflection points

(IP) using a linear spline method and 2) to classify lung tissue as Collapsed, Nor-

mal, or Overdistened using a Fuzzy Logic System and to suggest an Optimal PEEP.

These algorithms were implemented, tested, and compared to previously suggested

approaches, using a clinical database of ALI and healthy lung patients.
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Chapter 1

Introduction

Ventilator Induced Lung Injury (VILI) is a serious condition associated with sub-

optimal settings within mechanical ventilation of Acute Lung Injury (ALI) patients.

Its main causes are: 1) cyclical opening and closing of collapsed lung tissue occurring

at low pressures and 2) overdistension of lung tissue occurring at high pressure. The

purpose of this thesis was to investigate the use of Electrical Impedance Tomography

(EIT) as a technology to help reduce VILI. Automated algorithms to process EIT

data and make clinical assessments were developed and retrospectively tested.

EIT is an impedance based, non-invasive, and non-ionizing modality. It estimates

the impedance distribution within a medium using electrical stimulation and volt-

age recordings at surface electrodes. This technique is relatively inexpensive and is

an easy-to-use medical device for continuous bedside usage. It has medical applica-

tions in the fields of monitoring of pulmonary and cardiac functions, measurement of

brain function, detection of hemorrhages, measurement of gastric imaging, detection

and classification of tumors in breast tissue, and functional imaging of the thorax

[Holder, 2004]. This thesis focused on the functional imaging of the thorax.

Using EIT, clinicians are now able to record the functional behavior of the lungs
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during a mechanical ventilation recruitment maneuver. EIT thus provides information

for regional behavior and regional pressure-volume relations. It has been shown that

air distribution within the lungs is heterogeneous [Grychtol et al., 2009, Harris, 2005,

Andersen, 2008, Hasan, 2010] giving rise to erroneous recordings when considering

global measurements. This thesis examines the use of EIT to categorize regions as

collapsed, normal or overdistended which can then be used to suggest pressure settings

to reduce VILI [Borges et al., 2006, Venegas et al., 1998, Takeuchi et al., 2002].

1.1 Thesis Objective

This thesis proposes a new method for the selection of mechanical ventilation settings

from EIT data. The objective was split into two separate sections. The first was to

use the EIT data along with pressure data, taken from the ventilation protocol, to

locate regional inflection points from the pressure-impedance graphs. Such graph

and inflection points can be seen in Fig. 6.2. The second was to create an automated

system to use the fitted data to classify the lung regions as normal, overdistended, or

collapsed. The algorithm is described in Chapter 7.

1.2 Thesis Contributions

This thesis looks into the use of a new technique for the location of regional inflection

points (IP) from a short-time based low-flow recruitment maneuver. The regional

inflection points are then used in a novel way within a Fuzzy Logic System (FLS) to

produce a suggested pressure. The thesis contributions are divided into three separate

sections and are listed below.

T-1 Summarize scholarly papers on acute respiratory distress syndrome (ARDS) -
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Reading and summarization of numerous papers on the topics ARDS, acute

lung injury (ALI) and mechanical ventilation for a single source of knowledge

on this topic.

T-2 EIT based methodology feature extraction - Using EIT and its associated re-

gional data on the air movement in lungs, inflection points are located using a

piece wise linear regression technique.

T-3 Using the IP obtained earlier a Fuzzy Logic System (FLS) was designed to

classify the regions as being in healthy or injured. The location of the suggested

pressure was found by maximizing the healthy states while minimizing injured

states.



Chapter 2

Lung Injury

This chapter is broken into three descriptive sections. The first being a description

of Acute Lung Injury (ALI), the second of Ventilator Induced Lung Injury (VILI),

and the third a description of Pressure-Volume (PV) curves. This overview of lung

disease and clinical assessment tools motivates the technical work of further chapters

in this thesis.

The lung is an essential organ within the respiratory system with its main function

being the transport of oxygen into the bloodstream and moving carbon dioxide out

of the bloodstream. Respiratory failure is a medical condition where the patient is

unable to adequately control blood-gases transactions. It can come on abruptly as

seen with acute respiratory failure or slowly as seen with chronic respiratory failure.

Typically, respiratory failure initially affects the transfer of oxygen to the blood or the

removal of carbon dioxide from the blood [Schraufnagel, 2010]. Oxygenation Failure

usually is a sign of ALI and is discussed in this thesis. For further information

on Ventilatory Failure (failure to remove carbon dioxide) refer to Chapter 20 from

[Schraufnagel, 2010].
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2.1 Acute Lung Injury

Acute Lung Injury is the umbrella term used to describe hypoxemic respiratory fail-

ure. ALI covers Acute Respiratory Distress Syndrome but also other milder degrees

of lung injury [Schraufnagel, 2010]. ARDS is respiratory failure that results from

widespread injury to the lungs and is characterized by fluid in the alveoli (pulmonary

edema) with an abnormally high amount of protein in the edematous fluid and by

hypoxemia [Merriam-Webster, 2010]. Two types of ARDS exist, the first is primary

which is caused by direct injury and include inhalation based injury, near-drowning,

and pneumonia. Secondary ARDS is caused by a chain of causation including burns

and multiple blood transfusions [Hasan, 2010, Neligan, 2006].

The definition of ALI was clarified and categorized into four observations.

[Hasan, 2010, Bernard et al., 1994].

1. Acute onset of respiratory failure (Minutes to Hours after injury)

2. Diffuse, bilateral pulmonary infiltrates on radiological images

3. Severe hypoxemia

4. Absence of a raised pulmonary artery occlusion pressure (PAOP)

Severe hypoxemia is quantified as the ratio of PAOP over inspired oxygen con-

centration (PaO2

FIO2
). Peer defined thresholds for ALI and ARDS have been defined as

266 ≤ PaO2

FIO2
≤ 400 mbar for ALI and PaO2

FIO2
≤ 266 mbar for ARDS. These thresh-

olds help determine if a patient has undertaken severe hypoxemia or not. If the

PAOP is > 24 mbar it is considered raised thus anything less would satisfy criteria 4

[Hasan, 2010].

Normal alveoli have an inner layer of surfactant which helps to keep the lung tissue

open during expiration, in diseased lungs this surfactant is lacking making the alveoli
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unstable and prone to collapse. When diseased lung tissue are repeatedly open and

closed, shear stresses are generated. The shear stresses can produce ruptures causing

damage [Hasan, 2010].

To treat ALI mechanical ventilation systems are used to alleviate the work of

breathing. Either pressure controlled or volume controlled systems are used. A

crucial support strategy is to set and maintain the Positive-End Expiratory Pressure

(PEEP). PEEP is support pressure during exhalation to help maintain open lung

regions leading to better oxygenation and reduction of cyclic opening and closing

of lung tissue. Normal selection of PEEP is done by an iterative procedure where

PEEP is adjusted till an appropriate oxygenation is reached. Each step in PEEP

usually takes around 15-20 minutes in order to let oxygenation reach steady state

[Hasan, 2010]. Because of the heterogeneous nature of lung tissue in ALI/ARDS

patients not all the alveoli are collapsed at the same time thus while some tissue

are opening others can be overdistending lending to Ventilator Induced Lung Injury

(VILI) [Hasan, 2010, Andersen, 2008].

2.2 Ventilated Induced Lung Injury

Ventilator Induced Lung Injury is when acute lung injury is worsened by the use of

mechanical ventilation [Hasan, 2010]. VILI can be broken down into three separate

categories [Andersen, 2008].

1. Barotrauma / Volutrauma - is the rupture of the lung tissue caused by high

pressure or high volumes. This can cause air leakage into the interstitial space

making it difficult to breath among other complications.

2. Atelectrauma - is the injury associated with cyclic opening and closing of col-
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lapsed alveoli and is commonly caused by lack of pressure or volume to maintain

open alveoli.

3. Biotrauma - is the increase in pulmonary and systemic inflammatory mediators.

This tends to be a major source of death in ARDS patients as the inflammatory

mediators can lead to organ failure This tends to occur during cyclic opening

and closing of lung units.

Injuries in ventilated ARDS patients can lead to further alveolar ruptures causing

complications such as pneumothorax. This case tends to happen when excess airway

pressures is used. Commonly referred to barotrauma or alveolar overdistension. In

addition to overdistension injury from ventilation systems can be caused by cyclic

opening and closing of lung units. This cyclic action releases cytokines, a protein

transmitter released during inflammatory response. This can be remedied by keeping

lung units open via PEEP thus reducing the opening and closing behavior but insur-

ances must be made on the max pressure or volume to avoid overdistension which

can lead to barotrauma [Neligan, 2006]. Another notable factor in ventilation related

injury is the level of inspiration fraction of O2 (FIO2). High FIO2 can cause lung

regions to be vulnerable to collapse as the high level of oxygen gets rapidly absorbed

into the blood stream [Neligan, 2006].

2.3 Pressure - Volume Curves

Pressure-volume curves were used in 1946 to measure the mechanical function of the

respiratory system. They were first used to diagnose ALI/ARDS patients in 1976,

since ALI patients would have different mechanical properties compared to healthy

lung patients. The curves were used to diagnose the progress of ALI patients in 1984,
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and in 1998 it was used as a means to guide ventilation settings [Andersen, 2008].

An example of a pressure-volume (PV) curve with its associated pressure-impedance

(PI) curve is shown in Fig. 2.1. From the PV/PI curves IP can be located for the use

in guided ventilation strategies.
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Figure 2.1: An example of a pressure-volume and pressure-impedance curve for both
inflation and deflation limbs. From these curves inflection points can be found to be
used within guided ventilation strategies. For more information on inflection points
refer to Chapter 6

2.3.1 Models of Respiratory Function

There exist two main types of PV curves, static and dynamic. Both measure pressure

and volume from the mouth but are performed differently and thus measure different

physiological functions. (2.1) represents the relationship between airway pressure and

volume where PAO is pressure at the airway opening, V is the lung volume, C is the

respiratory system compliance, V̇ is the gas flow, R is the airway resistance, V̈ is the

convective gas acceleration, I is the impedance, and Pmus is the pressure generated

from respiratory muscles [Harris, 2005].
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PAO =
V

C
+ V̇ R + V̈ I − Pmus (2.1)

Dynamic PV loops are obtained during a gas-flow intensive maneuver. From

(2.1) we can see that dynamic PV curves will cause the resistive and impedance

components to play a factor in the airway pressure. The respiratory muscles play a

role in the airway pressure; thus, if the patient is inadequately sedated the recorded

PV curve may be illustrating factors other then compliance. For the purpose of lung

mechanics the compliance is of most importance as it represents ease of which lung

tissue is ventilated so removal of the resistive, impedance, and respiratory muscles

components are ideal. To remove the unwanted components from (2.1) static PV

curves are used. Static PV curves use very slow airflow (near 0) causing the resistive

component to be minimized. To reduce the impedance factors a constant airflow needs

to be used causing the derivative to be zero. Removing the unnecessary components

is beneficial as the resulting measurements will closely model the static compliance

rather then the dynamic [Andersen, 2008, Hasan, 2010]. There exist three methods

to acquire static PV curves.

1. Super syringe method is done by applying a syringe to the intubation tube and

apply air in steps of 50 to 100ml till a max of 1.5l or 3.0l or 40 to 45 mbar of air

have been applied. Between each step the air flow is ceased for 3 to 10 seconds

to ensure static conditions are reached. The maneuver is slow and forces the

patient to be disconnected from the ventilation system itself but also removes

the resistive and impedance components of the respiration systems thus leaving

the elastic components. The inflation maneuver alone takes between 45-60sec.

[Andersen, 2008, Hasan, 2010, Lu et al., 1999].

2. Constant flow technique is a quasi-static method which does not require removal
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of the patient from the ventilation system. It performs a single inflation and

deflation maneuver with constant flow all while taking continuous measurements

of the pressure and volume. The slow flow is done to minimize the resistive

component, with the constant property removing the impedance factor. Studies

have shown that a flow < 9L / min will suffice with larger flows producing

right shifts in the PV curves when compared to static versions [Andersen, 2008,

Harris, 2005, Hasan, 2010, Lu et al., 1999].

3. Multiple occlusion technique consists of various plateau volumes. At each

plateau occlusion measurements are taken, once during inspiration and the

second during expiration. Each measurement only takes 3 seconds and any

volume decrease due to oxygen intake is considered negligible. Similar to the

constant flow technique the patient does not need to be removed from the ven-

tilation system but does require sedation to ensure no spontaneous breaths are

taken during the procedure. The procedure lasts between 5 and 10 minutes

[Andersen, 2008, Hasan, 2010, Lu et al., 1999].

For this thesis the [Pulletz et al., 2011] data was used which consisted of a slow

constant flow maneuver with rates of 4 l/min. Each patient was also sedated to

remove the thorax muscle response. More details on the data and patients involved

are listed in Chapter 4.



