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Abstract. We show the first clinical results using the level set based reconstruction

algorithm for electrical impedance tomography data. The level set based reconstruction

method allows reconstruction of non-smooth interfaces between image regions, which

are typically smoothed by traditional voxel based reconstruction methods. We develop

a time difference formulation of the level set based reconstruction method for 2D

images. The proposed reconstruction method is applied to reconstruct clinical electrical

impedance tomography data of a slow flow inflation pressure-volume manoeuvre in lung

healthy and adult lung injury patients. Images from the level set based reconstruction

method and the voxel based reconstruction method are compared. The results show

comparable reconstructed images, but with an improved ability to reconstruct sharp

conductivity changes in the distribution of lung ventilation using the level set based

reconstruction method.

1. Introduction

Tomographic imaging systems seek to see the inside objects, by introducing energy and

measuring its interaction with the medium. Electrical Impedance Tomography (EIT)

measures the internal impedance distribution using surface measurements. Electrical

current is applied to the medium and the voltage at the surface is measured using

electrodes. The impedance distribution is then estimated based on the measured

voltages and medium geometry. Some of typical applications of these techniques are for

geophysical imaging (Loke and Barker 1996a 1996b; Church 2006), process monitoring

(Soleimani et al 2006a; Manwaring et al 2008), and functional imaging of the body

(Frerichs 2000; Frerichs et al 2001; Gao et al 2006; Adler et al 2009; Frerichs et al 2010;

Rahmati et al 2011; Pulletz et al 2011).

In this paper, we focus on image reconstruction in EIT using the level set (LS)

approach. The LS approach has become popular because of its ability to track
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propagating interfaces (Osher and Sethian 1988; Sethian 1999), and more recently it

has been applied in variety of applications in inverse problems and in image processing

(Santosa et al 1996; Litman et al 1998; Dorn et al 2000; Osher and Paragios 2003). Level

set based reconstruction method (LSRM) is a nonlinear inversion scheme using Gauss-

Newton (GN) optimization approach to iteratively reduce a given cost functional, which

is the norm of the difference between the simulated and measured data. In comparison

to the voxel based reconstruction method (VBRM) ( e.g. Polydorides et al 2002), the

LSRM has the advantage of introducing the conductivity of background and that of

inclusions as known priori information into the reconstruction algorithm, enabling it to

reconstruct sharp contrasts (Soleimani et al 2006a). The unknown parameters to be

recovered from the data are the size, number, shapes of the inclusions. These unkown

parameters are given as the zero LS of a higher dimensional function, called level set

function (LSF). In every iteration, the LSF is modified according to an update formula

to modify the shape of the inclusion at its zero LS (see figure 1).

The LS method for shape based reconstruction is well studied in electrical and

electromagnetic imaging for simulated and experimental tank data (Santosa et al 1996;

Litman et al 1998; Dorn et al 2000, Boverman et al 2003; Chan and Thai 2004; Soleimani

et al 2006b; Soleimani 2007; Banasiak and Soleimani 2010); however, it has been never

shown to be used for clinical data. This study, along with our previous work (Rahmati

et al 2011) are the first implementation of the LSRM using time difference data for EIT

clinical data. In this study, we use a difference formulation of LSRM to reconstruct a

2D image of the distribution of lung ventilation over an inflation manouevre (figure 4

and figure 5).

The remainder of the paper is organized as follows: in the next section, we

formulate the image reconstruction algorithms using difference and absolute solvers for

EIT (section 2.1). In subsection 2.2, we introduce into the LS technique employed for

solving the inverse problem of EIT lung images. Subsection 2.3 discusses the details

about the applied human data set, and the setting of the EIT system. In section 3,

the experimental results are shown for the LSRM and the VBRM; and the performance

of the difference mode LSRM for monitoring human lungs data is qualitatively and

quantitatively compared with that of the VBRM. Section 4 presents discussions and

conclusions.

