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Abstract. Maximum A Posteriori (MAP) estimates in inverse problems are often

based on quadratic formulations, corresponding to a Least Squares fitting of the data

and to the use of the L2 norm on the regularization term. While the implementation

of this estimation is straightforward and usually based on the Gauss Newton method,

resulting estimates are sensitive to outliers, and spatial distributions of the estimates

that are smooth. As an alternative, use of the L1 norm on the data term renders

the estimation robust to outliers, and use of the L1 norm on the regularization term

allows reconstructing sharp spatial profiles. The ability therefore of using the L1

norm either on the data term, on the regularization term, or on both is desirable.

Use of this norm results though in non-smooth objective functions which require

more sophisticated implementations compared to quadratic algorithms. Methods

for L1 norm minimization have been studied in a number of contexts, including in

the recently popular Total Variation regularization. Different approaches has been

used and methods based on Primal Dual - Interior Point Methods (PD-IPM) have

been shown to be particularly efficient. In the present manuscript we derive a PD-

IPM framework for using the L1 norm indifferently on the two terms of an inverse

problem. We use Electrical Impedance Tomography as an example inverse problem to

demonstrate the implementation of the algorithms we derive, and the effect of choosing

the L2 or the L1 norm on the two terms of the inverse problem. Pseudo codes for the

algorithms and a public domain implementation are provided.

Keywords : L1-Norm, Least Absolute Values, Robust Estimation, Regularization, Total

Variation, Primal Dual, Interior Point, Electrical Impedance Tomography
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1. Introduction

In the present manuscript we derive a framework, based on a Primal Dual - Interior

Point Method (PD-IPM), that allows choosing independently to use the L1-norm or

the L2-norm on the data and on the regularization terms of discrete inverse problems.

The use of the L1-norm on the data term leads to robust estimation in the presence

of outliers in the data, and the use of the L1-norm on the regularization term leads

to sharper spatial transitions in the estimated parameters. In the following we briefly

introduce these choices, on the norms to be used, from the Bayesian standpoint.

We indicate with m the vector of model parameters, which belongs to M ∈ RM ;

we indicate with d, the vector of data observations, which belongs to D ∈ RD, the

space of data values; and we indicate with d = h(m) the forward model, that links the

data d to the model parameters m.

Assuming now that the measurement and model uncertainties are additive and

follow a generalized Gaussian distribution (Tarantola 2005), the likelihood of the

difference between measured data and model predictions can be expressed as

Θ(d | m) ∝ exp

{
−

D∑
i=1

|h(m)i − di|nd

(σnd
)nd
i

}
(1)

where Θ(d | m) is the likelihood, nd is the order of the generalized Gaussian distribution,

and σnd
the generalized standard deviation. Assuming that the priors on the model

parameters can be described by a generalized Gaussian distribution too, as

Π(m) ∝ exp

{
−

M∑
i=1

|Li(m−m0)|nm

}
(2)

where Π(m) is the distribution of the model parameters, m0 is a prior model state,

L is a matrix describing the prior distribution, nm is the order of the generalized

Gaussian distribution. In the specific case of nm = 2 the matrix LTL represents the

covariance matrix of the model. The maximum a posteriori (MAP) estimate of the

model parameters can be written as

mMAP = argmin

{
D∑
i=1

|Wi(h(m)i − di)|nd + α

M∑
i=1

|Li(m−m0)|nm

}
(3)

where we indicate with W the diagonal matrix with the entries 1
(σnd

)
nd
i

on the diagonal.

The matrices W and L can also be interpreted under the deterministic point of view

to be respectively a data weighting matrix, and a regularization matrix corresponding

to a Tikhonov style regularization of the inverse problem, and the scalar α to be the

Tikhonov parameter (Tikhonov & Arsenin 1977).

The choice of the model orders nd and nm should be made independently one from

the other, and in such a way that each distribution models appropriately the respective

parameters. In many practical cases model orders are chosen to be nd = nm = 2, as this
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leads to least squares (LS) estimation problems where the Gauss-Newton method results

in straightforward and efficient implementations. Furthermore least squares problems

can be studied by singular valued decomposition (SVD) and by generalized SVD (GSVD)

decomposition (Hansen 1998), which is a desirable property.

Use of the L1-norm in inverse problems has been gaining popularity in the last

decade. Use of nm = 1 has assumed an important role in signal/image restoration and

tomographic image reconstruction. Specifically, if L is a discretized representation of

the gradient operator, using the L1-norm corresponds to Total Variation regularization

(Rudin et al. 1992, Chan & Mulet 1996, Borsic 2002, Borsic, Graham, Adler &

Lionheart 2010), which allows restoration/reconstruction of signals/images presenting

step changes. Using nd = 1 on the likelihood corresponds to a long-tailed uncertainties

distribution (Tarantola 2005), which results in estimates that are robust to data outliers.

In general L1-norm minimization has been gaining momentum also in the context of

Compressive Sensing (Candès et al. 2006), a method for reconstructing signals/images

from incomplete frequency samples.