Chapter 3

Electrical Impedance Tomography

EIT is an imaging modality that is non-invasive, non-ionizing and relatively inex-

pensive (thousands of dollars) [Boyle, 2010]. It produces a 2D conductivity image

of a medium. With respect to imaging lung aeration the volumetric accuracy of an

EIT system is within 10% of spirometric measurements [Holder, 2004]. EIT applies

low frequency current (50kHz and max 5mA) and measures the difference voltage

through electrodes on the surface of the medium [Boyle, 2010, Holder, 2004]. The

imaging system uses Finite Element Models to solve the forward problem where

it simulates the voltage on the medium surface with known current and conduc-

tivity distribution of the medium. The reconstruction of EIT will be further dis-

cussed in Chapter 4. In Canada, EIT machines used with human patients must first

comply with the International Electrotechnical Commission standard 60601-1 and

must be reviewed by a certified laboratory like the Canadian Standards Association

[Boyle, 2010]. The introduction of the EIT system for human studies occurred in

the mid 1980s, with the first written book in 1990 [Holder, 2004]. Starting in the

field of mineral exploration it moved to the biomedical domain in the early 1980s

[Holder, 2004, Allud and Martin, 1977]. Measuring the conductivity of a medium
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EIT allows for a new look at the distribution of air, blood, and extravascular liq-

uid within the lungs [Adler et al., 1997]. Having gone through rigorous validation,

[Hinz et al., 2003b, Victorino et al., 2004, Gattinoni et al., 1987] EIT is now taking

the next step into specific applications with focus on lung-air distributions.

3.1 EIT in Mechanical Ventilation

Using EIT to measure lung aeration provides increased measurement accuracy and

allows for better PEEP selection for ventilation systems. This is of particular signif-

icance given that thoracic CT scans reveal heterogeneity of air distribution within a

pathological lung [Gattinoni et al., 1987]. CT images are considered a gold stan-

dard for detailed images of the thorax but they require moving an unstable pa-

tients to the imaging area and expose the patient to ionizing radiation making it

a poor choice for repeated bedside use. EIT on the other hand is non-ionizing

and is capable of measuring the distribution of air within the thorax. For in-

stance with a current input of 50kHz the resistivity of deflated lung tissue is 12.5

Ω ·m while inflated lung tissue has a resistivity of around 25.0 Ω ·m [Holder, 2004].

With this large difference in resistivity between inflated and deflated lung tissue

EIT has been recommended for regional lung monitoring [Hahn et al., 1996]. In

the past global PV curves were used to locate IP and were used to set PEEP ac-

cordingly [Hinz et al., 2006, Papadakis and Lachmann, 2007]. It has come to knowl-

edge that within ALI patients the distribution of air within the lungs is hetero-

geneous making global PV measurements too general to customize PEEP choices

[Victorino et al., 2004]. EIT provides regional conductivity information and is able

to produce pressure-impedance curves where pressure settings can be extracted. With

all the advancements in this field much work still needs to be done by standardizing
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inflection point detection algorithms and features to use for classification systems.

The use of EIT in mechanical ventilation is still in a inchoate stages of develop-

ment. Early studies using EIT in the lung domain focused primarily on validation

[Hahn et al., 1996, Frerichs et al., 2002, Hinz et al., 2003a, Victorino et al., 2004].

Subsequent research worked toward extracting information, like inflection points and

pressure-impedance curves, and drawing conclusions related to the state of lung tis-

sue [Kunst et al., 2000, Gattinoni et al., 1987, Amato et al., 1998, Kunst et al., 1999,

Genderingen et al., 2004, Adler et al., 2012]. More research is necessary to un-

derstand guided ventilation strategies, create automated systems, to determine

accurate rule bases and incorporate uncertainty into the Fuzzy Logic Systems

[Grychtol et al., 2010, Luepschen et al., 2007].

Research comparing global and regional PV curves shows that the former can be

represented as a sum of the latter [Kunst et al., 2000]. Using PV curves to identify

therapeutic pressure to reduce VILI has been confirmed. Chapter 6 further elaborates

on the use of PV curves and inflection points. Furthermore, [Kunst et al., 2000,

Kunst et al., 1999] noticed that dependent regions have higher LIP then the counter

parts in the non-dependent region. The airs dependency on gravity increases collapsed

regions in the direction of gravity. This gravitational dependency helps explain the

continual recruitment along the linear portion of a global PV curve and the need for

a regional bedside imaging systems like EIT.

The regional information provided by EIT clarifies the understanding of ven-

tilation distributions, locating regions of overdistension and regions of collapse,

one sided ventilation, regional compliance, LIP and UIP, and delays in ventilation

[Adler et al., 2012]. The reconstruction system used for this thesis produced images

of size 32x32 pixels. The average lung-region of interest (lung-ROI) for all patients

was 248.88 ± 53.33 pixels. From Chapter 4 the average height for all patients was
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177 ± 9 cm. Using the median relationship between external chest size and height

from [Todd, 2010], which can be seen in (3.1), a max circumference of 105.4 cm

and minimum circumference of 95.2 cm was found. This resulted in a resolution of

3.38± 0.923 cm2 per pixel. The resolution value is an approximation due to the use

of lung-region of interest and the relationship matching external chest size to height.

Using the chest-region of interest of which the size is 575 pixels for all patients as a

replacement for the lung-ROI a resolution of 1.39 cm2 per pixel is realized. It can

then be argued that the resolution for this particular EIT system is between 1.39 and

3.38± 0.923 cm2 per pixel.

cirmedian =
1

2
(height) +

1

15
(height) (3.1)

Some research has been conducted to apply the regional information to create

automated mechanical ventilation systems [Grychtol et al., 2010]. However, many

gaps in the literature still exist. For example, determining which features should

be extracted from the regional information collected is an area of research garnering

further attention. With EIT as a bedside device options to have fast and reliable

warning parameters can be available. Being able to detect collapsed and overdistended

regions will allow for warnings to signal the physician or alternate the PEEP to reduce

potential injuries [Adler et al., 2012].

Further research is necessary to improve the current use of EIT. Shortcom-

ings of current EIT systems include 2D dependencies, errors associated with pos-

ture and diaphragm position, and the use of difference based EIT measurements

[Adler et al., 2012].



Chapter 4

Data and EIT Reconstruction

This chapter describes the data and reconstruction algorithm used within this thesis.

The first section covers the number of patients dividing them into ALI and control.

It also covers the ventilation protocol along with the mechanical ventilation unit and

the EIT system used in the measurements. Data pre-analysis is explained in the data

section of this chapter and covers EIT-pressure-alignment and locating the start and

end of the pressure ramp aka the recruitment maneuver.

In the second section the algorithm used to reconstruct the EIT data is described

with focus on the parameters used, a description of the reconstruction, and the ad-

vanced nature of the algorithm.

4.1 Data

The data was obtained from [Pulletz et al., 2011] where a low-flow pressure based

recruitment maneuver with synchronized EIT was performed.
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4.1.1 Patients

The data used for this thesis was of human trials from the medical university center

at Schleswig Holstein campus in Kiel. The experiment received local ethics approval

for 26 patients. The patients were taken from the surgical intensive care unit and

the operations theaters with written consent provided from each patient or a legal

representative. All of the patients within the study were sedated, paralyzed and

artificially ventilated using a pressure controlled ventilation mode while in the supine

position. The distribution of the patients consisted of 8 healthy lung patients (age:

41 ± 14 years, height: 177 ± 8cm, weight: 76 ± 8 kg, mean ± SD) and 18 ALI

patients, (age: 58± 14 years, height: 177± 9 cm, weight: 80± 11 kg) which fulfilled

the American-European consensus criteria for ALI (rapid onset, PaO2

FIO2
≤ 300 mmHg,

bilateral infiltrates, and no clinical sign for left atrial hypertension.

4.1.2 Pressure Maneuver

A low flow inflation-deflation-pressure-volume maneuver was performed using an

Evita XL (Draeger, Luebeck, Germany) mechanical ventilator. Prior to the ramp

recruitment maneuver ventilation of the patient took place and can be seen in Fig. 4.1

as the oscillations before and after the ramp. The maneuver started at zero Positive

End-Expiratory Pressure (PEEP) with a constant gas flow of 4 l/min and went up

to a tidal volume of 2 l or until a maximum airway pressure of 35 mbar. Fig. 4.1

illustrates a sample of the pressure, volume and volume flow used. The mechanical

ventilator sampled the input data at a rate of 126Hz and was synchronized to an EIT

data acquisition system via USB with a sampling rate of 25Hz.

The EIT data was gathered using a GOE-MF II EIT (CareFusion, Hoechberg, Ger-

many) system with 16 self-adhesive electrodes (Blue sensor L-00-S, Ambu, Ballerup,
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Figure 4.1: Pressure, Volume, and Flow of the recruitment maneuver performed.
Only the ramp regions, as segmented between the two lines was used for this study.
The data before and after the black lines are of ventilation of the patient.

Denmark). The electrodes were positioned approximately along the 5th intercostal

plane around the patients chest as shown in Fig. 4.2. 50 kHz and 5 mArms electrical

current was applied through an adjacent pair configuration with the remaining elec-

trodes being used to measure the voltage after the current injection. The EIT data

was acquired at a rate of 25 scans per second and processed offline.

4.2 EIT Reconstruction

For this thesis the Graz consensus Reconstruction algorithm for Electrical Impedance

Tomography (GREIT) was used. Started in 2007 at the ICEBI conference in Graz,
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5th intercostal plane

Lungs

Figure 4.2: Location of the plane where the electrodes are placed equally-spaced
around the patient, 5th intercostal plane. Reproduced from [Rawlins et al., 2003]

Austria, GREIT came about as a way to draw a standard for linear EIT reconstruc-

tion. The work was done by researchers from a wide range of disciplines. GREIT was

made to standardize the linear reconstruction of EIT images and does not consider

calibration tests, data formats or phantoms, standards in image interpretation, or

EIT base lung parameters. The following specifications are known not to be ideal but

are rather a basis which to improve upon. GREIT suggests the following for an EIT

system [Adler et al., 2009].

Use a single ring electrode configuration with a Sheffield-type EIT system

using adjacent current injection and measurement. Linear (i.e. real-time)

reconstruction of a 2D conductivity change image, based on a 3D forward

model. Quantitative difference reconstruction for which units can be as-

signed to EIT images. Reconstruction onto a 32x32 pixel array for a single

ring of 16,12 and 9 electrodes, for the shapes: a) neonatal chest, b) male

and female adult chest, and c) cylindrical tank. [Adler et al., 2009]

GREIT adjusts the linear reconstruction to meet certain performance require-

ments. The performance requirements were found via consensus. In doing so the
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reconstruction algorithm modifies its minimization criteria thus not satisfying the

underlying mathematical model. A linear reconstruction algorithm is used rather

then an iterative approach as they tend to fail. The failure is brought upon by mea-

surement noise and geometric uncertainty in clinical and experimental EIT data. A

linear approach also facilitates real-time reconstruction.

The GREIT inverse model R differs depending on the choice of the forward model,

noise model, and the desired performance metrics. The forward model allows calcula-

tions of voltage differences, y(k), from a conductivity change, x(k), where k represents

the indices for the training set. The forward model provides the details of the body’s

geometry, the electrode size and contact impedance, and the reference conductivity

(σr) around which conductivity changes occur. GREIT uses a 3D FEM forward model

using the complete electrode model [Adler et al., 2009]. From the forward model the

measurement variance is calculated.

For the noise model the measurement data from the forward model is used.

In GREIT two sources of noise are considered: electronic measurement noise, and

electrode movement artifacts. The electronic measurement noise can be modeled

as various distributions but uniform Gaussian is acceptable for generic EIT recon-

struction and was used. The measurement noise is usually related to the EIT

hardware and patient connections such as different gain settings on each chan-

nel. Electrode movement artifacts happen when electrodes move with posture or

chest movement during breathing and have reported to cause significant artifacts

[Adler et al., 1996, Zhang and Patterson, 2005, Coulombé et al., 2005]. To reduce

the noise, augmented forward models based on both the conductivity change and

electrode movement can be made to reduce the artifacts. This is currently imple-

mented by deformations of the FEM but can be based on a calibration protocol in

an implemented system.
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Using the desired performance metrics, training is performed to find a well suited

reconstruction matrix. This is done by using “desired images” , x̃
(k)
t , in a training

set of size (k) . The “desired images” correspond to locations of conductivity in the

forward model, x
(k)
t . x̃t is centered at the same location as xt but is designed to

be circular and have an accompanying blur radius around the center. The use of

the desired image allows for uniform resolution throughout the entire image at the

expense of lower resolution along the boundaries. For each “desired image” a weight

image w(k) is created to put weights to each pixel within the “desired image”. These

weights are used to put more emphasis on some metrics rather than others. For

each “desired image” there exist two circular regions, the first is centered around the

targeted position to emphasis a flat amplitude while the second regions is outside of

the first and represents a region in which the amplitude is to be zero. In between

the two regions the desired image is supposed to smoothly transition from the inner

region amplitude to zero, the outer region. Larger weight is given to these regions to

enforce that performance metrics are met while smaller weights are selected for the in

transition region to allow the algorithm to have flexibility to meet other specifications.

In addition to the conductivity targets, noise training samples are used for elec-

tronic noise and movement artifacts. For noise training the desired image (x̃
(k)
n )is

zero. The weight image (w(k)) is large to enforce a penalty on noise.

Based on the forward model, noise model, and desired performance an improved

GREIT reconstruction matrix can be created by solving the minimization express for

error ε2 as seen in (4.1).
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ε2 =
∑
k

||x̃(k) −Ry(k)||2W(k)

=
∑
k

∑
i

(
[x̃(k)]2i [w

(k)]2i − 2[x̃(k)]i[w
(k)]2i

(∑
j

Rij[y
(k)]j

)

+ [w(k)]2i

(∑
j

Rij[y
(k)]j

)2)
(4.1)

The sum k is over all the training measurement and noise samples. W(k) =

(diag w(k))2 is a diagonal matrix representing the weight corresponding to each mea-

surement. From (4.1) an expression for R = arg min ε2 is found by setting the

derivative ∂ε2

∂Rij
to zero. The math is worked through in [Adler et al., 2009] and was

simplified to (4.2).

