
1

A Primal Dual Interior Point Framework for EIT
Reconstruction with Automatic Regularization

Yasin Mamatjan1, Andrea Borsic2, Doga Gürsoy3 and Andy Adler1
1 Systems and Computer Engineering, Carleton University, Ottawa, Canada
2 Thayer School of Engineering, Dartmouth College, USA
3 Department of Physics, University of Houston, USA

Abstract—The spatial resolution of the reconstructed
images in Electrical impedance tomography (EIT) is low
and a priori information regarding smooth conductivity
changes limits reconstruction of sharp images while it is
preferred in order to differentiate tissue boundaries in
medical imaging. Measurement errors are another barrier
that hinder a good image reconstruction. Generally `2
norms have been used due to computational convenience
both for data and regularization terms which result in
smooth solutions. However, the recent developments in
optimization problem the Primal Dual-Interior Point
Method (PDIPM) showed its effectiveness in dealing with
the minimization problem. `1 norms on data and regular-
ization terms in EIT image reconstruction address both
problems of reconstruction with sharp edges and dealing
with the electrode errors.

We demonstrated general formulation of the Primal-
Dual Interior Point framework for EIT image recon-
struction. We systematically evaluated the PDIPM algo-
rithms with `1 and `2 norm based minimization in EIT
inverse problems with automatic regularization based on
a balancing principle. The performance of algorithms
was evaluated in 4 scenarios in simulation. Finally we
demonstrated its applicability for medical EIT through
results from dog breathing experiments. The results show
that the `1 minimization for EIT image reconstruction
produced sharp edge and proved to be robust against
measurement errors.

I. INTRODUCTION

Electrical Impedance Tomography (EIT) is a non-
invasive and non-ionizing imaging modality that aims
to reconstruct the passive electrical properties in a con-
ducting body. Pairs of electrodes are consecutively used
to generate different current density distributions within
the body. For each current excitation, the remaining
electrodes are used to measure the electric potentials
on the surface. The measured potentials are then used
to reconstruct the cross-sectional conductivity and per-
mittivity images of the body. Currently, EIT has shown
the most promising clinical application in intensive care

units (ICU) by monitoring the distribution of inspired
air in mechanically ventilated patients. Such ventilation
can often result in ventilator-associated lung injuries
and EIT can resolve changes in the distribution of lung
volume between dependent and independent lung regions
as ventilator parameters are changed and consecutively
minimize the risk of a potential lung injury related to
the ventilation pressure.

Image reconstruction in EIT is an ill-posed inverse
problem. The spatial resolution of the reconstructed
images is low and limited due to the small number
of measurements and highly underdetermined system
of equations. The sensitivity matrix is ill-conditioned
that measurement noise usually leads to large artefacts
in the images unless regularized appropriately. In or-
der to maintain image stability and meaningful images,
regularization techniques are employed to reduce these
artefacts. A priori information typically assumes smooth
conductivity changes that limits reconstruction of sharp
images. However, sharp edges are physiologically more
realistic considering organ boundaries and reconstruction
of edges can yield more reliable and clinically useful
images. To reconstruct sharp edges, several techniques
have been recently adapted to EIT by recovering dis-
continuous conductivities using Total Variation (TV),
topology reconstruction via level-set, linear sampling
methods [1] and Level Set method for EIT lung images.
These approaches have been proved to be useful for
solving problems with sharp conductivity transitions.

The inverse problem requires minimization of a cost
function which typically consists a data fidelity and a
regularization term. Generally the `2-norm is preferred
due to its computational convenience for both terms and
results in smooth solutions. However, use of `1-norm
is known to promote sparsity and piecewise constant
solutions based on the regularization type. On the other
hand, `1-norm on the data fidelity term works well
when the measurements are contaminated by impulsive
noise. The use of `1 and `2 norms for both the data
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and regularization terms were formulated for the EIT
problem based on the Lagged Diffusivity Method (LDM)
by Dai and Adler [2]. They used a weighted identity
matrix for regularization which promotes the sparsity.

The choice of regularization in general determines the
constraints to the solution. Dai and Adler [2] used a
weighted identity matrix for the regularization which
promoted sparse solutions and suppressed the back-
ground fluctuations in the images. On the other hand, TV
regularization is better adapted for piecewise smooth dis-
tributions. Borsic [1] highlighted the importance of TV
regularization for EIT and compared the two different
implementations of the TV functional, that is LDM and
the Primal Dual-Interior Point Method (PDIPM). In the
solutions of both methods, the so called staircase effect
can be noticed in the reconstructed images.

In this paper, we perform a comprehensive study to
compare and evaluate the PDIPM framework using `1
and `2 norms for both the data-fidelity and regularization
terms. We performed our simulations using synthetic
datasets for 4 different scenarios. The real-measurements
include datasets from dog breathing. A systematic ap-
proach for regularization was also investigated and an au-
tomatic regularization based on the Balancing principle
is implemented. Finally, we made analysis and compared
these four methods in this framework.

