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Abstract

Electrical Impedance Tomography (EIT) is a medical imaging technique in which

diagnostic electrical current is driven into a body and surface electrical voltages are

measured in order to reconstruct an image of the conductivity or permittivity of the

body. EIT is categorized as a soft-field tomographic method because the current

propagates in a 3D domain even if the electrodes are located in a plane. In addition,

the current injection source has a 3D geometry in practice which implies 3D con-

siderations. However, accurately solving the 3D problem employing Finite Element

Method (FEM) needs a great number of elements leading to a large computational

complexity.

The goal of this work is to develop and test a 2½D finite element method algo-

rithm for the EIT problem which will reduce the memory and computation required.

The goal of a 2½D FEM is to solve the 3D problem by solving a set of modified 2D

problems instead. In this work, a 2½D finite element solver is implemented consider-

ing the complete electrode model (CEM). For this purpose, complimentary modules

are developed to enhance the EIDORS1 project by the 2½D FEM. In addition, the

boundary current injection is calculated, the algorithm is validated and the time and

memory performance is evaluated. Finally, the number of 2½D equations to be solved

for a given accuracy is investigated and an explanation is also provided for improving

the speed of the algorithm.

1www.eidors.org (http://eidors3d.sourceforge.net)
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Chapter 1

Introduction

1.1 Background and Motivations

Electrical Impedance Tomography (EIT) is a medical imaging technique in which

electrical current is driven into a body and surface electrical voltages are measured

in order to reconstruct an image of the conductivity or permittivity of the body. EIT

is a suitable technique for long-term monitoring because it is relatively low cost, a

fast imaging modality, portable and non-invasive. However, EIT is categorized as a

soft-field tomographic method due to the fact that the current propagates in a 3D

domain even if the electrodes are located in a plane. In addition, the current injection

source has a 3D geometry in practice. Hence, the EIT problem is inherently a 3D

problem.

For modelling the EIT problem, a Finite Element approach is often employed

in which the medium is segmented into a finite number of elements. Accurately

solving the 3D problem, however, requires a great number of elements (e.g., 1 million

elements) which implies a large capacity of memory (on the order of 16-64 GBytes)

and leads to a large computational complexity compared to a 2D FEM (e.g., 4,000

elements). In the forward EIT problem, a ”system matrix” is constructed which

is then inverted for solving the forward equation; and in the inverse EIT problem,

1



2

a ”sensitivity matrix” is constructed which is again inverted for solving the inverse

equation.

The 2½D finite element modelling provides an advantageous trade off for this

problem which aims to solve the 3D equation by employing a 2D model and solving

a small number (about 5 to 10 depending on the geometry) of 2D-like equations, by

assuming translational invariance. There has been some work on 2½D finite element

modelling of EIT with the same geometry and governing equation as in the biomedical

applications [3], [4], and [5]; however, these works considered only the point electrode

mode (electrodes are modelled by a single node). For biomedical applications, the

complete electrode modelling is important due to the effect of skin-electrode contact

impedance. The complete electrode modelling refers to the situation where each

electrode includes more than one node in the FE mesh and the effect of contact

impedance is considered in calculating the voltage of electrodes.

In addition, we could not find any open source code available for 2½D finite element

modelling of the EIT to evaluate the previous works on this topic. This work aims to

implement the 2½D finite element method for the Electrical Impedance Tomography

considering also the Complete Electrode Model (CEM) in order to enhance the EI-

DORS1 open source project with this capability. CEM refers to an electrode model

in which more than one node is assigned for each electrode where the skin-electrode

contact impedance is modelled (see [6] for more details). EIDORS is an open source

Matlab-based software for Electrical Impedance Tomography and Diffuse Optical To-

mography Reconstruction. The project aims to provide free software algorithms for

forward and inverse modelling for EIT in medical and industrial settings, and to

promote collaboration as well as resource sharing between groups working on this

field [7].

1www.eidors.org
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1.2 Objective

The goal of this work is to develop a 2½D finite element algorithm, test and evaluate

it, implement a 2½D solver considering the complete electrode model (CEM), and

develop complementary modules to enhance the EIDORS project by the 2½D Finite

Element technique. For the forward part of the EIT problem, the goal is to derive the

2½D system (stiffness) matrix from the set of partial differential equations and apply

the Complete Electrode Model (CEM) to the 2½D system matrix. In addition, one

of the objectives is to investigate how many 2D-like equations are sufficient to solve

given a reasonable accuracy. For the inverse part of the EIT problem, the goal is to

derive and implement the 2½D sensitivity matrix.

1.3 Contributions

In this work, a 2½D finite element method and algorithm has been applied to the EIT

problem. The key contributions of this work are as follows:

1. The 2½D finite element method is formulated with a correct form of boundary

current injection for EIT. We derived the boundary condition slightly different

than what was reported in [8] and [4]; and tested that successfully.

2. The complete electrode model (CEM) is applied to the 2½D model in two stages,

which is novel.

3. The developed forward solution was evaluated directly and the correct form of

boundary current injection was tested and validated.

4. A matlab-based software was developed to implement the algorithm and en-

hance the EIDORS project with the 2½D FEM.



4

5. Some strategies are suggested to enhance the algorithm performance and reduce

its computational complexity as well as processing time by avoiding unnecessary

calculations.

6. An analysis was performed to quantify the improved performance between the

2½D and 3D.

1.4 Thesis Summary

In this work, the boundary condition for each partial differential equation (PDE) is

calculated from the 3D boundary condition based on a uniform distribution of current

under the electrodes using the cosine Fourier transform. In addition, the complete

electrode model is applied to the 2½D model in two stages. In the first stage, the

2½D system matrix is extended by complementary CEM terms. In the second stage,

based on the averaging weights obtained for CEM nodes, the implemented 2D-based

CEM is modified in order to consider the 3D geometry by averaging the 2½D solutions

calculated for different z-layers (z) under the electrodes. It is demonstrated that for

calculating the 2½D solution at a different height only the inverse Fourier is required

to be recalculated (It is not necessary to solve the forward problem for each layer).

In addition, a complete description on construction of the system matrix with CEM

is provided where it is investigated how, in CEM, the voltage of each electrode is

calculated from the voltages of the nodes under that electrode.

In chapter 3, the 2½D system (stiffness) matrix is derived from the set of 2½D

PDE using the method of weighted residuals and the Galerkin method inspired from

the general derivation of system matrix for the 2D and 3D methods available in [9]

and [10]. Here, for the purpose of demonstrations which will be used later in improving

the speed of the algorithm, the 2½D system matrix is separated in two parts; one part

is the same as a regular 2D system matrix and the other part is called ’residual
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matrix’ accounting for the extra terms of the 2½D method. It is shown that these two

parts only depend on the problem geometry by factoring out the spatial frequency

coefficient which eases the computation complexity. For the inverse part of the EIT

problem, it is shown that the 2½D sensitivity matrix is calculated by adding the

sensitivity matrix of all partial differential equations.

In chapter 4, the developed solution was systematically evaluated and the correct

form of boundary current injection was tested and validated. It is shown that the

2½D solution works satisfactorily in modifying the 2D solution toward the 3D solution.

Furthermore, the accuracy of the forward solver is evaluated directly and not based on

the solution of the EIT inverse problem which was done in [4] for the point electrode

model. Moreover, an analysis on the sources of error that prevent a perfect match

between the 2½D and the 3D solution has been performed. In chapter 5, a study on

the truncation point of the series is performed. It is shown that maximum 4 terms are

sufficient for the H = 2 case (where H is the ratio of cylindrical height to radius) in

calculation of measurements (gradients) considering 1% error for the remaining terms.

The truncation point is greater when H increases compared to the radius and lower

for smaller H. In addition, the result of the time performance analysis is provided

which quantifies the improved performance of the algorithm. Finally, the structure

of the EIDORS project was studied and the developed complementary modules were

contributed to the EIDORS open source project.



Chapter 2

Background

This chapter includes a brief overview on the EIT problem and the ”2.5D” literature.

The first part of this chapter starts with the definition of tomography, computed

tomography and EIT. Afterwards, some advantages and disadvantages of EIT are

described. The following subjects are also briefly reviewed toward the end of the

first part: current pattern stimulation, forward problem and forward equation, finite

element method, inverse problem, Jacobian or Sensitivity matrix, solving the inverse

problem, static EIT and difference EIT. The second part of the chapter, which starts

from section 2.9, provides a review on the uses of the term ”2.5D” in different literature

where it is noted how this term is used for different purposes by authors.

2.1 Tomography

By definition, tomography is imaging by sections or sectioning, through the use of

waves of energy [11]. Tomography is the reconstruction of an image from the scat-

tering data associated with cross-sectional scans of an object. The word was derived

from the Greek word ’tomos’ meaning ”a section”, ”a slice” or ”a cutting”. The device

employed in tomography is called ’tomograph’ and the image created is called ’tomo-

gram’. Tomography is widely applied in radiology, archaeology, biology, geophysics,

6
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oceanography, materials science, astrophysics and other sciences [12].

2.1.1 Computed Tomography

Computed tomography (CT) is a medical imaging method which uses tomography

and creates images by computer processing [13]. In three-dimensional CT, digital

geometry processing is employed to produce a three-dimensional image of the internal

structures of a body from a large series of two-dimensional images taken around a

single axis of rotation [14]. In two-dimensional CT, a similar process is used to

generate a two-dimensional image of the internal structures of a body from a large

series of one-dimensional images (projections) taken around a single axis of rotation.

CT images are reconstructed employing one of a number of numerical techniques

known as tomosynthesis. In a CT scan, an image of a target is reconstructed by

emitting x-rays from a source and collecting corresponding measurements on the other

side of the target [15]. Although the term CT might be known for X-ray CT scans,

the term ’Computed Tomography’ is also employed for other tomographic problems

that include computation similar to the X-ray CT such as single positron emission

computed tomography (SPECT) or some EIT algorithms.

2.2 Inverse Problems

Inverse problems techniques are used to solve problems in image processing, medical

imaging, geophysics, remote sensing, nondestructive testing, ocean acoustic tomogra-

phy, astronomy and many other fields in which it is needed to reconstruct a map of

unknown parameters based on measurements. According to the Hadamard (inverse)

definition of inverse problem, a problem is not an inverse problem if all of the fol-

lowing conditions are satisfied: 1) a solution exists 2) the solution is unique 3) the

solution depends continuously on the data [9].
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2.3 What is EIT?

There are various medical imaging techniques for investigating inside of a human body.

Some techniques are free of risk while others might have the risk of radiation exposure.

’Electrical Impedance Tomography’, abbreviated by EIT, is a relatively new medical

imaging modality and risk-free technique which has been under development from

the mid 1980’s. The field was previously referred to as ’Current Computed Tomog-

raphy’ and is divided into ’Electrical Resistance Tomography (ERT)’ and ’Electrical

Capacitance Tomography’ in industrial applications. Generally, Impedance Tomog-

raphy Imaging is a technique for reconstructing 3D image of electrical conductivity

by applying small alternating currents to a body. The field has several Industrial and

Geophysics applications as well as some proposed application in Medical Imaging.

The goal of EIT techniques is to reconstruct image of the conductivity, or per-

mittivity, of an internal structure, specific organ, or part of the body. For image

reconstruction in EIT, an unknown impedance or conductivity distribution is recov-

ered from electrical measurements captured by an array of electrodes installed on the

medium boundary. In contrast to hard-field tomography in which a beam of energy

passes through a medium in a direct path, EIT is considered as a soft-field tomogra-

phy due to the fact that currents scatter in a 3D domain even if the electrodes are all

located in a plane. Some authors [16], do not consider the EIT problem as a tomo-

graphic problem due to the current tendency to propagate in a 3D pattern. Hence,

a good imaging technique should not be only achieved by slice by slice imaging of a

cross-section like a 3D CT algorithm.

Due to recent advancements in computations, EIT is now being employed in

biomedical applications and is used to monitor flow profiles in pipes as well as blood

in vessels. These applications also include the measurement of fluid distribution in

mixing vessels, and non-destructive testing such as crack detection. In an EIT system,
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the measured electrical potentials, captured by the electrodes attached to the skin

(medium surface) of the body, are analyzed usually using finite element modelling

and mathematical techniques for inverse problems. Since this technology is under de-

velopment, early adoptions of EIT were not used routinely; however, there are some

proposed clinical application for EIT such as monitoring of lung function, detection

of cancer in the skin and breast and location of epileptic foci [9].

Most EIT equipment employs alternating currents (AC); hence, different loads

under analysis could have reactive components. The reactive component is often ig-

nored for reducing the complexity of the equipment and the algorithms. However, the

advantages of using alternative current are: reduction of electrode corrosion through

electrolytic effects, possibility to extract the injected signal from the electrodes and

filtering out other signals such as the cardiac cycle, and meeting the requirement of

safety standards in medical applications [10].

2.4 Why EIT is difficult?

From a mathematical point of view, reconstructing image of conductivity from surface

measurements of current or potential is a severely ill-conditioned, ill-posed and non-

linear inverse problem. Hence, EIT is inherently a difficult problem because it is also

a difficult problem to recover a signal from a noisy signal either as a forward problem

or as an inverse problem. Another problem with EIT is the non-local property of

the current which is still valid at the moderate frequencies used in EIT. According

to this property, the current scatters while it is passing through the object. The

problem of nonlinearity in EIT and the nonlinear inverse problem issues are much

more challenging in absolute imaging or static imaging. Static imaging is explained

in section 2.8.

According to Hadamard Criteria, a mathematical model of a physical problem is
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well-posed if the three criteria mentioned below are held [9]:

1. Solution existence

2. Solution uniqueness

3. Solution stability and continuous dependency of the solution on the data

Since the problem of EIT is to reconstruct the map of conductivity from the

boundary measurements, there are normally large more unknown parameters than

the available measurement data to solve the problem. Therefore, either a solution

does not exist (hence, the error must be minimized in some sense), or there is not

a unique solution. In both cases the problem must be regularized in order to find a

practical solution by regulating a regularization parameter well known as the ’hyper

parameter’. This kind of problems is often referred to as an ill-posed problem. In

addition, the regularization gets even more difficult when the solution is unstable

which means that any small change in the measured data would result in large change

in the solution. This kind of rank deficient inverse problem is more difficult since the

singular values of the modelling matrix shows a soft continuity and therefore it is

difficult to find a truncation point in singular value decomposition for the purpose

of the regularization (condition number is high). In order to regularize this problem

further assumptions and constraints must be applied. Such constraints can be the

minimum length solution, the minimum error with respect to a priori solution or

smoothness of the solution.

2.5 Advantages/Disadvantages of EIT

EIT is an inexpensive and relatively low cost imaging modality. In order to keep

this as an advantage of an EIT system compared to the other imaging modalities

for a specific application, it is assumed that the EIT algorithm can be performed
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on a simple and portable computer. Therefore, the EIT interface device must also

be portable. Another advantage of using EIT is that it is a safe imaging modality

since it is radiation-free. However, the total amount of current injected to, or power

dissipated in, the human body must be limited in an EIT system under the electrical

safety standards. The amplitude of the current injected to the body should also be

under a predetermined threshold in order to have measurements that are not sensed

by the human body and the injected current does not interfere with biopotentials.

This constraint does not allow to increase the signal to noise ratio by increasing the

amplitude of the injected signal which makes the noise component to be dominant

when the amount of the signal is near zero. Another main important property of

the EIT systems is its imaging speed. In order to keep EIT a fast imaging modal-

ity it is necessary to use simple algorithm. Due to this fact most of the EIT image

reconstruction methods have been based on 2D algorithms before. In recent years,

great efforts have been made to design and implement less cumbersome 3D algorithms

which can be applied in a practical real-time monitoring system. In [17], the draw-

backs of some of the conventional imaging modalities for the problem of chest and

ventilation monitoring are discussed.

On the other hand, the main disadvantage of EIT systems is its poor spatial resolu-

tion specially compared with X-ray or MRI images. The resolution of EIT is reported

as 10% or at most 15% of the electrode dimensions [9]; although it offers a good time

resolution (25 or 50 images per second [9] depending on the EIT system, or even in

recent literature it has been reported as 1000 images per seconds [18]). Therefore,

efforts for developing this technology are faced toward clinical applications especially

long-time monitoring of the status of the patients, for example monitoring of the

ventilation or perfusion in lungs. Another issue of the EIT is the presence of artifacts

due to model errors in the models that have been used in EIT algorithms. There are

various sources of artifacts such as electrode movement due to chest expansion while
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breathing, susceptibility to noise and electrode errors, and large variability of images

between subjects [19].

2.6 Current Pattern Stimulation

There are two general approaches for injecting the electrical current in EIT. The first

approach is to simultaneously apply electrical current into all electrodes, and measure

the voltages of the electrodes at the same time [20]. This method has the advantage of

higher signal-to-noise ratio due to higher current densities inside the thorax; however,

the disadvantage is the problem of skin-electrode contact impedance and dealing with

active electrodes. Multiple drive systems are also more complex and expensive. The

second approach is to inject electrical current at one pair of electrodes at each time,

and measure the voltages at the remaining electrodes. This can be done using the

different approaches described bellow:

2.6.1 Adjacent Current Pattern

In most of the common designs electrical current is injected to adjacent electrodes; yet

there are many other possible designs. In the adjacent current pattern, the current

is injected through two adjacent (or neighboring) electrodes and the voltages are

measured from successive pairs of adjacent electrodes. Then the current is injected

through the next pair of electrodes and the voltage measurements are repeated. The

procedure continues until the current is injected from each possible pair of adjacent

electrodes. There are L × (L − 3) voltage measurements available (L is the number

of electrodes) at the end of the full cycle. Although only half of these measurements

are independent, normally all of these measurements are fed into the reconstruction

algorithm procedure. One advantage of this approach is that it is not needed to

account for skin-electrode contact impedances since all voltage measurements occur
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at near-zero current. In addition, the adjacent current pattern requires minimal

hardware to implement. In this method, the current density decreases rapidly as we

get far from the current drive electrodes; hence, it is highly sensitive to conductivity

changes near the boundary and less sensitive to central contrasts. This method is also

sensitive to perturbations in the boundary geometry of the object, in the positioning

of the electrodes and is quite sensitive to measurement error and noise [21]. This

approach has been used in most of the systems employed for lung function studies.

2.6.2 Opposite Current Pattern

In addition to the adjacent current pattern, there are other possibilities for current in-

jection. One of the proposed alternatives is the opposite or polar drive pattern, which

is commonly used in brain EIT [22], [23]. In this method, current is injected through

electrodes that are diametrically opposite and difference voltages are measured on the

remaining electrodes. There are various ways to collect the voltage measurements.

The opposite current pattern will provide L − 4 voltage measurements per injection

with an L electrode system. The next set of L−4 voltage is measured by shifting the

current injecting pair. The opposite strategy has the disadvantage of having fewer

available measurements (L× (L−4)) than the adjacent strategy for the same number

of electrodes which leads to having less known parameters. On the other hand, an

advantage of the opposite current drive is that it is more sensitive to conductivity

changes at the center compared to the adjacent strategy. This is due to the fact

that the opposite method provides a better distribution of the sensitivity because

the current travels with greater uniformity through the body. It is reported that the

opposite current strategy optimizes the sensitivity for a contrast in the center of the

body [24].
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2.7 Forward Problem

In order to solve the inverse problem of EIT, a forward model is developed to calculate

the voltages from the injected current for a known conductivity distribution. This

could be used to predict the observed voltage given the estimated conductivity and

compare the voltage with the measured data in an iterative approach for finding

the unknown conductivity. In addition, the forward model provides the capability to

calculate the interior electric fields to construct the Jacobian matrix using the adjacent

field method. The Jacobian matrix is a matrix developed in the inverse modelling

for EIT in order to solve the unknown conductivity given measured voltage and is

necessary to solve the inverse problem expressed in more details in section 2.8.

2.7.1 Forward Equation

In this section, the physics of the forward problem are described. It is explained

how the Laplace equation is derived from the Maxwell’s laws. For low frequency EIT

systems (typically 50 kHz), which are commonly used, the problem is approximated to

be quasi-static; hence, the electrostatic forms of Maxwell’s laws are normally employed

in EIT. In this case the magnetic field is neglected; however, at high frequencies,

magnetic effects cannot be ignored [25]. The Laplace equation is a general equation

in electrostatic problems which is derived for the electric potential. It starts from the

Kirchhoff’s current law (KCL) written in the point form for current density vector ~J

as

∇ · ~J = 0 in Ω (2.1)

This equation expresses that in the absence of independent electric charges, the

summation of outward and inward current at any point or any closed surface inside

the domain Ω is zero. The point form of the Ohm’s Law provides the relation between
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the Electric field vector, ~E, and the current density as:

~J = σ ~E (2.2)

where σ represents the conductivity. With quasi-static assumption in force, the Elec-

tric field would be curl-free; hence it is possible to write the electric field in the form

of the gradient of an scalar potential as:

~E = −∇V (2.3)

where V is the electric field potential. Finally, substituting the Ohm’s law (equa-

tion 2.2) into the KCL (equation 2.1) and replacing the electric field with the gradient

of the electric potential yields:

∇ · (σ∇V ) = 0 in Ω (2.4)

which is known as the Laplace equation. The boundary condition would depend on

the type of the boundary method used for the EIT problem. In general, the current

density at the boundary would have the following relation with the electric potential.

j = − ~J · n̂ = σ∇V · n̂ = σ
∂V

∂n̂
in ∂Ω (2.5)

where ∂Ω represents the boundary of the domain. From the Gauss theorem, conser-

vation of current applies in the absence of independent source of charge; hence, the

boundary current density must satisfy the consistency condition:
∫
∂Ω
j = 0.

Normally in EIT, electrical energy is applied to the medium in the form of current

injection on the boundary. The injected current density at the boundary produces
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a distribution of voltage and a pattern of current flow inside the medium. Specifi-

cation of boundary current density, j, results in the Neumann boundary conditions

(Type II or derivative boundary condition). Specification of V at the boundary con-

dition results in the Dirichlet boundary conditions (Type I or essential boundary

conditions). Depending of the type of the electrode model employed, the boundary

condition could be a mixture of the Dirichlet and Neumann boundary conditions

(Type III or mixed) [10]. Regardless of the type of the boundary conditions, by solv-

ing the Laplace equation, the potential V is determined up to an additive constant;

this is equivalent to choosing an earth (ground) point [9]. The Laplace equation

forms the forward problem of the EIT which is solved for an arbitrary geometry with

non-uniform conductivity by employing numerical techniques such as Finite Element

Method.

2.7.2 Finite Element Method

In this section an introduction to finite element method is provided. The details of

the finite element modelling is explained in the next chapter for the 2½D case. Fi-

nite Element Method (FEM) is a numerical technique for solving partial differential

equations (PDE). In many situations, the geometry of the problem or even the type

of the PDE does not permit an analytic solution in a closed form. FEM was ini-

tially developed for aircraft design [26]; yet, later it was extended for modelling of

electromagnetic and electrostatic fields as well as many other engineering problems.

The FEM is the most common method currently used for the numerical solution

of EIT problems thanks to its ability to model arbitrary geometries and various

boundary conditions [27], [28]. The finite element method has also close relatives

such as the finite difference method and finite volume method that use regular grids.

Compared to the FEM, these two methods have the benefit that more efficient solvers

can be employed; on the other hand, they suffer from having difficulty in modelling
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curved boundaries or smooth interior structures accurately [9].

In FEM, the region in which the problem is solved is segmented into a finite

number of ’Elements’. A collection of these elements is called a ’finite element mesh’.

Each element could have different number of nodes. In 1D problems, elements are

lines or curves. In 2D problems, elements could be triangles or L-shaped elements,

and in 3D problems, elements are polyhedrons such as tetrahedral and hexahedral.

The partial differential equations need to be solved in the whole region; however,

in a finite element model, the problem is reduced into a finite number of points called

’nodes’ and the solution is interpolated (or approximated) over each element. Hence,

selection of interpolation functions (also known as basis or shape functions) is also

required.

The finite element method includes the following procedures:

1. Meshing: The region is segmented into non-overlapping subregions called ’El-

ements’ connected via ’Nodes’. This part could be performed using one or a

collection of different element types or meshing techniques.

2. Modelling: The partial differential equation is transformed into a Matrix Equa-

tion for computing the solution for nodes by substituting the interpolation func-

tion into the PDE and using finite element techniques. This part is the heart

of finite element method where it might be required to derive a weak form of

the PDE to be solved instead.

3. Solver: The Matrix Equation derived from the previous section is solved by

inversion to calculate the solution at the nodes.

4. Solution: The solution for the whole mesh is approximated using the interpola-

tion function and the desired parameters or variables, derived from the solution,

are computed based on the solution in the entire domain. Additional compu-

tations might also be required for iterative algorithms, that employ adaptive
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currents and adaptive mesh refinement [10].

There are three different Finite Element techniques typically used to model (or

formulate) finite element problems [29]: (1) Direct approach which is the most intu-

itive way to understand the finite element method, (2) Variational approach which

is based on the calculus of variation and used for problems which includes elements

with non-constant conductivity or use higher order interpolation functions and for

element shapes other than triangles and tetrahedrons (simplices), and (3) Method of

Weighted Residuals (MWR)which is the most versatile approach in deriving element

properties. This approach models the problem without using a variational statement

and explained in chapter 3.

The modelling part of the finite element method addressed above could be de-

scribed as the following sub-procedures:

a. Choosing Interpolation Functions: The value of the function inside each element

is approximated from the values at the nodes by the interpolation functions

which can be any piecewise polynomial of fixed order. Most commonly, linear

interpolation functions are employed due to the simplicity.

b. Calculating the Local Stiffness Matrix: The local stiffness matrix is the matrix

of element properties calculated for each element.

c. Calculating the System Matrix: The global system (or stiffness) matrix is a

combination of all local matrices into a single global matrix for the entire mesh

considering the element connections (connectivity map).

d. Imposing Boundary Conditions: Depending on the type of the boundary condition

used, the system matrix is updated or extended appropriately. A Matrix system

of equation is finally developed based on the known variable (here, current) for

solving the unknowns (here, voltage).
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As the order of the polynomial is increased or as the elements become more nu-

merous (provided their interior angles remain bounded), the finite element method

converges to the solution or at least the solution of the weak form of the PDE used

to represent it [30]. Another method similar to the FEM is the boundary element

method (BEM) in which only surfaces of regions are segmented. In BEM, an analyt-

ical expression for the Green function is employed within enclosed volumes that are

assumed to be homogeneous. BEM is useful for EIT forward modelling provided the

conductivity in regions with smooth boundaries (e.g. organs) is assumed to be piece-

wise constant. However, compared to the FEM, BEM results in a dense rather than

a sparse linear system to be solved. Hence, computational advantage of BEM over

FEM reduces when the number of regions in the model increases. On the other hand,

the advantage of BEM is that it makes it possible to represent unbounded domains.