= Aij −
∑
l

RilBijl (4.2)

Matrix A ∈ RnN×nM and tensor B ∈ RnN×nM×nM and are defined as A =∑
k[x̃

(k)]i[w
(k)]2i [y

(k)]j and B =
∑

k[y
(k)]l[w

(k)]2i [y
(k)]j. If the weights, w, are kept

the same for each training data set, (4.2) can be simplified to A = RGBB which

gives the final GREIT reconstruction matrix of RGB = AB−1.

4.2.1 Forward Model

Creating the training data for the learning methods takes a forward model to map

conductivity contrasts targets, xt to difference measurements, y. The forward mod-

els are built using a 3D first order tetrahedral finite element model and are solved

using preconditioned linear solvers [Polydorides and Lionheart, 2002]. Finite element

models which have been made are: male and female adult chests, a neonatal chest,
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(a) Start of Inflation (b) Max Pressure (c) End of Deflation

Figure 4.3: Example reconstructions using the GREIT methods of a healthy lung
patient (patient 7). The outer most region in each image is from the reconstruc-
tion itself and has no physiological meaning. The second region from the outside in
represents the chest and non-lung regions. The third and inner most region repre-
sents the lungs. Within the lung region the scale goes from light to dark, with the
corresponding impedance going from high to low respectively.

and a cylinder. It is possible to create patient specific FEM which would provide a

better reconstruction but as [Adler et al., 2009] has stated from experience working

with time-difference EIT the four models provided work with most of the accuracy of

an adaptive meshing. For this thesis the male human thorax FEM model was used.

4.2.2 Reconstruction Model Used

For this thesis the adult male model with 16 electrodes was used. The first electrode

was placed on the median dorsal part of the model and the ninth electrode placed

directly across. Fig. 4.4 shows both the 3D model as well as the 2D version with

electrode placement used. The training was done using normalized measurements

with 500 samples of 3% of the model diameter in size targets.

4.2.3 Data pre-analysis

All analysis was done offline with the majority of work being done in the Fuzzy Logic

System FLS. This section explains the code designed by [Pulletz et al., 2011] and was
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Figure 4.4: Forward model based on adult human used to train GREIT with 16
electrodes.

used to setup the input data to the algorithm explained in Chapter 7.

The first step in data preparation was to locate the start, max, and end points

in the pressure-volume maneuver. This was done by first inputting the pressure and

EIT data into the analysis program. From here the image was reconstructed using

a 2D chest thorax forward model with 1024 elements, with reference being the mean

of the entire voltage signal and normalized measurements set. Fig. 4.5 displays the

forward model used. The software used to perform the inverse solution and forward

model calculations was EIDORS [EIDORS, 2011]. The settings for the inverse model

is displayed are Table 4.1.

Parameter Value

RtR prior =
Image=LaPlace Prior

Movement=Smoothness Constraint
rm.aa e move image prior.parameters = 0.1
rm.hyperparameter.value = 0.06
rm.inv solve.select parameters = 1:1024
rm.aa e move image prior.RegC.func = LaPlace Prior

Table 4.1: Initial inverse model settings used for pre-analysis stage of the data.

The EIT impedance values were then averaged over the Finite Element Model

(FEM) element area. From here a time vector was created for the EIT and pressure

signals using the sampling rate of 29 Hz and 126 Hz respectively. Both time signals
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Figure 4.5: Forward model used in the inverse solution for the data pre-analysis stage.

were centered so that the max pressure / EIT values were situated at time index 0

as illustrated in Fig. 4.6. At this point EIT vs time and Pressure vs time plots were

created and a user was asked to manually locate the beginning and end of the ramp

maneuver. These start-end time values were stored for later use. Using the time

vector and linear interpolation an index value (a number between 1 and length of

the signal) was found for the start, end, and peak of the ramp maneuver. This was

done for both the EIT and pressure data. But since the pressure sampling frequency

was much higher than that of EIT the length of the two vectors did not coincide. To

resolve this issue down sampling was done by finding the locations in the time vectors

where the EIT time and pressure time were closest. This modified down sampling

technique was done since the ratio of the two sampling frequencies was not an integer.

With the completion of the timing index vector and down sampling, the GREIT based

reconstruction was done. This GREIT based reconstruction was a second and more

sophisticated reconstruction for the impedance images which were used in the final

algorithm. The settings for the GREIT reconstruction are exampled in Chapter 4.2.
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The inverse using the GREIT model was performed with the reference voltage being

the average of the first five samples from the start of the ramp maneuver. The ROI

was found by locating any group of pixels which were connected with a minimum size

of 20 pixels and were greater than 25% of the max EIT value [Pulletz et al., 2006].
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Figure 4.6: Pressure and EIT data aligned so peak is at time 0 demonstrating the
relationship between the pressure ramp the measured impedance difference. In this
image the impedance difference is for the entire lung.



Chapter 5

Fuzzy Logic

This chapter introduces the theory of Fuzzy Logic Systems (FLS). A FLS is a sequence

of functions and methods which non-linearly map data (features) to a scalar output.

It does this by turning crisp values (input data) into fuzzy sets (via fuzzification) and

then back into crisp values (via defuzzification). A FLS is made up of three main

components. 1) The fuzzifier takes the crisp input values(linguistic variables, which

for this thesis are pressure and impedance change) and maps them into fuzzy sets

with a degree of membership valued from 0 to 1. From here the fuzzy sets are passed

to the inference system which is composed of IF-THEN rules. These rules combine

the fuzzy sets by using “AND” or “OR” operators resulting in another set of fuzzy

sets called consequent sets, also with an according membership value. Finally the

consequent sets are passed to the defuzzifier which combines the consequent sets and

calculates a crisp value from the resulting curve. Each block can be seen in Fig. 5.1

with the accompanying decisions which need to be made for each block.

Fuzzy Logic is an excellent way to integrate engineering with expert knowledge.

For this thesis it was a method to mix lung physiology and mechanical ventilation with

medical imaging. In this thesis Fuzzy Logic was used along with Electrical Impedance
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Tomography to classify lung tissue as collapsed, normal, or overdistended. With this

classification a Positive-end Expiratory Pressure (PEEP) was selected to maximize

normal regions while minimizing collapsed and overdistended regions. The linguistic

variables for this thesis were pressure and impedance change. With the fuzzy sets

being Below, In Between, and Above. Finally the consequent sets for this thesis were:

Collapsed, Normal, and Overdistended.
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Figure 5.1: Fuzzy Logic Design Schematic. Adapted from [Mendel, 2001]
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5.1 Fuzzifier

5.1.1 Fuzzy Sets

Unlike classical sets where the distinction between member and non-member is clear,

{0,1}, fuzzy sets can have a range of membership, [0,1]. The membership value

dictates the degree to which they are associated to the fuzzy set, with higher values

having larger associations. A fuzzy set can have elements which have varying degrees

of membership, unlike classical sets where elements are either associated or not. Since

membership is not complete a single element can have associations with multiple

fuzzy sets. For instance an element (x) with a range of possible values as dictated

by universe X can have memberships to fuzzy sets F1 and F2. The membership for

fuzzy set F1 is indicated as µF1(x) = < where µF1(x) ∈ [0, 1], similar with F2 but

with different subscripts. The association is performed by a membership function

which takes elements, x, and places them in a fuzzy set. Fig. 5.2 displays an example

of a membership function for input variable x and fuzzy set F1. It should be noted

since elements can be associated with multiple fuzzy sets each fuzzy set has its own

membership function.

Fuzzy sets also work with classical logical operations such as those displayed in

Table 5.1. Within Table 5.1 operators which have no implementation can be broken

down into union, intersection, and complement thus are not needed. With respect to

the Law of Excluded Middles and the Law of Contradictions fuzzy logic is incongruent

with classical logic. This is due to the inherent property of fuzzy sets and how they

overlap as do their complements, thus you may never have complete membership or

zero membership depending on which law is applied.

Multiple methods for performing the union and intersection are available and are

referred to as t-conorms (union) and t-norms (intersection). A common alternative
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x

µ

0

1

F1

Figure 5.2: Triangle based membership function. Other types exist with this thesis
using the trapezoidal function.

Set Operator Mathematical Format Implementation Format
Union µF1∪F2(x) = µF1(x) ∨ µF2(x) max(µF1(x), µF2(x))
Intersect µF1∩F2(x) = µF1(x) ∧ µF2(x) min(µF1(x), µF2(x))
Compliment µF̄1

(x) = 1− µF1(x) 1 - (µF1(x))

De Morgan
F1 ∩ F2 = F1 ∪ F2

F1 ∪ F2 = F1 ∩ F2

Excluded Middle F1 ∪ F2 6= X
Contradictions F1 ∩ F2 6= ∅

Table 5.1: Fuzzy Operators

to the max() union operator is the algebraic sum operator and is illustrated in (5.1).

A common alternative to the min() intersection operator is the algebraic product

operator and is illustrated in (5.2) [Mendel, 2001].
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µF1∪F2(x) = µF1(x) + µF2(x)− µF1(x)µF2(x) (5.1)

µF1∩F2(x) = µF1(x)µF2(x) (5.2)

5.1.2 Membership Functions

In a rule based FLS membership functions are used to take crisp values to fuzzy sets

and vice versa. Theses fuzzy sets are then used in the antecedents and conclusions,

refer to Fig. 5.1 to see the input of membership graphs to the two according fuzzy logic

blocks. The main sections of any membership function are the Core, Support, and

Boundary. The core region is the interval where the fuzzy set, for instance F1, has full

membership i.e. µF1(x) = 1. The support region is the interval where membership is

non-zero i.e. µF1(x) > 0. The boundary region is the interval where the membership

is between 0 and 1 i.e. 0 < µF1(x) < 1. When designing fuzzy membership functions

it is important to consider carefully the location of these regions as they play a large

role in the performance of a FLS [Sivanandam et al., 2006].

Two types of membership functions exist. One which considers uncertainty in the

data (Type-2) and the other which does not (Type-1). This thesis focuses on Type-

1 systems with extra detail on Type-2 systems available in [Mendel, 2001]. Within

Type-1 systems two different fuzzy membership functions exist, singleton and non-

singleton. The difference between the two is an extra module, which models the datas

uncertainties prior to fuzzification, for a non-singleton systems.

Referring to Fig. 5.1 for a overview of the variable names. For a singleton system

µX(x) = 1 if x = x′ and µX(x) = 0 for all x 6= x′. Where x is equal to p crisp elements

each with there own universe. i.e. x = (x1, . . . , xp)
T ∈ X1 × X2 × · · · × Xp ≡ X.
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x′ is the crisp input value of interest. From here the firing level is calculated by

supxi∈Xi
µQl

i
(xi) ≡ µXi

(xi)FµF l
i
(xi), where F is a t-norm. For a singleton system

the firing level is simplified since µXi
(xi) is non-zero at one location, xi = x′i. This

calculated value is now the membership value for the fuzzy set i and for rule l.

Setting up fuzzy membership functions can be done in multiple way, such as;

intuition and neural networks [Mendel, 2001].

5.2 Inference

Fuzzy inferences are IF-THEN based rules from which consequences are derived from.

Connectors between each term in the IF-THEN statement are made up of “AND” or

“OR” which in turn have various mathematical equivalents, t-norms and t-conorms,

respectively. The standard format for most fuzzy rules is IF (linguistic variable 1 is

fuzzy set 1) AND/OR (linguistic variable 2 is fuzzy set 2) AND/OR ... THEN (output

n is consequent n) [Sivanandam et al., 2006]. For instance IF x1 is F l
1 AND/OR

... AND/OR xp is F l
p THEN y is Gl. l = 1 . . .m and represents the number of

rules, p represents the number of linguistic variables each with their own universe

(x1 ∈ X1 . . . xp ∈ Xp) and y ∈ Y output linguistic variable for fuzzy set Gl. It can be

shown that fuzzy systems with multiple outputs can be broken into multiple systems

each with one output [Mendel, 2001].

5.3 Defuzzifier

Defuzzification is the processes of turning fuzzy sets into crisp values. Many methods

of defuzzification exist with a main criteria being computational simplicity. The com-

mon ones are: Centroid, Center-of-Sums, Height, and Center-of-Sets [Mendel, 2001].
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5.3.1 Centroid Method

The centroid method combines the consequent sets by using the max t-norm. B =

∪ml=1B
l.

yc(X) =

∑N
i=1 yiµB(yi)∑N
i=1 µB(yi)

(5.3)

Where i indexes the combined set B. This method is usually difficult to compute

due to the union of the output fuzzy sets, Bl [Mendel, 2001].

5.3.2 Center-of-Sums

This method combines the consequent sets by addition. µB(y) =
∑m

l=1 µ
l
B(y). Then

proceeds to find the centroid of µB(y).

ya(X) =

∑m
l=1 cBlaBl∑m
l=1 aBl

(5.4)

Where cBl is the centroid of the consequent set Bl for rule l and aBl is the area

underneath the consequent set Bl for rule l.

5.3.3 Height Defuzzifier

This method locates the maximum point from the output set via a singleton method.