2. Methods

2.1. Difference and absolute reconstruction methods

There are two primary reconstruction types in EIT: “absolute (static) imaging” which

attempts to recover an estimate of the absolute conductivity of the medium from the

achieved data frame, and “difference imaging” which attempts to recover an estimate

of the change in conductivity between two times based on the change between two data

frames, v2 and v1. Difference EIT can compensate for measurement errors which do
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not change between data frames. Difference EIT is based on a difference data vector,

[y]i = [v2]i− [v1]i , where i is the number of the measurements,or, to increase sensitivity

to small measurements, the normalized difference data [y]i = ([v2]i− [v1]i)/[v1]i. Using a

finite element model (FEM), the medium is discretized into N elements with conductivity

σ. The conductivity change vector x = σ2 − σ1 is the change between the present

conductivity distribution, σ2, and that at the reference measurement, σ1. The linearized

difference forward solution for small changes in conductivities over time is given by

(Adleret al 2007):

y = Jx+ n, (1)

where J is Jacobian or sensitivity matrix around the reference conductivity

distribution, defined by ∂y
∂x
|σ1 and n is the measurement noise, typically assumed to

be an uncorrelated white Gaussian noise. In EIT, we need to solve an inverse problem

to find an estimate of the conductivity, refered to as x̂. The most common approach to

find x̂ is the use of the Gauss-Newton (GN) algorithm for EIT reconstruction (Cheney

et al (1990)). The GN method solves the EIT inverse problem by minimizing the the

following quadratic residue (Adleret al 2007):

‖y − Jx̂‖2∑−1

n

+ ‖x̂− x0‖2∑−1

x

, (2)

where
∑−1
n and

∑
x̂−1 are the covarience matrix of measurement noise and that of

conductivity vector (x̂), respectively; and x0 represent the expected value of element

conductivity changes. By solving (2) for x̂, the linearized EIT inverse solution is obtained

as (see Appendix A):

x̂ = (JTJ +R)−1(JTy +Rx0), (3)

where R is the regularization matrix and x0 is the initial guess of the solution, which can

be assigned to zero. In the remainder of this paper, the GN approach is considered the

reference technique. GN image reconstruction typically results in smoothed images with

blur edges, since the regularization matrix is based on a penalty filter for non-smooth

images.

2.2. Level set method

One effective method to allow the reconstruction of sharp images is the LS method (Dorn

et al 2000). The classic formulation of this method assumes that the reconstructed image

can take only two conductivity values: one for background with value σb and another one

for inclusions with value σi. The regions which form the background and the inclusions

are defined by the LSF, Ψ: a signed distance function to identify the unknown interface

between the two conductivities. The value of the LSF is zero on the interface, negative

inside the interface, and positive outside.

Compared to the more typical VBRMs, the LSRMs allow more accurate

reconstruction of the boundary shape of step changes of conductivity (high contrast

objects). This is because most regularization schemes for the traditional methods, which
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are necessary for stabilizing the inversion, have the side-effect of artificially smoothing

the reconstructed images. Therefore, these schemes are not well-suited for reconstructing

high contrast objects with sharp boundaries.

In order to arrive at a robust and efficient shape-based inversion method, there is

a requirement to computationally model the moving shapes. The LS technique (Osher

and Sethian, 1988; Sethian, 1999) is capable of modeling the topological changes of the

boundaries. Figure 1 shows a two phases image reconstructed using the LSRM. The

LSF Ψ has separated the zero LS surface into two regions: foreground (inclusions) and

background. The mapping function Φ projects the LSF to a 2D mesh to be applied for

inverse solution calculation using FEM. Figure 1, right panel, shows the conductivity of

the inclusions in black where the LSF is negative and that of background in white where

the LSF is positive. To begin with, we need to define an initial LSF, which may be a

circle on level zero; and then deform this inital LSF using a predefined energy functional

iteratively. Figure 2 represents the steps as k represents the iteration number. After

defining the initial LSF, the mapping function Φ projects the LSF to a 2D mesh to be

fed to difference solver block to calculate the system senitivity matrix, Jacobian (Jk),

as well as differential potential vectors, ∆di = [dreal]i − [d(simulated)]i. The next step

is to update the energy functional via a Gauss-Newton formula, ∆LSFk. The initial

LSF is then deformed by ∆LSFk generating a new LSF. This new LSF is fed again to

difference solver block for another iteration if the current iteration number (k) is not

bigger than a maximum iteration number (K). In the following, we discuss about the

mathematical presentation of the LSRM.