Hence, a hybrid method could be computationally efficient for some applications of

EIT where BEM is used to represents homogeneously assumed regions and FEM is

used to represent inhomogeneous regions [31] [9].

2.8 Inverse Problem

In this section it is explained how the inverse problem is formulated to reconstruct

the conductivity distribution. The inverse problem is also called ’reconstruction’.

Reconstruction is the process of recovering an image from the EIT signal. According

to [10], reconstruction algorithms are classified into several categories. Each of these

categories is developed for imaging a different aspect of impedance:

1. Time difference imaging: This class of imaging algorithm is employed to recover

the image of the impedance change over time.

2. Static (or absolute) imaging: This class of imaging systems is employed to
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construct the image of the absolute impedance distribution.

3. Multiple frequency imaging: This class of imaging systems is employed to re-

cover the image of impedance changes by frequency.

4. Dynamic imaging: This class of imaging systems is employed to recover fast

conductivity changes. In dynamic EIT systems, it is assumed that the con-

ductivity changes rapidly with respect to the acquisition interval between each

measurement cycle; yet slow enough compared to the acquisition period of a

frame of data [32].

In both static and difference image reconstructions, it is desired to estimate the

conductivity (or conductivity change), x̂, from the measured boundary voltages, z;

hence, the reconstruction problem could be modelled as:

x̂ = Bz (2.6)

where the goal is to find matrix B. In difference imaging, a data set vt1 is measured at

a time t1 labeled as ’reference’ and another data set vt2 is measured at a later time t2

labeled as ’data’; hence, z is the difference between measured value at time t1 and t2,

i.e., z = ∆v = vt2 − vt1 . The goal of the reconstruction is to calculates the change in

conductivity from time t1 to time t2; hence, x̂ = ∆σ = σt2−σt1 . In difference imaging,

σt1 is not known; hence, x̂ is interpreted as the change in conductivity with respect

to the unknown initial conductivity. On the other hand, in static imaging, the goal is

to recover the conductivity distribution assuming a pre-assumed initial conductivity

by updating the conductivity distribution iteratively from the initial conductivity.
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2.8.1 Jacobian or Sensitivity Matrix

In EIT problem, even large changes in the medium conductivity can result in small

changes in measurements compared to the measurements of the background conduc-

tivity distribution. Therefore, the forward problem can be divided into a static and

a dynamic component as equation 2.7, where the dynamic component is assumed to

be a linear function of the conductivity change.

vh + ∆v = F (σh) + J∆σ (2.7)

In this equation, vh is the voltage measurements from a homogeneous medium,

F (σh) is a function of the homogeneous conductivity distribution, ∆σ is the change

in conductivity distribution, ∆v is the change in measurements, and J is the so called

”Jacobian matrix” which describes this linear relation. This linear approximation is

only valid for a limited range. Hence, the inverse problem is linearly modelled as

(2.8) given a small change in conductivity x = ∆σ. For large conductivity changes

a non-linear model might be more accurate which leads into iterative approaches for

solving the inverse problem.

z = Jx+ n (2.8)

In this equation, J is the Jacobian matrix and n is the noise model that appears

in the measurements which is considered an uncorrelated additive white Gaussian

Noise(AWGN); x is the conductivity change (∆σ) and z is the difference measure-

ment (∆v). Matrix J is the matrix of partial derivatives of voltages with respect

to conductivity parameters. In the medical and industrial EIT literature, J is also

called the ’Sensitivity matrix’ and its rows are called sensitivity maps. The sensitivity
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matrix could be derived from the system matrix by the following relation:

J = T

[
− ∂

∂σ
S−1(σ)I

]
= T

[
S−1(σ)

∂

∂σ
S(σ)S−1(σ)I

]
(2.9)

where ’T’ represents an operator for extracting measurements from the nodal voltages,

S is the systems matrix developed in the forward model (see chapter 3), and I is

the injected current. The term S−1(σ)I is the voltage of the nodes which is the

solution of the forward problem. The details of derivation of the sensitivity matrix

can be found in EIT texts such as [9] or [10]. In a model with K elements and b

boundary measurements the Jacobian is a K × b matrix. The Jacobian matrix is

calculated column by column since each column represents an element. Hence, the

ith column represents the effect of the conductivity change in the jth element on

the measurement voltage, vi, measured between electrode pairs. Each element of J

relates the conductivity change in an element to a measured voltage at a background

conductivity σ0 as:

Jij =
∂vi
∂σj
|σ0 (2.10)

where, here, vi is the ith measurement voltage. The sensitivity matrix, J, is a function

of the finite element model, the background conductivity and the current injection

pattern. Normally, a the background conductivity is assumed to be homogenous for

each of the elements; i.e. σ0 = 1.

2.8.2 Solving the Inverse Problem

The sensitivity matrix, J, is not a square matrix. Hence, unlike the forward problem,

solving the linearized inverse problem in equation (2.8) is not straight forward. One

approach is the least squares solution in order to minimizes ‖Jx − z‖. Using this
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approach, the solution would be calculated by:

x̂ = (JTJ)−1JT z (2.11)

However, here, the problem in equation (2.8) is ill-posed since normally there are

more unknown conductivities than the known measurements; therefore, matrix JTJ

is rank deficient and thus cannot be inverted. In ill-conditioned problems, a small

perturbation in the input data results into a large change in the output; hence, even

if the solution exists and is unique, it can be completely corrupted by a small error

in the data or by noise. Employing regularization methods, the conductivity, x̂ could

be reconstructed by the generalized regularization formulation:

x̂ = (JTJ + λ2RTR)−1JT z = Bz (2.12)

where λ is called a regularization parameter or ’hyper-parameter’ and matrix R is

called the regularization matrix. In the simplest form, the regularization matrix is

the identity matrix I, i.e. R = I, which reduces the regularization problem to the

Tikhonov regularization. The identity matrix and the matrices corresponding to the

first and second difference operators are the most common regularization matrices

employed in EIT [33]. The regularization aims to solve the following minimization

problem instead of the least square minimization:

x̂ = arg minx
{
‖Jx− z‖2 + λ2‖Rx‖2

}
(2.13)

where λ2‖Rx‖2 expresses some prior information about the conductivity and reduces

the ill-conditioning of the problem by adding more constraints. From another point

of view, for the Tikhonov Regularization case, λ is filtering the singular values of JTJ

such that the effect of the singular values smaller than λ in dominating the solution
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is bounded. It acts like a smooth truncation of small singular values. More details

about regularization methods, generalized singular value decomposition and inverse

problem technique are available in [34], [35] and [10].

2.8.3 Static EIT

For static conductivity construction, a set of measurement voltages is simulated by

employing the forward model given an initial estimation of the conductivity σ0. The

simulated set of measurement is used as a reference and the actual measurement is

considered as data. Then, having difference measurement, the difference conductivity

is calculated the same way as it was mentioned for the difference imaging. The

resultant conductivity change, ∆σ is used to update the initial estimate in an iterative

approach, i.e., σk = σk−1 + ∆σ.

In each iteration, the forward equation is solved given the updated conductivity

in order to obtain a [simulated] reference set of measurement. Then, the sensitivity

matrix is updated for the new conductivity estimate, i.e., Jij = ∂vi
∂σj
|σk and the inverse

equation is solved by the updated sensitivity matrix and the new difference measure-

ment between the actual measurements and the updated simulated measurements.

This procedure continues until an error criterion is satisfied such as the maximum

number of iterations is reached or the absolute difference between the measurements

and the simulated measurement gets smaller than a pre-determined error bound pa-

rameter.

2.8.4 Difference EIT vs. Static EIT

In static reconstruction, an image of the distribution of the conductivity in a medium

is produced based on a single set of data as it was defined before. In contrast, in

difference image reconstructions, an image of the change in conductivity distribution
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between the acquisitions times of two data sets is produced.

The advantage of using the difference EIT technique is that it reduces the sensi-

tivity to electrode position, electrode movements and electrode error; also it leads to

a linear inverse problem which makes this method suitable for real time imaging. It

is often known that difference imaging is able to improve stability of the recovered

image when the contact impedance is unknown, the boundary geometry is poorly

known, the problem is nonlinear, and the 2D approximations is used for 3D electrical

fields [36] [16]. Further explanation are provided in [36] in which it is shown that as

long as errors in electrode placements remain relatively constant during the measure-

ments, difference imaging is relatively insensitive to error of electrode placements [17].

2.9 The 2.5D literature

In this section, some applications of the 2.5D methods are reviewed. The section

starts by definitions of ”2.5D” stating that different authors refer to the 2.5D term

for different purposes. Then applications of the 2.5D modelling are classified into

geophysics, electromagnetic, process tomography and biomedical applications. Some

applications in which the 2.5D modelling is used are: imaging of a medical process in

reactor-stirred vessel, under semi-batch operation exhibiting imperfect fluid mixing,

earth resistivity arrays, imaging of particle shear migration, and ventilation. The

section ends by a conclusion on the previous works in 2.5D methods.

2.9.1 What does 2.5D refer to?

The term 2.5D (which is denoted by 2½D in the following chapters in order to exclude

from other definitions) is used for different purposes in different fields of science.

In our study, the ”2½D finite element method” refers to a method in which the 3D

Laplace equation is solved using a set of modified 2D equations employing 2D finite
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element mesh under the 2½D assumptions. The 2½D (or 2.5D) assumptions means

having translationally invariant environment along one axis. Other authors, e.g. [37],

might only refer to the ”2.5D modelling” as a model in which a stretched form of

a 2D model having translation invariance along the translation axis is assumed for

3D modelling. In this case, the 3D mesh is referred as a ”2.5D model” due to the

fact that it does not have all aspects of a real 3D model such as deformation of the

model along the height or variation of conductivity along with the height. Moreover,

in some works such as [38], the ”2.5D imaging” (or ” 2.5D reconstruction”) refers

to a method in which the conductivity is reconstructed at different slices of a 3D

model using a 2D image reconstruction algorithm and interpolated under some 2.5D

assumptions. This approach is also called ”pseudo-3D” method and most often, this

specific method of reconstruction is referred to ”2.5D”. In addition, in [39] the terms

”2.5D” and ”2.75D” refer to meshing techniques for generating finite element mesh of

3D objects in specific perspectives. In the EIDORS tutorial [40], the ”2½D” refers to a

method where the z-direction is part of the forward model, but not the inverse model.

The tutorial describes how this could be performed as an application of coarse/fine

mapping in which the a fine (high density) forward model is used with a coarse (low

density) inverse model. In other words, here, the ”2½D” refers to an EIT method

which uses 3D solver in forward solver and 2D model in the inverse solver.

In all of the works mentioned above and also other similar works to them, the term

2.5D is used for a different concept than what it is used in our study. In contrast, the

’true’, ’real’, ’full’, or ’complete’ 3D term is used in order to emphasis that the method

is not a 2.5D algorithm. In summary, in this work, the ”2½D finite element method”

is referred as a solver, called ”2½D solver”, for solving the 3D Laplace equation using a

series of modified 2D equations, called ”2½D equations”, for a 2.5D model (3D model

assuming translation invariance). The 2½D finite element method can be applied to

any problem where the medium in which the problem is being solved is by its nature
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a 2.5D model or can be approximated to a 2.5D model which is a 3D model having

transactionally invariant property along one axis.

2.9.2 Geophysics

According to [41], for the 2.5D electromagnetic problem, the first published theoretical

finite element derivation was reported in Coggon [42]. The DC resistivity and induced

polarization problems have been studied in Coggon [42], Snyder [43], and Fox et

al [44]. Everett [45] and Moghaddam et al [46] studied the 2.5D time domain problem.

The former presented a solution for a transient seafloor exploration system and the

later provided a solution for ground-penetrating radar.

In [47], the 2.5D resistivity tomographic imaging is employed for modelling of em-

bankment dams to evaluate geometry influence and the effect of material properties.

It is noted that for the purpose of monitoring development of internal erosion and

”anomalous seepage” in earth embankment dams, ”repeated resistivity measurement”

is a potentially powerful approach. The study was done to improve long term moni-

toring methods and data interpretation and in order to provide better understanding

in interpreting existing data. The properties of two rock-fill embankment dams in

the north of Sweden was used to model various occurrences typical of embankment

structure. The study evaluates the influence from 3D effects created by specific dam

geometry and effects of water level fluctuations in the reservoir. For this purpose a

special 2.5D software was implemented to model apparent resistivity for geometries

and material distributions for embankment dams. Here, the 2.5D refers to the 2½D

finite element method.

Zhou [48] has checked the accuracy of 2.5D modelling by comparing it with known

analytic solutions. It was demonstrated that the modelling accuracy mainly de-

pends on the element size, electrode spacings (which produce different ranges of the

wavenumber), and the wavenumber sampling for accurate inverse-Fourier transform.
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In [49], a comparative study was performed to examine the effect of surface to-

pographic variations on several DC earth resistivity arrays. For the purpose of that

study, a modified 2½D finite element method (FEM) modelling scheme was employed

in order to evaluate the performance of different survey arrays such as dipole-dipole,

Wenner, pole-pole, pole-dipole and Square. It is stated that ”local” four-electrode

arrays are less sensitive to terrain topography variations with respect to arrays em-

ploying remote probes for resistivity profiling applications. In that work, the 2.5D

finite element method is modified because it is stated that in modelling arrays par-

allel to the strike dimension the cosine term disappears. It is stated that by simple

integration schemes it is possible to obtain acceptable accuracy; however, the cosine

term and the logarithmic discontinuity at k = 0 ”renders” the integration much more

complicated for modelling arrays vertical to the strike direction (e.g. square array).

The modified scheme was proposed to find a solution for the secondary potential by

assuming that the total potential is produced from the superposition of a homogeneous

background (primary field) and the modelled structure (secondary field). Adding the

resultant secondary potential to the primary potential calculated at a small distance

from the source makes it possible to avoid the singularity introduced by the source.

Finally, a combination of logarithmic and exponential interpolation as proposed in [50]

was used for the integration. Although the 2.5D finite element method is similar to

the approach used in this study, the boundary geometry and condition is different in

the EIT application as a medical imaging modality.

In [51], a 2.5D finite element scheme is employed for the forward modelling in field

surveys and the potential variations parallel to the strike direction was calculated by

modifying an existing approach. Here, the square array configuration was studied

in which three different resistances can be measured directly; like any four-electrode

measuring configuration. Employing the square array has the advantage that the

resistance values can be employed to gain a measure of the ’apparent anisotropy’
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which is called azimuthal inhomogeneity ratio (AIR). The AIR is widely employed to

obtain information about the directional variation of the subsurface resistivity.

In [52], the effect of a multi-coil electromagnetic tool offset on the measured signals

with respect to the borehole axis is discussed. In this study the EIT method was not

used; however, the method employs the finite element method. In the numerical

experiment, the 2D and 2.5D modelling methods were used for comparison in which

the tests demonstrated a good agreement of the results.

In [41], electromagnetic (EM) induction of a finite electric dipole source over a

2-D earth is modelled using the 2.5D finite element modelling since the excitation

source had a 3D structure. Although the concept of the 2.5D FEM is same, the

formulation of the problem differs by comparing to the electro-static problem of EIT.

In that work, for each set of discrete spatial wavenumbers (harmonic), a finite-element

method is employed to solve a solution for the secondary electromagnetic fields. The

paper considers some simple seafloor examples in conclusion. In addition, for the

finite element mesh, exponential elements are used in order to model the fields at

the far-field efficiently. The boundary geometry is theoretically open in the far field

which makes a problem that need to be tackled too.

Complex Electric Impedance Tomography in Geoelectrics (CEITiG) is a MATLAB

based software for geological applications that has also implemented the 2.5D finite

element method. One of the advantages of this software is that it provides graphical

user interface GUI features. It is a part of a research project to increase the resolution

power and acceleration of tomographic reconstruction methods in the geoelectric.

2.9.3 Miscellaneous Non-tomographic Problems

In [53], a 2.5D finite element modelling difference method is developed for EM mod-

elling in stratified anisotropic media for marine controlled-source electromagnetic

(CSEM) applications. In order to model the seabed logging problem, finite element
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model is used in axis-aligned anisotropic media for a 2.5D problem. Here, a 2.5D

problem is referred to a problem in which the energy is radiated from a 3D source in

the presence of 2D structures. In implementing the method, the delta sources were

employed to solve the set of governing partial differential equation. It is stated that

the formulation of the 2.5D finite-difference method was first proposed by Stoyer and

Greenfield [54] for a two-dimensional earth to an oscillating magnetic dipole source.

In [55] and [56], an integral equation framework is presented for 2.5D frequency do-

main EM modelling in conductive media. Here, 2.5D is refereed to a medium which

is assumed to be invariant in one direction. Moreover, a media having transverse

isotropic properties in the vertical direction (TIV) is also considered; this makes pos-

sible to have different horizontal and vertical conductivities. The method was applied

to marine Controlled Source ElectroMagnetic (mCSEM) surveys. It is stated that a

hydrocarbon reservoir will act as a waveguide for the low-frequency electromagnetic

signal because the reservoir typically have a low electric conductivity with respect to

its surroundings in the subsurface.

It has been demonstrated that the 2.5D framework has the capability of simulating

mCSEM experiments with respect to the model size and conductivity ranges by only

solving between 20 to 30 2D problems for having reasonable results. It is stated that

for that problem, this proves the computational efficiency of the 2.5D method with

respect to solving the full 3D problem.

In [57], 2.5D cavity balancing is proposed which employs 2.5D idea for mesh

generation. The process of altering the flow front inside a cavity by the means of

thickness and design changes in order to obtain the desired fill pattern is known as

cavity balancing. Since most or (all) of the practical injections parts are not 2D parts,

a 2.5D cavity balancing optimization routine was developed for a 2.5D finite elements

domain. Plastic injection-molded parts are not flat typically; however, since they

are mostly thin, it is possible to approximate them as 2.5D. Therefore, the physical
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domain is approximated by faceted objects for the 2.5D finite element simulation

which simplifies the 2.5D problem into a series of 2D problems.

2.9.4 Process Tomography

In [58], 2.5D linear back projection (LBP) is considered in comparison with the 2D

and 3D LBP. In that work, the 2D and 2.5D LBP data were acquired from the ITS

P2000 standard software, ERTWin [59]. The ITS P2000 has been chosen for the ex-

periments done for process tomography [60] which is claimed to be the best performing

EIT instrument, available, for experiments requiring high temporal resolution and is

capable of successfully monitoring homogeneity [61]. LBP is the method normally

used in (X-ray) CT scans where the beams travel in a direct path inside the medium.

In LBP, the sensitivity matrix and the forward model is defined differently than the

Finite Element approach. LBP is not a popular method for EIT since normally EIT

is considered as a soft tomographic problem where the current is scattered in the

medium.

In [60], the 3D EIT is employed to monitor reactive systems under realistic process

conditions. The purpose of the study was to examine the semi-batch precipitation

of barium sulphate from barium chloride and sodium sulphate in a ”200l, semi-tech

scale, stirred tank reactor”. For this purpose, some experiments were carried out

under a range of agitation rates with a surface feed of barium chloride employing both

Rushton and pitched blade turbines. EIT’s ability to visualize the plume structure

and evolution was investigated during the semi-batch reaction in 3D and linked to

the mixing curve. The study was performed for a real 3D case and was compared to

the pseudo-3D reconstruction implemented earlier.

In [62], the 2½D finite element method is applied to investigate the net migration

of particles in a suspension undergoing pressure-driven flow through a tube at low
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Reynolds number. EIT is used to the flowing suspension by two flush-mounted elec-

trodes on the pipe wall. In that work, an image of the suspension particle volume

fraction was reconstructed using the relationship between the local conductivity and

local suspension concentration. The result of particle distribution measured by the

EIT approach was claimed to be in very good agreement with magnetic resonance

imaging. The work employs the 2½D finite element method where it is claimed that

ten terms of the series are sufficient to determine the solution for an infinitely long

cylinder when the periodicity of the solution, 2zm, is set equal to eight times the

diameter of the pipe.

The pseudo three-dimensional EIT (which is often referred to 2.5D EIT) has

been often utilized for applications of EIT in fluid mixing in a stirred vessel. In

pseudo three-dimensional EIT, two-dimensional slices are interpolated into a three-

dimensional reconstruction. Some articles found in the literature are [63], [64],

and [65].

In [37], a real 3D image reconstruction algorithm is implemented for spatial imag-

ing where sensors provide 3D measurements. The results were compared to the 2D

and 2.5D method. In that work, the 2.5D tomography is referred to a method which

uses a few independent 2D images to interpolate them into a 3D image; therefore,

3D visualization can be achieved by interpolating series of 2D slices from different

planes into a 3D image as in many medical applications. The paper concentrates on

the capacitance imaging (ECT). The 3D sensor configuration is referred to a sensor

configuration where electrodes are placed in multi-layers (slices) on the boundary

and not only on a single layer. It is concluded that employing present computing

power does not allow us to run on-line 3D imaging for monitoring applications due

to the significant calculation complexity of the 3D reconstruction algorithms; hence,

3D imaging could be mostly applied to off-line applications.
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2.9.5 Biomedical Applications

The work in [3] is one of the earliest work where a finite element algorithm is de-

veloped for EIT assuming translationally uniform conductivity distributions for finite

cylinders with general cross-sectional boundaries. The 3D forward problem was solved

by a series of 2D problems by employing a finite element mesh considering only the

point electrode model (PEM). For image reconstruction purpose, the ratios of the

gradients computed for both 2D and 3D homogeneous objects are calculated given a

cross-sectional boundary; next, the real measurements from the 3D object are multi-

plied by these ratios and the conductivity image is reconstructed by the 2D iterative

equipotential lines method. It is argued the method provide an ”equivalent” transla-

tionally uniform object which produces the same gradients as the real measurements.

It is reported that the maximum relative difference of the solutions from with the

cylindrical harmonics and FEM is less than 2%.

In [5], a 2½D finite element forward simulation is employed for EIT because of

its much shorter calculation times. It is stated that resistivities are constant in

cranio-caudal direction; hence, the 2½D approach was employed for the 2D model

parametrization of a 3D measurement. In this study, the point electrode model was

employed where the electrodes were located in one plane of the body. The modelling

technique described in that work was originally proposed by Dey and Morrison [66]

for geophysical application and followed recently in Rucker et al [67]. For testing

purpose, a complete 3D forward simulation with bounded lungs and heart was used.

It was stated that there was no significant improvement in the results of 3D for

functional data sets.
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In [68], a measurement system and image reconstruction was presented for mag-

netic induction tomography employing 2.5D finite element modelling. Magnetic in-

duction tomography (MIT) is an imaging modality similar to EIT which is a non-

invasive yet non-contact imaging technique used for biomedical applications. In MIT,

instead of current injection electrodes, current-carrying coils are applied to induce

eddy currents in the object and the induced voltages are measured with other coils.

That work employs the finite element method using edge elements for solving the

equation and a generalized Tikhonov regularization approach for image reconstruc-

tion. The work considers and tests both static and difference imaging. In both cases,

the 2.5D reconstruction method is used where the Jacobian is calculated assuming

that the conductivity distribution is translationally invariant in the direction of the

z-axis.

For the MIT, it has been reported that the ”2.5D reconstruction” approach works

well in a low conducting test case with real measurements. However, some artifacts in

difference imaging and fairly poor resolution in static imaging can be observed. Two

full 3D cases were compared to the 2.5D image by extended simulation from the same

author in [55] and [56]; the first 3D case uses one ring of 16 coils and the other uses an

increased number of measured data points obtained from 3 ring of 16 coils in different

vertical positions. The author recommends that the 3D image reconstruction should

be employed especially for static imaging, due to the fact that the 2.5D assumption

is rarely valid in real imaging situations. Some reasons were given for artifacts in

static imaging in MIT. The major reason is the use of a 2.5D image reconstruction

method for the simulated 3D case. Another reason for artifacts was truncation of

the static imaging iterative approach in the second step (one step after homogeneous

distribution). Another source of error comes from the fact that for the proposed

method piecewise constant conductivity was modelled in the forward problems while

piecewise linear presentation was modelled for the inverse problem. In addition, it
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is stated that when comparing the simulation results to the real measurement cases,

it could be seen that the real measurements provide better results; this happens

due to the fact that the resulted negative values were truncated to zero after the

reconstruction.

The work presented in [37] aims to study different effects of different thorax mod-

els with either conductivity or complex conductivity on the reconstructed images and

ventilation indices. For this purpose, true 3D thorax models with conductivity dis-

tribution or complex conductivity distribution under different ARDS conditions are

developed and the solutions are compared to the ”2.5D thorax” model. Here, the 2.5D

is referred to the mesh style used for modelling the thorax in which the 3D model

is developed through stretching from the 2D slices; which results in a simple case a

circular, elliptical, or arbitrary-base cylinder. ARDS refers to acute respiratory dis-

tress syndrome which is a life-threatening state of the lung specified by lung collapse

and water in the lung which makes inhomogeneous variations in the conductivity

distribution inside of the thorax.

2.9.6 Conclusion

It was shown that the ”2.5D” term is used for different purposes by different authors.

In our study, the ”2½D” refers to the 2½D finite element modelling where a 3D Laplace

equation is solved by a set of 2D-like equations under a 2½D assumption. Those works

that are similar to our work could be classified into geophysical, process tomography

and biomedical application. It was shown that only a few authors have used 2½D

finite element modelling for EIT. In some geophysical applications together with EM

problems, a non tomographic approach is employed where the type of energy is elec-

tromagnetic waves. In this kind of problems, a 3D set of electromagnetic equations

(derived from the Maxwell’s equations) is solved in which both electric field and mag-

netic field are involved having curl equations. In other geophysical applications where
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EIT is used, the type of boundary condition and boundary geometry as well as the

geometry of the problem is different than the EIT problem in biomedical applications.