For multiple maximums the average can be taken. It takes these values and adds

then into a set of size m, and then calculates the centroid of the resulting set.

yh(X) =

∑m
l=1 ȳ

lµBl(ȳl)∑m
l=1 µBl(ȳl)

(5.5)

Where ȳl is the location of the maximum value with µBl ȳl being the according

output set membership value. A common modifier to this method is to scale (5.5) by
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some measure of the spread of µBl(yl)

ymh(X) =

∑m
l=1 ȳ

lµBl(ȳl)/δl
2∑m

l=1 µBl(ȳl)/δl2
(5.6)

5.3.4 Center-of-Sets

This method is fairly quick as it replaces the rule consequent set with a singleton

located at the centroid with an amplitude scaled by the firing level, then finds the

centroid of the combined singletons. The firing level (fl) is the combined membership

value for each fuzzy set or T pi=1µF l
i
(xi), where T is short for the t-norm.

ycos(X) =

∑m
l=1 cglfl
fl

(5.7)
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Chapter 6

Inflection Points

This chapter describes what inflection points (IP) are, how they are found, and their

use with EIT in base pressure suggestion for mechanical ventilation systems. In

this context inflection points are the locations along a pressure-volume/impedance

(PV/PI) curve where the slope dramatically changes usually from a low compliance

region to a high compliance region or a high compliance region to a low one. There

exists multiple ways of locating IP [Harris et al., 2000] with this thesis exploring the

sigmoid method, visual heuristics, and the 3-piece linear spline method. The basis be-

hind this thesis is to locate pressure(s) where the alveoli are not in a state of collapse

or overdistension which are known to be large contributors to ventilator induced

lung injury (VILI) [Bigatello et al., 1999, Amato et al., 1998, Borges et al., 2006,

Venegas et al., 1998, Takeuchi et al., 2002]. The use of inflection points in clinical

settings are well known and are currently used to set the base-pressure (PEEP) in

Acute Lung Injury (ALI) patients [Venegas et al., 1998, Harris et al., 2000]. In order

to find inflection points which are meaningful particular ventilation strategies are used

in order to reduce certain physiological effects and are described in detail in Chapter

2.
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6.1 What are Inflection Points

Inflection points are locations on a pressure-volume/impedance curve where alve-

oli efficiency increases/decreases dramatically depending on if the pressure is low or

high respectively. There are various ways to locate the lower inflection point (LIP).

The location where the pressure-volume curve starts to have a linear compliance

[Matamis et al., 1984a, Brunet et al., 1995]. The pressure at which rapid increase in

the compliance of the pressure-volume curve occurs [Harris et al., 2000]. Thirdly, to

place two lines one along the low compliance region and the other on the high compli-

ance region and locate the intersection [Takeuchi et al., 2002, Gattinoni et al., 1987,

Amato et al., 1995]. Finally find the lower point in which the PV/PI curve first de-

viates from its high compliance region [Dambrosio et al., 1997]. All of these methods

provide a distinct indication of a beginning and end of the high compliance regions.

6.2 Importance of Inflection Points

The work on inflection points is important as it is one of the common

methods for optimizing PEEP in mechanical ventilation [Matamis et al., 1984b,

Amato et al., 1998]. Patients in need of mechanical ventilation in particular pa-

tients with acute respiratory failure have a high mortality and morbidity rate

[Hudson, 1989]. Mechanical ventilation can damage the lungs [Amato et al., 1998]

causing lesions at the alveolar-capillary interface [Fu et al., 1992], create alter-

ations in permeability [Carlton et al., 1990], and cause edema [Tsuno et al., 1990,

Dreyfuss and Saumon, 1993]. VILI is a significant problem when it comes

to critical patients with acute respiratory failure [Slutsky, 1994]. A con-

tributing problem to VILI is the cyclic opening and closing of the alveoli

[Ranieri et al., 1999, Pulletz et al., 2011, Mead et al., 1970] and can increase mortal-
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ity. [Amato et al., 1998] showed that two groups (one using protective ventilation

strategies and one without) revealed higher survival rates in the protective ventila-

tion group. From the experiment 11/29 patients died in the protective ventilation

group while 17/24 died in the non-protective ventilation group. [Amato et al., 1998]

study using human subjects revealed that the length of being on mechanical venti-

lation impacted the survival after a 28-day trial period. A great deal of controversy

exists in finding the appropriate PEEP settings with over 9000 papers published in

this topic and no standard conclusion [Rouby et al., 2002]. With the use of EIT in

clinical settings regional information is now available which will help in locating an

optimal PEEP.

Some clinics use the lower and upper inflection points for pressure settings

[Venegas et al., 1998]. In the study conducted by [Brunet et al., 1995] it was shown

that the use of PEEP was able to increase normal regions while being able to decrease

non-aerated regions. A study conducted by [Dambrosio et al., 1997] showed that the

use of PEEP resulted in large reductions of collapsed regions. Albeit the given bene-

fits of PEEP, there is a lack of unification amongst researchers on how to locate valid

PEEP readings [Rouby et al., 2002]. Pressure-Volume curves have been suggested for

finding the optimal PEEP value by looking for points which maximize the recruitment

[Gattinoni et al., 1984]. Most current PV curves study the use of global pressure-

volume readings to create a curve which is used to find associated parameters. The

benefits of using global LIP and UIP are visible [Amato et al., 1998, Hinz et al., 2006].

[Hinz et al., 2006, Harris, 2005, Venegas et al., 1998] have suggested the use of UIP

to set as the maximum airway pressure while [Lu et al., 1999, Takeuchi et al., 2001,

Takeuchi et al., 2002, Harris et al., 2000, Venegas et al., 1998] have suggested using

the LIP for the PEEP. It is also suggested that the PEEP should be set from the

deflation limb since the alveoli would be recruited once and tend to collapse at a lower
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pressure once opened. This idea helps since PEEP is used to maintain open alveoli

not to open them up initially [Papadakis and Lachmann, 2007, Albaiceta et al., 2004,

Takeuchi et al., 2002, Harris et al., 2000].

[Papadakis and Lachmann, 2007] showed that when PEEP was set below

the global LIP damage and collapse occurred most. In the same study by

[Papadakis and Lachmann, 2007] it was also noticed that an increase in recruitment

occurred, up to 40% of the lung, with a pressure set above the lower inflection point.

[Muscedere et al., 1994] showed similar results to [Papadakis and Lachmann, 2007] in

which large amounts of lung tissue were collapsed when PEEP was set to zero and be-

low the lower inflection point. Much of the air volume was distributed to the anterior

segments causing overdistension. This phenomenon was likely observed due to the use

of animal subject in supine positions during lavage. When [Muscedere et al., 1994]

set PEEP above the LIP collapse occurred in the early stages and progressively in-

flated over 2 hours with large areas expanding first followed by smaller focal areas.

The total airway injury score for the PEEP > LIP group was similar to that of the

control group. A similar independent study was conducted by [Takeuchi et al., 2002]

and found setting the PEEP to LIP+2 mbar provided the best compliance and best

arterial oxygen partial pressure at a fraction of inspired oxygen of 0.5. LIP+2 mbar

also minimized lung inflammation and mRNA expression for interleukin - 1β, which

along with mRNA expression for interleukin-8 are inflammatory responses indicative

of inadequate PEEP [Takeuchi et al., 2002]. [Amato et al., 1995] conducted an ex-

periment displaying the benefits of using LIP for PEEP. [Amato et al., 1995] set the

PEEP above the LIP with tidal volume < 6 ml/kg and peak pressure < 40 mbar

and compared it to a volume cycled ventilation with Vt < 12 ml/kg, PEEP set via

FI02, and normal PaC02 levels. The experiment found that the first scheme im-

proved oxygen-blood transaction in patients with ARDS increasing the chance of
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early weaning and lung recovery. The first scheme was also better in PaO2

FI02
, compli-

ance, and higher weaning rates, but had no significant improved survival rate. The

survival rates were 5/15 and 7/13 for first and second scheme respectively. It is clear

that the use of PEEP has its benefits and setting PEEP to the LIP or slightly above

works quite well.

In the past global PV curves were one of the best available methods for

PEEP selection but with recent advancements, in particular EIT, regional infor-

mation is now attainable [Kunst et al., 2000, Meier et al., 2008, Hinz et al., 2006,

Pulletz et al., 2011, Frerichs et al., 2003, Hinz et al., 2003b, Victorino et al., 2004,

Grychtol et al., 2009, Wolf et al., 2010]. Due to the heterogeneity of air distribu-

tion within diseased lung tissue recruitment happens along the entire PV curve.

With regional information being available this phenomenon can be better understood

[Hinz et al., 2006, Pulletz et al., 2011] and hopefully more accurate PEEP selections

can be found.

6.3 Techniques to Locate Inflection Points

To locate inflection points multiple methods exist with this thesis testing three meth-

ods. The first method discussed below is visual heuristics. Many clinics already

use this method to locate inflection points. The second and more classic automated

approach is the sigmoid model (6.3.2). This is an automated method which fits the

PV/PI data to a sigmoid function using a particular minimization criteria and regres-

sion algorithm. [Venegas et al., 1998] and [Grychtol et al., 2009] used the Levenberg-

Marquardt regression algorithm and minimized the sums of squared residual, in this

thesis the trust region reflective algorithm was used with the sums of squared residual

minimization criteria. When compared the trust region reflective algorithm found the
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same optimal parameters as the Levenberg-Marquardt algorithm. The last and fairly

new approach is to use a three-piece linear spline (6.3.3). [Grychtol et al., 2009] used

a least squares minimization in their study with this thesis using a partitioned least

squares criteria. The function used in this thesis was created by [D’Errico, 2011] and

is explained in Chapter 7.

6.3.1 Visual Heuristics

In the clinical setting inflection points are located by the clinician using their

expert knowledge from a global pressure-volume curve. These inflection points

are then used as the PEEP value with lower inflection point + 2 mbar being

a common choice [Harris et al., 2000, Matamis et al., 1984a, Venegas et al., 1998,

Martin-Lefevre et al., 2001, Takeuchi et al., 2002]. Variability between visual based

IP exists within clinical settings [Harris et al., 2000]. When compared to the sig-

moid method [Venegas et al., 1998] visual inspection produced a 0.89 and 0.94

correlation between static and quasi static curves [Martin-Lefevre et al., 2001].

[Martin-Lefevre et al., 2001] also compared the visually inspected inflection points

to a linear segmental regression method and found a correlation of 0.54 and 0.84 for

the lower and upper inflection points respectively. [Rossi et al., 2008] conducted a

study in which the LIP were found by multiple people and averaged together with a

repeat of the experiment if the two inflection points differed by more then 2 mbar.

In this study the lower inflection point were reported to be similar to other papers

using the same animal model and showed that setting PEEP to the lower inflection

point achieves more normal states compared to High Frequency Oscillatory Venti-

lation (HFOV) when the possible states were collapsed, normal and overdistended

[Rossi et al., 2008]
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6.3.2 Sigmoid Function

[Venegas et al., 1998] introduced the use of the sigmoid model as an automated

method to find inflection points and has been used by many other researches since

[Hinz et al., 2006, Grychtol et al., 2009, Albaiceta et al., 2004, Harris et al., 2000].

With the usage of the sigmoid function in global pressure-volume curves clinicians

were able to locate both upper and lower inflection points to help reduce cases of

cyclic opening and closing and overdistension. The idea of using a sigmoid func-

tion was to obtain a method which would allow for non zero asymptotic limits

[Salazar and Knowles, 1964, Colebatch et al., 1979].
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Figure 6.1: Sigmoid function fit illustrating the location of each parameter. The data
in this model was the same data used for the entire experiment. Each parameter is
labeled and displays its value at optimization. Parameter d can be found using the
value of ’c’ the inflection points and (6.2)

The sigmoid method fits the data to (6.1) where V is the inflation or absolute

volume, P is the airway or transpulmonary pressure, a is the volume corresponding

the lower asymptote which is used to approximate the residual volume when abso-
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lute volume is used, b is the vital capacity or total volume change between the two

asymptotes, c is the pressure at the highest compliance and is also the true inflec-

tion point, and d is proportional to the pressure range where most of the volume

changes takes place, or in other words it’s the pressure difference between the actual

inflection and the zone of high compliance. The inflection points are located using

(6.2) which are also the locations where the tangents from the two asymptotes in-

tersect with the tangent at the best compliance (P = c). Constraints on the final

parameters were also set in order to achieve logical solutions. For parameters b, c, d a

lower bound of 0 was set while parameters c, d had an upper bound of the maximum

pressure. All other constraints were set to −∞ and∞. The initial search parameters

used were a = min(of impedance), b = max(of impedance) − min(of impedance),

c = median(of pressure), d = 0.5. An example of the the fitted sigmoid and the

inflection points calculated can be seen in Figure 6.2. The data used in this thesis is

explained in [Pulletz et al., 2011] and in Chapter 4.

V = a+

[
b

1 + e−(P−c)/d

]
(6.1)

Pu,l = c± 2d (6.2)

Sigmoid method on EIT data

With every stride forward new challenges appear and the use of the sigmoid method

on global PV curves is no exception. In current mechanical ventilation systems

the assumption that the lungs behave in a global homogeneous manner is false

[Grychtol et al., 2009, Hinz et al., 2006]. [Hinz et al., 2006] showed with the use of

an EIT system that the regional information of pressure-impedance curves could pro-
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vide some important insight into possible optimal pressure values.