In this manuscript we derive a framework for solving (3) with either nd = 1,

nm = 1, or nd = nd = 1. In other words using the L1-norm on the data term, on the

regularization term, or on both terms. The choice nd = 2, the least squares fitting of the

data, remains optimal for uncertainties that are normally distributed (Tarantola 2005),

and the choice nm = 2, remains a good choice if the model parameters have a smooth

spatial variations. It is therefore worthwhile to consider all the four choices resulting

from nd = 1, 2 and nm = 1, 2, which correspond to the following MAP estimates

mMAP = argmin

{
D∑
i=1

|Wi(h(m)i − di)|nd + α
M∑
i=1

|Li(m−m0)|nm

}
(4)

The MAP estimate for nd = 2 and nm = 2 is found trivially with well known methods

for least squares problems. Gauss-Newton iterative algorithms are used typically, for

example, in electrical, electromagnetic, and optical tomography problems (Polydorides

& Lionheart 2002), (De Zaeytijd et al. 2007), (Schweiger et al. 2005). For nd = 1

or nm = 1 the objective function involves sums of absolute values, and it is not not

differentiable at points where their arguments evaluate to zero: the MAP estimation is

a non-smooth optimization problem. Points of non-differentiability typically occur in

the very proximity of the sought solution, and so smooth optimization methods cannot

be used even in a small region around the solution. In imaging applications, for example,

the regularization matrix L takes differences of neighboring image elements, and m0 is

the zero vector. The argument of |Li(m)| is therefore zero when two neighboring image

elements have the same value (or, in general, when the discrete differential operator

evaluates locally to zero). In the image reconstruction process therefore, every time two

image elements switch values with respect to each other, one becoming greater than

the other, a kink in the objective function is crossed. It is therefore unfeasible to start

from a initial guess and operate a smooth optimization without crossing kinks in the

objective function. These optimization problems are therefore complex compared to the
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quadratic case.

A body of literature is concerned with L1 estimation, nd = 1, and with L1

regularization, nm = 1. Algorithms used in the literature can be classified in two

major types: Bayesian and deterministic. Bayesian approaches have been proposed, for

example, by Kaipio et. al. in the context of Total Variation regularization in Electrical

Impedance Tomography (Kaipio et al. 2000), where a Markov Chain - Montecarlo

Method (MCMC) is used to provide MAP estimates. MCMC requires sampling the

posterior probability density of the inverse problem, which consists in solving the forward

problem for a large number of model configurations. This approach does not require

differentiation of an objective function, and so no particular care is required if nd = 1

or nm = 1. MCMC is however not attractive for non-linear problems, in applications

such soft field tomography, as it requires solving the forward problem several thousand

times, and therefore is very expensive computationally.

A plethora of approaches has instead been proposed from the deterministic point

of view. Some algorithms transform the non-smooth optimization problem into a

smooth one. In the context of L1 regularization for example (Acar & Vogel 1994, Chan

et al. 1995, Vogel & Oman 1996, Dobson & Vogel 1997) use

mMAP = argmin

{
‖W (h(m)− d)‖2 + α

M∑
i=1

√
(Li(m−m0))2 + β

}
(5)

where the absolute value function |(·)| is approximated with
√

(·)2 + β, which tends to

the absolute value of the argument as β tends to zero, and
√

(·)2 + β is differentiable

everywhere for β > 0. Traditional algorithms for smooth optimization (e.g. Steepest

Descent, Newton Method) can therefore be used to solve an inverse problem with L1

norms on the data/regularization term with this approximation. In applications of

L1 regularization it was shown that the Steepest Gradient method has an extremely

slow convergence, and that the Newton method requires a very careful and adaptive

control of β: solving with large values of β results in a poor approximation of |(·)|,
while solving with small values of β results in non-convergence of the method (Chan

et al. 1995, Borsic 2002).

An other approach for L1 estimation is the Iteratively Re-weighted Least Squares

(IRLS) algorithm (Weiszfeld 1937). IRLS is used, for example, for robust estimation in

problems of the type

mMAP = argmin

{
D∑
i=1

|Wi(h(m)i − di)|nd + α‖(L(m−m0)‖2

}
(6)

with values of nd which are close to 1. IRLS casts (6) in an equivalent problem, which

is

mMAP = argmin
{
‖D(h(m)− d)‖2 + α‖(L(m−m0)‖2

}
(7)

where D is a diagonal weighting matrix, whose i-th entry is: Di = |Wi(h(m)i−di)|nd−2.

Equation (7) expresses (6) as least squares system, with special weights D that depend
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on the current value of the estimated parameters m. Osborne (Osborne 1985) has proved

linear convergence of the method for 1 < np < 3. For L1-norm minimization though

np = 1, resulting in weights which are

Di =
1

|Wi(h(m)i − di)|
(8)

and anytime the argument (h(m)i − di) tends to zero the weights tend to infinity, with

np = 1, or close to 1. Similar tricks to (5) are used, for example by re-defining the

weights to be

Di =
1√

Wi(h(m)i − di)2 + β
(9)

with β being a small positive scalar value that keeps the denominator from approaching

zero. More complex reweighting strategies are considered by Daubechies in (Daubechies

et al. 2010). The same considerations as before apply: a large β allows a smooth solution

of the problem, but not an accurate one, a small value of β can cause convergence

problems. A second aspect of IRLS that is not satisfactory is that its convergence

is generally linear, while in certain cases it has been demonstrated to be super-linear

(Daubechies et al. 2010), but in general the convergence is slow, and complicated by the

choice of β, which should be potentially adaptive to be problem, and controlled iteration

by iteration.