In this technique, the shapes which define the boundaries, are represented by the

zero LS of a LSF Ψ. If D is the inclusion with conductivity σi embedded in a background

with conductivity σb, the boundary of the inclusion, which is also an interface between

two materials, is given by the zero LS (Soleimani et al 2006b):

∂D := {r : Ψ(r) = 0}, (4)

where the image parameter at each point r is (Soleimani et al 2006b)

σ(r) =

σi for {r : Ψ(r) < 0}
σb for {r : Ψ(r) > 0}

, (5)

If we change this LSF for example by adding an update, we move the shapes accordingly.

This update to a given LSF causes the shapes being deformed in a way which reduces

an error residue (cost functional).

The LSRM combines the general idea of GN optimization approach with a shape-

based inversion approach. To derive the LSRM, we define the mapping (Φ) which

assigns a given LSF ΨD to the corresponding parameter distribution by σ = Φ(ΨD).

The parameter distribution σ has the same meaning as in the traditional GN inversion

scheme. The only difference is that in the shape-based situation it is considered as

having only two values, namely an “inside” value and an “outside” value. In shape-

based reconstruction approach, we are looking for the LSF ΨD which divides the image

into two separate areas as foreground (inclusion) and background.
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Having defined this mapping Φ, we can now replace the iterated parameter σk, with

the definition defined in (5), by σk = Φ(ΨD) = Φ(Ψk). Instead of the forward mapping

F (σ), where function F maps the electrical conductivity distribution to the measured

data, we need to consider now in the new GN type approach the combined mapping

(Soleimani et al 2006b):

d(Ψ) = G(Φ(Ψ)), (6)

where d is data point matrix, G is system matrix, and Φ(Ψ) stands for conductivity, see

figure 1.

Φ (Mapping function)

σ (conductivity)=Φ(Ψ)

Ψ (Level set function)

Zero level set function(LSF=0)

Figure 1: Level set function mapping to a 2D plane. From left to right columns, The 3D

representation of an arbitarary level set function and its zero level set function crossing

zero level set surface, and 2D mapping of the leve set function on the zero lever set

surface.

According to the chain rule, the LS sensitivity matrix (JLS) can be written as below:

JLS =
∂d

∂Ψ
= (

∂G

∂Φ(Ψ)
)(
∂Φ(Ψ)

∂Ψ
)

= (JGN)(M), (7)

where ∂G
∂Φ(Ψ)

stands for the traditional GN sensitivity matrix (JGN), and we define
∂Φ(Ψ)
∂Ψ

= M . Then, the new GN update (Soleimani et al 2006b) is as follows (see

Appendix A) :

Ψk+1 = Ψk + λ
[
(JT(LS,k)J(LS,k) + α2LTL)−1(JT(LS,k)(dreal − d(Ψk)))

]
−

[
α2LTL(Ψk −Ψint)

]
= Ψk +GNupdate

= LSF (k) + ∆LSF, (8)

where Ψint in the update term corresponds to the initial esimate of the LSF. There

are two parameters λ and α to be tuned in this LS formulation. Figure 2 illustrates

the algorithm to calculate the above update formula. The optimal choice of the two

parameters, λ and α, depends on the mesh density, the conductivity contrast and

the initial guess (Soleimani et al 2006a). The length parameter λ and the α both
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affect the magnitude of the LSF displacement; however, λ makes the main effect on

the displacement, changing the shape of inclusion, in a given update. The higher

the λ, the higher the LSF displacement will be. The effect of the regularization

parameter α depends on the choice of the regularization operator L. An identity

matrix for L increases the stability of the inversion by reduced smoothing of the LSF.

However, a first order difference operator for L will smooth the LSF (Soleimani et al

2006a). As α increases, the smoother the final LSF tends to be. A large value for α

prevents the reconstruction algorithm from being able to separate close objects (low

distinguishibility). In our experiments, the choice of L as the identitiy operator was

made to improve distinguishibility. In our results, we have put a value of zero for our

initial guess of Ψint in the above shape-reconstruction form.