6.3.3 Three - Piece Linear Spline

A main objective of this thesis was to test the three-piece linear spline for locating

inflection points within EIT data. The three piece linear spline fits PV/PI curves

with three linear segments with optimal break point placement. (6.3) shows the

mathematical definition where a indicates the respective slopes and b the respective

y-intercept. This thesis implemented the partitioned least squares criteria and is ex-

plained in Chapter 7. The MATLAB implementation was designed and coded by John

D’Errico [D’Errico, 2011]. [Grychtol et al., 2009] used a slightly different algorithm

with additional constraints on the first and last line segment. [Grychtol et al., 2009]

ensured the first and last segments had a specific range of slope, this idea is looked

at in Chapter 9. In this thesis to ensure three distinct line segments were placed the

length of each segment was set to be at least 1 mbar. The inflection points were the

locations where each line segments meets its adjacent which is also the location of the

break points. An example of a three-piece fitting can be seen in Figure 6.2. The lin-

ear spline method is preferred over the sigmoid method because of its resemblance to

manual curve analysis[Hinz et al., 2006]. Despite the relative novelty of this method

it has a great intuitive appeal as it picks out the location of the high compliance

rather easily which has shown to resemble normal lung function [Harris, 2005].

V/I =


a1P + b1 0 ≤ P ≤ LI

a2P + b2 LI ≤ P ≤ UI

a3P + b3 UI ≤ P

(6.3)
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6.4 Results

The results from the comparison between the sigmoid method and linear method,

along with the comparison of the visual heuristic method with the linear method and

sigmoid method can be seen in Chapter 8.

6.5 Summary and Discussion

In summary currently some clinics are using inflection points to set the PEEP value

for conventional mechanical ventilation [Harris et al., 2000]. An issue which was

raised earlier is the variability in locating the inflection points, this can be seen

as there exists various method in which to locate the lower inflection point. The

first is to locate the pressure where the PV curve starts its trend of high compliance

[Matamis et al., 1984b, Brunet et al., 1995]. The second is to locate the pressure

where a rapid increase in slope occurs [Harris et al., 2000]. The third is to locate the

pressure where the tangents of the lower compliance and high compliance sections

cross [Takeuchi et al., 2002, Gattinoni et al., 1987, Amato et al., 1995]. The fourth

method is to locate the lower pressure point where the curve first deviates from its high

compliance region [Dambrosio et al., 1997]. Model based techniques were created to

help curb this variability and to improve reproducibility. [Venegas et al., 1998] intro-

duced the sigmoid method and [Grychtol et al., 2009] used the 3-piece linear method.

Another point which should be noted in this study and others is that for all pressure-

volume/impedance curves the pressure is assumed to be homogeneous throughout the

lungs [Hinz et al., 2006]. In addition when using regional information from the EIT

the image is restricted to one plane and does not consider the cephalo-caudal plane

[Hinz et al., 2006].
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Figure 6.2: Two examples of a sigmoid and linear spline fitted pressure-impedance
curves with inflection points. The pressure-impedance data was selected from the
indicated spot in the EIT lung image in the top left corner. It can be seen from the
sigmoid graphs that most often both IP are not found, while the linear spline method
is always able to locate an IP.



Chapter 7

Algorithm Design

This chapter explains the optimal pressure algorithm designed for the use of taking

EIT images and the associated pressure ramp and to calculate the optimal Posi-

tive End-Expiatory Pressure (PEEP) to reduce ‘bad’ (overdistended and collapsed)

lung tissue while maximizing ‘good’ (well ventilated) lung tissue. The algorithm was

designed and coded in the MATLAB language and was designed to integrate into

preexisting data analysis code from [Pulletz et al., 2011]. The system first calculates

the Inflection Points (IP) from the Pressure-Impedance (PI) graphs, then applies the

IP along with expert knowledge of guided ventilation strategies to create fuzzy mem-

bership graphs for a Fuzzy Logic System (FLS), and finally chooses a PEEP. Two

Fuzzy Logic systems were created for comparison, with one using the pressure values

(FSp) of the IP while the other used the EIT values (FSe).

Using the designed algorithm optimal PEEP settings were found on the inflation

and deflation limbs. With multiple patients in the data this chapter will display

examples, results, and overall stats of specific patients or for the entire population.

Using IP as the main source for the membership graphs allowed for past literature

(Chapter 6) to be used in locating an optimal PEEP. The benefits of the approach here
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is that improvements can be done in parallel. I.E. improving the IP location algorithm

and improvements to the FLS can be done at the same time. [Grychtol et al., 2010]

worked on a similar task but did not use the information provided by the IP and had

more complicated rules in his system. Along with the parallel nature of the design

the ventilation recruitment maneuver was under 2 minutes in length. The last novel

aspect is how regional IP were used when locating the PEEP.

The algorithm is designed into four stages. The first being the locating of the

inflection points. The second is the fuzzification. The third is the premise calculation

and fourth is defuzzification and optimization (Fig. 7.1).
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Figure 7.1: Example outputs from each stage of the algorithm. Starting with inflection point location the algorithm
works toward fuzzification using the IP found the previous stage for the membership graphs. Once applying the rule base
the premise is created and shown clearly. Finally each pixel is average and the PEEP is selected as shown in the last
column.
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7.1 Inflection Point Calculation

To create the Fuzzy Logic system, regional inflection points were used within the

membership graphs. In order to calculate the inflection points the pressure ramp

and EIT images were first split into two sections: a) inflation limb and b) deflation

limb. Details on the pre-analysis are discussed in Chapter 4.2.3. From here each

pixel within the ROI was fitted to a three-piece linear spline in the partitioned least

squares sense and the IP located. Fig. 7.1 shows an example of the expected output.

The three-piece linear spline algorithm computes the piecewise linear least squares

spline with optimized internal breakpoints. It uses a partitioned least squares for the

parameter estimation and was coded by [D’Errico, 2011]. Initial breakpoint values

used for the linear fit were equally spaced value ranging from the lowest to highest

pressure. From here the matrix A and b were set to solve the inequalities in (7.1).

In (7.1) all inequalities, except Ax ≤ b were not used. The three constraints which

made up A and b are listed below. Where Xin is the input data on the x-axis. a is the

second break point, b is the third break point, with the first and fourth break point

being the min and max of the Xin data and lmin is the minimum length of each line

segment.

1. a > lmin +min(Xin)

2. b− a > lmin

3. b ≤ max(Xin)− lmin

(7.1) represents the constraints for the minimization where c(x) and ceq(x) are

non-linear functions which output a vector. x is a vector of the unknown parameters.

A and Aeq are a set of linear equations with inequalities/equalities in b and beq. Finally
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lb and ub are the lower and upper bounds for the parameters, x. In this thesis x was

the two break points.

minxf(x) such that



c(x) ≤ 0,

ceq(x) = 0,

A · x ≤ b

Aeq · x = beq

lb ≤ x ≤ ub

(7.1)

7.2 Fuzzification

In order to create a FLS, membership functions are needed to map the crisp values

to corresponding fuzzy sets (Fig. 7.1). Using trapezoidal membership graphs three

fuzzy sets were created: Below, In Between, and Above. The states were created

as such because of the known benefits of setting PEEP above the lower inflection

point and below the upper inflection point. Studies showing the relationship between

having PEEP below the LIP and above the UIP and the amount of lungs collapsed or

overdistended are discussed in detail in Chapter 6. The first step in the process was

to separate the inflation and deflation limb which was done via the inputed timing

data. From here the next step was to set up the membership graphs. Using the

trapezoidal method each membership graph takes 4 inputs. The first, (a), indicates

where the upward slope starts with prior to reaching that point the membership

is zero. The second, (b), indicates where the upward slope ends and the constant

full membership line begins. The third, (c), indicates where the full membership

ends and the decrease slope begins. The fourth, (d), parameter indicates where the

slope stops and the membership graph goes to zero (Fig. 7.2). Each pixel in the
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ROI had a slightly different shaped membership graph due to the location of their

respective IP (Fig. 7.1). For a detailed look of how the parameters are set for the

membership graphs refer to Table 7.1. Table 7.1b has the constant f, this constant is

used to convert pressure (mbar) to image amplitude (∆Z). This was done using the

calibration equation (7.2). In this equation pvec is the pressure vector, ∆Zvec is the

image amplitude vector, p is the known value of ±2 mbar, and ∆Z is the unknown

factor, f .

max(pvec)

max(∆Zvec)
=

p

∆Z
(7.2)

Membership Input 1 (mbar) Input 2 (mbar) Input 3 (mbar) Input 4 (mbar)

Below min(p) min(p) -2+LIP LIP
In Between -2+LIP LIP UIP 2+UIP
Above UIP 2+UIP max(p) max(p)

(a) Linguistic variable pressure membership graph parameters

Membership Input 1 (∆Z) Input 2 (∆Z) Input 3 (∆Z) Input 4 (∆Z)

Below min(e) min(e) -2f+LIP LIP
In Between -2f+LIP LIP UIP 2f+UIP
Above UIP 2f+UIP max(e) max(e)

(b) Linguistic variable EIT membership graph parameters

Table 7.1: Details on creating the trapezoidal based fuzzy membership functions

To calculate the degree of membership for a trapezoidal membership graph one

can either use the R2011a Fuzzy Logic Toolbox in MATLAB, if available or use

Equation 7.3 which simplifies to an easy to implement equation: f(x : a, b, c, d) =

max
(
min

(
x−a
b−a , 1,

d−x
d−c

)
, 0
)
. The later method was implemented, giving control over

software details.
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Figure 7.2: Trapezoidal Fuzzy Membership graph. This is the type of membership
graph used within the designed algorithm.

f(x : a, b, c, d) =



0, x ≤ a

x−a
b−a , a ≤ x ≤ b

1, b ≤ x ≤ c

d−x
d−c , c ≤ x ≤ d

0, d ≤ x

(7.3)

7.3 Premise Calculation

Once the two linguistic variables (pressure and impedance) were fuzzified they pro-

ceeded to the Inference (IF-THEN) system. For this thesis two rule sets were used,

both were simple rules with one linguistic variable allowing for traceability. With

minimal literature on this specific topic a simple basis in which to expand from was

needed [Grychtol et al., 2010]. Using previous PEEP setting literature as a base three

simple rules were derived and can be seen in the Rule Base Table 7.2.
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The similarities to past lung physiological papers exist. Looking at the first rule

used if the pressure is found below the LIP it is considered collapsed which resembles

many observations found in literature much of which is discussed in Chapter 6. This

also applies to the overdistended state but with the key difference being if the pressure

exceeds the UIP the lung unit is considered overdistended. [Grychtol et al., 2010] used

more complex rules, as illustrated in (8.3) but for this thesis simplicity was the aim.

The use of simple rules allowed for ease of testing the effects of the rules and provide

a basis in which to develop on.

IF Pressure/EIT THEN State

Below Collpased
In Between Normal
Above Overdistended

Table 7.2: Rule base table for the first and second fuzzy systems

7.4 Defuzzification

The last section of a FLS is to establish the defuzzification system.

[Grychtol et al., 2010] used max defuzzification to decide which state the pixel would

be end in. This entails taking the maximum of all consequents and choosing the fuzzy

set with the max membership as the final class. This method would have been per-

formed on each pixel at every time step. The MAX method is easy to implement but

loses information by not considering the other states in the final classification. Other

methods of defuzzification provide an adjustment based on the other consequent mem-

berships, for instance finding the center of mass below the consequent curve. For a

classification problem, like this thesis, more complicated defuzzification procedures

can pose a problem since the final class must discrete. Defuzzification maps the con-

sequents to a crisp out value, such as pressure. So for each input pressure to the FLS
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the output would also be a pressure. This would work fine for a control system but

for our purpose, classification, we don’t have a single input measurement but rather

we are looking for an optimal PEEP from an entire range of pressures. For this thesis

the MAX method was not used since the membership degree was kept to use all the

information available in the pressure optimization.

The pressure optimization was done by categorizing each of the consequents into

a ‘good’ and ‘bad’ category. The ‘good’ category consisted of units within the normal

consequent state while the ‘bad’ category consisted of units within the collapsed and

overdistended consequent states. From here the sum for all the pixels were taken with

the logic that a single pressure must be selected for the entire ventilation system. This

leads to working with two 1-D vectors with the x-axis being the index for the optimal

pressure. This is shown in Fig. 7.1 as the last section in the diagram, Optimization.

To find the optimal index the bad states was subtracted from the good states and

the global max was found of the resulting curve. For examples refer to Fig. 7.1.

7.5 Summary and Discussion

In summary this algorithm was designed to use the regional information from an EIT

system to locate regional IP with the ultimate means of locating an optimal PEEP

pressure. The steps taken were to first fit the PI graphs to a three-piece linear spline.

From here the inflection points were taken as the location of the breakpoints where

the pressure and impedance change values were used to create membership graph

for two FLS. The membership graphs map the pressure and impedance change to

3 fuzzy sets: Below, In Between, and Above. The significance of these fuzzy sets

are that they ensure the that optimal PEEP is found somewhere between the two

inflection points. The significance of this point is discussed in Chapter 6. Once
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fuzzified the fuzzy sets are used in IF-THEN rules to create 3 conclusions: Collapsed,

Normal, and Overdistended. The rules for each system can be seen in Table 7.2.

With the conclusions now established for each pixel they are put into ‘good’ and

‘bad’ categorizes. The ‘good’ category consists of pixels within the Normal conclusion

with the ‘bad’ category consisting of the Collapsed and Overdistended conclusions.

From here the sum of the membership values for the two categories is done and the

difference between ‘good’ and ‘bad’ is taken to find the maximum of the difference.

The max location signifies the index for the optimal pressure. Finding the best PEEP

is a matter of using the index in the pressure vector.

The system created here is a large first step into using both EIT and Fuzzy Logic

for the purpose of PEEP adjustment.