The use of 2½D finite element modelling for the EIT problem is quite similar for

process tomography and the biomedical applications in which an electro-static equa-

tion is solved having divergence rather than curl; the situation is similar for magnetic

induction tomography MIT. It was found that, there are more works performed in

process tomography using 2½D finite element modelling comparing to the biomedical

applications. The use of 2½D finite element modelling for the biomedical applications

is still under investigations since the 2½D approach might not be sufficient in complex

areas where the true 3D nature of the experiment is significant. However, in real

time application, the real 3D algorithm is not computationally efficient; thus still 2D

methods are employed. All of the works currently found in EIT either for process

tomography or in biomedical field continue to employ the point electrode model which

is simply modelling a single node for each electrode. The complete electrode model

seems to be necessary especially in biomedical applications where skin-electrode con-

tact impedance is not negligible.



Chapter 3

2½D Finite Element Method

In this chapter, the 2½D Finite Element method is formulated. The chapter starts

with a definition of the 2½D problem as well as the 2½D assumptions. In the first

section, a set of partial differential equations is derived from the 3D Laplace equation

under 2½D assumptions followed by the correct boundary condition in the second

section. The Method of Weighted Residuals (MWR) is explained in section 3.3 where

in a step by step description, it is shown how the finite element method models each

2½D PDE into a matrix equation.

Next, using linear interpolation functions, the integral terms resulting from the

previous section are solved analytically. The closed form of the analytical solution of

the integrals are provided in section 3.3.4 and complete details for deriving the closed

forms are explained in appendix A. In section 3.4, the complete electrode model is

applied to the right side of the governing equation for the 2½D case; and in section 3.5

the modification of the inverse problem is explained.

The second part of this chapter (which starts from 3.6) contains the construction

process of the global system matrix in a step by step description through some exam-

ples. In section 3.6 for a simple 2D mesh, the process of calculating the connectivity

matrix and local stiffness matrix are explained followed by the construction of the en-

tire system matrix. In addition, the values of the system matrix are provided for the

37
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Figure 3.1: A 2½D model - The green region is an electrode

sample mesh followed by a description on what each value means. The last subsec-

tion provides the full system matrix with the additional terms coming from complete

electrode modelling. Section 3.7 provides an explanation of how the CEM adds extra

terms in a more complex 2D mesh. Matrix AW describes the weights of the voltage of

the nodes under the electrode derived by a KVL between the ’electrode node’ and the

’nodes under the electrode’ (or ’electrode nodes’). In the next sections, it is explained

how the weights of the voltage of nodes under each electrode are calculated for a 3D

mesh having 2D boundary electrodes. Section 3.9 describes the same calculation for

a 3D mesh having 1D boundary electrodes.

3.1 The 2½D Problem

The 2½D problem starts by assuming having translationally invariant conductivity

along the z-axis over the domain−zm < z < +zm shown in figure 3.1. The total height

of the domain, 2zm, is also denoted as H. Taking the assumption of translational

invariance for the conductivity into effect, the voltage distribution is symmetric within
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the 3D domain with respect to the z = 0 plane provided that the boundary condition

is also symmetric. This voltage symmetry is formulated in the following equation:

ϕ(x, y, z) = ϕ(x, y,−z) (3.1)

where ϕ is the actual electric potential in the 3D domain. Assuming symmetric

voltage distribution makes it possible to take a one dimensional cosine (Fourier) series

expansion over only the z-axis. Hence, the 3D voltage for each point is transformed

into an infinite number of 2D voltages denoted by Vn(x, y) each of which represents

a spatial frequency nπ
zm

with the harmonic number n. Harmonic voltages, Vn(x, y),

which are not real potentials, are calculated by the following analysis equation:

Vn(x, y) =

∫ +zm

−zm
ϕ(x, y, z) cos(

nπ

zm
z) dz (3.2a)

The original 3D voltages are then calculated back using the inverse cosine series

transform which is also known as the synthesis equation formulated as follows:

ϕ(x, y, z) =
∞∑
n=0

Vn(x, y) cos(
nπ

zm
z) (3.2b)

Substituting equation (3.2b) into the Laplace equation for 3D domain expressed

in equation (3.3) finally results in the 2½D governing equation expressed in equation

(3.5).

∇3D · [σ(x, y, z)∇3Dϕ(x, y, z)] = 0 (3.3)

The details of this derivation are as follows:

∇3D ·

(
σ(x, y)∇3D

[
∞∑
n=0

Vn(x, y) cos(
nπ

zm
z)

])
= 0

The operator ∇3D could be written as a combination of a ∇2D operator for x, y and
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a ∂
∂z

operator for z coordinate as

∇3D ,

∇2D

∂
∂z


Applying the derivatives separately makes it possible to continue the derivations

more conveniently. First, the inside gradient operator is applied which results in the

following expression

∇3D · (σ(x, y)
∞∑
n=0

∇2DVn(x, y) cos(nπ
zm
z)

−nπ
zm
Vn(x, y) sin(nπ

zm
z)

) = 0

Next, by applying the divergence which is the outer gradient operator, the resul-

tant expression would be

∞∑
n=0

[
∇2D ·

(
σ(x, y)∇2DVn(x, y) cos(

nπ

zm
z)

)
− σ(x, y)(

nπ

zm
)2Vn(x, y) cos(

nπ

zm
z)

]
= 0

Finally, by factoring out the common cosine coefficient, the Laplace equation (3.3)

transforms into equation (3.4) assuming translationally invariant conductivity along

z.

∞∑
n=0

(
∇2D · (σ(x, y)∇2DVn(x, y))− σ(x, y)(

nπ

zm
)2Vn(x, y)

)
cos(

nπ

zm
z) = 0 (3.4)

Equation (3.4) is valid for each spatial frequency n. Due to the orthogonality of

the cosine terms, each coefficient must be zero independently; hence, each coefficient

forms a governing equation corresponding to a spatial frequency expressed in equation

(3.5).

∇2D · [σ(x, y)∇2DVn(x, y)]− σ(x, y)(
nπ

zm
)2Vn(x, y) = 0 (3.5)

∀n ∈ {0,N} = {0, 1, 2, 3, . . .}
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For the n = 0 case, the set of equations (3.5) reduces to a regular 2D equation.

However, in general, the boundary condition is not the same as the 2D case even for

n = 0; unless one assumes a unit height domain.

3.2 2½D Boundary Condition

The boundary condition is an important issue in electromagnetic problems. Since

the partial differential equation is same in almost all problems, the problem shape

and the boundary condition form the solution. Substituting synthesis equation (3.2b)

into the boundary condition for the general 3D equation expressed in (3.6) results in

the 2½D boundary condition expressed in (3.8).

σ(x, y)
∂ϕ(x, y, z)

∂n̂
= Js(x, y, z) (3.6)

In equation 3.6, Js is the surface current density on the boundary which is sym-

metric with respect to z = 0 and n̂ is the unit vector normal to the boundary of the

medium Ω. The details of the derivation of 2½D boundary condition are as follows:

σ(x, y)
∂

∂n̂

∞∑
n=0

Vn(x, y) cos(
nπ

zm
z) = Js(x, y, z)

where n̂ is the unit vector normal to the boundary of the medium Ω while n is

the harmonic number of special frequency. As mentioned previously, the boundary

condition must also be symmetric with respect to the z = 0 plane. Therefore, it is

possible to also expand the current density, Js, in cosine series. Changing the order

of the summation and derivative together with expansion of current density results

in
∞∑
n=0

σ(x, y)
∂

∂n̂
Vn(x, y) cos(

nπ

zm
z) =

∞∑
n=0

Jn(x, y) cos(
nπ

zm
z) (3.7)
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where Jn is the harmonic coefficient of current density corresponding to the spatial

frequency nπ
zm

. Again, due to the orthogonality of the cosine terms, the corresponding

coefficients of the cosine terms from both sides of the equation must be indepen-

dently equal. Hence, we have the boundary condition expressed in (3.8) for each 2½D

governing equation in (3.5).

σ(x, y)
∂Vn(x, y)

∂n̂
= Jn(x, y) (3.8)

Assuming a uniform distribution of current density under the electrodes of height

h, the boundary condition values for each harmonic n is calculated as

J0 =
h

H
Js =

h

2zm
Js

Jn =
2

nπ
Js sin(

nπh

2zm
)

However, the nature of the current density when it is transformed from a 3D

situation into the 2D situation should also be considered. In the 3D case, the current

vector is a surface current density, Js, satisfying equation (3.10) while in the 2D case

the current vector is a line/curve current density, Jl, satisfying equation (3.11)

I3D =

∫∫
Js · n̂dS (3.10)

I2D =

∫
Jl · n̂ dΓ (3.11)

Consequently, in order to have equal current for the same problem in both 3D

and 2D models, the left sides of both equations (3.10) and (3.11) should be equal.

Hence, assuming a uniform distribution of current along z-axis, the relation between
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the current density in 3D and 2D is be derived as follows:

Js =
1

h
Jl (3.12)

Equation (3.12) notifies that when the same amount of current, e.g. assume I = 1,

is uniformly distributed once into a surface and another time into only one edge of that

surface, the line/curve density would be greater than the surface density by a factor

equal to the length of the other edge of that surface. Finally, since a 2-dimensional

forward solver is used with modified stiffness matrices, for solving a 3D equation by

a series of 2D equations (solvers), the boundary condition should be divided by h as

expressed in (3.13).

J0 =
1

H
Jl =

1

2zm
Jl (3.13a)

Jn =
2

nπh
Jl sin(

nπh

2zm
) (3.13b)

In summary, for calculating the boundary condition, the following matters are

considered: (1) the coefficient of the DC term (n = 0) is one half of the resulted

coefficient from ’sinc’ function (Fourier transform of a rectangular pulse) and (2)

since the current for the 2D and 3D solver is same, the current density distribution

for the 3D mesh is 1
h

along the z coordinate, where h is the electrode height.

Finally, the 2½D modelling is solving a series of 2D partial differential equations;

hence, the core equations follow a 2D attribute. Since Jl is intrinsically implemented

in the 2D solver when considering the complete electrode model (see section 3.4), we

only need to set current vector, I, (or the matrix consisted of current vectors for all

stimulation patterns) as

I0 =
1

H
=

1

2zm
I (3.14a)

In =
2

nπh
sin(

nπh

2zm
)I (3.14b)
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3.3 Method of Weighted Residuals (MWR)

The Method of Weighted Residuals, MWR, is one of the Finite Element Methods

used to solve the Laplace equation and it is the most versatile approach in deriving

element properties. The MWR algorithm begins by discretizing the domain Ω as a

combination of finite number of elements Ek, which are also known as simplices. A

simplex could be a triangle in 2D or a tetrahedron in 3D finite element model. A

collection of finite elements is called a finite element mesh. In a finite element mesh

there are K elements, i.e. simplices, totally having N vertices, i.e. nodes. For any

position ~x, the harmonic potential within the mesh, ũn(~x), is approximated by a

summation of piecewise polynomial interpolation function weighted by the potential

at the nodes expressed in (3.15).

ũn(~x) =
N∑
i=1

uni φi(~x) (3.15)

where N is the number of nodes in the FEM, uni are the harmonic potential of the

nodes in the FEM in which n denotes the harmonic number of the potential, and φi

are interpolation functions, also known as ’shape functions’ or ’basis functions’. For

the case of linear interpolation function, i.e. first order interpolation function, φi are

expressed in (3.16) for a 2D FEM.

φ1 =
1

2A
{(x2y3 − x3y2) + (y2 − y3)x+ (x3 − x2)y} (3.16a)

φ2 =
1

2A
{(x3y1 − x1y3) + (y3 − y1)x+ (x1 − x3)y} (3.16b)

φ3 =
1

2A
{(x1y2 − x2y1) + (y1 − y2)x+ (x2 − x1)y} (3.16c)

where, (xi, yi) are the positions of three nodes and A is the area of the 2D finite

element. Equation (3.15) provides only a finite approximation of the potential. Hence,
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the Laplace equation would not be zero in a general case due to the fact that employing

the summation of the weighted basis functions produces errors or ’residuals’. In

addition, the basis functions φi are not differentiable at the edges and nodes; hence it

is not possible to satisfy the Laplace equation directly. Therefore, in the method of

weighted residuals, MWR, a weak form of the Laplace governing equation is derived by

multiplying the governing equation by some arbitrary test function v and integrating

over the domain Ω as expressed in (3.17).

∫
Ω

v[∇ · σ∇ũn − σ(
nπ

zm
)2ũn] dΩ = 0 (3.17)

In equation (3.17), the test function v weights the residual in order to make them

zero in some average sense. Equation (3.17) should be satisfied for all test functions in

a certain class. By employing the vector identity for divergence of a scalar multiplied

by a vector expressed in (3.18) with notations adapted to our problem, equation (3.5)

is re-formulated into equation (3.19).

∇ · (vσ∇(ũ)) = σ∇ũ · ∇v + v∇ · (σũ) (3.18)

∫
Ω

∇ · (vσ∇ũn) dΩ =

∫
Ω

σ∇ũn · ∇v dΩ +

∫
Ω

vσ(
nπ

zm
)2ũn dΩ (3.19)

Next, the Gauss-Divergence theorem is employed in order to introduce the bound-

ary condition. The Gauss-Divergence theorem adapted to our notation is expressed

in (3.21) considering the vector relation expressed in (3.20).

∇ũn · n̂ =
∂ũn
∂n̂

(3.20)

∫
Ω

∇ · (vσ∇ũn) dΩ =

∫
∂Ω

vσ
∂ũn
∂n̂

dΓ (3.21)

where ∂Ω is the boundary of the medium Ω and n̂ is the unit vector normal to the
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boundary ∂Ω. Substituting the right side of equation (3.19) with its equivalent in

Gauss’ theorem gives the new formulation of the problem which is expressed in (3.22).

∫
Ω

σ∇ũn · ∇v dΩ +

∫
Ω

vσ(
nπ

zm
)2ũndΩ =

∫
∂Ω

vσ
∂ũn
∂n̂

dΓ (3.22)

From this point the left side or the right side is referred to the corresponding side

in equation (3.22). The right side of equation (3.22) is a boundary integral; hence, the

boundary condition determines its value. For the simplest case, this integral is only

performed underneath the current drive electrodes. The right side of the equation as

well as the boundary condition will be discussed later.

3.3.1 Left Side of the Governing Equation

The integral in the left hand side of equation (3.22) is performed for the whole

medium. At this point, the conductivity is discretized. There could be many methods

to approximate conductivity over each element. However, the simplest method is to

assume that each finite element has a constant conductivity. This approach is known

as piecewise-constant (PWC) where the conductivity is formulated as:

σPWC =
K∑
k=1

σkδ
FE
k (3.23)

where σk is the conductivity of the kth element and δFEk is one under the kth element

and zero elsewhere. Equation (3.23) provides an piecewise-constant approximation of

the conductivity σ and therefore has the advantage of separating and factoring the

conductivity of each finite element out of the integral over the finite element mesh.

Higher order approximations might result in better accuracy at the cost of complexity

and nonlinearity. Considering PWC conductivities, for each simplex Ek, the left side
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of equation (3.22) is written as

∫
Ek

σk∇ũn · ∇v dΩ +

∫
Ek

vσk(
nπ

zm
)2ũn dΩ (3.24)

Different approaches in MWR differ by the selection of the test function v. Some of

these approaches are: Collocation, Least Squares, and Galerkin [10]. In the following,

the Galerkin method, which is the most common method employed in MWR, is briefly

described:

In the Galerkin method, the test function v is taken from a same class of functions

used for approximating the potentials ũn(~x) expressed in (3.15). Hence, the same

interpolation functions, φi(~x), are used for the test function v in order to weight the

residuals produced in the weak form of the governing equation. The test function

employed in the Galerkin method is expressed in equation (3.25).

v(~x) =
N∑
i=1

wiφi(~x) (3.25)

where wi are the coefficients which weight the interpolation functions φi(~x) in order to

make the residuals zero. The weak form of the governing equation must vanish for all

wi; therefore, the problem reduces to finding the main coefficients ũi which represent

the potential at the nodes. By substituting the definitions of v(~x) and ũn(~x) into the

integrals expressed in (3.24) the discretization proceeds as

∫
Ek

σk∇(
3∑
i=1

uni φi) · ∇(
3∑
j=1

wjφj) dΩ +

∫
Ek

σk(
nπ

zm
)2(

3∑
j=1

wjφj)(
3∑
i=1

uni φi) dΩ

Performing the multiplication of two summation and taking all coefficients and
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summations outside of the integral yields:

σk

3∑
i=1

uni

3∑
j=1

wj

∫
Ek

∇φi · ∇φj dΩ + σk(
nπ

zm
)2

3∑
i=1

uni

3∑
j=1

wj

∫
Ek

φjφi dΩ

= σk

3∑
i=1

uni

3∑
j=1

wj

(∫
Ek

∇φi · ∇φj dΩ + (
nπ

zm
)2

∫
Ek

φjφj dΩ

)
(3.26)

In equation (3.26), σk is also factored out since it is constant inside each element

as mentioned previously. Here, the core integrals are separated and marked with a

new notation to simplify the writing; which are defined in (3.28a) and (3.28b).

σk

3∑
i=1

uni

3∑
j=1

wj(S
k
ij + (

nπ

a
)2Rk

ij) (3.27)

Skij =

∫
Ek

∇φi · ∇φj dΩ (3.28a)

Rk
ij =

∫
Ek

φiφj dΩ (3.28b)

where Skij is the integral term which also exists in the 2D governing Laplace equation.

Skij is easy to calculate since the gradients are constant for a linear, i.e. first order,

interpolating function φi. In contrast, Rk
ij is the additional integral term added to

the problem and represents the non-zero spatial frequencies in the 2½D governing

equation. From another point of view, it is possible to combine both integrals and

build a modified ’local stiffness matrix’, which is denoted as S ′kij and expressed in

(3.29).

S ′
k
ij = Skij + (

nπ

a
)2Rk

ij =

∫
Ek

∇φi · ∇φj + (
nπ

a
)2φiφj dΩ (3.29)

The local stiffness matrix, also known as element stiffness matrix, is the stiffness

matrix constructed for each element. The local stiffness matrix is a 3×3 matrix for
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2D elements and a 4×4 matrix for 3D elements. Finally, the left side of the governing

equation for each element expressed in (3.24) yields equation (3.30) or in the extended

form equation (3.26).

σk

3∑
i=1

uni

3∑
j=1

wjS
′k
ij (3.30)

3.3.2 Right Side of the Governing Equation

The right hand side of the equation is again written in equation (3.31), where σ∇ũn ·n̂

is the normal component of the current density which is zero on the boundary ∂Ω,

except underneath the electrodes defined by Γ. Γ is the union of the electrodes, El,

expressed in equation (3.32) in which L is the total number of electrodes employed

in the system. Note that the notation Ek was previously used for the finite ’element’

index, k, in the mesh and should not be mistaken with El used as the electrode index,

l, here. Since σ ũn
∂n̂

is equal to the current density normal to the boundary, i.e. J · n̂

and the integral is zero except underneath the electrodes, the integral is performed

only over Γ.

∫
∂Ω

vσ
∂ũn
∂n̂

dΓ =

∫
∂Ω

vσ∇ũn · n̂dΓ =

∫
Γ

vσ∇ũn · n̂dΓ (3.31)

Γ =
L⋃
l

El, Γ′ = ∂Ω (3.32)

By substituting the definitions of v(x) and ũn(x̂) into the right-hand side of equa-

tion (3.22), the discretization of the boundary proceeds as

∫
Γ

vσ
∂ũn
∂n̂

dΓ =

∫
Γ

vσ∇ũn · n̂ dΓ =

∫
Γ

σ(
3∑
j=1

wjφj)∇(
3∑
i=1

uni φi) (3.33)

It is worth remarking that the right side of equation (3.22) represents the boundary

condition; hence it may change for different boundary condition types. Considering
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piece-wise constant conductivity for each element k, the right-hand side of equation

(3.22) is written as

σk

3∑
j=1

wj

3∑
i=1

uni

∫
∂Ω

φj∇φi · n̂ dΓ = σk

3∑
i=1

uni

3∑
j=1

wj

∫
∂Ω

φj∇φi · n̂ dΓ (3.34)

For simplicity in future reference, as we defined S ′kij before, here the integral term is

defined as Qk
ij which is expressed in (3.35).

Qk
ij =

∫
∂Ω

φj∇φi · n̂ dΓ (3.35)

Hence, the right side of equation (3.22) would be written as (3.36).

σk

3∑
i=1

uni

3∑
j=1

wjQ
k
ij dΓ (3.36)

3.3.3 Complete Equation

Both sides of equation (3.22), which is itself derived from the weak form of the

governing equation, are now developed for each element. At this point the whole

equality of equation (3.22) is expressed by equation (3.37) in an expanded form and

by (3.38) in a closed form as

σk

3∑
i=1

uni

3∑
j=1

wj

(∫
Ek

∇φi · ∇φj dΩ + (
nπ

zm
)2

∫
Ek

φjφj dΩ

)

= σk

3∑
i=1

uni

3∑
j=1

wj

∫
∂Ω

φj∇φi · n̂ dΓ

(3.37)

σk

3∑
i=1

uni

3∑
j=1

wjS
′k
ij = σk

3∑
i=1

uni

3∑
j=1

wjQ
k
ij (3.38)

The equation must be valid for all test functions in a certain class (MWR, e.g in
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Galerkin method v is the same as the interpolation function), therefore wj can be

removed from both sides of equation (3.37) and results in the following equation for

each wj:

σk

3∑
i=1

uni S
′k
ij = σk

3∑
i=1

uniQ
k
ij (3.39)

In summary, for the whole mesh, the left side of equation (3.22) would be written

as follows:∫
Ω

σ∇ũn · ∇v dΩ +

∫
Ω

vσ(
nπ

zm
)2ũndΩ =

K∑
k=1

(

∫
Ek

σk∇ũn · ∇v dΩ +

∫
Ek

vσk(
nπ

zm
)2ũndΩ) =

K∑
k=1

σk

3∑
i=1

uni

3∑
j=1

wjS
′k
ij

(3.40)

From equation (3.39), the global system matrix, S ′(n), of the entire mesh for

harmonic n is constructed by combining the local stiffness matrices using the connec-

tivity matrix. The global system matrix is then used to solve the forward equation

expressed in (3.41) for calculating the nodal voltages Un from the forcing vector of

driven current pattern In or Jn depending on type of the employed boundary method.

The system matrix is also employed to construct the sensitivity matrix in the inverse

solver.

S ′(n)Un = In (3.41)

One approach to compute the system matrix for the entire mesh is to calculate

the local stiffness matrix for each element and construct a connectivity matrix for the

entire mesh based on the connectivity map of the elements. When the local system

(stiffness) matrices are all calculated then the system matrix for the entire mesh is

computed by the following equation:

S = CT SEΣ C (3.42)
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where SEΣ is a diagonal concatenation of local system matrices in which the con-

ductivity of each element is also included, C is the connectivity map matrix and

’T’ represents the transpose operation. Connectivity map is the relation between

the node index inside each element and the general node index for the entire mesh.

Construction of the connectivity map will be illustrated later in this chapter by an

example.

The right side of equation, i.e. the forcing vector, could be written in different

ways depending on how the electrode model imposes the boundary condition. It is

also possible to write the equation as the following [4]

∫
∂Ω

vσ
∂un
∂n̂

dΓ =

∫
∂Ω

3∑
i=1

wiφiJn dΓ =
3∑
i=1

wi

∫
∂Ω

φiJn · n̂ dΓ (3.43)

As mentioned previously, both side of equation should be equal for all test func-

tions in a certain class or in order words for all wi; hence, wi is removed from the

equation which yields: ∫
∂Ω

φiJn · n̂ dΓ (3.44)

3.3.4 Analytical Solution of the Integrals

The linear interpolation functions φi are written in the set of equations expressed in

(3.16). For simplicity in calculation, φi and φj are written as

φi =
1

2S
{A1x+B1y + C1} (3.45a)

φj =
1

2S
{A2x+B2y + C2} (3.45b)

In these equations, the variables are x, y and the constants are A, B, C, S. The
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integrals defined in equation (3.28) are then calculated as the following:

Skij =

∫
Ek

∇φi · ∇φj dΩ =
1

(2S)2

∫
Ek

A1

B1

 ·
A2

B2

 dΩ =
A1A2 +B1B2

(2S)2

∫
Ek

dΩ

=
A1A2 +B1B2

(2S)2
S

(3.46)

Calculation of Skij is simple since the gradient of the linear interpolation function is

constant. Hence, the integral is reduced to an integral over the surface which results

in the area of the surface S. The integral Rk
ij is, however, more difficult since it results

in the integrals of second degree polynomials over an arbitrary triangular surface.

Rk
ij =

∫
Ek

φiφj dΩ

=
1

(2S)2

∫
Ek

{A1A2x
2 + (A1B2 + A2B1)xy + (A1C2 + A2C1)x

+ (B1C2 +B2C1)y +B1B2y
2 dΩ}

(3.47)

The integral Rk
ij is divided into simpler integrals over each triangular element and

each integral is calculated separately.