A third possibility contemplated in literature is that of transforming the original non-

smooth optimization problem in a smooth convex program with linear constraints. For

example, in the case of L1 regularization, the original MAP estimate can be modified

in the equivalent constrained problem (Koh et al. 2007)

mMAP = argmin

{
‖W (h(m)− d)‖2 + α

M∑
i=1

ui

}
(10)

subject to : −ui ≤ Li(m−m0) ≤ ui

where u is a vector of auxiliary variables of length M . The problem (10) can be solved

with the Sequential Quadratic Programming method (Bonnans 2006), with the Aug-

mented Lagrangian methods (Bertsekas 1982), or with Interior Point methods (Koh

et al. 2007). A review of optimization methods for L1-penality problems is offered by

(Loris 2009), where ulterior methods to the ones above are considered. Andersen et. al.

(Andersen et al. 2000) have shown that Primal Dual - Interior Point methods can be

very efficient at minimizing a sum of norms (or absolute values), compared to Interior

Point methods and other classical methods. Chan et. al. (Chan et al. 1996) developed a

PD-IPM framework for solving inverse problems in image restoration using Total Vari-

ation regularization and showed significantly superior performance compared to Gauss

Newton methods such (5). Borsic et. al. (Borsic 2002) derived a PDIP framework,

based on the developments of Andersen and Chan for L1-norm / Total Variation regu-

larization in Electrical Impedance Tomography (EIT). The framework has been shown

to be more efficient, over other standard methods, in minimizing objective functions
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with nm = 1, and to work well on experimental data. Primal Dual - Interior Point

methods seem therefore to be an efficient and practical choice for minimizing the non

smooth problems arising from the use of the L1 norm in the context of inverse problems.

In the present manuscript we derive a general PDIP framework for the efficient

solution of the problem (4) with nd = 1, nm = 1, or both nd = nm = 1. The PD-IPM

framework we derive can be used on linear and non-linear problems, we do not prove

convergence, but we use Electrical Impedance Tomography as a case problem and show

successful results in terms of improving robustness to outliers in the data, when the L1

norm is used on the data term, and in terms of reconstructing sharp images, when the

L1 norm is used on the regularization term.

The contents of the manuscript are organized as follows: in Section 2.1 the Primal

Dual Interior Point framework is introduced, and a derivation for the L1-L2 problem

(nd = 1, nm = 1) is given; in Section 2.2 the same framework is derived and applied

to the L2-L1 problem (nd = 2, nm = 1); in Section 2.3 the PD-IPM framework is

derived and applied to the L1-L1 problem (nd = 1, nm = 1). In Section 3 Electrical

Impedance Tomography (EIT) is briefly introduced and used as a case problem; in

Section 4 we discuss the implementation of the PD-IPM framework in the context of

EIT and we provide pseudo-code diagrams that facilitate the implementation in the

context of other inverse problems. Lastly in Section 5 we show numerical experiments

using Gaussian noise and data outliers to highlight the effect of choosing different norms

in the formulation of inverse problems, and to demonstrate that the PD-IPM framework

we derive can be successfully used in practical applications.

2. Primal Dual - Interior Point Framework

In this section we derive methods for solving (4) based on Primal Dual - Interior Point

methods. The case nd = 2, nm = 2 is not treated as it is a common least squares

estimation problem, for which solutions are well known and typically based on the

Gauss Newton method.

2.1. PD-IPM for nd = 1 and nm = 2

We will label as primal (P) the problem:

(P ) = mMAP = argmin

{
D∑
i=1

|Wi(h(m)− d)|+ α‖L(m−m0)‖2

}
(11)

noting that for each i

|Wi(h(m)i − di)| = max
xi:|xi|≤1

xi(Wi(h(m)i − di)) (12)
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as the auxiliary variable xi, in the range [−1, 1], will take the value either 1, or −1,

depending on the absolute value of Wi(d−h(m)). Using this consideration, and applying

it to (P), it is possible to derive a second problem, a maximization problem, that is

labeled dual (D)

(D) = min
m

{
max
x

xTW (h(m)− d) + α‖L(m−m0)‖2
}
, with ‖xi‖ ≤ 1 (13)

in this context the auxiliary variables x are called dual variables, and the model

parameters m primal variables. Interchanging the max and the min, which is possible if

the forward operator results in a convex objective function (Rockefellar 1970), we obtain

(D) = max
x

min
m

{
xTW (h(m)− d) + α‖L(m−m0)‖2

}
, with ‖xi‖ ≤ 1 (14)

and imposing the first order conditions on the primal variables

∂

∂m

{
xTW (h(m)− d) + α‖L(m−m0)‖2

}
=

JT (m)Wx+ 2LTL(m−m0) = 0 (15)

we can simplify the dual, removing the inner minimization, obtaining

(D) = max
x

{
xTW (h(m)− d) + α‖L(m−m0)‖2

}
(16)

|xi| ≤ 1

JT (m)Wx+ 2αLTL(m−m0) = 0

where J(m) is the Jacobian matrix of the forward model h(m).