Chapter 8

Results and Analysis

This chapter explains the results from the algorithm described in Chapter 7. The

data used for comparison and analysis is described in Chapter 4. This chapter goes

through a comparative analysis of the linear and sigmoid methods, the linear and

visual heuristic methods, the sigmoid and visual heuristic methods, analysis of the

membership graphs, and finally an analysis of the PEEP selection.

8.1 Inflection Points

This section compares the inflection points (IP) using the linear method, the sigmoid

method, and the visual heuristic method.

8.1.1 Inflection Points for Individual Algorithms

To find the regional IP a 3-piece linear spline [Grychtol et al., 2009] was used with

optimal breakpoint location [D’Errico, 2011]. The algorithm is described in Chapter

7. When comparing LIP found between control and ALI patients, a noticeable dif-

ference in value was found with the ALI patients having an average LIP of 10.7146
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mbar versus an average LIP of 6.3550 mbar in control patients. This result matches

[Pulletz et al., 2011] as they found similar increases, in the same data, using the re-

gional opening technique.

8.1.2 Linear Spline vs. Sigmoid Method

To compare the linear and sigmoid methods locations where both IP were found could

only be used. The linear method was able to find inflection points 99.95% of the time

while the sigmoid method was only able to an inflection point 57.13% of the time.

The sigmoid method had an interesting trend in that it tended to find one inflection

point, either lower or upper but hardly ever both (Fig. 8.1).
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Figure 8.1: How frequent each curve fitting method was able to locate an IP. The box
around the median line represents the 75th to 25th quartile. The dashed lines outside
of the box indicates the max and min values.

Within Fig. 8.2 a single red line with no quartile box means only one difference

was obtained. This is because one of the two methods was unable to locate an IP,

thus no comparison could be taken. For some patients where no comparison was

available because neither algorithm could find an IP in the same pixel and location a

N/A was placed. When the sigmoid and linear methods were compared and averaged

over the entire patient population the difference between the two methods for the

lower inflection point on the inflation limb were similar, yielding a 1.47 mbar average

difference with average standard deviation of 3.02 and average median difference of
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1.50 mbar. A full listing of the differences for both inflection points and both pressure

arms can be seen in Table 8.1. From Fig. 8.2 we can see the difference between the

two methods being small, but have large variability. When looking at the average

absolute difference large differences of 4.23 mbar was found. The value was calculated

as the average absolute difference over both limbs and all IP. This value is significant

considering that this may change the state in which the alveoli is in. From Table 8.1

it is clear the larger differences originated from the UIP on the inflation limb and the

LIP on the deflation limb.

Mean Std Median

LIP - Inflation 1.47 3.02 1.50
UIP - Inflation -6.80 2.54 -6.82
LIP - Deflation 4.07 1.84 4.07
UIP - Deflation -2.37 2.24 -2.78

Table 8.1: Mean, standard deviation, and median difference between the sigmoid
and linear inflection points averaged over all patients. The units are in mbar. For a
graphical representation refer to Fig. 8.2.

One explanation for the large absolute difference is the amount of samples in each

average. In the sigmoid method a median of 3.29 % of all the pixels in patients could

find an UIP on the inflation limb while 30.10% could find a LIP on the deflation

limb. The lack of samples in the comparison can suggest that it does not give a

correct representation of the actual data. Testing to see if the % of IP found effects

the magnitude of the difference (8.1) was used, where da is the absolute difference

between the two IP found by the linear and sigmoid methods and pp is the percent

of IP not found by the sigmoid method.

r = corr(da, pp) (8.1)

A correlation of r%diff−uipinf = 0.0360 (p = 0.8769) was found for the UIP on the



8.1 Inflection Points 60

−10
0

10
20

7 8 11 1213 14 15 16 17 18 19 20 2123 25 26 27 28 29 30 32 3940 41 42 43
patient

Lower Inflection − Inflation

di
ffe

re
nc

e 
−

 m
ba

r

−20

−10

0

7 8 11 1213 14 15 16 17 18 19 20 2123 25 26 27 28 29 30 32 3940 41 42 43
patient

Upper Inflection − Inflation

di
ffe

re
nc

e 
−

 m
ba

r

N/A N/A N/A N/A N/A

(a) Inflation Arm

0

10

20

7 8 11 1213 14 15 16 17 18 19 20 2123 25 26 27 28 29 30 32 3940 41 42 43
patient

Lower Inflection − Deflation

di
ffe

re
nc

e 
−

 m
ba

r

−10

0

10

20

7 8 11 1213 14 15 16 17 18 19 20 2123 25 26 27 28 29 30 32 3940 41 42 43
patient

Upper Inflection − Deflation

di
ffe

re
nc

e 
−

 m
ba

r

(b) Deflation Arm

Figure 8.2: Difference in IP between the Sigmoid and Linear methods. The boxes
around the median line represent the 75th to 25th quartile while the dashed line rep-
resents the max and min for each difference. A lack of comparative data is indicated
in Patients with no quartile boxes. N/A signifies patients in which neither algorithm
was able to locate an IP in the same pixel.
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inflation limb and a r%diff−lipdef = 0.2018 (p = 0.3229) was found for the LIP on the

deflation limb. These correlations were found by taking the Person correlation with a

two-tail student t-test between the percent of pixels in which no IP was found verses

the median difference for the entire lung. With 26 patients each vector had at max

26 values, with fewer due to no inflection points being found and thus no difference

being calculated. The high p-value suggest that the number of pixels in the difference

calculation have little effect on the actual difference value. Another idea which helps

explain why there was a lack of samples for the LIP and UIP in the sigmoid method

was that the airway pressure was limited to either 2L tidal volume or 35 mbar and

in one patient the max pressure for the entire maneuver was as low as 19 mbar and

the minimum pressure being as high as 5.1 mbar. [Pulletz et al., 2011] also noted the

max and min pressure problem and stated that the extent of the minimum/maximum

pressure settings is unknown in clinical environments. Fig. 8.3 shows the distribution

of the max and min pressures for the inflation limb and deflation limbs for all patients.
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Figure 8.3: Histogram of the minimum and maximum pressures for all patients. The
maximum pressure for the inflation and deflation limb are the same.

Testing to see if the max and min pressure had a significant relation on the dif-

ferences (8.1) was used, where da was the absolute difference between the IP and

pp is either the max or min pressure depending on if the UIP or the LIP respec-

tively was being tested. It was found that a correlation did exist for the UIP on

the inflation limb while none existed for the LIP on the deflation limb. The UIP

on the inflation limb, which showed differences of -6.80 mbar, had a correlation of
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rmxmn−diff−uipinf = 0.4299 (p = 0.0518) with the max pressure while the difference

for the LIP on the deflation limb had a rmxmn−diff−lipdef = −0.1072 (p = 0.6021) with

the min pressure. From these results we can see a slight trend did exist between the

differences in the UIP on the inflation limb and the maximum pressure used, while

no correlation can be seen in the LIP on the deflation limb. This could be because

of the narrow distribution of the min pressure in the deflation limb. The correlations

can be seen in Table 8.2. Despite the very low p-value it can not be said that a

relationship exists, further experimentation is needed to avoid any false classification

[Ioannidis, 2005], but it does cater to the idea of further testing.

Correlation p-value

% Difference - UIP on Inflation r%diff−uipinf = 0.0360 p = 0.8769
% Difference - LIP on Deflation r%diff−lipdef = 0.2018 p = 0.3229
Max Pressure - UIP on Inflation rmxmn−diff−uipinf = 0.4299 p = 0.0518
Min Pressure - LIP on Deflation rmxmn−diff−lipdef = −0.1072 p = 0.6021

Table 8.2: Correlations used to explain large Inflection Point difference between the
Sigmoid and Linear method

Another possible reason for such high differences could be due to the linear spline

algorithm method of locating IP. Adjustments to how the linear method finds IP could

be made to try and reduce the difference between the two methods. This alternative

method has been implemented once before and has intuitive sense by trying to keep

the first and last slopes to a low compliance [Grychtol et al., 2009]. This and more

ideas are discussed in Chapter 9.

[Grychtol et al., 2009] compared the sigmoid method on a global scale to a three-

piece linear method and found high correlations (r2 = 0.955, p < 0.001) for both

inflection points on post injury patients. A small difference between the spline and

sigmoid method was found in the lower inflection point. An average of 1.43 mbar

was observed in the spline method over the sigmoid method and statistically tested
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with a paired sample T-test. [Grychtol et al., 2009]s result matches closely with the

difference found in this thesis. In this thesis a 1.47 mbar average difference between

the linear spline and sigmoid method was found.

Overall the difference between the IPs found by the two methods were similar

and match previous results [Grychtol et al., 2009]. A major improvement with the

linear method compared to the sigmoid method is the consistency in finding IPs. As

mentioned earlier the linear method was able to locate an IP 99.95 % while the sigmoid

method was only able to locate IPs 57.13% of the time. The consistency found in

the linear method allows for repeatable results over multiple experiments. The linear

methods similarity to manual curve fitting also makes it a great fit for hospitals as

clinicians will be familiar with workings and understand the results better then using

the sigmoid method.

8.1.3 Linear and Sigmoid vs. Visual Heuristics

In this thesis we tested four pixels from each patient and asked five volunteers to

fit three linear segments to the data. All volunteers except one had an Engineering

background with the other having an English major background. The location of the

inflection points were the points where the two lateral line segments intersected the

median. An example of what each participant had to do is illustrated in (Fig. 8.4).

The provided instructions were to fit the data in an optimal manner with three line

segments. Each participant worked with both the inflation and deflation arms of the

recruitment maneuver thus fitting eight pressure-impedance (PI) curves per patient.

The experiment was designed in such a way that each person was only given one

chance to place an IP thus medians over the participants were taken to help reduce

the effects of a misplaced IP. It should be noted that each participant fitted the same

PI curves providing continuity between participants and allowing for stats to taken
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over the participant data. For a detailed look of the location of the pixels refer to

Fig. B.1.

Difference = Auto IP− Visual Heuristic IP (8.2)
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Figure 8.4: Examples of both ‘good’ and ‘bad’ case scenarios encountered during the
visual heuristic experiment. The PI data is taken from the pixel shown in the EIT
image in the top left corner.

Linear vs. Visual Heuristics

In order to compare the linear and visual methods (8.2) was used and the me-

dian was found over the 5 participants then averaged over the 26 patients and 4

pixels. Similar inflection points were found between the linear and visual heuris-

tic methods with the difference being -0.6247 mbar for the LIP and -0.4662 mbar

for the UIP. Expanded results looking into per pixel differences can be seen in

Table B.1. Comparing the IP generated by the linear spline method and the vi-

sual heuristic method provides some insight to the accuracy of the linear based re-

sults since prior to function based curve fitting inflection points were located by eye

[Matamis et al., 1984a, Martin-Lefevre et al., 2001].

Fig. 8.5 and Table B.1 shows the difference between the human inflection points

and linear based inflection points. From the table we can see the differences are quite
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Figure 8.5: Box plot showing the difference in IP from the human heuristics method
and the linear spline method. The boxes around the median line represents the 75th

to 25th quartile while the dashed lines represents the max and min for each difference.

small with the best average difference being 0.007 mbar and a median difference of

−0.0240 mbar. The median and average were taken over all patients. These values

were made from the upper inflection of the 2nd pixel which has the common location

throughout all patients for being on the right lateral side when the anterior side is

up. With the majority of patients being in the medial anterior - posterior plane. For

a detailed look at the location of each pixel for all patients refer to Fig. B.1.

Sigmoid vs. Visual Heuristics

Similar to the linear comparison (8.2) was used to compare the sigmoid method and

visual heuristic method with the median being taken over the 5 participants then

averaged over the 26 patients and 4 pixels. Larger differences were noticed with

sigmoid method, compared to the linear vs. visual comparison. Differences of -

2.09 mbar for the LIP and 2.6 mbar for the UIP were found. Additional to the larger

differences the sigmoid method was again unable to find many IP. For this comparison
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a total of 147 of a possible 208 IP were not found, this is 70.7%. In Fig. 8.6 N/A

represents no comparison was made due to a lack of IP found by the sigmoid method.

Plots showing a single red line indicates only 1 of 4 IP were found by the sigmoid

method.
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Figure 8.6: Box plot showing the difference in IP from the human heuristics method
and the linear spline method. The boxes around the median line represents the 75th

to 25th quartile while the dashed lines represents the max and min for each difference.
A lack of comparative data is represented by no quartile box surrounding the median.
N/A means the sigmoid method was unable to find an inflection points for any of the
four pixels.

8.1.4 Conclusion

Overall from the larger differences between the visual heuristic and sigmoid method

as well as the lack of finding inflection points makes the linear spline method a better

choice. With more testing the linear spline method can be compared to a larger

sample of IPs found from visual heuristics by professionals. From these tests though

it is recommended that the linear spline method be further looked into.
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8.2 Membership Graph and IF-THEN Rules

In this section details of past Fuzzy Logic Systems (FLS) and current Fuzzy Logic

Systems for the task of lung segmentation and classification are discussed. Each FLS

is analysed using the [Wu and Mendel, 2011] criteria and can be seen in Table 8.3.

Validity: The summaries must be derived from data with high confidence.
Generality: This describes how much of the data supports the summaries.
Usefulness: This relates the summaries to the goal of the user, especially in terms of

the impact that these summaries may have on decision-making.
Novelty: This describes the degree to which the summaries deviate from our ex-

pectations, i.e., how unexpected the summaries are.
Simplicity: This measure concerns the syntactic complexity of the summaries. Gen-

erally, simpler summaries are easier to understand and, hence, are pre-
ferred.

Table 8.3: [Wu and Mendel, 2011] criteria for testing IF-THEN systems.