Rk
ij =

1

(2S)2
{A1A2

∫
Ek

x2 dΩ + (A1C2 + A2C1)

∫
Ek

x dΩ + (A1B2 + A2B1)

∫
Ek

xy dΩ

+ (B1C2 +B2C1)

∫
Ek

y dΩ +B1B2

∫
Ek

y2 dΩ}

(3.48)

Derivation of each integral solution over an arbitrary triangular element is ex-

pressed with complete details in Appendix A. Assuming that P1(x1, y1), P2(x2, y2)

and P3(x3, y3) are the vertices of a triangular simplex where x1 ≤ x2 ≤ x3, each

integral is calculated as follows:
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First, for simplicity in demonstration, four coefficients are defined, denoted by T ,

as

T1 = |(y3 − y1)(x2 − x1)

(x3 − x1)
− (y2 − y1)| (3.49a)

T2 = |(y3 − y1)(x3 − x2)

(x3 − x1)
− (y3 − y2)| (3.49b)

T3 =
(y3 − y1)(x2 − x1)

(x3 − x1)
+ (y2 − y1) (3.49c)

T4 =
(y3 − y1)(x3 − x2)

(x3 − x1)
+ (y3 − y2) (3.49d)

Next, the area of the triangular surface is calculated as

S =

∫
Ek

dΩ =
1

2
T1(x2 − x1) +

1

2
T2(x3 − x2) (3.50)

Also, integral of x over the triangular region is calculated by

∫
Ek

x dΩ = T1[
1

3
(x2− x1)2 +

1

2
(x2− x1)x1] +T2[−1

3
(x3− x2)2 +

1

2
(x3− x2)x3] (3.51)

Next, integral of x2 over the triangular region is calculated by

∫
Ek

x2 dΩ = T1[
1

4
(x2 − x1)3 +

2

3
(x2 − x1)2x1 +

1

2
(x2 − x1)x2

1]

+ T2[
1

4
(x3 − x2)3 − 2

3
(x3 − x2)2x3 +

1

2
(x3 − x2)x2

3]

(3.52)

Also, integral of y over the triangular region is calculated by

∫
Ek

y dΩ = T1[
1

2
y1(x2−x1) +

1

6
T3(x2−x1)] +T2[

1

2
y3(x3−x2)− 1

6
T4(x3−x2)] (3.53)
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Equation (3.53) could be further simplified to

∫
Ek

y dΩ = T1[(
1

2
y1 +

1

6
T3)(x2 − x1)] + T2[(

1

2
y3 −

1

6
T4)(x3 − x2)] (3.54)

Next, integral of xy over the triangular region is calculated by

∫
Ek

xy dΩ = T1(y1[
1

3
(x2 − x1)2 +

1

2
(x2 − x1)x1] +

1

2
T3[

1

4
(x2 − x1)2 +

1

3
(x2 − x1)x1])

+ T2(y3[−1

3
(x3 − x2)2 +

1

2
(x3 − x2)x3] +

1

2
T4[

1

4
(x3 − x2)2 − 1

3
(x3 − x2)x3])

(3.55)

Equation (3.55) could also be further simplified to

∫
Ek

xy dΩ = T1[(
1

3
y1 +

1

8
T3)(x2 − x1)2 + (

1

2
y1 +

1

6
T3)(x2 − x1)x1]

+ T2[(−1

3
y3 +

1

8
T4)(x3 − x2)2 + (

1

2
y3 −

1

6
T4)(x3 − x2)x3]

(3.56)

Integral of y2 over each triangular simplex is difficult to calculate analytically if the

vertices are sorted with respect to x coordinate. However, if we reorder the vertices

such that the new set of vertices P ′1(x′1, y
′
1),P ′2(x′2, y

′
2), and P ′3(x′3, y

′
3) is sorted with

respect to y, the last integral would be calculated in the same way as the integral of x2

was calculated previously. Hence, for the general case of y1 ≤ y2 ≤ y3, while vertices

are sorted with respect to the y coordinate, the integral of y2 over the triangular

region is calculated by

∫
Ek

y2 dΩ = |(x
′
3 − x′1)(y′2 − y′1)

(y′3 − y′1)
− (x′2 − x′1)| · [1

4
(y′2 − y′1)3 +

2

3
y′1(y′2 − y′1)2 +

1

2
(y′2 − y′1)y′1

2
]

+ |(x
′
3 − x′1)(y′3 − y′2)

(y′3 − y′1)
− (x′3 − x′2)| · [1

4
(y′3 − y′2)3 − 2

3
y′3(y′3 − y′2)2 +

1

2
(y′3 − y′2)y′3

2
]

(3.57)
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3.4 Adding Complete Electrode Model

The complete electrode model (CEM) refers to a kind of boundary condition which is

neither Dirichlet nor Neumann. CEM was introduced and verified for the first time

by Cheng et al [6]. In traditional boundary models, each electrode was modelled by a

single node also being referred as point electrode model (PEM). In contrast, in CEM,

each electrode is modelled by more than one node considering electrode-skin contact

impedance zl. In CEM, the boundary condition is derived by a KVL between the

’electrode voltage’ and the ’voltage of the nodes under the electrode’. The electrode

voltage is the voltage of a virtual node added to the system matrix (see section 3.7

for more details). CEM only changes the right-hand side of the equation (also called

the current side or the forcing vector); therefore, development of the left hand side of

the weak form of the governing equation for 2½D is the same as a 2D or 3D complete

electrode model.

The right hand side of equation is again written here from equation (3.31), where

σ∇ũn ·n̂ is the normal component of the current density which is zero on the boundary

∂Ω; except underneath the electrodes defined by Γ. Γ is the union of the electrodes

(El) expressed in equation (3.32) in which L is the total number of electrodes employed

in the system. It is worth remarking that the notation Ek was previously used for

the Finite ’Element’, k, in the mesh and should not be mistaken with El used as the

electrode, l, here.

∫
∂Ω

vσ
∂ũn
∂n̂

dΓ =

∫
∂Ω

vσ∇ũn · n̂ dΓ =

∫
Γ

vσ∇ũn · n̂ dΓ

Γ =
L⋃
l

El, Γ′ = ∂Ω

The expression written in equation (3.58) for the boundary condition is commonly

used for the complete electrode model, CEM. Rearranging this boundary condition
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yields equation (3.59).

ũn + zlσ
∂ũn
n̂

= Vl (3.58)

σ
∂ũn
∂n̂

= σ∇ũn · n̂ =
1

zl
(Vl − ũn) (3.59)

where Vl are the voltages on the electrodes (’electrode voltage’) and zl represents the

contact impedance. Substituting equation (3.59) into the right hand side of the weak

form of the governing equation reformulated in equation (3.31) results in the following

expression ∫
Γ

vσ∇ũn · n̂ dΓ =
L∑
l=1

∫
El(Γ)

v
1

zl
(Vl − ũn) dΩ (3.60)

Substituting the resultant expression (3.60) into the whole weak form of governing

equation expressed in (3.22) leads to the following equation

∫
Ω

σ∇ũn · ∇v dΩ +

∫
Ω

vσ(
nπ

zm
)2ũn dΩ =

L∑
l=1

∫
El(Γ)

v
1

zl
(Vl − ũn) dΩ (3.61)

Considering the definitions of ũn(~x) expressed in (3.15) and v(~x) expressed in

(3.25) for discretizating the right side of equation (3.61) results in the following ex-

pression

L∑
l=1

Vl

∫
El(Γ)

1

zl
(

3∑
i=1

wiφi) dΓ−
L∑
l=1

∫
El(Γ)

1

zl
(

3∑
i=1

wiφi)(
3∑
i=1

uni φi) dΩ (3.62)

Rearranging the multiplication of the summations yields

L∑
l=1

Vl

∫
El(Γ)

1

zl
(

3∑
i=1

wiφi) dΓ−
L∑
l=1

∫
El(Γ)

1

zl
(

3∑
i=1

uni

3∑
j=1

wjφiφj) dΩ (3.63)

Factoring the coefficients as well as the summation out of the integral and sub-

stituting the expression in (3.61) which is derived for the left hand side of the weak
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form of the governing equation yields

K∑
k=1

σk

3∑
i=1

uni

3∑
j=1

wj(

∫
Ek(Ω)

∇φi · ∇φj dΩ + (
nπ

zm
)2

∫
Ek(Ω)

φiφj dΩ)

=
L∑
l=1

Vl

3∑
j=1

wj

∫
El(Γ)

1

zl
φj dΓ−

L∑
l=1

3∑
i=1

uni

3∑
j=1

wj

∫
El(Γ)

1

zl
φiφj dΓ

(3.64)

In this equation, K is the total number of elements, L is the total number of

electrodes, Ek(Ω) represents the kth element and El(Γ) represents the lth electrode.

Equation (3.64) is valid for all test functions v in a certain class, in this case the same

class as the potentials, u; hence, for each wj it can be written as

K∑
k=1

σk

3∑
i=1

uni (

∫
Ek(Ω)

∇φi · ∇φj dΩ + (
nπ

zm
)2

∫
Ek(Ω)

φiφj dΩ)

=
L∑
l=1

Vl

∫
El(Γ)

1

zl
φj dΓ−

L∑
l=1

3∑
i=1

uni

∫
El(Γ)

1

zl
φiφj dΓ

(3.65)

Equation (3.65) alone is not enough to form a set of equations for solving the unknown

voltages since there is no relation between the injected current and the unknown

parameters. The relation between the current and unknown variables is written as

follows

Il =

∫
El(Γ)

σ
∂ũn
∂n̂

dΓ =

∫
El(Γ)

σ∇ũn · n̂ dΓ (3.66)

where Il is the current of the lth electrode. Using the relation derived in equation

(3.59) followed by substituting the definition of ũn yields

Il =

∫
El(Γ)

1

zl
(Vl − ũn) dΓ =

∫
El(Γ)

1

zl
Vl dΓ−

3∑
i=1

uni

∫
El(Γ)

1

zl
φi dΓ (3.67)
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The contact impedance zl is assumed to be constant on the electrode El. There-

fore, it can be taken out of the integral; hence, equation (3.21) leads to the following

equation:

Il =
1

zl
AElVl −

1

zl

3∑
i=1

uni

∫
El(Γ)

φi dΓ (3.68)

where AEl is the area under the lth electrode which is the length of the lth electrode

in the 2D case. Finally, equation (3.65) for all wj together with equation (3.68) for

all electrodes l form a system of equations which could be written in a matrix format

as the following AM + AZ AW

ATW AD

U
V

 =

0

I

 (3.69)

In equation (3.69), U is the vector of unknown potentials on the nodes uni , V is

the vector of unknown voltages on the electrodes considering the electrode contact

impedance, I is the vector of the injected current through the electrodes, 0 is a zero

vector in which all elements are zero with the suitable dimension, and AM is the

regular stiffness matrix, also known as systems matrix, which is defined by equation

(3.70) for the 2½D case.

[AM ]ij = σS ′ij = σ(Sij + (
nπ

a
)2Rij) = σ

∫
Ω

∇φi · ∇φj + (
nπ

a
)2φiφj dΩ (3.70)

Matrix AM does not contain any information about the boundary condition; in-

stead, AZ represents the effect of the contact impedance on the system matrix which

is reflected into all mesh vertices underneath the electrodes. Matrix AZ is defined by

the following equation

[AZ ]ij =
L∑
l=1

∫
El(Γ)

1

zl
φiφj dΓ (3.71)

The remaining part in equation (3.65) forms the matrix AW which represents the

weights of the voltage on the electrodes in that equation. The matrix AW is defined
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in equation (3.72).

[AW ]ij = −
∫
El(Γ)

1

zl
φi dΓ (3.72)

The close form of equation (3.65) adapted to the new notation used here is ex-

pressed in (3.73).

(AM + AZ)U + AWV = 0 (3.73)

Finally, in equation (3.69), the matrix AD is a diagonal matrix in which the values

in the main diagonal are the ratio 1
zl
AEl for all of the electrodes and defined as

[AD]LL = diag(
1

zl
AEl) (3.74)

Matrix AD together with the transpose of matrix AW form the closed form of

equation (3.68) which is expressed in equation (3.75). This equation represents the

relation between the injected current through each electrodes and those nodes in

the mesh that lie underneath the electrodes as well as the additional virtual nodes

(considered in the mesh) which represent the real electrodes. The matrix AD, itself,

represents the coefficients of the unknown voltages on the electrode.

ATWU + ADV = I (3.75)

3.5 Inverse Problem

The inverse problem is the main part of an EIT problem where the conductivity of

each element is calculated from a set of boundary measurements. From chapter 2,

the difference EIT problem is modelled as:

∆v = J∆σ (3.76)
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where J is known as the ”sensitivity matrix”, ∆v is the measurement voltages and

∆σ is the difference in conductivity. The measurement voltages are the difference

voltage of adjacent electrodes for all driving stimulation patterns.

Modification of the inverse problem for 2½D method demonstrates that the sen-

sitivity matrix of the whole problem is the summation of sensitivity matrix for each

2½D equation in (3.5). The procedure for proving this claim is as follows:

For each single 2½D equation, the relation between the boundary difference volt-

ages, ∆vn, and the difference conductivity, σ, is written as

∆vn = Jn∆σ (3.77)

where Jn is the sensitivity matrix for harmonic n. According to the synthesis equation

(3.2b), the summation of ∆vn’s, i.e., the boundary difference voltage for each partial

differential equation (PDE) in (3.5) corresponding to a spatial frequency, forms the

actual boundary voltage for the plane z = 0, denoted by ∆v. Hence, substituting the

relation of each boundary voltage with the conductivity as expressed in (3.77) yields:

∆v =
∞∑
n=0

∆vn =
∞∑
n=0

Jn∆σ (3.78)

Factoring out the conductivity in equation (3.78) results in

∆v = (
∞∑
n=0

Jn)∆σ (3.79)

Equation (3.79) is actually the definition of the entire inverse problem expressed

in (3.76). This fact becomes more obvious when we interpret the summation of the

sensitivity matrix of each PDE’s as the sensitivity matrix of the entire problem which
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is defined in (3.80).

J =
∞∑
n=0

Jn (3.80)

3.6 Example of a Simple 2D Mesh

In this section, the construction process of the stiffness (system) matrix for a simple

sample mesh is described. Suppose that a 2D problem with Complete Electrode

Model has the 2D mesh depicted in figure 3.2. In this figure (and the following

figures), the green lines represent the electrodes, the ’boxed’ numbers are the global

index of the nodes for the entire mesh, the ’circled’ numbers represent the local index

of the nodes inside of each element and the numbers in ’diamond’ represent the index

of the elements. From section 3.3.3, we know that the system matrix for the entire

mesh is constructed based on the connectivity matrix C and the local system matrices

SE. The connectivity matrix C is a matrix (or simply a table) which represents the

connectivity or relation between the local node index in each single element and the

global node index in the entire mesh. This matrix would have as many columns as

the number of nodes in the element and as many rows as the total number of nodes

in the mesh.

3.6.1 Connectivity Matrix

The connectivity matrix C can be expressed as a concatenation of local connectiv-

ity matrices, CEi , placed by the order of elements’ index as expressed in (3.81).

Constructed for each single element, the local connectivity matrix CEi expresses the

connectivity map or relation between the local index number assigned to the nodes

of a single element within that element and the global index number assigned to the
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Figure 3.2: A sample 2D mesh - Green regions are electrodes

same nodes within the entire mesh.

CT =

[
CT
E1

∣∣∣ CT
E2

∣∣∣ CT
E3

∣∣∣CT
E4

]T
(3.81)

A single node is normally involved in multiple elements. This node would have

only one unique index number with respect to the entire mesh, while the node can have

multiple index numbers each of which represents a local node index within different

elements. The connectivity matrix depends on the way the nodes are indexed both

for the entire mesh and inside of each element. For the sample mesh depicted in

figure 3.2, the connectivity matrix C, associated with the numbering order depicted
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in the figure, is calculated as:

C =



1 0 0

0 1 0

0 0 0

0 0 0

0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0

0 1 0

0 0 1

0 0 0

1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0

0 0 0

0 0 1

0 1 0

1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0

0 0 0

0 0 0

0 1 0

0 0 1



T

(3.82)

3.6.2 Stiffness Matrix

Local Stiffness Matrix

Calculated for each single element, the local stiffness matrix is the solution of the

integral (3.28a) for a 2D or 3D problem; or the integral (3.29) for a 2½D problem.

For the purpose of matrix multiplication, the local stiffness matrices are diagonally

placed in a matrix; which contains all local stiffness matrices placed by the order of

element index and zero elsewhere as:

SE =


SE1 0 0 0

0 SE2 0 0

0 0 SE3 0

0 0 0 SE4


(3.83)

Matrix SE is not the stiffness matrix of the entire mesh since it is only a matrix

of local stiffness matrices. The stiffness matrix of the entire mesh is a square matrix

having as many rows and columns as the number of nodes in the entire mesh; while SE

is a sparse matrix with dimensions: number of nodes in each element times number of

elements. Obviously, SE contains redundancy due to the fact that there are repeated

rows for each nodes. In addition, until this stage, the conductivity value of each

element is not considered in the calculation of the local stiffness matrices. The stiffness
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(or system) matrix S for the whole mesh is then calculated based on the following

expression:

S = CTSEΣC

=

[
CT
E1

∣∣∣ CT
E2

∣∣∣ CT
E3

∣∣∣CT
E4

]
·


σ1SE1

σ2SE2

σ3SE3

σ4SE4


·


CE1

CE2

CE3

CE4


(3.84)

where Σ is a diagonal matrix containing the element conductivities in its diagonal in

the form of tensors. Pursuing the matrix multiplications for isotropic conductivities

would result in the following expression for the stiffness matrix of the entire mesh:

S = CTSEΣC =

[
CT
E1
σ1SE1

∣∣∣ CT
E2
σ2SE2

∣∣∣ CT
E3
σ3SE3

∣∣∣CT
E4
σ4SE4

]
·


CE1

CE2

CE3

CE4


=

4∑
i=1

CT
Ei
σiSEiCEi

(3.85)

Equation (3.85) demonstrates that the stiffness matrix for the whole mesh can be

calculated without constructing large sparse matrices. Here, the summation has 4

terms because the mesh in figure 3.2 contains four elements. For a general problem,

the stiffness matrix of the entire mesh is the summation of the stiffness matrices

calculated for each element as expressed in (3.86). The stiffness matrix calculated for

each element is itself computed by: CT
Ei
σiSEiCEi ; where CEi is the local connectivity

matrix, SEi is the local stiffness matrix which is the solution of the integral express



66

in (3.29) and σi is the conductivity associated with element i.

S =
K∑
i=1

CT
Ei
σiSEiCEi (3.86)

In this equation K is the total number of elements in the mesh.

Stiffness (System) Matrix

Finally, the system (stiffness) matrix of the mesh depicted in figure 3.2 is written as:

S = CTSEΣC =
K∑
i=1

CT
Ei
SEiσiCEi =

σ1S
1
11 + σ4S

4
11 σ1S

1
12 0 σ4S

4
12 σ1S

1
13 + σ4S

4
13

σ1S
1
22 + σ2S

2
22 σ2S

2
23 0 σ1S

1
23 + σ2S

2
21

σ2S
2
33 + σ3S

3
33 σ3S

3
32 σ2S

2
31 + σ3S

3
31

σ3S
3
22 + σ4S

4
22 σ3S

3
21 + σ4S

4
23

σ1S
1
33 + σ2S

2
11 + σ3S

3
11 + σ4S

4
33


(3.87)

where, Seij represents the ijth element of the local stiffness matrix of the eth element

or in other words: [SEi ]ij. The system matrix S is a symmetric matrix for isotropic

conductivities; hence, for simplicity, here, only the upper triangle terms are expressed.

As an example, the values of the column number 5 which corresponds to node number

five is described:

In order to avoid conflict, the global nodal index numbers for the entire mesh are

specified in alphabetic format while the local nodal index numbers for each elements

are specified by digits. So, for example, node #five refers to the fifth (’boxed’) node

of the mesh while the same node is indexed as #1 (’circled’) in the second and third

element and indexed as #3 (’circled’) in the first and fourth elements.

� S15 represents the geometrical relation between node #one and node #five.

These two nodes are connected to each other by two different elements. Hence

the value is the summation of the cross stiffness between these two nodes for
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each of elements #one and #four. For element #one, node #one is indexed

as #1 and node #five is indexed as #3. Hence, the corresponding value is

element (1,3) from the local stiffness matrix of element #one, S1
13. Similarly,

for element #four, due this specific numbering chosen, node #one is indexed as

#1 and node #five is indexed as #3. Hence, the corresponding value is element

(1,3) from the local stiffness matrix of element #4, S4
13.

� S25 represents the geometrical relation between node #two and node #five.

These two nodes are connected to each other by elements #one and #two. For

element #one, node #two is indexed as #2 and node #five is indexed as #3.

Hence, the corresponding stiffness value is element (2,3) from the local stiffness

matrix of element #one, S1
23. Also, for element #four, node #two is indexed as

#2 and node #five is indexed as #1. Hence, the corresponding value is element

(2,1) from the local stiffness matrix of element #two, S2
21.

� S55 represents the self-connection of node #five. This value includes all self-

stiffness values corresponding to this node from all elements that contains node

#five. For element #one, this node is indexed as #3; hence, S1
33. For element

#two, this node is indexed as #1; hence S2
11. For element #three, this node is

indexed as #1; hence, S3
11. Finally, For element #four, this node is indexed as

#3; hence, S4
33.

� The value of the stiffness for those nodes that are not connected to each other

via any elements is clearly zero. e.g., S13 and S24.
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3.6.3 CEM terms

Adding the Complete Electrode Model extra nodes to the system matrix results in:

S =

CTSEΣC + A′ AW

ATW AD

 =


σ1S

1
11 + σ4S

4
11 σ1S

1
12 0 σ4S

4
12 σ1S

1
13 + σ4S

4
13 − ∆

2zc
0

σ1S
1
22 + σ2S

2
22 σ2S

2
23 0 σ1S

1
23 + σ2S

2
21 − ∆

2zc
0

σ2S
2
33 + σ3S

3
33 σ3S

3
32 σ2S

2
31 + σ3S

3
31 0 − ∆

2zc

σ3S
3
22 + σ4S

4
22 σ3S

3
21 + σ4S

4
23 0 − ∆

2zc

σ1S
1
33 + σ2S

2
11 + σ3S

3
11 + σ4S

4
33 0 0

− ∆
2zc

− ∆
2zc

0 0 0 ∆
zc

0

0 0 − ∆
2zc

− ∆
2zc

0 0 ∆
zc


(3.88)

where, ∆ is the distance between node 1 and 2, or 3 and 4, which is
√

2 in this example.

The matrix AW , which is added to the original stiffness matrix, is calculated based

on the following integral:

[AW ]ij = − 1

zj

∫
Elj

φidS (3.89)

where j represents the electrode index and i represents the node index. The integral

is operated under the jth electrode where φi is the union of all interpolation func-

tions associated to the ith node from every element that contains the ith node (see

figure 3.4). Obviously, this integral is zero for those nodes that are not under the

jth electrode. For the 2D mesh depicted in figure 3.2, this integral is − ∆
2zj

for nodes

under the j electrode; where ∆ is the distance between two adjacent nodes under

the electrode, i.e., here, the electrode width; which is
√

2. More details about this

calculation are provided in the next example.

3.7 A more complex 2D mesh

The previous example was a sample of a simple 2D mesh where there were only two

nodes under each electrodes; hence, both nodes were located at the electrode ends.
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Figure 3.3: A sample complex mesh - Green regions are electrodes

Figure 3.3, shows another mesh in which there are three nodes under each electrode.

The calculation of the integral expressed in (3.89) for this case can be extended

(generalized) to a 2D mesh where there are at least three nodes under an electrode.

The integral is calculated under each electrode; hence, the region subject to the

integral is the intersection of the jth electrode and the interpolation function φi (for

the ith node). In a 2D mesh, the interpolation function for the ith node forms a

pyramid in (x, y, φi(x, y)) coordinate system where all nodes connected to the jth

node form the base of the pyramid and the jth node is the vertex of the pyramid.

Since the value of the interpolation function for each node at the position of that node

is one, the height of the pyramid is one. Figure 3.4 shows the global interpolation

function for node 7 in figure 3.3 which is the union of all interpolation functions for

node 7 from all elements that contains node 7.

The intersection of the 2D (plane) mesh with a boundary electrode is a line; hence,

the cross sectional cut (or intersection) of the pyramidal interpolation function under

the line or curve of the boundary electrode is a triangle with a height equal to one.

The desired integral is the area of this triangle overlapping with the electrode. For
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Figure 3.4: Global interpolation function for node 7 and its intersection with the
electrode forming a triangle - Green regions are electrodes
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Figure 3.5: Global interpolation function for (left) node 3 (right) node 2 - Green
regions are electrodes

the end nodes in electrodes, e.g., 1,3,4, and 6, the overlapping part is only a part

of this triangle having width equal to the distance between the end node and the

nearest node under the electrode (see figure 3.5-left). However, for middle nodes,

e.g., 2 and 5, the neighboring nodes under the electrode lie in both right and left side

(see figure 3.5-right); hence, the base of the triangle is equal to the sum of all distances

between the node and its two neighboring nodes. In other words the intersection is

two triangles having unit height and each of them have a base equal to the distance

between the node and a neighboring node.

Figure 3.6 shows the intersection of the interpolation functions with an electrode
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Figure 3.6: How integration is performed for an electrode end node and an electrode
mid node

(the green region) for a general case of non-evenly spaced nodes. a,b,c,d,e,f ,g, and h

are the node labels. As discussed for the previous figure (figure 3.5), this intersection

is a triangular region which is the region over which the integral in (3.89) is performed.

Since the height of the triangle (value of the interpolation function) is one, the result

of the integrals (the area of the triangles) is proportional to the base of the triangles

(distance between the electrode nodes). The triangle on the left side of figure 3.6

describes the integration for a typical node located at the electrode end labeled as

φb as while the right side triangle in the same figure (labeled as φf ) describes the

integration for any node under the electrode except the two end nodes. For an

electrode end-node (like node b in the figure), the integral result is only a part of

the triangle (the shaded region) which includes only one node distance; while for any

electrode mid-node (like node f), the integral result is the whole area of the triangle

and includes two node distances.

For the sample mesh depicted in figure 3.3, the core system matrix is calculated

similarly by following the instructions provided for the previous example. However,

the matrix AW for this mesh would be:

AW =

− ∆
2zc
−∆
zc
− ∆

2zc
0 0 0 0

0 0 0 − ∆
2zc
−∆
zc
− ∆

2zc
0

T (3.90)
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For a 2D mesh with Complete Electrode Model where the nodes are evenly spaced

under the electrodes, the value of AW associated to an end node under the electrode

is one half of that value for a middle point under that electrode. In other words, each

middle point has two times more effect on the electrode voltage than each end node.