For feasible points of the dual problem (i.e. |xi| ≤ 1) the objective function of (P)

can be shown to take greater values than the objective function of the dual problem

(D) (Andersen et al. 2000). The two objective functions take the same value at a single

point, which is the optimal point both for (P) and for (D) (Andersen et al. 2000). Such

optimal point can therefore be sought by nulling the difference between the two objective

functions, called the primal-dual gap

GPD =
D∑
i=1

|Wi(h(m)i − di)|+ α‖L(m−m0)‖2 −

xTW (h(m)− d) + α‖L(m−m0)‖2 =
D∑
i=1

{|Wi(h(m)i − di)| − xiWi(h(m)− d)} (17)

The primal-dual GPD is null if, for each i, either Wi(h(m) − d) = 0 or xi =

Wi(h(m)− d)/|Wi(h(m)− d)| . The condition that nulls the PD gap is therefore

|Wi(h(m)i − di)| − xiWi(h(m)− d) = 0 ∀i (18)

and is called complementarity condition (Andersen et al. 2000), which captures the

optimality of both (P) and (D). The strategy on which Primal Dual methods are based
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is, rather to minimizing (P) or maximizing (D), to null the PD gap, by enforcing the

complementarity condition, and obtaining the optimality. This, with the feasibility

conditions of above, results in

M∑
i=1

|Wi(h(m)− di)| − xTW (h(m)− d) = 0 (19)

‖xi‖ ≤ 1

JT (m)Wx+ 2αLTL(m−m0) = 0

which constitutes the Primal Dual method applied to the problem (4) with nd = 1 and

nm = 2. Equations (19) need to be solved jointly on m and x, for example with the

Newton method. The absolute value appearing in (19) needs to be smoothed in order

to obtain differentiability. The smoothing is obtained by replacing |Wi(h(m) − di)|
by
√

(Wi(h(m)− di)2 + β, with β > 0, similarly to (5), though the meaning, and the

effect, of this smoothing is different from (5) in the context of the PD framework. The

smoothed feasibility condition is called the centering condition (Andersen et al. 2000)

and it leads to a smooth pair of optimization problems (Pβ) and (Dβ). The effect of such

condition is that solutions are approached, as β is decreased, from points away from the

boundary ‖xi‖ ≤ 1 of the feasible region, from which the name of centering condition

and the notion of interior point methods. In practical terms PD Interior Point Methods

(PD-IPM) methods don’t pose convergence issues related to the value of β as (5) does

(Chan et al. 1996) (Borsic 2002), in our implementation, for example, we work with a

small and fixed value of β (see Section 5), obtaining good converge rates. The choice of

β instead in methods like (5) strongly affects convergence, and it is hard to operate a

control on β that guarantees stability, let alone a fast convergence.

With the centering condition the PD framework becomes

(hi(m)− di)− xi
√

(h(m)− d)2 + β = 0 ∀i (20)

‖xi‖ ≤ 1 (21)

JT (m)Wx+ 2αLTL(m−m0) = 0 (22)

and the Gauss Newton method is applied to solve it. In this context one wants to find

the derivatives of (20) and (22) with respect to ∂m and ∂x and to impose first order

conditions. For (20) we have

∂

∂m

[
(h(m)− d)− x

√
(h(m)− d)2 + β

]
= (I −XE−1F )J(m) (23)

where we have defined

• fi = hi(m)− di
• F = diag(fi)

• X = diag(xi)

• ηi =
√
f 2
i + β
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• E = diag(ηi)

and for the partial derivatives of (20) with respect to x

∂

∂x

[
(h(m)− d)− x

√
(h(m)− d)2 + β

]
= −E (24)

while for (22) we have

∂

∂m

[
JT (m)Wx+ 2αLTL(m−m∗)

]
= 2αLTL (25)

and
∂

∂x

[
JT (m)Wx+ 2αLTL(m−m∗)

]
= JT (m)W (26)

yielding the Newton system for solving the PD-IPM problem as[
2αLTL JTW

(I −XE−1F )J −E

][
δm

δx

]
= −

[
JTWx+ 2αLTL(m−m∗)

f − Ex

]
(27)

where we have dropped the explicit indication that J depends on m. The above system

of equations can therefore be solved in an iterative fashion computing jointly the updates

δm for the primal variables and δx for the dual variables. By substituting the second

equation into the first it is possible to express the updates for the primal and dual

variables separately as

δm = −[JTWE−1(I −XE−1F )J + 2αLTL]−1[JTWE−1f − 2αLTL(m−m∗)] (28a)

δx = E−1(f − Ex) + E−1(I −XE−1F )Jδm; (28b)

As δm is a descent direction for the primal problem (Andersen et al. 2000) a traditional

line search procedure (Nocedal & Wright 1999) can be applied on (Pβ), finding an

appropriate step length λm resulting in the update m(k+1) = m(k) + λmδm
(k), where k

is the iteration number.

Some care must be taken on the dual variable update, to maintain dual feasibility. A

traditional line search with feasibility checks is not suitable as the dual update direction

is not guaranteed to be an ascent direction for the modified dual objective function

(Dβ). The system (27) is designed to minimize the primal-dual gap, but not necessarily

to increase (Dβ). The update δm happens to be a descent direction for (Pβ), but δx is

instead not guaranteed to be an ascent direction for (Dβ).

The simplest way therefore to compute the update is called the scaling rule

(Andersen et al. 2000)

x(k+1) = ϕ∗
(
x(k) + δx(k)

)
(29)

where ϕ∗ is a scalar value such that

ϕ∗ = sup
{
ϕ : ϕ

∣∣∣x(k)
i + δx

(k)
i

∣∣∣ ≤ 1, i = 1, . . . , n
}

(30)
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An alternative way is to calculate the exact step length to the boundary, applying what

is called the step length rule (Andersen et al. 2000)

x(k+1) = x(k) + min (1, ϕ∗) δx(k) (31)

where ϕ∗ is a scalar value such that

ϕ∗ = sup
{
ϕ :
∣∣∣x(k)
i + ϕ δx

(k)
i

∣∣∣ ≤ 1, i = 1, . . . , n
}

(32)

Usually the computation involved in calculating the exact step length to the

boundary of the dual feasibility region is negligible compared to an iteration of the

algorithm. It is preferable therefore to adopt the step length rule over the scaling rule,

as the second places x always on the boundary of the feasible region, which prevents

the algorithm from following the central path (sequence of points in the interior of the

feasibility region that converges to the optimal point) - defeating effectively the purpose

of the centering condition.