Using IP as the integral part of the fuzzy membership is a new idea when it comes

to automated fuzzy PEEP setting for mechanical ventilation.

[Grychtol et al., 2010]s FLS base classifier fuzzified its inputs to three fuzzy sets:

Low, Average, and High . In [Grychtol et al., 2010] the membership graphs were

trapezoidal and spanned from the minimum value to the maximum value of each pixel

with the mean being right in the middle of the Average fuzzy set. This method of using

three fuzzy sets and many features relied on its rules to perform the segmentation. The

system by [Grychtol et al., 2010] used more complicated rules using the impedance

change values, the spectral information of the impedance change, and the pressure as

linguistic variables to be fuzzified.

Using the [Wu and Mendel, 2011] criteria for quality of IF-THEN systems

[Grychtol et al., 2010] was analysed. The rules implemented in [Grychtol et al., 2010]

performed well with few improvements. The rules summarized the data well but were

missing a conclusion for normal states. Instead [Grychtol et al., 2010] deciding on
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using the transition states such as; Collapsing, Opening, Recovering and Overdis-

tending. The implemented rules were useful in achieving the goal of classification

and do provide novelty; but, when simplicity is a concern, this set of rules are quite

complicated. An example of one of the rules in [Grychtol et al., 2010] can be seen

below.

Opening(n) = (feit(n) = Lo) ∩ (feit(n− 1) = Lo) ∩ (sgn(∆feit(n)) = Hi)

∩ (sgn(∆σ(n)) = Lo) ∩ (sgn(∆p) = Hi)

(8.3)

Similar to [Grychtol et al., 2010] this thesis has satisfied many of

[Wu and Mendel, 2011] criteria. Validity: The rules in the FLS system were

very closely tied to the data as they used the inflection points and knowledge of how

PEEP was set in previous studies to create the membership which intern lead to

the rules. Generality: This criteria was harder to asses as no hard validation data

was available. While the data used created the membership graphs and rule base

it can not be said if the data supports the truth of the rules. Since the IP were an

integral part in the creation of the membership graphs if the IP were miscalculated

the error would propagate into the FLS thus determining where the error originates

impertinent. Usefulness: The rules in this FLS were extremely useful with no

redundant or useless rules. Novelty: The rule base is novel as including the IP in a

FLS has not been done before but the rules were largely based on knowledge attained

from previous global based PEEP settings. An overview of past PEEP settings

are discussed in Chapter 6. Simplicity: The rule base in this study were extremely

simple.
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8.3 Optimal PEEP

The optimal PEEP in this thesis was found using two separate systems (FSp and

FSe), with the difference being the linguistic variables. The first, FSp, used pressure

as the input variable while the second, FSe, used impedance change values. Details

on the design of the algorithm are discussed in Chapter 7. Fig. 8.7 demonstrates the

progression from collapsed states to overdistended states, from the figure it’s clear to

see some pressure ranges have larger areas of normal states.
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Figure 8.7: The progressive change of lungs regions as the pressure increases and
decreases. The classifications are derived from the fuzzy logic system and show the
progressive change from collapse to overdistended as the pressure increases. This
figure also demonstrates the heterogeneous nature of the lungs.

Comparing the two FLS it can be seen that the results for optimal pressure were

very similar. The average difference between the two systems was 0.74 mbar and

−0.38 mbar for inflation and deflation limbs respectively. The difference is illustrated

in Fig. 8.8. The median difference between the two systems was 0.7 mbar and −0.5

mbar with the σ being 0.98 mbar and 1.42 mbar for inflation and deflation respectively.
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The tabulated results are shown in Table 8.4. The average PEEP for both methods

were 12.9 mbar and 16.6 mbar, and 12.1 mbar and 19.9 mbar for FSp and FSe, and

inflation and deflation respectively.

6 8 10 12 14 16 18 20
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3
Bland−Altman Plot

Average [mbar]

D
iff

er
en

ce
 [m

ba
r]

(a) Inflation

10 12 14 16 18 20 22
−5

−4

−3

−2

−1

0

1

2

3
Bland−Altman Plot

Average [mbar]

D
iff

er
en

ce
 [m

ba
r]

(b) Deflation

Figure 8.8: Difference and average of the optimal PEEP found between FSp and FSe

Statistic Inflation Deflation

Mean 0.74 -0.38
Std 0.98 1.42

Median 0.70 -0.50

Table 8.4: Results of the difference comparison for the optimal PEEP between Fuzzy
Rule System p and e

[Takeuchi et al., 2002] showed that from a global PV curve the best PEEP to use

was LIP+2 mbar. Using this idea a global pressure-impedance curve was created and

the LIP+2 mbar was found. Comparing this value to the calculated optimal PEEP

from FSp and FSe we can see that the FLS obtain similar results for some patients

but not with others, Table 8.5 and Fig. 8.9.

From Fig. 8.9 four sample patients were selected for further analysis. Two patients

with large error and two patients with near zero error. In Fig. 8.11 we can see the
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Statistic Fuzzy System p Fuzzy System e
Inflation Deflation Inflation Deflation

Mean 2.70 6.68 1.96 7.06
Std 10.60 27.89 10.58 23.12

Median 1.98 7.20 1.15 7.37

Table 8.5: Results of the comparison between Fuzzy Rule system p and e with
[Takeuchi et al., 2002] result of LIP + 2 mbar as a good PEEP.

global PI curves with the linear fit and inflection points and the FLS optimal selection

graph. Looking at Fig. 8.11b we can see how the large difference between the two

systems arrived. The LIP on the global graph is largely dependent on the curve

fitting algorithm thus an errors in linear spline method will be weighted greatly on the

PEEP selection. For the Fuzzy Logic system each pixel is fitted by the linear spline.

Comparing patient 12 and 16 to the human heuristic method large variability can be

seen. This is illustrated in Fig. 8.10. While patient 8 and 17 have low variability.

This shows the IP calculation needs to be tweaked for increased accuracy.

8.4 Conclusion

Overall the algorithm did what it was designed to do, locate and suggest a PEEP

based on regional data obtained from EIT. In terms of success with no gold standard

to compare to, it is difficult to say if the suggested PEEP will produce better results

then current methods. In terms of the suggested PEEPs both systems performed well

with very little difference between the two the systems. I would suggest using the

pressure based system as it is easier to follow and provides smoother input signals.

Between choosing the deflation limb verse the inflation limb for PEEP selection.

[Hinz et al., 2006, Bigatello et al., 1999] have suggested the use of the deflation limb

as collapsed lung tissue recruit at a higher PEEP then is needed to maintain open
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tissue. In this thesis opposite results were noticed, as shown in Fig. 8.12. This can be

explained since prior to the recruitment maneuver ventilated breathing of the patient

was taking place. This ventilation could have already initially recruited the tissue.

Drawing conclusions from the comparisons it can be said that the linear method for

locating inflection points from pressure-impedance graphs is worth using. The linear

method allows for locating inflection points reliably. It’s also easy to understand by

doctors, providing easy to access standards. It also obtained similar results to the

visual heuristic method showing it’s accuracy. It also had similar results to that of

the Sigmoid method which is known to be a classical method for locating IP.

The automated PEEP portion of the work also worked well. It was able to suggest

a PEEP using regional IP and knowledge of the use of PEEP and the effect on lung

tissue at various PEEPs. The designed system also has benefit to be used to control

mechanical ventilation systems.
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Figure 8.9: Difference and average of the optimal PEEP for both FLS and
[Takeuchi et al., 2002] suggested PEEP of using LIP+2 mbar. Within Fig. 8.9b the
circles indicate further analysis was performed.
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Figure 8.10: Difference between the human heuristic method and the linear spline
method for the lower inflection point on the inflation limb only.
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Figure 8.11: Global PI curve with LIP, UIP, and the LIP+2 mbar pressure and the
Fuzzy optimal selection with according FLS based pressure.
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Figure 8.12: The PEEP suggested using both Pressure based and EIT based systems.
Each data point represents a patient. From the figure it can be seen the inflation
limb suggested PEEP is lower compared to respective deflation suggested PEEP.



Chapter 9

Summary and Future Work

This work takes a novel step toward development of tools for automated PEEP selec-

tion for mechanical ventilation systems. Using a quasi-static pressure based recruit-

ment maneuver optimal PEEP was located to reduce lung injury conditions while

maximizing typical working lung tissue. Contributions to this task were locating re-

gional Inflection Points (IP) to reduce collapsed and overdistended lung tissue known

to be factors of Ventilator Induce Lung Injury (VILI). Refer to Chapter 6 for a de-

tailed study on locating IP. Additionally, using the lower and upper inflection points

(LIP and UIP) a Singleton Type-1 Fuzzy Logic System (FLS) was created to classify

lung regions as collapsed, normal, or overdistended. With the classifications a PEEP

was located. Details on the algorithm design can be seen in Chapter 7.

Evaluations were performed by comparing the recommended PEEP from this the-

sis to the recommended value in the study conducted by [Takeuchi et al., 2002]. De-

tails of the comparison can be seen in Chapter 8.3.

This work investigates the use of regional IP along with the tool used to locate

them, the linear spline technique [Grychtol et al., 2009]. It also investigates the use

of Fuzzy Logic in converting quantitative values and expert knowledge of mechanical
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ventilation systems for ALI patients into classifications. This work retrospectively

evaluated a group of 26 patients of which consisted of control and ALI patients. For

more information on the data used refer to [Pulletz et al., 2011] or Chapter 4.

9.1 Future Work

Algorithm 
Improvements

Linear Spline

Fuzzy Logic 
System

Slope Constraints

Compliance 
Adjustment

Non-Singleton 
Models

Type-2 
(Uncertaintly)

Figure 9.1: Algorithm improvement Tree Chart

9.1.1 Linear Spline Improvements

Improvements to the designed algorithm are broken into two categories and are il-

lustrated in Fig. 9.1. The first improvement has to do with the algorithm used to

detect the inflection points. The method currently implemented by [D’Errico, 2011]

worked well and only needs minor revisions. Restrictions on the first and last line

segment should be implemented to ensure relatively horizontal slopes are met. This
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would enforce the idea that these regions have low compliance and indicate col-

lapsed or overdistended tissue. The current implementation locates the global op-

timal breakpoints and has no restrictions on the slopes (compliance). An addi-

tional improvement would be to convert the pressure-impedance graphs into stan-

dard pressure-volume graphs using the scaling factor in (9.1), where P is the pres-

sure, V is the volume, and ∆Z is the change in impedance. Using (9.1) we could

obtain regional pressure-volume curves making it similar to what past research

[Harris, 2005, Papadakis and Lachmann, 2007, Lu et al., 1999, Takeuchi et al., 2001,

Venegas et al., 1998, Martin-Lefevre et al., 2001, Harris et al., 2000].

dV

dP
=

dV

d∆Z

d∆Z

dP
(9.1)

9.1.2 Fuzzy Logic Improvements

The second improvement is for the Fuzzy Logic System and is separated into two parts.

The first is to incorporate uncertainty measures from the initial crisp data by apply

non-singleton functions to the fuzzification processes. This works by modeling the

data to a certain distribution, such as Gaussian, and then combining the distribution

with the membership graph and choosing the largest value as the membership value.

From Fig. 5.1 the variable µXi
(xi) would the distribution. The second improvement

would be to incorporate uncertainty measures into the fuzzy membership graphs.

This would turn the Type-1 FLS into a Type-2 FLS. [Mendel, 2001] provides excellent

documentation on this process and is a great source to Fuzzy Logic. The uncertainty

measures can come from the variance incorporated within the EIT reconstruction.

PAO =
V

C
+ V̇ R + V̈ I − Pmus (9.2)
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A more novel improvement would be to tackle the assumption that the airway

pressure which is used with in the pressure-impedance calculations are the same

throughout the entire thorax [Costa et al., 2009].

In [Harris, 2005] the equation for airway pressure is used to model the changes in

pressure of the respiratory system. We can see this equation in (9.2) where V is the

volume, Cis the respiratory compliance, V̇ is the volume flow, R is the respiratory

resistance, V̈ is the volume acceleration, I is the respiratory impedance, and Pmus is

the pressure needed for respiratory muscle movement. All the variables listed assume

equal lung expansion as can be seen from the globular nature.

For quasi-static and static recruitment maneuvers all factors other than V and C

are ignored or negligible. The reason behind this is discussed in Chapter 2. Using

the regional information of EIT, the compliance conversion equation in (9.1), and

the measured volume provided by the mechanical ventilation system we can calculate

the regional compliance. Using the regional compliance and measured volume we

can calculate regional pressure values which can then by used for regional pressure-

impedance curves.

9.1.3 Future Testing

With the lack of a golden standard in the data this study was only able to compute

an optimal PEEP with no ground truth. With this being said a detailed study

should be conducted in which patients are monitored after apply this algorithms

suggested PEEP. From here we can record the survival rates along with the weaning

time. Comparing this set of patients to a control a sense of long term results can be

obtained. In terms of short term results CT scans can be taken and segmented into

overdistended and collapsed regions, from here comparison between the algorithm

in this thesis and the results from the CT scans can be compared. Finally arterial
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oxygen partial pressure, lung inflammation, and mRNA expressions can be taken at

the suggested PEEP and compared to other recommendations.

Overall this thesis sets out to develop an automated system to analyse EIT images

for the use of optimal PEEP selection. Its major contribution are: a) the testing of the

linear spline method for the detection of inflection points within pressure-impedance

curves, and b) the development of a fuzzy logic classification system. It is hoped that

the contributions in this thesis will inspire future work for the improvement of patient

care.