The relation between the voltage of the nodes under the electrode and the electrode

voltage, i.e., the voltage of the virtual node added for each electrode, is calculated

back by equation (3.75) which is expressed again here:

ATWU + ADV = I (3.91)

where U is the voltage of the real nodes in the mesh and V is the electrode voltages

which is the voltage of the virtual nodes added to the forward model representing

each electrode voltage. Since the integral in (3.89) is taken under each electrode,

the matrix AW has only non-zero values for electrode nodes. Considering one row

of the matrix equation (3.91) and employing the definition of matrix AD in (3.74),

the relation between the electrode voltage and the voltage of the nodes under the

electrode is:

W T
j Uj + lEjVj = ZcjI∑

i=jth electrode nodes

wi · Ui = ZcjIj − lEjVj

where lEj is the length (or area in a 2D electrode) of the jth electrode, ui is the voltage

of the ith node under the jth electrode and wi is the weight of ui which is calculated

from the mesh geometry (see section 3.8 for a 2D electrode). For a passive electrode

the injected current is zero, i.e., Ij = 0. Therefore the electrode voltage is:

Vj =
−
∑

i = jth electrode nodeswi · ui
lEj

= −
∑

i = jth electrode nodes

w̄i · ui (3.92)
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where, w̄i is the normalized wi with respect to the electrode length (or area). Hence,

for a passive electrode the electrode voltage is a weighted average of the voltage of each

node under the electrode. In general, the effect of the voltage of each node under the

electrode on the electrode voltage is proportional to the total distance between that

node and all of its neighboring nodes connected to the electrode (’electrode nodes’).

The weights are normalized with respect to the electrode length.

For an active electrode, however, the relation between the electrode voltage and

the node voltages would be:

Vj =
ZcjIj −

∑
i=jth electrode nodes wi · ui

lEj
=
Zcj
lEj

Ij −
∑

i=jth electrode nodes

w̄i · ui (3.93)

3.8 A 3D mesh having 2D boundary electrodes

The system matrix of a 3D mesh is calculated similar to the way the system matrix

is calculated for a 2D mesh; because, all of the equations are same. For a 3D mesh,

the matrix AW is computed using the same integral in (3.89). However, here, the

interpolation functions approximate the voltages of 3D elements having 3D positions

for nodes. Hence, for the purpose of plotting, we require a 4-dimensional sketch. A 3D

interpolation function could be imagined with the help of colors. For example, a 3D

interpolation function for tetrahedral element can be imagined as a tetrahedron filled

with colorful water. Using linear interpolation functions, the interpolation function

for each node is one on the node and zero for its front base/face. The function values

which are, here, imagined as colors would uniformly decrease from one to zero toward

the front base through the height (see figure 3.7).

For the 3D case of equation (3.89), we are integrating a 3D interpolation function

over each electrode which is a subset of the boundary surface. In fact, this electrode

surface contains the whole side (face) of one or more boundary elements which are in
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PD(x4,y4,0)

ɸA(P) =0

P

0

1

Figure 3.7: Use of colors for demonstrating 3D linear interpolation function,
φA(x, y, z) = z

z1

contact to the electrode. From section 3.3, we know that the value of the interpolation

function for each node is one at that node and zero in other nodes in the front

base/face; this statement is expressed in equation (3.94)

φA(PA) = 1

φA(P ) = 0, P ∈ ∆(PB, PC , PD)
(3.94)

where PA, PB, PC and PD, are the four nodes of a tetrahedral element, and ∆ rep-

resents a triangle formed by the three (boundary) nodes PB, PC and PD. Employing

linear interpolation functions, the value of the interpolation function for each face

of a 3D tetrahedral element only depends on the three nodes forming that face and

does not depend on the corresponding node/vertex in front of that face (see fig-

ure 3.7). Considering this fact, the value of the interpolation function for any face of

a tetrahedral element (such as the boundary face) can be written as 2D interpolation

functions; hence, the value could be demonstrated as pyramids (see section 3.7). In a

3D boundary element, suppose that PA is the node that is not in the boundary and

PB, PC and PD forms a 2D boundary element (triangle). Here, the intersection of the

3D interpolation function and the boundary surface is the pyramid shape function of



75

the 2D boundary element. Therefore, the interpolation function for the 2D boundary

nodes are similar to figure 3.4.

The integral in equation (3.89) is taken over the electrode area which contains the

boundary face of 3D boundary elements. The total interpolation function for each

node would be the union of all interpolation functions associated to that node for

all elements containing that node. Hence, the integral is actually for a pyramidal

integrand having unit height in each electrode node and performed over a surface

2D region (union of boundary elements). In other words, the integral solution would

be the volume of a unit height pyramid (similar to figure 3.4; however, for 3D, the

integrals are taken over the element surface not over the edges)

From 3D geometry and Cavalieri’s principle we know that the volume of a pyramid

is equal to one third of its height multiplied by the area of its base, i.e. V = 1
3
h ×

Abase. Thus, the weight of each node under the electrode in calculating the electrode

voltage, i.e. voltage of the virtual node added to the mesh nodes for each electrode, is

proportional to the total area of the region formed by this node together with those

neighboring nodes under the electrode that are directly connected to this node.

Figure 3.8 shows a sample 3D mesh with tetrahedral elements having equal-size

side faces under the boundary electrode. Supposed that the 3D mesh depicted in

figure 3.8 is employed in the forward modelling for an EIT problem. The weight of

each node under the electrode in the averaging process for computing the electrode

voltage would then be proportional to the number of neighboring nodes connected

directly to that node. However, as can be observed from the figure, the number of

connected neighboring nodes is different for each node even if the node is inside the

electrode boundary area. This would also affect the number of neighboring nodes

under the electrode connected to a corner node or an edge node in the electrode

boundary area. Hence, the electrode voltage, which is the weighted average of the

voltages of the nodes under the electrode, depends on the connection structure used
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Figure 3.8: Different kinds of nodes on the boundary of a 3D mesh. Green regions
are electrodes, gray regions are subregion of electrode and selected nodes are
labeled by alphabetical letter in blue

for connecting nodes in a 3D mesh. In the following, some examples for different

kinds of node underlaying the electrode in figure (3.8) are provided:

� Node A lies inside the electrode region. This node is connected to 8 neighboring

nodes which form 8 triangular areas.

� Node B lies inside the electrode region. This node is connected to 4 neighboring

nodes which form 4 triangular areas.

� Node C lies in the corner of the electrode region. This node is connected to

3 neighboring nodes underlaying the electrode which form 2 triangular areas

under the electrode.

� Node D lies in the corner of the electrode region. This node is connected to

2 neighboring nodes underlaying the electrode which form 1 triangular areas
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under the electrode.

� Node E lies in the edge of the electrode region. This node is connected to

5 neighboring nodes underlaying the electrode which form 4 triangular areas

under the electrode.

� Node F lies in the edge of the electrode region. This node is connected to

3 neighboring nodes underlaying the electrode which form 2 triangular areas

under the electrode.

3.9 A 3D mesh having 1D line electrodes

In a simplified Complete Electrode Model of a 3D mesh, electrodes can be modelled

as lines having zero width. In this case, the area of each electrode in the boundary

surface is zero. Hence, the method mentioned in the previous section does not work.

As stated previously, the interpolation function for each node on the boundary surface

only depends on its neighboring node on the boundary and does not depend on the

nodes inside the mesh (outside the boundary).

Hence, the interpolation function for each node on the boundary surface is a

pyramid which is the union of all tetrahedral interpolation functions of this node for

all elements containing this node. The integral in equation (3.89) is taken over each

electrode, which is a line here, for the interpolation function of each node under the

electrode. The intersection of the pyramid shape interpolation function for each node

with the electrode line is a triangle having unit height and a base equal to that part

of electrode line which has intersection with the base of the pyramid. In fact, the

solution of the integral in (3.89) is the area under a triangle function that connects

the node to its neighboring node toward the electrode path with value one at the node

and zero for the neighboring nodes. The integral in (3.89) is, in this case, calculated
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using the same way as the situation of a 2D mesh with complete electrode model

which was stated in section 3.7 and demonstrated in figure 3.6.

3.10 Chapter Summary

In this chapter, first the 2½D problem was formulated and the boundary condition

was derived correctly. Then, the complete electrode model added to the derived

system matrix and the modification of the inverse problem was discussed. In the

second part of the chapter, it was shown how the system matrix is constructed for

two sample meshes. It was described how the electrode voltage is calculated as a

weighted average of voltages of all nodes under the electrode. These weights are

calculated based on the length or area of the intersection of the electrode and the

interpolation function of each node. For 2D electrodes, the weight for each node is

proportional to the area of the region which is formed by that node together with

all of its neighboring nodes under the electrode that are directly connected to that

node; the weights are normalized by the total area. For 1D electrodes, regardless of

the type of the actual mesh (3D or 2D), the weight for each node is proportional to

the summation of the distances between that node and its neighboring nodes under

the electrode; the weights are normalized by the total length/area of the electrode.



Chapter 4

Validation

In this chapter, the 2½D algorithm and code are validated. It is shown how the 2½D

solver modifies the 2D solution toward the 3D solution. First, it is shown that the

2D and 3D solvers work differently since the 2D solver employs 2D interpolation

functions and the 3D solver employs 3D interpolation functions; hence, the solutions

are not completely matched for a 2½D mesh with a ’full 2½D boundary’. It is also

discussed that 3D solution is not completely reliable in comparisons because it varies

by changing the element height in the 3D mesh while the 2D and 2½D solutions are

not dependent of the element height.

In consistent with the notation in figure 3.1, here, we denote h as the height of

electrodes, H as the height of the domain where translational invariancy is assumed

(the tank height) and W as electrode width. In this chapter, the term ’gradients

at a specific z layer’ refers to the difference between the node voltage under the

adjacent passive electrodes (excluding the current drive electrodes) at that specific

z position while the ’measurements’ refer to the difference between the voltage on

adjacent passive electrodes.

First, assuming H = h, it is demonstrated that the set of 2½D equations reduces

to a simple 2D equation. Next, assuming H = h = 1, results of the 2D and 3D solver

are compared at different layer in z-coordinate as well as at the electrode node. In

79
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section 4.2, it is shown that by reducing the element height, the 3D solution changes.

For a sample case of H = h = 1, it is shown that the difference between the 3D and

2D solution is reduced while the 2D solution is not a dependent of the 3D element

height.

Next, in section 4.3, the terms of 2½D solution are analyzed. It is demonstrated

that the first term of the 2½D is a normalized 2D solution with respect to the domain

height, H. Assuming H = h, the normalized 2D solution is then compared to the

3D solution for different H. In section 4.3.2, the 2½D solution is compared to the 3D

solution and the 2D solution for a sample mesh (H = 2 and h = 0.4). Lastly, the

sources of errors which prevent a perfect match are discussed.

4.1 Finding a 2½D problem for comparison

4.1.1 Analyzing the set of 2½D equations

Theoretically, solving the set of 2½D equations (3.5) and taking the inverse Fourier

of the result is equal to the 3D solution. Assuming h = H, which means full height

electrodes, the Fourier series of the current density, which is the right hand side of

equation (3.22), reduces to a single non-zero coefficient at n = 0; hence, from the set

of 2½D equations expressed in (3.5), only the first equation remains which is expressed

in (4.1) since the solution of higher order equations would be zero.

∇2D · σ∇2DV =


J0
H

under boundary

0 elsewhere
(4.1)

In equation (4.1), V is the voltage in the mesh which is the solution to be calcu-

lated, σ is the conductivity, J0 is the current density of the injected current under

the electrode and ∇2D is the 2D gradient operator. Employing a unit height tank,
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i.e. H = 1, equation (4.1) would be the Laplace equation for a 2D domain. Hence

the 2½D solution which is itself theoretically equal to the 3D solution would be equal

to the 2D solution for this case.

To sum up, the 2D model is an equivalent model of a 3D model when H = h =

1. This means that, the 2D model is equivalent to a 3D tank having translational

invariant conductivity with a unit height (H = 1), electrodes with full height (H = h);

i.e., unit height electrode (h = 1), and a same base as the 2D model.

4.1.2 2D vs. 3D for H=h=1

CEM

Figure 4.1 shows the 2D and 3D model which are employed for solving the EIT

problem. Based on the requirements for the 3D model discussed earlier, the 3D

model is composed of multiple layers of the 2D model aligned in z-coordinate having

unit height and unit height electrodes. In the 2D and 3D mesh, the element width

(∆w) is equal to 0.05, which is equivalent to 32 layers in xy plane in a circular model

with unit radius; and in the 3D mesh, element height (∆z) is equal to 0.025, which

is equivalent to 41 layers in z direction in a tank with unit height (The 3D mesh is

composed of 41 layers of identical 2D mesh).

For the model depicted in figure 4.1, a 16-electrode system is employed. The

electrode width for this model is about 0.1 (0.0982); hence, the complete electrode

model is employed.

Using opposite current pattern stimulation, the solution of an empty 2D model

and 3D model (tank) is calculated. Figure 4.2 shows the maximum relative difference

between the 2D solution and the solution of different layers of the 3D model (ε(%) =

maxxy|V CEM
2D (x, y)− V CEM

3D (x, y, z)|). From this figure, it is observed that the result

of the 3D forward solver for a 3D tank even with the full height electrodes is not
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Figure 4.1: 2D and 3D mesh
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Figure 4.2: Max relative difference between the 2D solution and 3D solution on
different layers for the 3D mesh in figure 4.1 with 41 layers, H = h = 1-
Complete Electrode Model. ε(%) = maxxy|V CEM

2D (x, y)− V CEM
3D (x, y, z)|

completely constant since it bounces between two different values. Although the

amount of difference is not large it could be significant. The maximum absolute error

between the 2D and 3D (ε = |V2D − V3D|) is on the order of 0.012 while the mean

of absolute error is on the order of 7 × 10−5. If the difference voltages at electrode

positions excluding the current drive electrode for different z-layers in 3D (gradients

at different z-layers) are compared with the 2D gradient for all stimulation patterns,

the plot would be a same plot as figure 4.2 with maximum of 0.273 % and minimum

of 0.243 %.

PEM

If in the model depicted in figure 4.1, the point electrode model is employed (electrode

width is zero; hence, for 3D mesh each electrode is a line with unit height), then the

maximum relative difference between the 2D solution and the solution of different

layers of the 3D model would be figure 4.3(left) in which the value of the relative

difference at both ends is 25.7 %.
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Figure 4.3: Max relative difference between the 2D and 3D on different layers
for (left) solution (right) gradients, H=h=1- Point Electrode Model vs. line
electrode in 3D. ε(%) = maxxy|V PEM

2D (x, y)− V line
3D (x, y, z)|

Figure 4.3(right) shows maximum relative difference that occurs between the 2D

gradients and 3D gradients at different layers. Gradients are important because an

average of them forms the voltage measurements. Figure 4.3 shows that employing

point electrode model leads to inaccurate solutions for nodes under the electrode

especially at the vertical electrode ends or tank edges. This could be due to effects in

the implementation of the line electrode model. However, this phenomena does not

occur in the complete electrode model.

4.1.3 Comparing Electrode Voltages

As discussed previously, in a 3D mesh with the complete electrode model, the elec-

trode voltage (the voltage of the virtual node assigned for each electrode) is a weighted

average of the voltage of all nodes under the electrode. Figure 4.4 shows the difference

between electrode voltages (El) of all stimulation pattern for the 2D and 3D model

depicted in figure 4.1. Here, it is observed that the difference between the electrode

voltages for 2D and 3D model is much smaller than the differences between the 2D

solution and 3D solution in various layers in z-coordinate depicted in figure 4.2.
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Figure 4.4: Difference of Electrode voltage between 2D and 3D for all stimulation
patterns, H = h = 1. ε = |ElCEM2D − ElCEM3D |

For example, the maximum relative difference reported in figure 4.2 is 1.18 %

and the minimum value for the same mesh is 0.88 %; while the maximum relative

difference of the electrode voltages between 3D and 2D is 0.19% for a mesh employing

complete electrode model having electrode width W = 0.1. The electrode voltage in

the 2D model is the voltage of only one z-layer under the electrode. However, for

the 3D mesh, the voltage on each electrode is a weighted average of the voltage of

all electrode nodes in different z-layers. The reason why the difference between the

2D solution and the average of voltages in different layer is lower than the difference

between the 2D solution and each individual layers depicted in figure 4.2 is that for

some layers the value of the difference is negative while for other layers this value

is positive; hence, they cancel each other out. In addition, the error in the voltage

of electrode nodes is less than the maximum error of the solution. Employing line

electrodes in 3D and point electrode in 2D (electrode width is 0), the maximum

relative difference of the electrode voltage is 1.2% (0.02). One possible explanation

of this could be as a result of the end effect in implementation of line electrode in the
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3D solver.

Comparing Measurements

Here, the measurements are defined as the actual measured (gradient) voltages; which

are the difference voltages between adjacent passive electrodes. In other words, mea-

surements are the difference voltages measured between those electrodes which are

not driving current. For both the CEM and line electrode model, the maximum ab-

solute error in the measurements between the 3D and 2D is on the order of 5× 10−5

(0.023 %). The difference between the measurement is much less than the electrode

voltage because the maximum errors belong to the active electrodes and the voltage

of active electrodes for each current pattern is not involved in the measurements. In

addition, reducing the element size would result in lower value for this difference.

4.2 Variation of the 3D element height

Normally, it is expected that the 3D solution is more accurate than the 2D solution;

hence, the 3D solution is considered as the reference solution. However, the 3D

solution would also change with variation of the element height in the 3D mesh.

Here, the variation of the 3D solution is investigated where a unit height tank is

employed as the 3D model using different height for elements. For the 3D model, the

element size and also the coordinates of the elements in the xy plane are fixed and

equal to a 2D model. Using different number of layers for the z-coordinate in a unit

height tank, the only parameter that changes is the element height.

4.2.1 Variations in the 3D solution

Figure 4.5 shows the relative difference between the 3D solutions calculated using

different 3D mesh having different element height for three electrode heights (h =
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Figure 4.5: Variations of 3D solution by changing element height ∆z com-
pared to the last value plotted for different electrode height (h). ε(%) =
max|V CEM

3D (∆z)− V CEM
3D (∆z = 1

160
)|

{0.2, 0.5, 0.8}). For the purpose of comparison, the 3D solutions are compared to

its last value which has the smallest element height (∆z). In this investigation, 32

layers used in xy plane in a circular model with unit radius which corresponds to

∆w = 0.05. This figure demonstrates that the 3D forward solution changes when

the element height is reduced. The number of layers in z-coordinate for the 3D mesh

forms the x-axis of the plot which is equal to H
∆z

.

4.2.2 Variations in the 3D-2D difference

In the case of unit height electrode (h = 1, H = 1), it is possible to compare the 3D

solution directly with the 2D solution. In this case, the variation in measurements

for a 3D mesh with h = 1 employing 40 z-layers with respect to the same 3D mesh

employing 160 z-layers (|∆V3D(∆z = 1
40

) − ∆V3D(∆z = 1
160

)|) is 0.03% using line

electrodes and 0.06% using a CEM with W = 0.1; here, the error in measurement is

itself lower than the previous situation calculated for the whole 3D solution.

Figure 4.6 plots the difference between the 2D solution and the 3D solutions
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Figure 4.6: Maximum relative difference in measurements between 2D and different
3D solutions calculated for a same 3D mesh with different element height (∆z)
for Electrode Width (W ) = {0, 0.1}. H = h = 1, ε(%) = |∆V2D −∆V3D(∆z))|

calculated for a same 3D mesh with different element height (∆z). Obviously, here,

the 2D solution is constant since the 2D model is not dependent on ∆z. Hence, in

this case, it can be concluded that the 3D solution converges toward the 2D solution.

In the case of line electrode modelling for the 3D mesh, it is observed that there is not

much improvement by employing more z-layers than 60 z-layers while there still exists

a small amount of error. However, for the 3D model with W = 0.1 the 3D solution

keeps converging to the 2D solution. This again raises the issue that something might

be wrong in the implementation of the line electrode in a 3D mesh.

4.3 The first term of 2½D

This section aims to relieve the assumption of H = 1. By analyzing the 2½D solution,

a normalized 2D solution (normalized by the domain height H) is introduced; this

makes it possible to consider more general cases where H 6= 1.
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4.3.1 Analysis of the terms of 2½D

In 2D models, the conductivity has a unit of Ω−1 while in 3D models the conduc-

tivity has a unit of Ω−1

m
. Therefore, the 2D conductivity in a surface is equal to the

conductivity of a 3D volume having unit height (H=1) and the same surface as base.

In other word, in transforming any 3D conductivity into 2D conductivity for a 2D

model, the equivalent 2D conductivity would be the 3D conductivity multiplied by

the 3D domain height. Therefore, if same conductivity values are used for the 2D

and 3D model, the 2D solutions should be divided by the 3D domain height.

Also, looking at equation (4.1) again which is written for a 3D model using full

height electrodes h = H, we would understand that it is, in fact, the solution of a

2D model normalized by the domain height. Hence, the first term of the 2½D is a

normalized 2D solution regardless of the electrode height.

The 2D forward solution is the result of a matrix inversion for calculating node

voltages from the injected current which is expressed in (4.2).

V2D = S−1I (4.2)

where S is the system matrix of the mesh, I is the injected currents and V2D is the

voltage of the nodes. The solution (voltage) of the forward problem using 2½D mod-

elling is calculated by substituting the solution of equation (3.41) for each harmonic

n into the synthesis equation (3.2b). Doing this yields:

V2 1
2
D = S ′

−1
0 I0 +

∞∑
n=1

S ′
−1
n In cos(

nπ

zm
z) (4.3)

where S ′0 is equal to the 2D system matrix S because S ′0 = S + 0π
zm
R according

to (3.29); and In together with I0 are defined in (3.14). Substituting the current

sequence results in:
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V2 1
2
D =

1

H
S−1I +

∞∑
n=1

2

nπh
sin(

nπh

2zm
) cos(

nπ

zm
z)S ′

−1
n I (4.4)

where S ′n is the 2½D system matrix for the nth harmonic defined by (3.29) or more

precisely later in (5.5), I is the injected current, V2 1
2
D is the voltage of the nodes for

the 2½D model, z is the position in z coordinate where the solution is to be calculated

and zm is one half of the domain height, i.e. H
2

. Comparing equation (4.4) with (4.2)

also shows that the first term of the 2½D solution is the 2D solution normalized by

the domain height as

V2 1
2
D =

1

H
V2D +

∞∑
n=1

2

nπh
sin(

nπh

2zm
) cos(

nπ

zm
z)S ′

−1
n I (4.5)

4.3.2 Normalized 2D vs. 3D

The difference between the 2D and 3D model was illustrated in figure 4.2 and 4.3

which express that the voltage solution inside a 3D mesh is not constant along with z

direction. Since the 2D solution is constant, it is clear that the 3D solution for a tank

with full height electrodes varies at different z-layers. The variant difference could

be as the result of closed end-surfaces in the unit height 3D tank specially in the

case of point (line) electrode model; or in CEM, it could be due to the fact that for

this specific meshing technique the nodes are symmetric decussately in z-layers. For

example, for the model depicted in figure 4.1, an element of injected current density

at z = 0.45 faces with a closed path at z = +0.5 while an element of current density

faces equal paths at z = 0.

Figure 4.7 shows the maximum difference between the normalized 2D solution and

the 3D solution for various tank height all having same element height for a 3D model

with line electrodes. It demonstrates that the difference between the normalized 2D

solution and the 3D solution reduces as the height of the tank increases. However,
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Figure 4.7: Max relative difference between normalized 2D and 3D solutions
in different z-layer calculated for H=h={2, 4, 6, 10} - PEM. ε(%) =
maxxy|V PEM

2D (x, y)− V line
3D (x, y, z)|

when non-zero width electrodes are used in the model, the maximum difference be-

tween the normalized 2D solution (therefore, 2½D solution) and the 3D solution would

not change by increasing the tank height.

4.4 2½D vs. 3D and 2D

The 2½D solution is calculated based on a 2D model for the purpose of reaching the

3D solution. Comparing the 2½D solution with the 3D solution and the 2D solution

shows that 2½D method is successful in modifying the 2D solution toward the 3D
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solution.

Figure 4.8(up) illustrates the voltages of the electrodes calculated by 3D, 2D,

2D/H (first term of 2½D) and 2½D modelling for the fourth stimulation pattern at

different z layers for a 3D mesh containing 160 z-layers with height H = 2 and elec-

trode height h = 0.4 employing line electrodes. This mesh is a sample mesh used for

comparison without loss of generality (for H) which is used in the next investigations

from this point. Figure 4.8(down) illustrates the measurement (gradients) voltage for

the same mesh. In both figures, the 2½D and the 3D solutions lie on top of each other

(with a possible mismatch) while the 2D and the normalized 2D (first term of the

2½D) solution are far from the 3D solution.

Figure 4.9 illustrates the voltages of the nodes at the electrode positions calculated

by 3D and 2½D modelling for the fourth stimulation pattern. These plots are not the

voltage of (on) the electrodes; the plots are the voltages of the nodes under the

electrodes at different z layers (VEl(z)) for the same mesh. Figure 4.8(up) can be

interpreted as a vertical cut (cross-section) of figure 4.9 at z = 0. Both figures 4.8

and 4.9 confirm that the 2½D solver is working well in modifying the 2D solution

toward the 3D solution.

Figure 4.10 illustrates the difference between the ’gradient voltages at different

z-layers’ (∆VEl(z)) calculated using 3D, 2D and 2½D modelling. Here, the gradient

voltages calculated for different z-layers (z position) refer to the difference voltages

between adjacent nodes under the passive electrode at different z-layers (z position).

The top-left figure shows the difference between the 3D and 2½D at different z-layers.

The figure at down shows the difference between the 3D and 2D; and the figure at

top-right illustrates the difference between 3D and first term of 2½D (2D/H). It can

be observed from these figures that the error between the 3D and 2D solutions is

much larger than the error between the 3D and 2½D solutions. The large difference

between the 3D and 2D solutions is due to the fact that the 2D solver employs a
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2D mesh and does not have any information about the electrode height (h) and the

tank Height (H). Improving this large difference is the goal of the 2½D method given

the electrode height (h) and tank Height (H) while still employing a 2D mesh. The

small difference between the 3D and 2½D in the top-right figure compared with the

other two figures demonstrates how the 2½D improves the 2D solution toward the 3D

solution. Moreover, the small error in the top-left figure compared to the large error

in the top-right figure, demonstrates how higher order 2½D terms modify the solution

of the first 2½D term (2D/H) and improves the accuracy toward the 3D solution.