2.3. Experimental data

Experimental data were obtained in the study described by Pulletz et al (2011). Briefly,

human breathing data were acquired from eight patients with healthy lungs (age: 41 ±
12 years, height: 177 ± 8 cm, weight: 76 ± 8 kg, mean ± std.) and eighteen patients

(age: 58 ± 14 years, height 177 ± 9 cm, weight: 80 ± 11 kg) with acute lung injury

(ALI).

All patients were intubated and mechanically ventilated. The experimental

proceedure consisted of a low flow inflation pressure-volume manoeuvre applied by the

respirator (Evita XL, Draeger, Luebeck, Germany), starting at an expiratory pressure

of 0 cmH2O and ending when either a) the gas volume reached 2L, or b) the measured

airway pressure reached 35 cmH2O. Airway gas flow, pressure and volume were recorded

at a sampling rate of 126 Hz. An example pressure curve during the inflation protocol

is shown in Figure 4. EIT data were acquired on sixteen self-adhesive electrodes (Blue

Sensor L-00-S, Ambu, Ballerup, Denmark), placed at the 5th intercostal space in one

transverse plane around the thorax, while a reference electrode was placed on the

abdomen. EIT data were acquired at 25 frames per second, with an adjacent stimulation

and measurement protocol, using current stimulation at 50 kHz and 5 mArms. Overall,

477 EIT data frames are acquired per inflation manoeuvre.

3. Experimental results

Images were reconstructed on a mesh roughly conforming to the anatomy of the subject,

and the two different reconstruction algorithms (the VBRM and the LSRM) were

tested on the clinical data (figure 3 - figure 6). Figure 3 shows the reconstructed

images of ventilation in a lung healthy patient measured based on the difference

signal between start and end inflation. As inspired air increases, the resistivity of the

lungs increases which has been shown as blue regions in the reconstructed images in

figure 3. The reconstructed images clarify the difference between LSRM and VBRM in

terms of creating sharper reconstructions with larger contrasts at the interface between
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Real data

Simulated data

Jacobian(Jk) 

update

Gauss-Newton (GN) 

update

Δd= dm-dk

ΔLSF(update)

START

K<iteration_numberEND

k=k+1

Initial guess of 

LSF (k=0)

NO

YES

LSF(k+1)=LSF(k)+ΔLSF(update)

3D representation 

of level set function

Reconstructed image at k

Figure 2: The level set based reconstruction algorithm using difference solver. The level

set based reconstruction method comprises the following steps, respectively: level set

function initial guess, inverse difference solver, Gauss-Newton update, level set function

displacement by the given update, and iteration number increment.

the inclusion and the background, presenting step change of conductivity. The final

reconstructed image by the LSRM represents the air distribution inside the lungs after

30 iterations (figure 3(c)).

Figure 4 shows the LSRM reconstruction images for a patient with healthy lungs

over the inflation manoeuvre measured for three different times from start of the inflation

manoeuvre: 5.17s, 10.34s, and 17.24s. The measurement times are selected to show an
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0
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Figure 3: The qualitative comparison between the level set based reconstruction method

and the voxel based reconstruction method in difference mode at the maximum airway

pressure of the inflation manouevre for a patient with healthy lungs . (a) The lung

reconstructed image using the voxel based reconstruction method. (b) The first sixteen

iterations of the level set based reconstruction method for the same data as (a). (c) The

final human lungs reconstructed image using the level set based reconstruction method

at iteration 30.

initial airway pressure, a middle airway pressure, and a high airway pressure. The

reconstruction algorithms for the LSRM and the VBRM used a finite element mesh

(1600 elements). For all images of the VBRM for the patients (figure 3 - figure 5),

the colour axis (color map) was scaled to the same maximum value to maximize the

displayed contrast. The LSRM results when comparing with the VBRM ones show

more details about the shape of the air distribution inside the lungs. The shape of the

air distribution of the VBRM images for different frames is very similar to each other

(circular shapes). However, the LSRM images clearly show the difference in the shape

of the air distribution for different time frames.