One important observation regarding the system (27) is that the matrices E and

F depend on f , the discrepancy between forward solutions and measured data, and

therefore on m. Even for linear problems therefore equations (27) must be iterated,

until convergence is reached.

2.2. PD-IPM for nd = 2 and nm = 1

Formulating the inverse problem using the L2-norm on the data term and the L1-norm

on the regularization term corresponds to the following formulation for the primal

(P ) = min
m

[
‖W (h(m)− d)‖2 + α

∑
j

|Lj(m−m0)|

]
(33)

using now a dual auxiliary variable y, we can derive a dual formulation (D) with a

similar procedure to (12) and (13)

(D) = min
m

[
‖W (h(m)− d)‖2 +max

y

[
αyTL(m−m0)

]]
, with ‖yj‖ ≤ 1 (34)

using min-max theory we can exchange the min and max (Rockefellar 1970)

(D) = max
y

[
min
m

[
‖W (h(m)− d)‖2 + αyTL(m−m0)

]]
, with ‖yj‖ ≤ 1 (35)

to perform the inner minimization on m, we impose the first order conditions on the

objective function, nulling the derivative w.r.t to m.

∂

∂m
‖W (h(m)− d)‖2 = 2 JT (m)W TW (h(m)− d) (36)

and
∂

∂m
yTL(m−m0) = LTy (37)
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so the first order conditions for the minimization in the dual problem are

2 JT (m)W TW (h(m)− d) + αLTy = 0 (38)

and the primal dual gap is

GPD = ‖W (h(m)−d)‖2 +α
∑
j

|Lj(m−m0)|−‖W (h(m)−d)‖2−αyTL(m−m0) (39)

the PD framework is therefore formed by nulling the PD gap and by enforcing the

feasibility conditions

∑
j

|Lj(m−m0)| − yTL(m−m0) = 0 (40)

‖yj‖ ≤ 1 (41)

2 JT (m)W TW (h(m)− d) + αLTy = 0 (42)

the primal dual-gap will be null if and only if

Lj(m−m0)− yj|Lj(m−m0)| = 0 ∀j (43)

the above condition is not differentiable when Lj(m − m0) = 0, so using a centering

condition

Lj(m−m))− yj
√

(Lj(m−m0))2 + β = 0 ∀j (44)

with β > 0. The PD-IPM framework can then be formulated as

Lj(m−m0)− yj
√

(Lj(m−m0))2 + β = 0 ∀j (45)

‖yj‖ ≤ 1 (46)

2 JT (m)W TW (h(m)− d) + αLTy = 0 (47)

The Newton method can now be applied to the above system. The partial derivatives

of (47) are as follows

∂

∂m

[
2 JT (m)W TW (h(m)− d) + αLTy

]
= 2 J(m)TW TWJ(m) (48)

∂

∂y

[
2 JT (m)W TW (h(m)− d) + αLTy

]
= αLT (49)

in deriving (48) J(m) has been considered constant with m, as this is one step of the

Gauss-Newton algorithm, where the problem is linearized. Defining now

• gj = Ljm
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• G = diag(gj)

• Y = diag(yj)

• sj =
√

(Ljm)2 + β

• S = diag(sj)

expressing now in matrix form the partial derivatives of (45) one obtains

∂

∂m

[
Lj(m−m0)− yj

√
(Lj(m−m0))2 + β

]
= (I − Y S−1G)L (50)

∂

∂y

[
Lj(m−m0)− yj

√
(Lj(m−m0))2 + β

]
= −S (51)

which, dropping the explicit indication of dependance of J on m, allows formulating a

system for the primal and dual updates

[
2 JTW TWJ αLT

(I − Y S−1G)L −S

][
δm

δy

]
= −

[
2 JTW TW (h(m)− d) + αLTy

g − Sy

]
(52)

where, similarly to 27, it is possible to work out separately the primal and dual updates

as

δm = −[2JTW TWJ + αLTS−1(I − Y S−1G)L]−1[2JTW TW (h(m)− d)− αLTS−1g]

(53a)

δy = S−1(g − Sy) + S−1(I − Y S−1G)Lδm (53b)

As for (27) a line search can be used on the primal updates, a step length procedure on

the dual updates, and the above equations iterated to convergence.