The maximum relative error in the measurement voltages between the 3D and 2½D

is 0.42% (0.0009) for this case.
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In CEM, the measurements are calculated as the difference between adjacent pas-

sive electrode voltage which is the voltage of the virtual node assigned for each elec-

trode. The 2½D solution is computed for a given z-layer (z position); hence, in 2½D

solution, the voltages at electrode position could be calculated (therefore, known) for

each z, yet the ’electrode voltage’ (voltage of the virtual node considered for each

electrode) needs to be calculated the same way as it is calculated in the 3D model.

Assigning a virtual node for each electrode and implementing the way the voltages

are averaged under each electrode in complete electrode model express in section 3.9,

the ’electrode voltage’ for the 2½D solution is calculated. Figure 4.11 shows the mea-

surement voltages calculated by 3D, 2D and 2½D modelling for a mesh with height

H = 2, electrode height h = 0.4 and electrode width W = 0.1. Maximum relative

error in the gradients is 3% (0.006) for this case.

4.5 Sources of Errors

As it is observed from figure 4.9, there exists a small difference between the 3D

solution and 2½D solution. This amount of difference might be from various sources

which are discussed here.

4.5.1 3D Interpolation Function

From the result of the analysis illustrated in figure 4.5, it has been observed that the

3D solution itself changes by using different heights for 3D elements. This shows that

the 3D solution improves as smaller element height is used while the 2½D solution is

not dependent on the 3D element height since the element height is not a parameter

in the 2½D method where a 2D model is employed. Figure 4.12 shows the difference

between the measurement voltages calculated by 3D and 2½D modelling using different

element height for a unit radius mesh with 32 layers in the xy plane. It is observed
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that the difference between the 3D and 2½D solution is reduced (an small increment

observed for h = 0.2 at ∆z = 2
160

could be due to instability). While the 2½D solution

is not dependent on the 3D element height it can be concluded that the 3D solution

converges to the 2½D solution.

The above mentioned error in the 3D solution can be due to truncation error in

3D interpolation functions since the 3D domain is segmented into a finite number of

elements and nodes where inside each element the potential is approximated by linear

shape functions.

4.5.2 Injected Current Pattern

For calculating the 2½D boundary condition in equation (3.13), it is assumed that

the injected current is uniformly distributed under active electrode; therefore, the

injected current pattern (or current density) in z direction is a rectangular pulse

which is constant under the electrode region and zero outside of the electrode region

having an area equal to the current amplitude depicted in figure 4.13(left).
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Figure 4.13: Distribution of current density (left) assumed for 2½D (right) real 3D
mesh with complete electrode model - ∆z = 2

160
and electrode width W = 0.1

However, an analysis for calculating the current density under the active electrode

demonstrates that in the 3D mesh employing complete electrode model, the voltage

is not constant under the electrode region. The procedure of calculating the current

distribution in the boundary is expressed in Appendix B. Figure 4.13(right) shows

the distribution pattern of the injected current density under the electrode for a 3D

mesh using complete electrode model. As can be observed, the current distribution

under the electrode is not constant for CEM.

4.5.3 2D-based Complete Electrode Modelling

Generally, the 2½D solution is a 2D-based solution. This means that the system

matrix of the 2½D method is derived from the 2D system matrix and therefore it uses

the 2D complete electrode complimentary elements (AZ , AW and AD; refereing to

chapter 3.4) in its system matrix keeping the same size as 2D; hence, only the relation

in xy plane between the nodes under each electrode is modelled in constructing the

system matrix. However, in a 3D mesh employing complete electrode model, the

relationship of all of the nodes in different z-layers is modelled in the system matrix
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n max = 50.

which is used to solve node voltages from injected current.

Figure 4.14 illustrates the voltages of the nodes at the electrode positions cal-

culated by 3D and 2½D modelling for the fourth stimulation pattern at different z

layers for the same mesh as the experiment resulted in figure 4.9 (height H = 2 and

electrode height h = 0.4) this time with W = 0.1. This figure is plotted for the center

node under each electrode for both 3D and 2½D. The difference between the 3D and

2½D is less for the side nodes. Unlike the line electrode case, here, it is observed that

the the 2½D is not following the 3D solution attributes for each layer in z coordinate.

However, taking the average of nodes under each electrode at different z-layer would

result in much smaller difference in the electrode voltage and measurements.

In order to simulate the 3D complete electrode model for 2½D completely, we
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suggest that the average of the nodes under the electrode at different z-layer is cal-

culated the same way as it is computed in 3D. However, this approach would not be

a complete solution due to the following reasons:

1. The complete electrode modelling is not done completely inside of the system

matrix. This means that due to employing 2D-based models only the relation between

the nodes under the electrodes in xy plane is considered inside the system matrix while

the relation between the nodes under the electrodes in different z-layers is modelled

after the 2½D solution of all layers are calculated which would be a post processing

approach.

2. The coefficients or the weights by which the voltages of the nodes under each

electrode are averaged are unknown from the 2½D solver point of view unless one con-

structs a 3D system matrix and a 3D mesh in order to find the weights . The situation

gets worse when adding that these weights depend on the 3D meshing method, how

each node is connected to its neighboring nodes, and on which type of the nodes the

electrode ends lie in the boundary which seems to be random. Hence, a rule of thumb

would be calculating the electrode voltage (voltage of the virtual node assigned for

each electrode) from the 2½D solution on each z-layer that electrodes lie, in which only

the relation in xy plane is considered; then treating these electrode voltages as a 3D

mesh with line electrode since there is only one voltage for each z-layer; and average

them using the weights for line electrode model which are: [1, 2, · · · , 2, 1]/2(t− 1)

where t is the number of assumed z-layers which lie under the electrode. Hence,

another problem would be the number of z-layers in the 3D mesh which is another

unknown from the the 2½D solver points of view.

In addition, in imposing the complete electrode model for 2½D equation in the

same way done for the 2D mesh (see equation (3.58)), there was a assumption that

the Kirchhoff’s voltage law (KVL) is valid. Although this KVL is valid for the 2D

and 3D situation, the validity should be further investigated in the 2½D case since the
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harmonic voltages are not real potentials. However, it seems that KVL and KCL are

valid for harmonic voltages and currents.



Chapter 5

Implementation and Complementary

Discussion

In this chapter the structure of the main modules which are developed to expand

2½D capability to the EIDORS project are described. First, the ’fwd solve’ and

’calc system matrix’ modules are explained. Next, it is shown how the speed of the

algorithm can be improved by keeping the constant parts out of the ’for’ loop. In

section 5.3, it is discussed that how many terms are sufficient to be solved in order

to satisfy a reasonable accuracy. The last section provides a comparison between the

3D solver and 2½D solver memory and computation performance.

5.1 The Structure of Modules

The following modules were developed in order to append 2½D FEM ability to the

EIDORS project:

The ’fwd solve’ module is a module where the forward equation is solved. In

this module, first, for each 2½D partial differential equation, a system matrix is re-

constructed. The module ’calc system matrix’ calculates the system matrix for the

103
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fwd_solve

Call:
calc_system_matrix

S(n)

While

n ≤ n_max

Solve:

V(n) = [S’(n)]-1I(n)

Inverse Fourier

V(n)→ V

END

YN

n ← n+1

n=0

Figure 5.1: Block diagram of the ’fwd solve’ module

entire mesh for each harmonic n; which is explained later. Having the system ma-

trix of each PDE’s expressed in (3.5), a forward equation is solved for each spatial

frequency in order to compute the nodal voltages from the driving currents. This pro-

cedure continues until the truncation point, n max, is reached or a sufficient number

of equations are solved based on an error criterion; then, based on the synthesis equa-

tion (3.2b), the inverse Fourier transform of the nodal voltages is computed which

forms the 2½D forward solution. The block diagram of different stage of this module

has been plotted in figure 5.1.

In order to calculate the voltages (or gradients) at any height, the solution of all

harmonics is required. For computing the 2½D solution at a different height, only the

Fourier summation is required to be performed again for the new z. Therefore, the

output of the module could be extended to calculate the average of the voltage of all

nodes under each electrode without solving extra equations.

The ’calc system matrix’ module, calculates the 2½D system matrix of the entire

mesh based on the harmonic number n, the parameter zm, i.e. one half of the domain
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height, and the position of the nodes. In this work, the system matrix for the entire

mesh is computed by calculating the local system matrix for each element and con-

struct a connectivity matrix for the entire mesh based on the connectivity map of the

elements. When the local system matrices are all calculated, then the system matrix

for the entire mesh is computed by equation (3.42) which is written again here:

S ′(n) = CT S ′E(n)Σ C (5.1)

where S ′EΣ is a diagonal concatenation of local system matrices, S ′k, in which the

conductivity of each element is also included (see in chapter 3), C is connectivity

map matrix and ’T’ represents the transpose operation. The 2½D system matrix S ′

is a function of the spatial frequency ( nπ
zm

). The local sensitivity matrix for each

element is constructed by the ’calc local stiffness matrix’ and the connectivity map is

the relation between the node index inside each element and the general node index

for the entire mesh. The block diagram of different stage of this module is plotted in

figure (5.2).

In the ’calc local stiffness matrix’ module, the matrix S
′k

is calculated for each

element based on the solution of the integrals expressed in (3.29) given the following

parameters: ’n’,’zm’, and the nodal position of that element. The details of computing

the integral is expressed in chapter 3 and appendix A.

S ′
k
ij = Skij + (

nπ

zm
)2Rk

ij =

∫
Ek

∇φi · ∇φj + (
nπ

zm
)2φiφj dΩ (5.2)

5.2 Improving the Speed of the Algorithm

The 2½D local system matrix, S ′k, consists of two parts which is expressed again

in (5.2). The first part is the matrix Sk which is easy to be calculated since for linear
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Call:
calc_local_stiffness_matrix

S’k

calc_system_matrix
(2½D)

For each element

(k ≤ K)

Calculate
Connectivity map matrix

Ck

Calculate
system matrix

S’ = CT S’EΣ C

END

YN

k++

k=1

Figure 5.2: Block diagram of the ’calc system matrix’ module - K is the total
number of elements in the mesh

interpolating functions, φi, the gradients are constant over the integral. However,

calculating Rk, the second part, is more difficult and requires computing the integrals

of the following integrands for all elements of the whole mesh which are taken over

each element separately: x, y, x2, xy, y2. Yet, both Sk and Rk are not dependent of

the spatial frequency n π
zm

and are constant for a certain element geometry. In other

words, for each harmonic n, only the coefficient of the local residual matrix Rk is a

dependent of n and zm; therefore, a residual matrix R for the entire mesh could also

be constructed from all local residual matrices, Rk, and the connectivity matrix the

same way mentioned previously in (3.42) for the S ′ (or S) as:

R = CT REΣ C (5.3)
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where REΣ is a diagonal concatenation of local Residual matrices, Rk including the

conductivity of each element. The proof of the previous argument is based on sub-

stituting equation (5.2) into equation (5.1) and taking the summation outside of the

multiplication. By doing this, the following expression is derived for the system ma-

trix of a 2½D problem for each harmonic n:

S ′(n) = CT SEΣ C + (
nπ

zm
)2(CT REΣ C) (5.4)

The first matrix term in equation (5.4) is a normal 2D systems matrix, S, and the

second matrix term excluding the scalar coefficient was defined as R in (5.3) called

’Residual’ matrix. Due to the fact that the residual matrix itself is independent of

the harmonic n, it could be calculated only once for the whole 2½D set of equations

and added to the 2D system matrix each time for a harmonic number n.

In summary, the 2½D system matrix of the entire mesh for each equation (or

harmonic) would be calculated as:

S ′(n) = S + (
nπ

zm
)2R (5.5)

where S is the 2D system matrix and R represents the additional term in the 2½D

model; both of which are constant and only depend on the position of the nodes in

the mesh geometry. Hence, the running time of the 2½D method after algorithm re-

arrangement would be equal to the running time of one 2D module plus the running

time for solving extra forward equations, expressed in (3.41), having the same dimen-

sion as the 2D problem for the non-zero harmonic terms, plus the time for calculating

the residual matrix (tR) as well as the inverse Fourier transform (tIFT ).

t2 1
2
D = t2D + n max× t2D-size Forward Solve + tR + tIFT (5.6)
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fwd_solve

Call:
calc_system_matrix (2D)

S

While

n ≤ n_max

Solve:

V(n) = [S’(n)]-1I(n)

Inverse Fourier

V(n) → V

END

YN

Call:
calc_residual_matrix

R

S' (n) = S + (nπ/zm )2 R

n ←n+1

n=0

Figure 5.3: Block diagram of the ’fwd solve’ module explained in section 5.2.

The running time of the 2½D method without the algorithm rearrangement would

be:

t2 1
2
D = (n max+ 1)× (t2D-size Forward Solve + tR) + tIFT (5.7)

Finally, the new block diagram of the ’fwd solve’ would be as figure 5.3. The

’calc residual matrix’ module would be the same as the ’calc system matrix’ in 2½D;

yet, the only difference is the change in variable label from S ′ to R which is clearly not

a change in the algorithm. In this case, the ’calc local stiffness matrix’ module would

only calculate the residual part of the local system matrix excluding the coefficient

which is:

Rk
ij =

∫
Ek

φiφj dΩ (5.8)
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5.3 How Many Terms Are Needed?

The number of equations sufficient to be solved for the 2½D solution with an acceptable

accuracy differs depending on the problem parameters such as the electrode height (h)

and the domain height (H). Substituting equation (5.5) into equation (4.4) results in

the more complete equation written in (5.9). Here, as n increases, the driven currents

(I) in the nominator decrease by a ’sinc’ function pattern while the system matrix

increases in the denominator (inverse) by the n2 coefficient.

V2 1
2
D =

1

H
S−1I +

∞∑
n=1

2

nπh
sin(

nπh

2zm
) cos(

nπ

zm
z)(S + (

nπ

zm
)2R)−1I (5.9)

Simulation results show that even 4 terms are sufficient for gradients considering

1% accuracy for a mesh with H = 2 (Height is 2 times the radius). Figure 5.4,

illustrates the maximum relative error in measurements introduced if the summation

of harmonics is truncated at n max. It can be observed from this plot that for greater

h
H

values, the truncation point is smaller and 3 terms are sufficient. In this analysis,

the error (ε) is calculated by equation (5.10) where MAX should tend to positive

infinity (+∞); however, for the purpose of stimulation MAX = 100 is used.

ε(%) = max(

∑MAX
n=0 Vn cos(nπ

zm
z)−

∑n max
n=0 Vn cos(nπ

zm
z)∑MAX

n=0 Vn cos(nπ
zm
z)

)

= max(

∑MAX
n=Nmax+1 Vn cos(nπ

zm
z)∑MAX

n=0 Vn cos(nπ
zm
z)

)

(5.10)

After the 4th term, mostly the harmonic voltage under the active electrodes is con-

siderable and other harmonic voltages are approximately zero. As it was discussed

previously, the voltage on the active electrodes is not counted in measurements. Fig-

ure 5.5, illustrates the maximum relative error in electrode voltage introduced if the
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Figure 5.4: Max relative error in measurements introduced if the summation is
truncated at n max

summation of harmonics is truncated at n max. Unlike the plot for the measure-

ments, here, the plots which are for the electrode voltage decay slowly as n max

increases. Therefore, for those applications that consider the active electrode volt-

age in the measurements, or require its value, the truncation point of the series is

higher. The fluctuations on the plot are due to the fact that the value of the series at

n max = 100 is used as a reference for calculation of the error while the value at ∞

should be used for this purpose and also it can be due to the rippling nature of the

’sinc’ function. The ’sinc’ ripples are more obvious in the un-averaged node voltages

and become wider (as seen in the figure) when averaged over the electrode length for

CEM implementation.

When the height of the electrodes, h, is small compared to the height of the

domain height H, the voltages under the electrode is approximately constant; hence

the electrode voltage could be approximated as the voltage of the node at z = 0. As
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the h/H ratio reaches 1, harmonic voltages vanish faster by increment of n; hence

the truncation point of the series, n max, does not increase. However, in this case,

the voltage under the electrodes for the 3D model at different heights is not constant;

hence, it is required to completely calculate the 2½D solution for all positions under the

electrode and average the voltages of different z-layers which was mentioned earlier.

This is due to the fact that the current is not distributed homogeneously over the

surface of the electrode in a 3D CEM which is more realizable when the height of the

electrode is comparable to the height of the domain. Table 5.1 lists the truncation

point for different H/r given 1% accuracy; where r is the radius of the cylindrical

tank. The truncation point is greater for larger H/r and lower for smaller H/r.
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H
r

2 4 10

h
H

n max
(0.025, 0.05, 0.1) 3
(> 0.1) 2

h
H

n max
(0.025) 7
(0.05) 6
(0.1) 5
(≥ 0.2) 3

h
H

n max
(0.025) 13
(0.05) 11
(≥ 0.1) 7

Table 5.1: Truncation point (n max) for different Tank Height to radius ratio
(H/r) and electrode height to Tank Height ratio (h/H) given 1% accuracy in
measurements

5.4 What we gained

5.4.1 Memory Performance

Compared to the 2D modelling, the 2½D modelling offers better accuracy while it

requires solving more equations or matrix inversions. One the other hand, the com-

putational complexity of the 2½D, is extraordinarily less than the 3D modelling while

the accuracy is almost same.

For a same model, the 2½D solver requires as many elements and nodes as the

2D mesh; while the 3D model requires many more elements and memory. Assuming

employing a 3D mesh consisting of M slices (z-layer) of a typical 2D mesh, the whole

3D mesh would then contain M times as many nodes as the 2D mesh nodes and

3(M −1) times as many elements as the 2D mesh elements. Then, the system matrix

of the 3D mesh contains M2 times elements as the 2D system matrix. Also, the 3D

sensitivity matrix contains 3(M − 1) times as many elements as the 2D sensitivity

matrix. However, the matrix to be inverted in the inverse problem for the 3D model

contains 9(M − 1)2 times element as the 2D case. This comparison can be shown

as the following where [Matrix]a×b represents a matrix with a rows and b columns,

K is the number of elements, N is the number of nodes in the mesh, and M is the

number of z-layers (slices in z).
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Mesh Structure:

[21
2
D : Mesh.Nodes]N×2 vs. [3D : Mesh.Nodes]MN×3

[21
2
D : Mesh.Elements]K×3 vs. [3D : Mesh.Nodes]3(M−1)K×4

System Matrix:

[S2 1
2
D]N×N vs. [S3D]MN×MN

Sensitivity Matrix:

[H2 1
2
D]K×(number of measurements) vs. [H3D]3(M−1)K×(number of measurements)

Matrix Inversion at the Inverse Problem:

[(HTWH)−1
2 1
2
D

]K×K vs. [(HTWH)−1
3D]3(M−1)K×3(M−1)K

Matrix Inversion at the Forward Problem:

[S−1
2 1
2
D

]N×N vs. [S−1
3D]MN×MN

For example, a typical 2D mesh contains 2,113 nodes and 4,094 elements. The 3D

mesh which employs 61 slices of the 2D mesh as its base would then contain 61 times

nodes, i.e., 128,893, and 180 times as many elements, i.e., 736,920. Then, the system

matrix of the 3D mesh is 61×61 = 3,681 times larger than the 2D system matrix;

hence, the 3D forward problem involves inversion of a 3,681 times larger matrix. For

this specific example, the number of non-zero elements in the 2½D system matrix

is: 14,529 (0.32%) and in 3D system matrix is: 1,884,789 (0.011%); therefore, the

effective ratio of the element density between the sparse system matrices is: 130 for

this specific case. The 3D sensitivity matrix would be 180 times larger than the 2D

sensitivity matrix and the 3D problem involves inversion of a 32,400 times larger

matrix than the 2D.

Therefore, the trade-off for the 2½D forward problem is that: onetime inversion

of a M2 times larger matrix vs. multiple inversion of a much smaller matrix while
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Process description Time
161 layers 61 layers

System Matrix Construction: 110 sec 30 sec
Forward Matrix Inversion: 135 sec 42 sec
Total Forward Solver: 267 sec 76 sec

Table 5.2: Time performance for 3D

maintaining a reasonable accuracy. As discussed in the previous section, the number

of inversions could be as few as 5; or at most 10. The trade of for the 2½D inverse

problem is: onetime calculation and inversion of a 9(M − 1)2 times larger matrix vs.

multiple calculation of a much smaller matrix yet one time inversion of that.

5.4.2 Time Performance

As an example, for a typical 3D mesh with 161 z-layers having around 2 million ele-

ments (1,966,080) compared with a 3D mesh with about 0.8 million elements (737,280)

depicted in figure 4.1 (see chapter 4), a typical calculation time of system matrix con-

struction and matrix inversion in the forward solver is presented in table 5.2. This

running time is calculated using ’tic’ and ’toc’ command of Matlab in a computer with

the following specifications: Intel Xeon(R) CPU X5550 @ 2.67 GHz and 64 GBytes

of RAM.

The running time for ”System Matrix Construction” was measured as the running

time required for the line # 24 of the ’aa fwd solve.m’ module in EIDORS which

executes the ’aa calc system mat.m’ module. This line is written with the tic toc

command as:

t handle = tic;

24 s mat= calc system mat( fwd model, img );

toc(t handle)
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Furthermore, the running time for ”Forward Matrix Inversion” was measured as

the running time of the line # 32 of the the ’aa fwd solve.m’ module which operates

the ’forward solver’ function for computing the matrix inversion. This line is written

with the tic toc command as:

t handle = tic;

32 v(idx,:)= forward solver( s mat.E(idx,idx), pp.QQ(idx,:), tol);

toc(t handle)

Finally, the running time for ”Total Forward Solver” was measured as the run-

ning time of the the ’fwd solve.m’ module which operates all required calculations

for solving the forward problem on the mesh including system matrix construction

and inversion but not limited to them. The following line together with the tic toc

command measures this time:

t handle = tic;

inh data 3d = fwd solve( sim img 3d );

toc(t handle)

where the ’sim img 3d’ contains the 3D inverse model structure which includes the

3D ’fwd model’, 3D mesh node positions, elements definitions (node connections),

element conductivities, electrode model information, the stimulated current pattern,

etc according the EIDORS ’fwd models’1 or ’mk image’ module.

On the other hand, for the 2½D method with a 2D mesh with 4,096 elements de-

picted in figure 4.1, the calculation time of matrix reconstruction and matrix inversion

is presented in table 5.3. The running time varies in a narrow range depending on

the number of zero elements in the system or residual matrix. The performance ratio

could be approximated as 15 ∼ 50 (15 when using 61 z-layers and 50 when using 161

z-layers).

1http://eidors3d.sourceforge.net/tutorial/EIDORS basics/tutorial010.shtml
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Process description Time
2D System Matrix Construction (S): 0.16 sec
Residual Matrix Construction (R): 5.0 sec
Inversion time for each harmonic: 0.025 sec
Total (average for 5 terms): 5.3 sec

Table 5.3: Time performance for 2½D

Normally, it is expected that the result of the 3D algorithm using 161 layers along

the z-axis is more accurate than the result of the 3D algorithm for the same mesh

employing 61 z-layers. In chapter 4, it was shown that the results of the 3D algorithm

employing 161 z-layer is closer to the 2½D solution which does not depend on the

number of z-layers. The 2½D solution requires a specific amount of time regardless

of the number of z-layers. On the other hand, the 3D solution is improved while

its running time increases by employing more z-layers. In summary, the more layers

used for the 3D solver results in a better accuracy between the 3D and 2½D while

taking more time and leading to a higher running time performance ratio between the

2½D and 3D. Here, the implemented algorithm for calculating the residual matrix is

not computationally efficient which makes the calculation time of the residual matrix

to be dominant. A more efficient residual calculation algorithm could potentially

increase the 2½D time performance significantly.

For the 2½D, the running time of the ”2D System Matrix Construction (S)” was

measured the same way as the ”System Matrix Construction” for the 3D case; this

time is the calculation time required for operating the line # 24 of the ’aa fwd solve.m’

module in EIDORS using a 2D mesh which executes the ’aa calc system mat.m’ mod-

ule. However, in our modified modules ’aa fwd solve modif.m’, this line is written

with the tic toc command as:
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t handle = tic;

26 s mat old = calc system mat( fwd model, img );

toc(t handle)

Similarly, the running time for ”Residual Matrix Construction (R)” was mea-

sured as the time required for calculation of the line # 19 in our modified

’aa fwd solve modif.m’ module which executes the ’nb calc system mat.m’ module to

calculate the higher order 2½D terms. This line is written with the tic toc command

as:

18 t handle = tic;

19 s mat new = calc system mat( fwd model, img );

20 toc(t handle)

where, unlike the previous cases, the ’fwd model.system mat’ parameter is set to

’nb calc system mat’.

Furthermore the running time for ”Inversion time for each harmonic” was

measured as the time required for calculating the following line of our modified

’aa fwd solve modif.m’ module which operates the ’forward solver’ function for com-

puting the matrix inversion. This line is written with the tic toc command as:

76 t handle = tic;

77 v(idx,:)= forward solver( s mat.E(idx,idx), coef * pp.QQ(idx,:), tol); // NBA

78 toc(t handle)

Finally, the ”Total (average for 5 terms)” running time was measured as the time

required for calculating the following line of our developed module ’nb fwd solve new’

which is written based on the algorithm explained in section 5.2. The time is an

average of the measured running time for different value of h/H. This running time

can also be calculated using the formula provided in equation (5.6).
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Figure 5.6: Running time for 3D - N circ is the number of circles (xy-layers)

sim img 25d.fwd model.system mat = ’nb calc system mat’ ;

sim img 25d.fwd model.solve = ’nb fwd solve new’ ;

t handle = tic;

inh data 25d = fwd solve( sim img 25d );

toc(t handle)

where the ’sim img 25d’ contains the 2D forward model structure which includes the

2D ’fwd model’, 2D mesh node positions, elements definitions (node connections),

element conductivities, electrode model information, the stimulated current pattern,

etc according the EIDORS ’fwd models’2 or ’mk image’ module.