II. METHODOLOGY

A. EIT inverse problem

In EIT, the measurements (data) are the surface poten-
tials on the boundary of the object and are discrete. Let
f(x) = y represents the nonlinear relationship between
the data (voltage data) and model parameters (electrical
properties), x : x ∈ RN and y : y ∈ RM , respec-
tively. Generally, the number of the unknown model
parameters are much more than the available number of
data, i.e.,M < N , which results in an underdetermined
set of equations. The corresponding inverse problem of
recovering x from y based on the mapping f can be
stated in the form of a minimization problem as follows:

argmin
x

{F(x) := ||f(x)− y||p + λ||R(x− x0)||n} ,
(1)

where the ||f(x) − y||p is the data fidelity term and
||R(x−x0)||n is the regularization term, and x0 is a prior
conductivity distribution (in our case the initial estimate
was set to zero); R : R ∈ RM×N is usually referred
to as the regularization matrix and constructed based on
the a priori information about the model parameters. The
trade-off between these two terms is determined by the
regularization parameter λ. p and n respectively specifies

Fig. 1. Image of the 2D phantom with two inclusions used for
generating the simulated data based on finite element model.

the types of norms for the data fidelity and regularization
terms. The characteristics of the solutions are dependent
on the choice of the norms. The detailed descriptions of
different norms can be found in [3].

B. Experimental data

A typical EIT system with adjacent stimulation and
voltage measurement was considered for both the simu-
lation and experimental evaluations, and 16 electrodes
were arranged on one electrode plane in a circular
pattern. Current is injected between an adjacent pair
of electrodes and voltages are measured between all
other adjacent pairs to avoid the error due to the contact
impedance.

1) Simulation: The forward model employed in this
study was a circular finite element model (FEM) which
was implemented using EIDORS [4]. Fig. 1 shows a 2D
phantom used for generating simulated data (2304 ele-
ments). The phantom presents two sharp inclusions in
the upper and lower regions.

The background conductivity value is 1 S/m, the
top inclusion presents a value of 0.5 S/m and the
bottom inclusion a value of 1.5 S/m. Electrodes were
indicated by green dots around the circular phantom. To
avoid the inverse crime, the reconstructed images used
different mesh (576 elements) to make it different from
the forward computations.

To analyze the performance of the PDIPM frame-
work, following scenarios were simulated based on: (A)
original numerical phantom, (B) added noise which is
formed by adding zero mean Gaussian noise to the
simulated measurements to give an SNR of 60 dB which
is reasonable for most EIT systems, (C) a data error
(outlier) which was introduced to the data randomly, (D)
adding noise and a data outlier.

Furthermore, measurement outliers were introduced as
a type of electrode-error to test the robustness of the
proposed algorithms for certain electrode malfunction
with a measurement failure rate of 0.5% to 15% (1 to
30 measurement indices out of 208 for one frame). 1 to
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30 measurement outliers are added to the EIT data for
randomly generated indices (Matlab randint function).

C. Adaptive choice of regularization parameter

The optimal choice of the regularization parameter λ
can be found according to the balancing principle:

(σ − 1)||f(xλ)− y||p + λ||Rxλ||n = 0, (2)

where σ : σ > 1 is introduced to balance the data
fidelity and the regularization terms to determine the
trade-off between them. In here, the dependency of the
solution on the regularization parameter is represented
by an additional subscript. A similar balancing idea com-
monly underlies `2-`2 formulations, for instance the local
minimum criterion, zero crossing method or the L-curve
criterion. According to equation (2), the regularization
parameter λ can be calculated means to the following
fixed point iteration:

λk+1 =
T ||f(xλk

)− y||p
||Rxλk

||n
(3)

where T = σ − 1.

D. Experimental evaluation

A 16-electrode EIT system was used to take mea-
surements of conductivity changes due to lung venti-
lation and lung fluid instillation in mongrel dogs [5].
Measurements were taken before and after 100 ml of
fluids (5 % bovine albumin and Evans blue dye) were
injected to a lobe of the right lung at the presence of
700 ml inspiration. The data before fluid instillation was
used as reference data for the subsequent measurements
right after fluid injection and 60 minutes after the fluid
injection. The data were known to contain electrode
errors from previous work [5].

III. RESULTS

Fig. 2 shows a set of simulated result using PDIPM
algorithm with `2`2, `1`2, `2`1 and `1`1 under 4 test sce-
narios: (A) without noise in row 1, (B) noise (−60 dB)
in row 2, (C) 1 outlier in row 3 and (D) both noise and
1 outlier in row 4. λ was selected from the minimum
RMS value and they were fixed from test1 to test 4 sce-
narios for all corresponding ` of data and regularization
terms. The selected T values were 4.096 ∗ 10−2, 10−2,
1.25 ∗ 10−3 and 1.728 ∗ 10−2 respectively for for `2`2,
`1`2, `2`1 and `1`1.