Figure 5 shows the LSRM reconstruction images for an ALI patient along the

inflation manouevre measured for the same measurement times as figure 4. The density

of the meshes are the same as in figure 4 (1600 elements). The VBRM offers less changes

in the shape of the air distribution inside the lungs for the ALI patient, the second row

of Figure 5. However, the LSRM better show the changes of the air distribution for

different frames, the third row of Figure 5.

For the VBRM, a region of interest (ROI), describing the lungs, was identified as

25% of the maximum conductivity change (Pulletz et al , 2011). For the LSRM, the

ROI is the region with negative LSF, where there exists the inclusion. The VBRM

and the LSRM were compared by calculating the normalized summation of elements
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GN 

LS 

(a) (b)

Figure 4: The clinical results of the level set based reconstruction method over the

inflation manouevre of a patient with healthy lungs. (a) The first row represents the

inflation manoeuvre of the patient with healthy lungs, the second row is the results

from the voxel based reconstruction method, and the third row is the clinical results of

the level set based reconstruction method for the same patient. (b) The color map of

the voxel based reconstruction method. The reconstructed images in (a) are shown for

three different measurement times: 5.17s (an initial airway pressure) , 10.34s (a middle

airway pressure), and 17.24s (a high airway pressure).

conductivities (NSEC) over the ROI as follows:

NSEC(j) =

P∑
i=1

σij

Q∑
i=1

σijmax

(9)

where j is the frame at which the NSEC is calculated, P is the number of the elements

inside the ROI for the frame j, jmax is the frame at which the maximum lung inflation

happens (maximum lung volume), and Q is the number of the elements inside the ROI

for the frame jmax. The NSEC was calculated at seven evenly spaced time points along

the inflation manouevre. Results were presented for lung healthy (figure 6(a)) and ALI

(figure 6(b)) patients. For both algorithms, the NSEC increases with pressure as the

lung volume increases. Our results show the NSEC curve is more non-linear for both

algorithms for the ALI than lung healthy patients, which is consistent with the higher

opening pressure of dependent lung regions in ALI patients.
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Figure 5: The clinical results of the level set based reconstruction method over

the inflation manouevre of a patient with a heterogeneous lung disease. (a) The

first row represents the inflation manouevre, the second row shows the voxel based

reconstruction method results, and the third row is the clinical results of the level set

baded reconstruction method for the same patient. (b) The color map of the voxel

based reconstruction method. The reconstructed images in (a) are shown for three

different measurement times: 5.17s (an initial airway pressure) , 10.34s (a middle airway

pressure), and 17.24s (a high airway pressure).

4. Discussion and conclusion

We proposed the LSRM in difference mode for clinical EIT data of patient ventilation

over the inflation manouevre. We report the first clinical results of applying the LSRM to

monitor the air distribution inside the lungs using EIT. In the proposed difference mode

LSRM, the inverse solution of Gauss-Newton formula updates the sensitivity matrix and

consequently the LSF with every iteration. In the first iteration, the Ψ is chosen as initial

guess. The initial guess is an arbitrary function, for example the definition of a circle.

The updated LSF converges to a conductivity map that minimizes the error between

measured and simulated data. The minimization of the error function finally leads to

the division of the medium into two regions: the background and the foreground. The

difference imaging LSRM depicts the capability of finding the big conductivity changes

at the interface between lung and the background (figure 3). We follow a narrowband

level set method, such as the value of the level set function is thresholded and it is zero at

the interface between two materials. The advantage of the narrowband method is that

it allows the shape evolution without the need to re-formulate the geometrial boundaries
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Figure 6: Normalized sum of element conductivities as a function of fraction of the

inflation manouevre: (a) lung-healthy patients (b) Acute lung injury patients. In each

case, the solid lines show example patients, while the distributions show the standard

deviation over all patients in that class.

of the inclusions. The mapping function is used to discourage the reconstruction of the

disconnected contours located at different levels. The update sensitivity matrix has been

calculated on a narrow band region, involving the elements sharing an edge with the

interface between foreground and background (see figure 2). The narrow band region

makes the LSRM run faster when comparing with the LSRM calculating the sensitivity

matrix over the whole elements for every iteration.