2.3. PD-IPM for nd = 1 and nm = 1

Formulating the inverse problem using the L1-norm on the data term and on the

regularization term corresponds to the following formulation for the primal

(P ) = min
m

[∑
i

Wi|hi(m)− di|+ α
∑
j

|Lj(m−m0)|

]
(54)

and, similarly to (12) and (13), the dual formulation is

(D) = min
m

[
max
x

[
xTW (h(m)− d)

]
+max

y

[
αyTL(m−m0)

]]
, with ‖xi‖ ≤ 1, ‖yi‖ ≤ 1

(55)
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Interchanging the max and the min, which is possible if the forward operator results in

a convex objective function (Rockefellar 1970), we obtain

(D) = max
x

max
y

[
min
m

xTW (h(m)− d) + αyTL(m−m0)
]
, with ‖xi‖ ≤ 1, ‖yi‖ ≤ 1

(56)

in order to perform the inner minimization on m, the first order conditions need to be

imposed. The derivative w.r.t m of the dual is

∂

∂m

[
xTW (h(m)− d) + αyTL(m−m0)

]
= JT (m)Wx+ αLTy (57)

and therefore the first order conditions for the inner minimization in the dual problem

are

JT (m)Wx+ αLTy = 0 (58)

and the primal dual gap is

GPD =
∑
i

Wi|hi(m)−di|+α
∑
j

|Lj(m−m0)|−xTW (h(m)−d)−αyTL(m−m0) (59)

nulling the PD gap and enforcing primal and dual feasibility results in the primal-dual

framework

∑
i

Wi|hi(m)− di|+ α
∑
j

|Ljm−m0)| − xTW (h(m)− d)− αyTL(m−m0) = 0 (60)

‖xi‖ ≤ 1, ‖yj‖ ≤ 1 (61)

JT (m)Wx+ αLTy = 0 (62)

the primal dual-gap is null if and only if

(hi(m)−di)−xi|hi(m)−di| = 0, ∀i and (Lj(m−m0))−yj|Ljm−m0)| = 0, ∀j (63)

the above two conditions are not differentiable when either (hi(m) − di) = 0 or

Lj(m−m0) = 0, and a centering condition can be used, rewriting them as

(hi(m)− di)− xi
√

(hi(m)− di)2 + β = 0, ∀i and (64)

Lj(m−m0)− yj
√

(Lj(m−m0))2 + β = 0, ∀j (65)

with β > 0. The PD-IPM framework can be formulated as
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(hi(m)− di)− xi
√

(hi(m)− di)2 + β = 0, ∀i (66)

Lj(m−m∗)− yj
√

(Lj(m−m∗))2 + β = 0, ∀j (67)

‖xi‖ ≤ 1, ‖yj‖ ≤ 1 (68)

JT (m)Wx+ αLTy = 0 (69)

One wants now to apply the Gauss Newton method to the above system on non-linear

equations. As before, we compute the partial derivatives of (66), (67), and (69) with

respect to the primal and dual variables imposing then first order conditions. For the

derivatives of (66), similarly to (20), we have

∂

δm

[
(hi(m)− di)− xi

√
(hi(m)− di)2 + β

]
= (I −XE−1F )J(m) (70)

∂

δx

[
(hi(m)− di)− xi

√
(hi(m)− di)2 + β

]
= −E (71)

∂

δy

[
(hi(m)− di)− xi

√
(hi(m)− di)2 + β

]
= 0 (72)

for (67), similarly to (50) and (51), we have

∂

δm

[
Lj(m−m∗)− yj

√
(Lj(m−m∗))2 + β

]
= (I − Y S−1G)L (73)

∂

δx

[
Lj(m−m∗)− yj

√
(Lj(m−m∗))2 + β

]
= 0 (74)

∂

δy

[
Lj(m−m∗)− yj

√
(Lj(m−m∗))2 + β

]
= −S (75)

for (68), we have

∂

δm

[
JT (m)Wx+ αLTy

]
= 0 (76)

∂

δx

[
JT (m)Wx+ αLTy

]
= JT (m)W (77)

∂

δy

[
JT (m)Wx+ αLTy

]
= αLT (78)

where the Jacobian J(m) has been considered constant with m as this is one step of the

Gauss Newton method and the objective function is approximated with its first order
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Taylor series. A system of equations can be formed now, computing the updates for the

primal and dual updates as 0 JTW αLT

(I −XE−1F )J −E 0

(I − Y S−1G)L 0 −S


 δm

δx

δy

 = −

 JTWx+ αLTy

f − Ex
g − Sy

 (79)

As for the previous cases, updates for the primal variables and for the two sets of the

dual variables can be computed separately, with the following equations deriving from

the system above

δm = −[JTWE−1(I −XE−1F )J + αLTS−1(I − Y S−1G)L]−1[JTWE−1f − αLTS−1g]

(80a)

δx = E−1(f − Ex) + E−1(I −XE−1F ) J δm (80b)

δy = S−1(g − Sy) + S−1(I − Y S−1G) L δm (80c)

Updates on the primal can be computed with a traditional line search procedure, while

updates on the duals can be computed with a step length procedure.

3. Example Problem: Electrical Impedance Tomography

We use Electrical Impedance Tomography (EIT) as an example inverse problem to which

we apply the PD-IPM framework derived in the previous sections. EIT is a imaging

technique which allows to reconstruct the spatial distribution of electrical conductivity

within a volume. A number of electrodes are applied to the surface of the body under

investigation, certain electrodes are used for injecting and sinking currents, and the

non-injecting electrodes are used for sensing potential differences that result from the

current excitation. By using several injection / sense patterns it is possible to collect a

full, linearly independent, set of data. The inversion of such data, through an inverse

problem formulation, allows estimating the spatial distribution of conductivity within

the volume encompassed by the electrodes. Image reconstruction is typically formulated

as in (4) with nd = 2 and nm = 2, where now the model parameters m represent the

spatial distribution of conductivity, on a discretized grid, the data vector d represents

the recorded potentials resulting from multiple excitation/sensing electrode pairs, and

L, the regularization matrix, is usually a discrete representation of of a first or second

order differential operator, with the effect of imposing a certain smoothness on the

solution.