Figure 5.6 shows the running time measured for the 3D forward solver employing

different 3D mesh with different number of layers in z and xy (circles). The values

are an average for three different electrode height over tank height ratio (h/H). The

2http://eidors3d.sourceforge.net/tutorial/EIDORS basics/tutorial010.shtml
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circles z-layers
61 81 101 121 141 161

12
N :
K :

19,093
103,680

25,353
138,240

31,613
172,800

37,873
207,360

44,133
241,920

50,393
276,480

16
N :
K :

33,245
184,320

44,145
245,760

55,045
307,200

368,640
65,945

76,845
430,080

87,745
491,520

20
N :
K :

51,301
288,000

68,121
384,000

84,941
480,000

101,761
576,000

118,581
672,000

135,401
768,000

24
N :
K :

73,261
414,720

97,281
552,960

121,301
691,200

145,321
829,440

169,341
967,680

193,361
1,105,920

28
N :
K :

99,125
564,480

131,625
752,640

164,125
940,800

196,625
1,128,960

229,125
1,317,120

261,625
1,505,280

32
N :
K :

128,893
737,280

171,153
983,040

213,413
1,228,800

255,673
1,474,560

297,933
1,720,320

340,193
1,966,080

Table 5.4: Number of Elements (K) and Nodes (N) in the 3D mesh

xy-layers (circles)
12 16 20 24 28 32

N :
K :

313
576

545
1,024

841
1,600

1,201
2,304

1,625
3,136

2,113
4,096

Table 5.5: Number of Elements (K) and Nodes (N) in the 2½D mesh employing
different number of xy-layers (circles)

figure shows how employing more layers significantly increases the 3D running time.

The number of nodes and elements required for each 3D mesh is listed in table 5.4.

Figure 5.7 shows the running time measured for the 2½D forward solver employing

different 2D mesh with different number of layers in xy (circles). The figure shows

how employing more xy-layers increases the 2½D running time. The number of nodes

and elements required for each 2D mesh is listed in table 5.5.

Figure 5.8 illustrates the 3D/2½D time performance ratio calculated for different

number of layers in z and xy (circles) from the measured time shown in the previous

two figures. The values are an average for three different electrode height over tank

height ratio (h/H). The figure demonstrates how employing more layers significantly

increases the 3D/2½D time performance ratio while the accuracy of the 3D solution
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improves.



Chapter 6

Conclusions and Future Works

6.1 Summary and Conclusion

In this work, a 2½D finite element method was applied to the EIT problem considering

complete electrode modelling. The correct boundary condition was derived from the

original 3D boundary equation and tested. The complete electrode model assigns

more than one node for each electrode and introduces a parameter for electrode-skin

contact impedance to model the relation between the electrode node and nodes under

the electrode.

A key conclusion of this work is: compared to the 3D modelling, the 2½D offers

better memory performance (200-400 times less elements) and much less calculation

complexity as well as the calculation time (about 15-50 times less while the algorithm

for residual matrix calculation is not efficient, see figure 5.8). It was also concluded

that using more layers in 3D such as ∆z = 2
160

provides better accuracy for the 3D

solution. On the other hand, compared to the 2D modelling, the 2½D provides more

accurate results due to the fact that it accounts for the 3D current source geometry

and off-slice currents.

In addition, in section 2.9 a brief literature review on the 2.5D methods was pro-

vided where it was described how the term ”2.5D” is used differently by different

122
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authors. It was concluded that the 2½D finite element for EIT problem differers by

the problem shape as well as the boundary conditions and modelling. For applica-

tions of EIT in medical imaging, it can be concluded that the skin-electrode contact

impedance is more important than for applications in process tomography. In chap-

ter 3, a complete process of 2½D finite element modelling was explained. In the second

part of chapter 3, it was demonstrated how the system matrix is constructed in com-

plete electrode modelling. It was concluded that the electrode voltage is a weighted

average of voltages of all nodes under the electrode. These weights are calculated

based on the length or area of the intersection of the electrode and the interpolation

function of each node. For 2D electrodes, the weight for each node is proportional to

the area of the region which is formed by that node together with all of its neighboring

nodes under the electrode that are directly connected to that node; the weights are

normalized by the total area. For 1D electrodes, regardless of the type of the actual

mesh (whether 3D or 2D), the weight for each node is proportional to the summation

of the distances between that node and its neighboring nodes under the electrode;

the weights are normalized by the total length.

In chapter 4, we demonstrated that the 2½D solver successfully modifies the 2D

solution toward the 3D solution. In addition, it was concluded that the 2D and 3D

solvers work differently since the 2D solver employs 2D interpolation functions and the

3D solver employs 3D interpolation functions; hence, the solution are not completely

matched for a 2D mesh and a 3D mesh with a full 2½D boundary. The chapter

demonstrates that the developed modules work well in modifying the 2D solution

toward the 3D solution. Since the 2½D employs a 2D FE mesh and 2D interpolation

functions, a small amount of difference is introduced which decreases with element

density.
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In chapter 5, the structure of the developed modules was explained. It was con-

cluded that it is possible to improve the speed of the algorithm by keeping the cal-

culations that are independent of n and zm out of the loop. In other words, it is

not necessary to calculate the system matrix and the residual matrix for all PDEs

since these matrices only depend on the geometry of the mesh. An analysis on how

many terms are required for calculating the 2½D shows that for a mesh with height

equal to 2 (H = 2 times radius), 4 terms are sufficient for achieving 1% accuracy

in measurements. The truncation point is greater for longer meshes and lower for

shorter meshes. Finally, a description of the memory and computation performance

of the 2½D and 3D solver was provided.

6.2 Future Works

6.2.1 Assuming Symmetric Conductivity

In this section we start an investigations on the assumption of the symmetric conduc-

tivity. In general, for having a symmetric voltage around the z = 0 plane, it is only

required to have symmetric conductivities as well as the boundary condition. From

this point, we assume that we have 3D conductivity yet symmetric around z = 0

plane. Putting this conductivity into the Laplace equation (3.3), would result into

the following equation instead of equation (3.4):

∞∑
n=0

{
[
∇2D · [σ(x, y, z)∇2DVn(x, y)]− σ(x, y, z)(

nπ

zm
)2Vn(x, y)

]
cos(

nπ

zm
z)

−
[
nπ

zm

∂σ(x, y, z)

∂z
Vn(x, y)

]
sin(

nπ

zm
z)} = 0

(6.1)

where the variables are the same as chapter 3. This equation is valid for all values of

n. Considering the orthogonality of cosines and sinusoids, both sides of equation must
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be zero; hence, the coefficient of ’cos’ and ’sin’ terms must be independently zero.

However, before forcing the ’sin’ terms to be zero it is required to apply the symmetric

property of the conductivity. Assuming symmetric conductivity it is possible to write

the 3D conductivity in the form of Fourier cosine terms as

σ(x, y, z) =
∞∑
m=0

σm(x, y) cos(
mπ

zm
z) (6.2)

where σm(x, y) is the mth Fourier coefficient of the conductivity. Substituting equa-

tion (6.2) into equation (6.1) would result in the following expression:

∞∑
n=0

{
[
∇2D · [σ(x, y, z)∇2DVn(x, y)]− σ(x, y, z)(

nπ

zm
)2Vn(x, y)

]
cos(

nπ

zm
z)

−

[
nπ

zm

(
∞∑
m=0

−mπ
zm

σm(x, y) sin(
mπ

zm
z)

)
Vn(x, y)

]
sin(

nπ

zm
z)} = 0

(6.3)

The outer coefficients of the inner ’sin’ term contain another sinusoid term. The

multiplication of these two sinusoid results into two cosine terms by the following

identity in (6.4a):

sin(
mπ

zm
z) sin(

nπ

zm
z) = −1

2
[cos

(n+m)π

zm
z − cos

(n−m)π

zm
z] (6.4a)

cos(
mπ

zm
z) cos(

nπ

zm
z) =

1

2
[cos

(n+m)π

zm
z + cos

(n−m)π

zm
z] (6.4b)

The resulted cosine terms for the multiplication of two ’sin’ terms are then absorbed

into the ’cos’ part of equation (6.3). This could be also written as a sort of convolution

between the voltage and conductivity. Furthermore, it is possible to substitute the

conductivity in the ’cos’ part of equation (6.3) by it’s cosine Fourier transform in



126

equation (6.2). Doing this for the cosine part yields:

∞∑
n=0

{[∇2D · [

(
∞∑
m=0

σm(x, y) cos(
mπ

zm
z)

)
∇2DVn(x, y)]−(

∞∑
m=0

σm(x, y) cos(
mπ

zm
z)

)
(
nπ

zm
)2Vn(x, y)] cos(

nπ

zm
z)

(6.5)

This expression which has been written for the cosine part of equation (6.1) could

be simplified to

∞∑
n=0

∞∑
m=0

cos(
mπ

zm
z){∇2D · [σm(x, y)∇2DVn(x, y)]−

σm(x, y)(
nπ

zm
)2Vn(x, y)} cos(

nπ

zm
z)

(6.6)

Here, again the multiplication of the two cosine terms using the identity expressed

in (6.4b) results in two separate cosine terms which could be written in the form of

convolution. Putting the cosine part and the new form of the sinusoid part (which is

written in the form of substraction of two cosine terms) together results in:

∞∑
n=0

∞∑
m=0

{∇2D · [σm(x, y)∇2DVn(x, y)]− σm(x, y)n(n+m)(
π

zm
)2Vn(x, y)} cos

(n+m)π

zm
z

+{∇2D · [σm(x, y)∇2DVn(x, y)]− σm(x, y)n(n−m)(
π

zm
)2Vn(x, y)} cos

(n−m)π

zm
z = 0

(6.7)

Finally, this equation must be valid for all values of n. After rewriting equa-

tion (6.7) in the form of a single summation with a single summation index, both

sides of the equation must be zero due to the orthogonality of cosines and sinusoids;

hence, the coefficient of ’cos’ and ’sin’ terms must be independently zero. Forcing the

cosine terms to zero results in a set of 2½D equation for the case of symmetric con-

ductivity. Forcing any possible remaining sinusoid term to zero yields some possible
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additional conditions to the 2½D set of equations.

6.2.2 Windowing the Injected Current

In chapter 4 section 4.5.2, it was discussed that the current under the electrode in

a 3D model with CEM is not constant along with the z direction (see figure 4.13).

However, for modelling the 2½D boundary current, it was assumed that the current is

uniformly distributed along the z coordinate. Figure 4.14 shows that voltage under

the electrode nodes in a 3D model is approximately uniform while the current density

is not uniform and demonstrates a concave pattern; In contrast, the injected current

for the 2½D is modelled uniformly while the results show a convex pattern in voltage.

This difference in the modelling of the boundary condition makes a possible source

of error between the solutions.

For the purpose of modifying the 2½D model boundary condition, we suggest to

employ a windowing strategy in order to shape the boundary current as what it is

actually in a 3D model with CEM. The window should aim to model the concave

attribute of the current density for different electrode heights, h. Assuming wh(z) is

a window in spatial domain which aims to compensate the current injection difference,

we would have the following expression for the current density in the spatial domain:

J(x, y, z) =
1

h
rect(

z

h
)wh(z) (6.8)

where J is the current density and rect( z
h
) is a rectangular pulse between −h

2
and +h

2
.

Then, the updated current terms for the 2½D solver in the Fourier domain would be

the convolutions of the ’sinc’ terms defined previously in (3.14) and the cosine Fourier

transform of the window in the spatial frequency domain as:

Jn(x, y) =
1

hzm
sinc(

nh

2zm
) ∗Wh(

nπ

zm
) =

2

nπh
sin(

nπh

2zm
) ∗Wh(

nπ

zm
) (6.9)
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where ’*’ represents the convolution operator and Wh(
nπ
zm

) is defined by:

Wh(
nπ

zm
) =

∫ +zm

−zm
wh(z) cos(

nπ

zm
z) dz (6.10)

6.2.3 2.5D image reconstruction employing 2½D finite ele-

ment modelling

The 3D models often employ multiple rings of electrode around the body (or medium).

However, either a full 3D method or a 2.5D algorithm might be used for image

reconstruction. The 2.5D image reconstruction refers to a method which uses a 2D

image reconstruction technique for each ring of electrodes and then interpolates the

results from all of the rings of electrodes to reconstruct a 3D image of the conductivity

similar to the 2.5D CT. It is suggested that a ’full’ 2½D image reconstruction is

developed which employs the 2½D finite element modelling for image reconstruction

of each ring of electrode. In this method, the results of the 2½D method employing 2½D

finite element model (instead of the 2D image reconstruction) is used in interpolation

to reconstruct a 3D image of conductivity. The advantage of this system is that it

accounts for the off-slice currents while it is computationally efficient compared to

the full 3D image reconstruction.

6.2.4 Error for the ’True’ 3D Thorax

The 2½D FE method could be employed in any medium where the 2½D assumptions

are valid. In a human body this could be hands or legs, or lower portions of stomach.

For the upper part of a human chest, the 2½D assumption (translationally invariant

environment) could hardly be satisfied. For this case recently ’true’ 3D thorax models

have been developed. Although the 2½D method is not applicable to the ’true’ 3D

thorax models, it is suggested to examine the amount of error introduced by using
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2½D method on true 3D thorax. The solution of this experiment should be compared

to the following situation:

� the solution of a 2D solver for a 3D thorax

� the solution of a 3D solver for a 3D thorax

� the solution of a 3D solver for a 2.5 D thorax

It is also beneficial to evaluate the error performance of the 2½D method for non-

invariant (variant) conductivity cases along the z coordinate.

6.2.5 Generalization - Full Impedance

It is suggested to update the 2½D derivations and modify the developed method in

order to consider the susceptance component of the complex conductivity (or reactive

component of the impedance). In addition to this extension, it is suggested that the

method accounts for anisotropic conductivity cases for image reconstruction.



Appendix A

Analytical Solution of the Integrals

Assuming that P1(x1, y1), P2(x2, y2) and P3(x3, y3) are the vertices of the triangular

simplex where x1 < x2 < x3 (see figure A.1), each integral is calculated as follows:

The easiest integral to be calculated is the integral over each element which re-

sults in the surface area of the triangular simplex in the 2D case. Generally, the

2-dimensional integral is divided into a summation of two integrals in which one in-

tegral is over the x from x1 to x2 while y is varying between two lines connecting P1

to P2 and P3 and the other integral is over x from x2 to x3 while y is varying between

two lines connecting P3 to P2 and P1. This idea is expressed in equation (A.1)

S =

∫
Ek

dΩ =

∫ x2

x1

∫ max(A,B)

min(A,B)

dydx+

∫ x3

x2

∫ max(C,D)

min(C,D)

dydx (A.1)

P1(x1,y1)

P2(x2,y2)

P3(x3,y3)

B

A

D

C

Figure A.1: A sample triangular element

130



131

where A is the equation of the line connecting P1 to P2, B is the equation of the line

connecting P1 to P3, C is the equation of the line connecting P3 to P2, and D is the

equation of the line connecting P3 to P1 with respect to variable x which are defined

in set of equations (A.2).

A =
y2 − y1

x2 − x1

(x− x1) + y1 (A.2a)

B =
y3 − y1

x3 − x1

(x− x1) + y1 (A.2b)

C =
y3 − y2

x3 − x2

(x− x3) + y3 (A.2c)

D =
y3 − y1

x3 − x1

(x− x3) + y3 (A.2d)

The inner integral in the first term of equation (A.1) is calculated as:

∫ max(A,B)

min(A,B)

dy = [y]
max(A,B)
min(A,B) = [max(A,B)−min(A,B)] = |A−B|

= | y3 − y1

x3 − x1

− y2 − y1

x2 − x1

|(x− x1) = T1(x− x1)

(A.3a)

Similarly, the inner integral in the second term of equation (A.1) is calculated as:

∫ max(C,D)

min(C,D)

dy = [y]
max(C,D)
min(C,D) = [max(C,D)−min(C,D)] = |C −D|

= | y3 − y1

x3 − x1

− y3 − y2

x3 − x2

|[−(x− x3)] = −T2(x− x3)

(A.3b)

where, for simplicity in future expressions, T1 and T2 are defined as:

T1 = | (y3 − y1)

(x3 − x1)
− (y2 − y1)

(x2 − x1)
| (A.4a)

T2 = | (y3 − y1)

(x3 − x1)
− (y3 − y2)

(x3 − x2)
| (A.4b)
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where | · | is the absolute value operator. Finally the surface area, S, is derived as

S =

∫
Ek

dΩ = T1

∫ x2

x1

(x− x1) dx+ T2

∫ x3

x2

(x3 − x) dx (A.5)

The resulted one-dimensional integrals are easy to be solved over x. However, in

order to have the full procedure and footsteps for more complex integrals later, the

integrals solutions are expressed here:

∫ x2

x1

(x− x1) dx =

∫ x2−x1

0

u du =
1

2
(x2 − x1)2 (A.6a)

∫ x3

x2

(x3 − x) dx =

∫ x3−x2

0

u du =
1

2
(x3 − x2)2 (A.6b)

By substituting the integral solutions in (A.6) into equation (A.5), the surface

area of each element in a 2-dimensional mesh is calculated as

S = T1[
1

2
(x2 − x1)2] + T2[

1

2
(x3 − x2)2] (A.7)

The value for S obtained by equation (A.7) is exactly equal to the value obtained

by the formula of a triangle surface, in general, regardless of the ordering of the

vertices given by equation (A.8) which validates our procedure.

S =
1

2
(x2y3 − x3y2 − x1y3 + x3y1 + x1y2 − x2y1) (A.8)

Integral of x

Following the footsteps of the previous derivation, the integral of x over each simplex

could be calculated as

∫
Ek

x dΩ =

∫ x2

x1

x

∫ max(A,B)

min(A,B)

dydx+

∫ x3

x2

x

∫ max(C,D)

min(C,D)

dydx (A.9)
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where the inner integrals are previously calculated in (A.3) followed by the definitions

of T1 and T2 in (A.4). Substituting the results from the set of equations (A.3) into

equation (A.9), the integrals of equation (A.9) would then be simplified to

∫
Ek

x dΩ = T1

∫ x2

x1

x(x− x1) dx+ T2

∫ x3

x2

x(x3 − x) dx (A.10)

Similar to the approach employed previously, the one-dimensional integrals are

calculated as:

∫ x2

x1

x(x− x1) dx =

∫ x2−x1

0

(u+ x1)u du =
1

3
(x2 − x1)3 +

1

2
(x2 − x1)2x1 (A.11a)

∫ x3

x2

x(x3 − x) dx =

∫ x3−x2

0

(x3 − u)u du = −1

3
(x3 − x2)3 +

1

2
(x3 − x2)2x3 (A.11b)

Finally, by substituting the results of integrals in (A.11), the integral of x over

each simplex is calculated by

∫
Ek

x dΩ = T1[
1

3
(x2−x1)3 +

1

2
(x2−x1)2x1]+T2[−1

3
(x3−x2)3 +

1

2
(x3−x2)2x3] (A.12)

Integral of x2

The same way the integral of x is calculated, we can calculate the integral of x2 over

each simplex. The procedure is almost same to the previous one; however, in order

to have full details the derivation procedure is expressed here.

The integral of x2 over each simplex is calculated by equation (A.13).

∫
Ek

x2 dΩ =

∫ x2

x1

x2

∫ max(A,B)

min(A,B)

dydx+

∫ x3

x2

x2

∫ max(C,D)

min(C,D)

dydx (A.13)

Next, by substituting the solutions of the inner integrals derived in (A.3) equation
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(A.13) is simplified into the following equation:

∫
Ek

x2 dΩ = T1

∫ x2

x1

x2(x− x1) dx+ T2

∫ x3

x2

x2(x3 − x) dx (A.14)

Employing the same technique for solving one-dimensional integrals over x, these

integrals are calculated as

∫ x2

x1

x2(x−x1) dx =

∫ x2−x1

0

(u+x1)2u du =
1

4
(x2−x1)4+

2

3
(x2−x1)3x1+

1

2
(x2−x1)2x2

1

(A.15a)∫ x3

x2

x2(x3−x) dx =

∫ x3−x2

0

(x3−u)2u du =
1

4
(x3−x2)4− 2

3
(x3−x2)3x3+

1

2
(x3−x2)2x2

3

(A.15b)

Finally, by substituting the solutions of the integrals derived by equation (A.15b)

into equation (A.14), the integral of x2 over each simplex is calculated by the following

equation

∫
Ek

x2 dΩ = T1[
1

4
(x2 − x1)4 +

2

3
(x2 − x1)3x1 +

1

2
(x2 − x1)2x2

1]

+ T2[
1

4
(x3 − x2)4 − 2

3
(x3 − x2)3x3 +

1

2
(x3 − x2)2x2

3]

(A.16)

Integral of y

Unlike the calculation of the previous three integrals, the integral of y over each

simplex is more difficult when the vertices are sorted with respect to x. The integral

of y is calculated as

∫
Ek

y dΩ =

∫ x2

x1

∫ max(A,B)

min(A,B)

y dydx+

∫ x3

x2

∫ max(C,D)

min(C,D)

y dydx (A.17)

Here, the inner integrals are not just a simple integral over y; hence it is not

similar to the previous ones. In the first term, the inner integral is the integral of y

between the line connecting P1 and P2 defined by A in equation (A.2a) and the line
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connecting P1 and P3 defined by B in equation (A.2b). The first term of equation

(A.17) is calculated as

∫ max(A,B)

min(A,B)

y dy =

[
1

2
y2

]max(A,B)

min(A,B)

=
1

2
[min(A,B) +max(A,B)] · [max(A,B)−min(A,B)]

=
1

2
(A+B) · |A−B| = 1

2
[(
y2 − y1

x2 − x1

+
y3 − y1

x3 − x1

)(x− x1) + 2y1]

· | y3 − y1

x3 − x1

− y2 − y1

x2 − x1

|(x− x1)

= T1[
1

2
T3(x− x1)2 + (x− x1)y1]

(A.18a)

Also, in the second term of equation (A.17), the inner integral is the integral of y

between the line connecting P3 and P2 defined by C in equation (A.2c) and the line

connecting P3 and P1 defined by D in equation (A.2d). The second term of equation

(A.17) is calculated as

∫ max(C,D)

min(C,D)

y dy =

[
1

2
y2

]max(C,D)

min(C,D)

=
1

2
[min(C,D) +max(C,D)] · [max(C,D)−min(C,D)]

=
1

2
(C +D) · |C −D| = 1

2
[(
y3 − y2

x3 − x2

+
y3 − y2

x3 − x2

)(x− x3) + 2y3]

· | y3 − y1

x3 − x1

− y3 − y2

x3 − x2

|[−(x− x3)]

= −T2[
1

2
T4(x− x3)2 + (x− x3)y3]

(A.18b)

where T1 and T2 are the coefficients defined previously in (A.4). The new coefficients
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T3 and T4 are also defined here in equations (A.19) for simplicity in demonstration.

T3 = (
y3 − y1

x3 − x1

+
y2 − y1

x2 − x1

) (A.19a)

T4 = (
y3 − y1

x3 − x1

+
y3 − y2

x3 − x2

) (A.19b)

Next, by substituting the solution derived in (A.18a) into the first term of equation

(A.17), the integral in the first term of expression (A.17) is solved by the following

procedure:

∫ x2

x1

∫ max(A,B)

min(A,B)

y dydx =

∫ x2

x1

T1[
1

2
T3(x− x1)2 + (x− x1)y1] dx

= T1[
1

2
T3

∫ x2

x1

(x− x1)2 dx+ y1

∫ x2

x1

(x− x1) dx]

= T1[
1

2
T3

1

3
(x2 − x1)3 +

1

2
(x2 − x1)2y1]

(A.20)

For deriving the end results in equation (A.20), the first integral over x is calcu-

lated by equation (A.21a) while the second integral over x was solved previously in

equation (A.6a).

∫ x2

x1

(x− x1)2 dx =

∫ x2−x1

0

u2 du =
1

3
(x2 − x1)3 (A.21a)

∫ x3

x2

(x− x3)2 dx =

∫ 0

x2−x3
u2 du =

1

3
(x3 − x2)3 (A.21b)

Similarly, by substituting the solution derived in (A.18b) into the second term of

equation (A.17), the integral in the second term of the solution (A.17) is calculated
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by the following procedure

∫ x3

x2

∫ max(C,D)

min(C,D)

y dydx =

∫ x3

x2

−T2[
1

2
T4(x− x3)2 + (x− x3)y3] dx

= −T2[
1

2
T4

∫ x3

x2

(x− x3)2 dx+ y3

∫ x3

x2

(x− x3) dx]

= T2[−1

2
T4

1

3
(x3 − x2)3 +

1

2
(x3 − x2)2y3]

(A.22)

For deriving the end results in equation (A.22), the first integral over x is calcu-

lated by equation (A.21b) while the second integral over x was solved previously in

equation (A.6b). Finally, the entire integral of equation (A.17) which is the integral

of y over each simplex is calculated by the following expression:

∫
Ek

y dΩ = T1[
1

2
T3

1

3
(x2 − x1)3 +

1

2
(x2 − x1)2y1]

+ T2[
1

2
T4(−1

3
)(x3 − x2)3 +

1

2
(x3 − x2)2y3]

(A.23)

Integral of xy

The previous approach is a clue for the next integral which is the integral of xy over

each simplex. Here, the inner integrals have a same form as we had in equation

(A.17).

∫
Ek

xy dΩ =

∫ x2

x1

x

∫ max(A,B)

min(A,B)

y dydx+

∫ x3

x2

x

∫ max(C,D)

min(C,D)

y dydx (A.24)

Using the results previously derived for the inner integrals expressed in equations

(A.18), the first integral term in equation (A.24) is calculated as

∫ x2

x1

x

∫ max(A,B)

min(A,B)

y dydx =

∫ x2

x1

T1[
1

2
T3x(x− x1)2 + x(x− x1)y1] dx

= T1[
1

2
T3

∫ x2

x1

x(x− x1)2 dx+ y1

∫ x2

x1

x(x− x1) dx]

(A.25a)
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where T1 and T3 are defined in (A.4a) and (A.19a) respectively. In a similar way,

using the results previously derived in equation (A.18b), the second integral term in

equation (A.24) is calculated as

∫ x3

x2

x

∫ max(C,D)

min(C,D)

y dydx =

∫ x3

x2

−T2[
1

2
T4x(x− x3)2 + x(x− x3)y3] dx

= T2[
1

2
T4

∫ x3

x2

−x(x− x3)2 dx+ y3

∫ x3

x2

x(x3 − x) dx]

(A.25b)

where, T2 and T4 are defined in (A.4b) and (A.19b) respectively. Following the same

technique employed for solving the integrals, the first integral term over x in equation

(A.25a) is calculated by equation (A.26a) while the second term was solved previously

in equation (A.11a). Also, the first integral term over x in equation (A.25b) is cal-

culated by equation (A.26b) while the second term was solved previously in equation

(A.11a).