To achieve more accurate interface where there are more than two highly different

conductivities inside the medium, such as lungs, heart, and the peripheral tissues, it is

suggested to apply two different LSFs in defining the medium in the equation 2 (Dorn

and Lesselier 2006; DeCezaro et al 2009).

Our results represent that the difference formulation of LSRM is suitable to be

applied for clinical EIT data of patient ventilation over lung inflation(figure 3, figure 4,

figure 5). Comparing with the VBRM, the LSRM shows high contrast lung images

corresponding to the physiologically known shape of lung air distribution in these

patients (figure 4, third row, and figure 5, third row).The NSEC curves (figure 6) are

similar in shape in the LSRM to the VBRM, but show a slower start at the low lung

inflation, reflecting perhaps some non-linearity for small conductivity changes.

In summary, we show that level set based image reconstruction techniques can

be applied to clinical EIT data to produce plausible images. The results suggest that

such level set approaches help to address the blurring of edges inherent in regularized

algorithms. The proposed LSRM show promising results to help spur interest in using

novel edge-preserving algorithms to practical EIT applications.
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5. Appendix A

In this appendix, we show how to dervie equation (3) from (2). Then, we explain how

to minimize the error funtion, defined in (2), for the non linear case, such as the LSRM.

The inverse solution of (2) can be calculated by minimizing the following error function:

e = ‖y − F (x)‖2 + ‖x− x0‖2, (10)

To minimize the error function, we take the first derivative of the error function with

respect to x:

de

dx
=

d

dx
[(y − F (x))t(y − F (x)) + (x− x0)tR(x− x0)] = 0,

=
d

dx
[yty − 2F (x)tF (x) + (x− x0)tR(x− x0)] = 0, (11)

We define J = dF
dx

, thus we have:

de

dx
= −2J t(x)y + 2J t(x)F (x) + 2R(x− x0) = 0,

J t(x)F (x) +R(x− x0) = J t(x)y, (12)

In linear case, we can define F (x) = Jx, and J(x) = J . Thus, we can write:

J tJx+R(x− x0) = J ty,

(J tJ +R)x = J ty +Rx0,

x = (J tJ +R)−1(J ty +Rx0), (13)

where the last equation is in agreement with (3).

The following shows the minimization of the error function to derive (8). For the

non-linear case, if we use F (x), starting at extimate xk, then:

F (x) = J(xk)(x− xk) + F (xk), (14)

Applying the notation changes of F (xk) = Fk, and J(xk) = Jk, we can write:

J t(x)F (x) +R(x− x0) = J t(x)y,

J tk(Jk(x− xk) + Fk) +R(x− x0) = J tky,

J tkJk(x− xk) +R(x− x0) = J tk(y − Fk),
(J tkJk +R)(x− xk) = J tk(y − Fk)−R(x0 − xk),
x− xk = (J tkJk +R)−1(J tk(y − Fk)−R(x0 − xk)), (15)

The solution (x) to (15) is described as xk+1. Therefore, we can define ∆k+1 = xk+1−xk.
In the LSRM, the evolution function is as follows:

Φ(Ψk+1) = Φ(Ψk) + λ(∆Φ(Ψ)), (16)

where Φ(Ψ) = x; and∆Φ(Ψ) = ∆x,

The error function is defined as follows:

∆Φ(Ψ) = ‖y − F (x)‖2 + ‖x− x0‖2, (17)
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The jacobean (B) is defined as below:

B = JM,

Bt = M tJ t;BtB = M tJ tJM, (18)

Minimizing the error function results in (8):

Ψk+1 = Ψk + λ
[
(JT(LS,k)J(LS,k) + α2LTL)−1(JT(LS,k)(dreal − d(Ψk)))

]
−

[
α2LTL(Ψk −Ψint)

]
= Ψk +GNupdate

= LSF (k) + ∆LSF, (19)

where R = α2LTL.
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