In EIT currents injected into the imaged body are low frequency alternating

currents, with frequencies in the range 10Hz to 10MHz (Holder 2004). The forward

problem is modeled with a low–frequency approximation, where the electric field is

conservative and conduction currents dominant with respect to their displacement

counterparts, which leads to the Laplace equation (Holder 2004)

∇ · σ∇u = 0 on Ω (81)
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where σ is the continuous distribution of conductivity if the body to be imaged, u is the

electric potential, and Ω represents the body to be imaged. Electrodes are modeled with

boundary conditions that are referred to as the Complete Electrode Model (Somersalo

et al. 1992) in the EIT literature. The model specifies the following boundary condition

for each portion of the boundary, ∂Ω`, underneath electrode `

u+ zc σ
∂u

∂n
= V` on ∂Ω` ` = 1 . . .K (82)

where zc is the contact impedance, ` is the electrode number, V` is the potential

developed by electrode `, K is the number of electrodes, and n the normal direction

to the boundary of Ω. An additional condition is that the flux of the normal component

of the current density over the surface of each electrode must equal the applied currents

I` =

∫
∂Ω`

σ
∂u

∂n
` = 1 . . .K (83)

where I` is the current applied at electrode `. In the interelectrode gaps, the following

boundary condition is applied

∂u

∂n
= 0 on ∂Ω \ {∂Ω1 ∪ . . . ∪ ∂ΩK} (84)

as currents enter and leave the body only at the electrode surfaces.

The forward model constituted by (81), (82), (83), and (84) is solved by discretizing

the imaging domain Ω, often by using the Finite Element Method (Polydorides &

Lionheart 2002). In the discretized setting the continuous conductivity σ is represented

with a finite number of regions of constant conductivity, the values of which constitute

the model parameters m. The set of collected difference of potentials Vm − Vn, for

various pairs (m,n) of sensing electrodes, and for various pairs of current injection/sink

electrodes (k, p) constitutes the vector of data d to be fitted.

4. Implementation

We use EIT as an example problem for implementing the four formulations (4) which

derive from the possible choices of the nd = 1, 2 and nm = 1, 2 norms. Our goal is to

highlight the effect of choosing the L2 or L1 norm on the data and regularization terms

through numerical simulations, and to demonstrate that the PD-IPM framework is an

effective approach. In this section we discuss the implementation of the algorithms,

while the next section discusses numerical experiments.

Formulation (4) with nd = nm = 2 does not need particular consideration as it is the

classical quadratic approach, which is solved using a Gauss-Newton method, with the

following update for the model parameters

δm = −[JTW TWJ + αLTL]−1[JTW TW (h(m)− d)− αLTLm] (85)

m = m+ λmδm (86)
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where λm is a scalar number, determined in this work using a parabolic line search

procedure (Nocedal & Wright 1999).

Following (28), (53), and (80) the formulations L1-L2, L2-L1, and L1-L1 were

respectively implemented, and pseudo code is provided in Figures 1, 2, and 3, to facilitate

the reader in the implementation in EIT, or other problems. A public domain MATLAB-

based implementation of these algorithms, for the EIT problem, is also available within

the EIDORS project (Adler & Lionheart 2006): http://www.eidors.org

As mentioned earlier most algorithms using the L1 norm rely on a smoothing

parameter β. Examples of these algorithms are IRLS, methods that approximate the

absolute value of a variable z with
√
z2 + β, and the PD-IPM method itself through

the centering condition. Methods that are not based on PD-IPM are generally known

to converge extremely slowly for small values of β (e.g. β = 0.01) or to diverge (Chan

et al. 1995) (Borsic 2002), and to generally require complex schemes where β is carefully

decreased while the algorithm is progressing.

Guaranteeing stability and good convergence properties for these algorithms is hard.

Contrary to these methods, the PD-IPM algorithm converges well even for small values

of β. In our implementations we use a constant value of β = 1×10−12 (β in this context

is the centering parameter, which nevertheless is a smoothing parameter - see (20)). Not

requiring a continuation scheme for β is a benefit of PD-IPM that greatly simplifies the

implementation of MAP estimation algorithms based on the L1 norm, besides the fact

that convergence is faster (Chan et al. 1995) (Borsic 2002).

The three algorithms in Figures 1, 2, and 3 start by finding the best uniform value

of the parameters m that fits the data, used as a good starting point, and by setting the

initial value for the dual variables to zero. In a loop the Jacobian of the forward model

is computed and updated, and updates for the primal and dual variables are computed.

A parabolic line search procedure (Nocedal & Wright 1999) is used for applying the

update on the primal variables and a step length rule is used for applying the update to

the dual variables. The value of the primal dual gap GPD is computed at each cycle, and

it is used in a termination condition. As GPD tends to zero at convergence, iterations

are terminated when a sufficient reduction is achieved. In our numerical experiments

we require a relative reduction to 1 × 10−4 times with respect to the initial value. We

found experimentally that iterating further does not result in any appreciable change in

the images.