Appendix A

MATLAB Code

All code in this section was written and designed by [D’Errico, 2011]. With his

permission it was included in this thesis as it no longer appears online.

A.1 Linear Spline

function spl=plinfit(x,y,numseg,minlen,dispimg)
% computes a piecewise linear least squares spline with optimized
% internal knot placement. Uses a partitioned least squares
% for the parameter estimation.
%
% Note: the spline fit will be in a piecewise Hermite form.
% as I return it, the first column of spl will be the list
% of breakpoints of the spline, and the second column will
% be the values of the function at those points.
%
% It is left as an exercise for the student to figure out how to
% evaluate the estimated function at any point x.

% check to see if this call is really a call to my hidden
% objective function.
if isstruct(y)

spl=plinobj(x,y);
return

end

% make sure x & y are column vectors for convenience
% also, sort them for later convenience in plotting
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[x,tags]=sort(x(:));
y=y(:);
y=y(tags);

if (nargin<4)|isempty(minlen)
minlen=0;

end

if (nargin<4)|isempty(numseg)
numseg=2;

elseif numseg<2
error 'Sorry, but I was lazy, and I insist on at least 2 segments.'

end

% get starting values for the knots
knot0=linspace(min(x),max(x),numseg+1)';
if (knot0(2)−knot0(1))<minlen

error 'minlen is too large for that many knots.'
end

% we are going to optimize only over the interior knots
knot0([1,end])=[];
numparam=numseg−1;

% this structure will contain all we need in the objective function.
% Its simpler this way than passing in multiple extra arguments.
passin.x=x;
passin.y=y;
passin.first=min(x);
passin.last=max(x);
passin.numseg=numseg;

% create the inequality constraint array for fmincon
A=zeros(numparam+1,numparam);
B=zeros(numparam+1,1);
A(1,1)=−1;
B(1)=min(x)+minlen;
for i=2:numparam

A(i,i+[−1 0])=[1 −1];
B(i)=minlen;

end
A(numparam+1,numparam)=1;
B(numparam+1,1)=max(x)−minlen;

% set any options here
options=optimset('fmincon');
options=optimset(options,'display','off');
options=optimset(options,'largescale','on');
options=optimset(options,'Algorithm','active−set');

knots=fmincon('plinfit',knot0,A,B,[],[],[],[],[],options,passin);
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% take the interior knots found from fmincon and get the
% final spline from plinobj
[junk,spl,pred]=plinobj(knots,passin);

% plot the results
if(dispimg)

plot(x,y,'r.')
hold on
plot(spl(:,1),spl(:,2),'b−')
plot(spl(2,1),spl(2,2),'gs');
plot(spl(3,1),spl(3,2),'gs');
hold off

end
% All done. That wasn't so hard after all.

% end of mainline plinfit function, begin hidden objective function
function [obj,spl,pred]=plinobj(interior knots,passin)
% estimate piecewise linear least squares spline given a fixed
% set of knots.

knots=sort([passin.first;interior knots;passin.last]);
delta=diff(knots);

% use bindex to bin the data points
interval=bindex(passin.x,knots,1);

t=(passin.x−knots(interval))./delta(interval);

% build linear least square problem sparsely for fun
n=length(passin.x);
desmat=sparse((1:n)',interval,1−t,n,passin.numseg+1);
desmat=desmat+sparse((1:n)',interval+1,t,n,passin.numseg+1);

% solve
coef=full(desmat\passin.y);

% compute predictions
pred=full(desmat*coef);

% return the objective function as a sum of squares of errors.
obj=sum((passin.y−pred).ˆ2);

% only return the spline itself if two output arguments
if nargout>1

spl=[knots,coef];
end

% ================== end m−file ==========================
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A.1.1 Bin function needed for Spline

function ind=bindex(xtest,binlb,clip flag,method flag)
% bindex: identifies which bin test points fall into
% usage: ind=bindex(xtest,binlb,clip flag,method flag)
%
% arguments:
% xtest − set of one or more points to assign into a list of bins
%
% binlb − list of lower bounds of bins in increasing order.
% The last element in this vector is the upper bound
% of the last bin.
% Note: this vector must be sorted in increasing order.
% I do not test for this property.
%
% clip flag − OPTIONAL scalar flag − binning has one problem −
% i.e., what do you do with test points below the first
% bin's lower bound or above the last bin?
%
% clip flag specifies whether test points below the
% lowest bin are assigned bin 0 or bin 1. likewise
% points above the highest bin must be dealt with too.
%
% nominally, a test point is in the i'th bin if
%
% binlb(i) <= xtest(j) < binlb(i+1)
%
% if a point falls below the lowest bin, then
% this definition suggests it falls in bin 0.
% above binlb(end), this definition puts a point
% in bin number nbin.
%
% clip flag==0 −−> (the default) leave points outside
% the bins, and return 0 or nbins
% clip flag==1 −−> put points below in bin# 1, and
% points above in bin# nbins−1
%
% method flag − OPTIONAL scalar flag − allows the user to
% choose which binning algorithm to use. If not specified,
% then the method is chosen via a simple heuristic.
%
% method flag==1 −−> loop over test points
% method flag==2 −−> loop over bins
% method flag==3 −−> sort
% method flag==4 −−> hash table
%
% ind − array of indicies of the bin(s) into which xtest fell

% author: John R. D'Errico
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% email: woodchips@worldnet.att.net

% default for clip flag
if (nargin<3)|isempty(clip flag)

clip flag=0;
end

binlb=binlb(:);
nbins=length(binlb);
sizeind=size(xtest);
xtest=xtest(:);
ntest=length(xtest);

if (nbins==0)|(ntest==0)
ind=[];
return

end

% decide which method to use
if (nargin<4)|isempty(method flag)

r=nbins/ntest;
if (r>20)&ntest<12

method flag=1;
elseif (r<0.05)&nbins<12

method flag=2;
elseif ntest>2500

method flag=4;
else

method flag=3;
end

end

switch method flag
case 1

% case for small number of test points:
ind=zeros(ntest,1);
for i=1:ntest

ind(i)=sum(xtest(i)>=binlb);
end

case 2
% case for small number of bins
ind=zeros(ntest,1);
for i=1:nbins

ind=ind+(xtest>=binlb(i));
end

case 3
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% sort solution
[xxi,j] = sort(xtest);
[dum,i] = sort([binlb;xxi]);
ind(i) = 1:length(i);
ind = (ind(nbins+(1:ntest)) − (1:ntest))';
ind(j) = ind;

case 4
% hash table solution
ind=zeros(ntest,1);
mv=ind;

b1=binlb(1);
bn=binlb(end);

% size of hash table is dependent on the number of nodes,
% and how close to uniform the spacing is.
ave space=(bn−b1)/(nbins−1);
min space=min(diff(binlb));

max hash=1500;
nhash=round(min(max hash,(nbins−1)*ave space/min space));
hash x=b1+(bn−b1)*((1:nhash)'−.5)/(nhash);
hash table=[bindex(hash x,binlb);nbins−1];

ind(xtest>=bn)=nbins;
k=find((xtest>=b1)&(xtest<bn));

% estimate bin assignment
ind(k)=hash table(1+floor((xtest(k)−b1)/((bn−b1)/nhash)));

% look for any points that are below their bin assignment.
kdec=k(xtest(k)<binlb(ind(k)));
while ˜isempty(kdec)

ind(kdec)=ind(kdec)−1;
j=(xtest(kdec)>=binlb(ind(kdec)));
if any(j)

kdec(j)=[];
end

end

% look for any points that are above their bin assignment
kinc=k(xtest(k)>=binlb(ind(k)+1));
while ˜isempty(kinc)

ind(kinc)=ind(kinc)+1;
j=(xtest(kinc)<binlb(ind(kinc)+1));
if any(j)

kinc(j)=[];
end

end

end
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% be nice and return indices as the same shape as xtest.
ind=reshape(ind,sizeind);

% do we return a bin index below 1 or above nbin−1?
if clip flag

ind=max(1,min(nbins−1,ind));
end



Appendix B

Results Extra

B.1 Human vs. Linear Table

Patient Pixel

Pixel 1 Pixel 2 Pixel 3 Pixel 4
LIP, UIP LIP, UIP LIP, UIP LIP, UIP

7 0.403-1.978,-0.118-2.058 -1.122-1.466,1.365-1.41 -1.693-1.878,-0.164-1.786 -2.198-2.586,-0.807-2.457
8 1.629-1.355,-0.179-0.789 0.375-0.955,0.930-1.186 0.0970-1.969,0.602-1.259 0.405-1.339,-1.899-0.972
11 2.992-3.858,-0.667-3.887 0.735-2.321,-2.875-1.915 2.453-3.406,-0.845-2.511 -0.936-2.319,-1.47-2.56
12 -0.265-1.891,1.63-2.46 0.782-1.125,-1.042-2.023 2.029-2.742,1.696-2.462 0.600-1.947,0.677-2.988
13 0.993-2.924,-5.043-2.744 0.970-1.748,0.135-3.598 -1.787-3.536,-2.954-3.446 -0.537-3.022,-4.95-3.976
14 -2.369-3.314,-3.283-2.56 -1.193-1.948,-0.529-2.336 -2.965-3.206,-1.018-1.865 -2.567-3.668,-2.168-2.056
15 -2.503-1.297,-1.621-2.271 1.528-0.811,2.471-1.88 -4.413-1.893,-3.90-1.801 1.982-1.787,2.741-2.035
16 3.484-2.338,-3.406-2.47 -0.194-3.428,3.238-3.199 -0.716-2.271,-2.579-3.386 -2.238-2.48,-3.059-2.18
17 -3.705-1.37,-2.872-1.872 2.661-2.05,1.957-1.546 -0.908-1.738,-0.0740-1.944 2.009-1.178,2.085-2.49
18 2.223-1.014,2.527-2.163 -2.026-1.749,-2.663-1.412 -1.273-1.287,-2.507-0.882 -2.779-1.347,-1.269-1.418
19 0.464-1.163,2.137-1.109 2.368-2.332,2.19-1.905 -0.457-2.232,0.100-2.039 -3.178-4.36,0.311-2.917
20 0.335-1.768,1.812-1.976 0.640-1.72,-0.0310-2.224 -1.158-2.439,-0.808-2.304 3.433-2.55,1.659-2.168
21 2.60-2.91,-0.170-3.009 -7.337-3.735,-5.488-1.871 -4.071-3.595,-4.755-1.844 -3.03-2.621,0.430-2.072
23 2.161-1.756,1.472-1.776 0.786-0.622,-0.884-2.752 -2.363-1.632,-2.783-2.243 -2.068-3.497,-1.249-4.299
25 -1.814-1.137,-0.761-2.261 -0.820-2.194,-0.187-2.634 -3.209-2.124,-0.913-1.86 -0.435-3.462,-0.618-2.857
26 -6.077-3.807,-1.992-4.467 -1.42-2.563,-0.915-1.535 2.891-2.746,-0.316-3.74 -3.583-2.891,-2.631-1.576
27 -1.099-0.856,1.285-2.064 -1.609-2.204,-1.116-2.211 -4.196-2.784,-0.678-2.272 -2.554-3.207,-6.011-4.018
28 -0.384-1.544,-2.58-3.367 0.472-1.664,-2.023-3.385 -0.326-2.178,-3.242-1.778 1.859-4.324,0.104-2.821
29 -2.112-2.213,-1.999-1.966 -0.738-1.678,-1.851-1.161 -2.402-1.513,-1.781-1.966 0.589-1.482,0.347-1.619
30 2.137-1.317,2.025-2.21 -0.161-1.316,-0.0100-1.569 -1.339-1.062,-1.024-2.111 -0.0870-2.02,0.804-2.223
32 1.711-1.91,2.553-1.668 2.548-1.147,2.483-1.784 -2.371-1.801,0.0570-1.757 -0.301-1.694,-0.0200-1.833
39 0.0300-1.371,1.299-2.428 -0.0350-1.957,1.285-1.33 -2.401-1.925,-2.631-1.076 -0.664-1.345,0.625-1.761
40 0.232-1.256,3.162-1.92 -0.861-2.297,-0.0240-1.509 -1.417-1.627,0.826-1.952 2.137-2.651,1.249-1.788
41 -2.356-2.866,-0.775-2.418 -0.800-1.23,3.532-2.084 -1.216-1.90,-1.137-1.737 0.632-1.295,1.342-2.212
42 -2.345-1.377,-2.935-1.895 -0.628-1.301,1.488-1.938 -1.657-1.328,-0.747-1.223 -2.455-1.862,-3.475-1.576
43 -0.478-2.013,-0.517-2.34 2.51-1.155,2.455-2.595 -1.173-3.231,-4.285-1.747 -1.83-1.651,0.507-2.413

Mean -0.278-1.946,-0.101-2.313 0.0160-1.797,0.0240-2.038 -1.507-2.232, -1.252-2.038 -0.833-2.407,-0.620-2.357
Median 0.008-1.768, -0.0450-2.261 0.153-1.748,0-1.915 -1.499 -2.124,-0.837-1.944 -0.833-2.407,-0.601-2.212

Table B.1: Results from the comparison between the visual heuristics and the three
piece linear methods. The table is formatted such that the first values indicate the
median difference followed by it’s standard deviation for the lower inflection points
and then the median difference followed by it’s standard deviation for the upper
inflection point all for pixel 1. From here the pattern repeats for the last three pixels.
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Figure B.1: Locations of the pixels used in the visual heuristic experiment.
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