It can be seen from Fig. 2 that all algorithms provide
reasonable reconstructed images for without noise sce-
nario (row 1), but under noise (row 2) but under noise
(row 2), the reconstruction quality drops. For the case
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Fig. 2. Reconstructed images using PDIPM algorithm with `2`2,
`1`2, `2`1 and `1`1 under 4 test scenarios: (A) without noise in row
1, (B) adding noise in row 2, (C) presence of one strong outlier in the
dataset in row 3 and (D) both the presence of noise and one strong
outlier in row 4.

of `2 regularization, the images gets blurry and for `1
regularization, several artefacts appear on the images.
When an outlier is considered (row 3 and 4), `2`2 and
`2`1 fail to work while `1`2 and `1`1 algorithms were
pretty robust at the presence of one data outlier.

There are two tuneable parameters σ and α. The
choice of value of σ balance the data fidelity and
regularization terms to determine the trade-off between
them using the balancing principle as in eq. 20. α is
initial regularization parameter and the regularization
parameter estimation iterated 5 times.

We used generalized balancing principle by [6] and
adapted it for all combinations of `1 and `2 for simulation
and experimental evaluations. We compared the perfor-
mance of generalized estimation (Balancing principle)
approach with the parameters chosen empirically for
the best comprise between image resolution and noise
performance. The balancing principle based approach
calculates regularization parameters automatically, which
works as a calibration parameter that can be automat-
ically calculated for different sequence of data in the
same scenario. Although we have test and find better
sigma values for different scenarios and ` types, it is
more efficient than hand selected approach where a great
range of values has to be tested and which is different
for different sequences of data or scenario.

The performance of PDIPM algorithms was further
evaluated based on the measurement data with electrode
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errors. Fig. 3 illustrates the use of PDIPM algorithms
for imaging the conductivity changes in dog’s lung
immediately after fluid injection (row 1) and 60 minutes
after the fluid injection (row 2) with the presence of
certain level of electrode errors.

(`2`2) (`1`2) (`2`1) (`1`1)

Fig. 3. Reconstructed cross-section of conductivity changes in dog’s
lung right after fluid injection (row 1) and 60 minutes after the fluid
injection (row 2). Difference images were reconstructed using PDIPM
algorithms, where the presence of electrode errors in the measured
data affected all terms except `1`1.

As shown in the cross-sectional images in Fig. 3 that
`2`2 is suffered the most from noise from measurement
system. Thus, `1`2 and `1`1 are good candidates for the
reconstruction based on real measurement data. They
complement one another to look at the two sides of the
same data with sharp and smooth edges.

The PDIPM algorithms showed their dependence on
σ values. For simulation, initial hyperparameter α does
not much effect the estimation of good hyperparameter.
It is found from the experimental evaluation that choice
of σ varies depending on application.

IV. DISCUSSIONS AND CONCLUSIONS

In this study, we introduced PDIPM frame work
for EIT inverse problems and investigated PDIPM al-
gorithms in simulation and real-measurement using 4
combinations of `1/`2 norms on data and regularization
terms. To compare those algorithms systematically 4 test
scenarios were evaluated. We used balancing principle to
automatically choose regularization parameters. We also
evaluated the PDIPM algorithms with real-measurement
on dog breathing.

The test studies based on Fig. 2 showed that `1`2 and
`1`1 are not affected by data outliers because of 1-norm
for the data term without squared difference between
the model and actual data, while `2`1 and `1`1 produces
sharper reconstructed images because of 1-norm on the
regularization term which is not overly-penalized. `1`1
provided both sharp conductivity image and robustness
to data outliers.

Gauss-Newton based 2-norm solutions have been used
frequently as established traditional method. However,
PDIPM algorithms with 1-norm (`1`1) are particularly
important in medical applications of EIT, since in re-
ality, noise from the acquisition system, and electrode
movements or electrode errors are unavoidable, which
greatly affect reconstructed image quality based on the
2-norm (data term) solution.
`2`2 is more sensitive to data outliers and also pro-

duces blobby images since it filters out noise as well
as useful information. Nevertheless, `2`2 takes least
computation time since the NOSER algorithm was used
in the first iteration which is also widely used in EIT
imaging. `2`1 is computationally the most costly for less
than 10 iterations.

The traditional image reconstruction is based on `2
norm, which basically produces smooth solution without
any clear edge and is sensitive to measurement noise.
`1 penalty for a data outlier is smaller than `2 which
squared the differences, so `1 solution is less prone to
measurement errors. However, `1 solution is not efficient
compared to traditional Gauss-Newton based solution,
since `1 solution involves with the minimization of a
non-differentiable function, thus requires more computa-
tion time and more iterations to reach the convergence.

This paper brought an insight and useful analysis on
PDIPM framework, which is well suitable for clinical
EIT where noise from environment, subject and instru-
ments have serious effects on the practical application of
EIT. `1 solution shows shaper conductivity profiles that
are closer to the model conductivity distribution and `1
solution is also more robust to data outliers.
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