∫ x2

x1

x(x− x1)2 dx =

∫ x2−x1

0

(u+ x1)u2 du =
1

4
(x2 − x1)4 +

1

3
(x2 − x1)3x1 (A.26a)

∫ x3

x2

−x(x− x3)2 dx =

∫ x3−x2

0

(u− x3)u2 du =
1

4
(x3 − x2)4 − 1

3
(x3 − x2)3x3 (A.26b)

By substituting the results of the integral from equations (A.26) into equations

(A.25), it is now possible to solve the entire integral of equation (A.24). First, the

solution of equations (A.25a) and (A.25b) is expressed separately in (A.27a) and

(A.27b) respectively:

∫ x2

x1

x

∫ max(A,B)

min(A,B)

y dydx = T1{
1

2
T3[

1

4
(x2 − x1)4 +

1

3
(x2 − x1)3x1]

+ [
1

3
(x2 − x1)3 +

1

2
(x2 − x1)2x1]y1}

(A.27a)



139∫ x3

x2

x

∫ max(C,D)

min(C,D)

y dydx = T2{
1

2
T4[

1

4
(x3 − x2)4 − 1

3
(x3 − x2)3x1]

+ [−1

3
(x3 − x2)3 +

1

2
(x3 − x2)2x3]y3}

(A.27b)

Finally combining the two equations in (A.27) lead into the solution of the entire

integrals in equation (A.24) which is the integral of xy over each simplex and expressed

as∫
Ek

xy dΩ = T1{
1

2
T3[

1

4
(x2 − x1)4 +

1

3
(x2 − x1)3x1] + [

1

3
(x2 − x1)3 +

1

2
(x2 − x1)2x1]y1)}

+ T2{
1

2
T4[

1

4
(x3 − x2)4 − 1

3
(x3 − x2)3x3] + [−1

3
(x3 − x2)3 +

1

2
(x3 − x2)2x3]y3}

(A.28)

Integral of y2

The last integral remained to be solved is the integral of y2 over each triangular

simplex; which is hard to be analytically calculated if the vertices are sorted with

respect to the x coordinate. However, if we reorder the vertices such that the new

set of vertices P ′1(x′1, y
′
1), P ′2(x′2, y

′
2), and P ′3(x′3, y

′
3) is ordered with respect to y, i.e.

y′1 < y′2 < y′3, the last integral would be calculated in the same way as the integral of

x2 was calculated previously. The procedure starts by

∫
Ek

y2 dΩ =

∫ y′2

y′1

y2

∫ max(A′,B′)

min(A′,B′)

dxdy +

∫ y′3

y′2

y2

∫ max(C′,D′)

min(C′,D′)

dxdy (A.29)

where A′ is the equation of the line connecting P ′1 to P ′2, B′ is the equation of the line

connecting P ′1 to P ′3, C ′ is the equation of the line connecting P ′3 to P ′2, and D′ is the

equation of the line connecting P ′3 to P ′1 this time with respect to variable y, which

are defined as:

A′ =
x′2 − x′1
y′2 − y′1

(y − y′1) + x′1 (A.30a)
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B′ =
x′3 − x′1
y′3 − y′1

(y − y′1) + x′1 (A.30b)

C ′ =
x′3 − x′2
y′3 − y′2

(y − y′3) + y′3 (A.30c)

D′ =
x′3 − x′1
y′3 − y′1

(y − y′3) + y′3 (A.30d)

The inner integral in the first term of equation (A.29) is calculated as:

∫ max(A′,B′)

min(A′,B′)

dx = [x]
max(A′,B′)
min(A′,B′) = [max(A′, B′)−min(A′, B′)] = |A′ −B′|

= |x
′
3 − x′1
y′3 − y′1

− x′2 − x′1
y′2 − y′1

|(y − y′1) = T ′1(y − y′1)

(A.31a)

The inner integral in the second term of equation (A.29) is calculated as:

∫ max(C′,D′)

min(C′,D′)

dx = [x]
max(C′,D′)
min(C′,D′) = [max(C ′, D′)−min(C ′, D′)] = |C ′ −D′|

= |x
′
3 − x′1
y′3 − y′1

− x′3 − x′2
y′3 − y′2

|[−(y − y′3)] = −T ′2(y − y′3)

(A.31b)

Next, by substituting the solutions of the inner integrals derived in (A.31), equa-

tion (A.29) is simplified into the following expression:

∫
Ek

y2 dΩ = |x
′
3 − x′1
y′3 − y′1

− x′2 − x′1
y′2 − y′1

|
∫ y′2

y′1

y2(y − y′1) dy

+ |x
′
3 − x′1
y′3 − y′1

− x′3 − x′2
y′3 − y′2

|
∫ y′3

y′2

y2(y′3 − y) dx

(A.32)

By employing the same technique for solving the one-dimensional integrals over

x, it is possible to calculate these integrals. However, by a quick view in equations

(A.15) it is realizable that the integrals were solved previously and we only need to

substitute the variables in equations (A.15). Next, substituting the results of integral

into equation (A.32) lead into the solution of integral of y2 over each triangular
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simplex expressed by

∫
Ek

y2 dΩ = |x
′
3 − x′1
y′3 − y′1

− x′2 − x′1
y′2 − y′1

|[1
4

(y′2 − y′1)4 +
2

3
(y′2 − y′1)3y′1 +

1

2
(y′2 − y′1)2y′1

2
]

+ |x
′
3 − x′1
y′3 − y′1

− x′3 − x′2
y′3 − y′2

|[1
4

(y′3 − y′2)4 − 2

3
(y′3 − y′2)3y′3 +

1

2
(y′3 − y′2)2y′3

2
]

(A.33)

Handling Division by Zero

In the all of the above equations there was an assumption embedded. The denomi-

nators of T1, T2, T3 and T4 must not be zero. The same assumption must be held for

equation (A.33). In other words, the triangular simplex must not have any edge in

parallel with neither the x axis nor the y axis which may occur frequently. This may

lead to an infinite slope for the line connecting the nodes. When vertices are sorted

with respect to x, only one of these two situations might happen: 1) x1 = x2 or 2)

x2 = x3. In this case, the first vertex x1 and the last vertex x3 could never be equal.

The same argument is valid for y. When the vertices are sorted with respect to y,

the first vertex y1 and the last vertex y3 could never be equal and only one of these

two situations might happen: 1) y1 = y2 or 2) y2 = y3.

By taking a short look at the definitions of T’s and the solutions in equations

(A.7), (A.12), (A.16), (A.23), (A.28) and (A.33), it is realizable that the zero terms,

i.e. x2 − x1 and x3 − x2 can be canceled out by the same terms in the coefficients of

T’s. Therefore, for the general case of x1 ≤ x2 ≤ x3, while vertices are sorted with

respect to the x coordinate, all solutions are re-formulated as the following:

First, the T’s are re-defined as

T1 = |(y3 − y1)(x2 − x1)

(x3 − x1)
− (y2 − y1)| (A.34a)
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T2 = |(y3 − y1)(x3 − x2)

(x3 − x1)
− (y3 − y2)| (A.34b)

T3 =
(y3 − y1)(x2 − x1)

(x3 − x1)
+ (y2 − y1) (A.34c)

T4 =
(y3 − y1)(x3 − x2)

(x3 − x1)
+ (y3 − y2) (A.34d)

Next, equation (A.7) is re-formulated as

S =

∫
Ek

dΩ =
1

2
T1(x2 − x1) +

1

2
T2(x3 − x2) (A.35)

Also, equation (A.12) is re-formulated as

∫
Ek

x dΩ = T1[
1

3
(x2−x1)2 +

1

2
(x2−x1)x1] +T2[−1

3
(x3−x2)2 +

1

2
(x3−x2)x3] (A.36)

Next, equation (A.16) is re-formulated as

∫
Ek

x2 dΩ = T1[
1

4
(x2 − x1)3 +

2

3
(x2 − x1)2x1 +

1

2
(x2 − x1)x2

1]

+ T2[
1

4
(x3 − x2)3 − 2

3
(x3 − x2)2x3 +

1

2
(x3 − x2)x2

3]

(A.37)

Also, equation (A.23) is re-formulated as

∫
Ek

y dΩ = T1[
1

2
y1(x2−x1) +

1

6
T3(x2−x1)] +T2[

1

2
y3(x3−x2)− 1

6
T4(x3−x2)] (A.38)

Equation (A.38) could be further simplified to

∫
Ek

y dΩ = T1[(
1

2
y1 +

1

6
T3)(x2 − x1)] + T2[(

1

2
y3 −

1

6
T4)(x3 − x2)] (A.39)
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Next, equation (A.28) is re-formulated as

∫
Ek

xy dΩ = T1(y1[
1

3
(x2 − x1)2 +

1

2
(x2 − x1)x1] +

1

2
T3[

1

4
(x2 − x1)2 +

1

3
(x2 − x1)x1])

+ T2(y3[−1

3
(x3 − x2)2 +

1

2
(x3 − x2)x3] +

1

2
T4[

1

4
(x3 − x2)2 − 1

3
(x3 − x2)x3])

(A.40)

Equation (A.40) could also be further simplified to

∫
Ek

xy dΩ = T1[(
1

3
y1 +

1

8
T3)(x2 − x1)2 + (

1

2
y1 +

1

6
T3)(x2 − x1)x1]

+ T2[(−1

3
y3 +

1

8
T4)(x3 − x2)2 + (

1

2
y3 −

1

6
T4)(x3 − x2)x3]

(A.41)

Finally, for the general case of y1 ≤ y2 ≤ y3, while vertices are sorted with respect

to the y coordinate, the solution for y2 in equation (A.33) is re-formulated as

∫
Ek

y2 dΩ = |(x
′
3 − x′1)(y′2 − y′1)

(y′3 − y′1)
− (x′2 − x′1)| · [1

4
(y′2 − y′1)3 +

2

3
y′1(y′2 − y′1)2 +

1

2
(y′2 − y′1)y′1

2
]

+ |(x
′
3 − x′1)(y′3 − y′2)

(y′3 − y′1)
− (x′3 − x′2)| · [1

4
(y′3 − y′2)3 − 2

3
y′3(y′3 − y′2)2 +

1

2
(y′3 − y′2)y′3

2
]

(A.42)



Appendix B

Current Density under CEM

This appendix briefly explain how current distribution is on the boundary is calcu-

lated.

Solving the forward equation for a mesh, the voltage of all nodes is available. The

current density at the boundary could be calculated back from the voltage at the

boundary surface. From the electromagnetic theory we have:

~J = σ ~E = −σ∇V (B.1)

where J is the current density, ~E is the electric field, V is the voltage and σ is the

conductivity. By solving the forward equation we would only have voltage at each

node. The relation between the voltage of each node and the voltage at the boundary

surface is derived from the definition of interpolation function which is:

V (x, y, z) =
4∑
i=1

uiφi(x, y, z) (B.2)

where V is the voltage, ui is the voltage at the ith node and φi is the corresponding

interpolation function for the ith node. The equation of interpolation functions are

derived by solving the coefficients a, b, c, d in (B.3) using the voltages at each node.
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Employing the matrix format of the equations makes calculation of the gradients much

easier. Equation (B.3) expresses the matrix definition of equation (B.2) expressed in

equation (2.17) reference [10].

V (x, y, z) =
[
1 x y z

]

a

b

c

d


=
[
1 x y z

]


1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4



−1 
u1

u2

u3

u4


(B.3)

where Pi(xi, yi, xi) are the coordinates of the nodes for an element. Substituting

relation of voltage inside an element with node voltages expressed in equation (B.3)

into current density relation expressed in equation (B.1) would result in the relation

between the current density and the voltage of the node as:

~J = −σ∇V = (σ


b

c

d

) (B.4)

Finally, we need the value of current density normal to the boundary under the

electrode area. The injected current pattern would calculated by ~J · n̂ where n̂ is the

unit vector normal to the boundary surface for each element which is calculated by:

n̂ =
( ~P1 − ~P2)× ( ~P1 − ~P3)

|( ~P1 − ~P2)× ( ~P1 − ~P3)|
(B.5)

where ~P1, ~P2 and ~P3 are those three nodes of each boundary element located at the

boundary which form a triangular 2D boundary element. Since the voltage in the

boundary region is the parameter of interest, it is possible to write equations (B.3)

and (B.4) in the 2D format due to the fact that the effect of the off-boundary plane
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point is zero in the boundary.



References

[1] N. Polydorides and W. R. B. Lionheart, “A matlab toolkit for three-dimensional

electrical impedance tomography: a contribution to the electrical impedance

and diffuse optical reconstruction software project,” Measurement Science and

Technology, vol. 13, no. 12, p. 1871, 2002.

[2] A. Adler and W. R. B. Lionheart, “Uses and abuses of eidors: an extensible

software base for eit,” Physiological Measurement, vol. 27, no. 5, p. S25, 2006.

[3] Y. Ider, N. Gencer, E. Atalar, and H. Tosun, “Electrical impedance tomography

of translationally uniform cylindrical objects with general cross-sectional bound-

aries,” Medical Imaging, IEEE Transactions on, vol. 9, no. 1, pp. 49 –59, mar

1990.

[4] K. Jerbi, W. Lionheart, P. Vauhkonen, and M. Vauhkonen, “Sensitivity matrix

and reconstruction algorithm for eit assuming axial uniformity,” Physiol. Meas.,

vol. 21, no. 1, p. 6166, 2000.

[5] G. Hahn, J. Dittmar, A. Just, M. Quintel, and G. Hellige, “Different approaches

to quantifying ventilation distribution and lung properties by functional eit,”

Physiol. Meas., vol. 31, no. 8, pp. S73–S84, 2010.

[6] K.-S. Cheng, D. Isaacson, J. Newell, and D. Gisser, “Electrode models for electric

current computed tomography,” Biomedical Engineering, IEEE Transactions on,

vol. 36, no. 9, pp. 918 –924, sept. 1989.

[7] Http://eidors3d.sourceforge.net.

[8] W. Lionheart, “Uniqueness, shape, and dimension in eit,” Annals of the New

York Academy of Sciences, vol. 873, no. 1, pp. 466–471, 1999.

[9] D. Holder, Electrical Impedance Tomography: Methods, History and Applica-

tions. Institute of Physics, 2004.

147



148

[10] B. Graham, “Enhancements in electrical impedance tomography (eit) image re-

construction for 3d lung imaging,” Ph.D. dissertation, University of Ottawa,

Canada, April 2007.

[11] ”Tomography” - Definition from the MerriamWebster Online Dictionary. Re-

trieved 2009-08-12.

[12] Http://en.wikipedia.org/wiki/Tomography. Retrieved 2010-04-12.

[13] ”Computed Tomography” Definition from the Merriam-Webster Online Dictio-

nary. Retrieved 2009-08-18.

[14] Http://en.wikipedia.org/wiki/Computed tomography. Retrieved 2010-04-12.

[15] A. Kak and M. Slaney, “Principles of computerized tomographic imaging,” So-

ciety for Industrial and Applied Math, 2001.

[16] W. R. B. Lionheart, “Eit reconstruction algorithms: pitfalls, challenges and

recent developments,” Physiological Measurement, vol. 25, no. 1, p. 125, 2004.

[17] A. Adler, “Measurement of pulmonary function with electrical impedance tomog-

raphy,” Ph.D. dissertation, Institut de Genie Biomedical Universite de Montreal,

1995.

[18] T. Dai, “Image reconstruction in eit using advanced regularization frameworks,”

Ph.D. dissertation, Carleton University, Canada, 2008.

[19] A. Adler and W. R. B. Lionheart, “Minimizing eit image artefacts from mesh

variability in finite element models,” Physiological Measurement, vol. 32, no. 7,

p. 823, 2011.

[20] B. Brown, “Electrical impedance tomography (eit): a review,” Journal of Medical

Engineering & Technology, vol. 27, no. 3, pp. 97–108, 2003.

[21] F. Dickin and M. Wang, “Electrical resistance tomography for process applica-

tions,” Meas. Sci. Technol., vol. 7, no. 3, pp. 247–260, 1996.

[22] R. Bayford, A. Gibson, A. Tizzard, T. Tidswell, and D. Holder, “Solving the

forward problem in electrical impedance tomography for the human head using

ideas (integrated design engineering analysis software), a finite element modelling

tool,” Physiol. Meas., vol. 22, no. 1, pp. 55–64, 2001.



149

[23] N. Avis and D. Barber, “Image reconstruction using non-adjacent drive config-

urations (electric impedance tomography),” Physiol. Meas., vol. 15, no. 2A, pp.

A153–A160, 1994.

[24] A. Seagar and R. Bates, “Full-wave computed tomography. part 4: Low-

frequency electric current ct,” Physical Science, Measurement and Instrumenta-

tion, Management and Education - Reviews, IEE Proceedings A, vol. 132, no. 7,

pp. 455 –466, november 1985.

[25] N. Soni, K. Paulsen, H. Dehghani, and A. Hartov, “Image reconstruction in

electrical impedance tomography using the full set of maxwell equations,” in

Scientific Abstracts from the 6th Conference on Biomedical Applications of Elec-

trical Impedance Tomography. University College London, June 2005.

[26] P. Silvester and R. Ferrari, Finite Elements for Electrical Engineers, 3rd ed.

Cambridge University Press, 1996.

[27] T. Murai and Y. Kagawa, “Electrical impedance computed tomography based

on a finite element model,” Biomedical Engineering, IEEE Transactions on, vol.

BME-32, no. 3, pp. 177 –184, march 1985.

[28] T. Pilkington, M. Morrow, and P. Stanley, “A comparison of finite element and

integral equation formulations for the calculation of electrocardiographic poten-

tials,” Biomedical Engineering, IEEE Transactions on, vol. BME-32, no. 2, pp.

166 –173, feb. 1985.

[29] K. Huebner, D. Dewhirst, D. Smith, and T. Byrom, The Finite Element Method

for Engineers, 4th ed. Wiley-Interscience, Aug 2001.

[30] G. Strang and G. J. Fix, An Analysis of the Finite Element Method, 1st ed. New

York: Prentice-Hall, 1973.

[31] J. Sikora, S. Arridge, R. Bayford, and H. L., “The application of hybrid

bem/femmethods to solve electrical impedance tomography forward problemfor

the human head.” Proc X ICEBI and V EIT, Gdansk, 2024 June 2004.

[32] M. Vauhkonen, “Electrical impedance tomography and prior information,” Ph.D.

dissertation, Department of Applied Physics, Kuopio University, 1997.

[33] M. Vauhkonen, D. Vadasz, P. Karjalainen, E. Somersalo, and J. Kaipio,

“Tikhonov regularization and prior information in electrical impedance tomog-

raphy,” Medical Imaging, IEEE Transactions on, vol. 17, no. 2, pp. 285 –293,

april 1998.



150

[34] R. Aster, B. Borchers, and C. Thurber, Parameter Estimation and Inverse Prob-

lems, I. Geophysics, Ed. Academic Press, June 2004.

[35] P. C. Hansen, Rank Deficient and Discrete Ill-Posed Problems: numerical aspects

of linear inversion. SIAM, Philadelphia, 1998.

[36] D. Barber and B. Brown, “Errors in reconstruction of resistivity images using a

linear reconstruction technique,” Clin. Phys. Physiol. Meas., vol. 9, no. 4A, pp.

101–104, 1988.

[37] W. Fan and H. Wang, “3d modelling of the human thorax for ventilation distribu-

tion measured through electrical impedance tomography,” Measurement Science

and Technology, vol. 21, no. 11, p. 115801, 2010.

[38] R. Wajman, R. Banasiak, L. Mazurkiewicz, T. Dyakowski, and S. D., “Spatial

imaging with 3d capacitance measurements,” Measurement Science and Tech-

nology, vol. 17, no. 8, p. 21132118, 2006.

[39] S. Moenickes, T. Taniguchi, R. Kaiser, and W. Zielke, “A 2.75 d finite element

model of 3d fracture network systems,” in Proceedings, 11th International Mesh-

ing Roundtable, IMR’02, September 2002, pp. 161–168.

[40] Http://eidors3d.sourceforge.net/tutorial/dual model/two and half d.shtml, Re-

trived on Dec 1, 2011.

[41] M. Unsworth, B. Travis, and A. Chave, “Electromagnetic induction by a finite

electric dipole source over a 2-d earth,” Geophysics, vol. 58, no. 2, pp. 198–214,

1993.

[42] J. H. Coggon, “Electromagnetic and electrical modeling by the finite-element

method,” Geophysics, vol. 36, no. 1, pp. 132–155, 1971.

[43] D. Snyder, “A method for modeling the resistivity and induced polarization

response of two-dimensional bodies,” Geophysics, vol. 41, pp. 997–1015, 1976.

[44] R. C. Fox, G. Hohmann, J. Killpack, and R. L., “Topographic effects in resistivity

and induced polarization surveys,” Geophysics, vol. 45, pp. 75–93, 1980.

[45] M. Everett, “Mid-ocean ridge electromagnetics,” Ph.D. dissertation, University

of Toronto, 1990.

[46] W. Chew, M. Moghaddam, and E. Yannakakis, “Modeling of the subsurface

interface radar,” in Geoscience and Remote Sensing Symposium, 1990. IGARSS



151

’90. ’Remote Sensing Science for the Nineties’., 10th Annual International, may

1990, p. 31.

[47] P. Sjödahl, T. Dahlin, and B. Zhou, “2.5d resistivity modeling of embankment

dams to assess influence from geometry and material properties,” Geophysics,

vol. 71, no. 3, pp. G107–G114, May-June 2006.

[48] B. Zhou, “Crosshole resistivity and acoustic velocity imaging, in 2.5-d helmholtz

equation modeling and inversion,” Ph.D. dissertation, The University of Ade-

laide, 1998.

[49] P. Tsourlos, J. Szymanski, and J. Dittmer, “The topographic effect in earth

resistivity arrays: a comparative study,” in Geoscience and Remote Sensing

Symposium, 1995. IGARSS ’95. ’Quantitative Remote Sensing for Science and

Applications’, International, vol. 1, 10-14 1995, pp. 30 –32 vol.1.

[50] P. Queralt, J. Pous, and A. Marcuello, “2-d resistivity modeling; an approach to

arrays parallel to the strike direction,” Geophysics, vol. 56, no. 7, pp. 941–950,

1991.

[51] G. N. Tsokas, P. I. Tsourlos, and J. E. Szymanski, “Square array resistivity

anomalies and inhomogeneity ratio calculated by the finite-element method,”

Geophysics, vol. 62, no. 2, pp. 426–435, 1997.

[52] E. Onegova, “Effect of multicoil electromagnetic tool eccentricity on measured

signals,” Russian Geology and Geophysics, vol. 51, no. 4, pp. 423 – 427, 2010.

[53] F. N. Kong, S. E. Johnstad, T. R. sten, and H. Westerdahl, “A 2.5d finite-

element-modeling difference method for marine csem modeling in stratified

anisotropic media,” Geophysics, vol. 73, no. 1, pp. F9–F19, 2008.

[54] C. H. Stoyer and R. J. Greenfield, “Numerical solutions of the response of a two-

dimensional earth to an oscillating magnetic dipole source,” Geophysics, vol. 41,

no. 3, pp. 519–530, 1976.

[55] T. Wiik, B. Ursin, and H. K., “2.5d em modeling in tiv conductive media,”

October 2010, submitted to Geophysics 2009.

[56] T. Wiik, B. Ursin, and K. Hokstad, “2.5d frequency domain em modeling in con-

ductive tiv media,” in 71st EAGE Conference, Amsterdam, Extended abstracts,

P076. SPE, EAGE, June 2009.



152

[57] S. Jin and Y. Lam, “2.5d cavity balancing,” Journal of Injection Molding Tech-

nology, vol. 6, no. 4, pp. 284–296, Jan 2002.

[58] D. R. Stephenson, R. Mann, and T. A. York, “The sensitivity of reconstructed

images and process engineering metrics to key choices in practical electrical

impedance tomography,” Measurement Science and Technology, vol. 19, no. 9,

p. 094013, 2008.

[59] Http://www.itoms.com/.

[60] T. Rodgers, D. Stephenson, M. Cooke, T. York, and R. Mann, “Tomographic

imaging during semi-batch reactive precipitation of barium sulphate in a stirred

vessel,” Chemical Engineering Research and Design, vol. 87, no. 4, pp. 615 – 626,

april 2009, 13th European Conference on Mixing: New developments towards

more efficient and sustainable operations.

[61] D. Stephenson, T. York, and R. Mann, “Performance and requirements of pro-

cess ert instruments,” in 5th World Congress on Industrial Process Tomography.

WCIPT5 Bergen, Norway, Sep. 2007, pp. 895–901.

[62] J. E. Butler and R. T. Bonnecaze, “Imaging of particle shear migration with

electrical impedance tomography,” Physics of Fluids, vol. 11, no. 8, pp. 1982–

1994, 1999.

[63] P. J. Holden, M. Wang, R. Mann, F. J. Dickin, and R. B. Edwards, “Imag-

ing stirred-vessel macromixing using electrical resistance tomography,” AIChE

Journal, vol. 44, no. 4, pp. 780–790, 1998.

[64] S. Stanley, “Tomographic imaging during reactive precipitation in a stirred vessel:

Mixing with chemical reaction,” Chemical Engineering Science, vol. 61, no. 24,

pp. 7850 – 7863, 2006.

[65] M. Kagoshima and R. Mann, “Interactions of precipitation and fluid mixing with

model validation by electrical tomography,” Chemical Engineering Research and

Design, vol. 83, no. 7, pp. 806 – 810, 2005, 7th World Congress of Chemical

Engineering.

[66] A. Dey and H. F. Morrison, “Resistivity modelling for arbitrarily shaped two-

dimensional structures,” Geophysical Prospecting, vol. 27, no. 1, pp. 106–136,

1979.



153

[67] T. Gnther, C. Rcker, and K. Spitzer, “Three-dimensional modelling and inver-

sion of dc resistivity data incorporating topography ii. inversion,” Geophysical

Journal International, vol. 166, no. 2, pp. 506–517, 2006.

[68] M. Vauhkonen, M. Hamsch, and C. H. Igney, “A measurement system and image

reconstruction in magnetic induction tomography,” Physiological Measurement,

vol. 29, no. 6, p. S445S454, 2008.