One last note regards the computational cost of PD-IPM compared to the Gauss New-

ton algorithm applied to quadratic formulations. Overall the single cycle of the PD-IPM

algorithm requires almost the same cost than a Gauss Newton iteration. We compare

below an L2-L2 update equation and an L1-L1 update equation for the primal variables

L2-L2 – Gauss Newton update

[JTW TWJ + αLTL]δm = −[JTW TW (h(m)− d)− αLTLm] (87)

http://www.eidors.org
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L1-L1 – PD-IPM update

[JTWE−1(I−XE−1F )J+αLTS−1(I−Y S−1G)L]δm = −[JTWE−1f−αLTS−1g] (88)

The left hand side of the two updates differs. In the first case (JT . . . J) is inner

multiplied by W TW , in the second by WE−1(I −XE−1F ). The matrices W , E, I, X,

and F are diagonal, and therefore computing their inverses and products is fast and

negligible compared to the other computational costs such, for example, forward solving

and Jacobian assembly. Similarly, the product (LTL) of the Gauss Newton update is

inner multiplied by S−1(I − Y S−1G) in the PD-IPM update, which is again a diagonal

matrix. The right hand sides in both (87) and (88) are readily computed, considering

that E and S are diagonal matrices. The same considerations apply to computing the

dual updates

δx = E−1(f − Ex) + E−1(I −XE−1F ) J δm (89)

δy = S−1(g − Sy) + S−1(I − Y S−1G) L δm (90)

the matrices E and S are diagonal, so their inverses are immediate to compute.

The single iteration of the PD-IPM algorithm has therefore a cost which is almost

identical to that of the Gauss Newton algorithms for quadratic inverse problems. The

difference in the two methods resides instead in the number of iterations the two

algorithms require. The PD-IPM method involves in the primal and dual updates

diagonal weighting matrices that are functions of the current model parameters and of

the current dual variables. As a consequence these algorithms require a larger number of

iterations to reach convergence. In our numerical experiments reconstructions converged

typically in approximately 10 iterations, while the Gauss Newton converges in 3 to 5

iterations. The computational cost of the PD-IPM algorithm resides therefore in a larger

number of iterations.

5. Numerical Experiments

In this section we report numerical experiments comparing performance and

characteristics of the four inverse formulations (4) resulting from the choices nd = 1, 2

and nm = 1, 2, applied to the EIT inverse problem. All the simulations are 2D, as this

allows an easier visualization of the results and faster simulation, but the formwork and

formulations we provide are equally applicable to 3D reconstruction.

5.1. Meshes, Generation of Synthetic Data, Noise, and Outliers

A test resistivity profile was generated with a background value of 100 Ω ·m, with two

round inclusions with a resistivity of 50 Ω·m, as illustrated in Figure 4(b). A FEM mesh

with 16 electrodes was generated (see Figure 4(a)), having 30,937 nodes, and synthetic

voltages were computed using the opposite EIT protocol, where current is injected be-

tween electrodes that are opposite to each other, and voltages are sensed on pairs of
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PD-IPM Algorithm - L1-L2 Norm

set β=1e-12;

set terminate=0;

find homogeneous m : m = argmin ‖W (h(m)− d)‖;
initialise dual variables x to zero;

set k=0; (iteration number)

while not terminate

f = (h(m)− d); (forward solve)

F = diag(fi);

X = diag(xi);

ηi =
√
f 2
i + β;

E = diag(ηi);

GPD =
∑
i

|Wifi| − xTWf ; (compute the PD gap value)

J = J(m); (compute/update Jacobian)

δm = −[JTWE−1(I −XE−1F )J + 2αLTL]−1[JTWE−1f − 2αLTL(m−m0)];

δx = E−1(f − Ex) + E−1(I −XE−1F )Jδm;

λm = argmin
∑
i

|Wi(h(m+ λmδm)− d)|+ α‖L(m−m0)‖2; (line search)

λx = max {λx : ‖xi + λxδxi‖ ≤ 1, i = 1, . . . , n}; (step length rule)

m = m+ λm δm;

x = x+ min(1, λx) δx;

if sufficient reduction of PDGAP, set terminate=1;

if k>kmax, set terminate=1;

k=k+1;

end while

Figure 1. Pseudo code for the implementation of the image reconstruction algorithm

using an L1-L2 norm formulation as in (11) and (28)

neighboring electrodes, resulting in 96 independent data points.

Synthetic additive Gaussian noise was generated to simulate systematic and random

errors occurring in data acquisition processes. A noise vector, ν, was generated to have

the same dimension of the data by extracting samples from a Gaussian distribution with

zero mean and standard deviation of 1, and then normalized to have the same standard

deviation of the data as

ν = ν
std(d)

std(ν)
(91)

where std(·) is the standard deviation of a vector. We specify noise level in percentages,
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PD-IPM Algorithm - L2-L1 Norm

set β=1e-12;

set terminate=0;

find homogeneous m : m = argmin ‖W (h(m)− d)‖;
initialise dual variables x to zero;

set k=0; (iteration number)

while not terminate

g = Lm;

G = diag(gi);

Y = diag(yi);

si =
√

(Lim)2 + β;

S = diag(si);

GPD = α
∑
i

|Li(m−m0)| − αyTL(m−m0) (compute the PD gap value)

J = J(m); (compute/update Jacobian)

δm = −[2JTW TWJ + αLTS−1(I − Y S−1G)L]−1[2JTW TW (h(m)− d)− αLTS−1g];

δy = S−1(g − Sy) + S−1(I − Y S−1G)Lδm;

λm = argmin ‖W (h(m)− d)‖2 + α
∑
i

|Li(m−m0)|; (line search)

λy = max {λy : ‖yi + λyδyi‖ ≤ 1, ∀i}; (step length rule)

m = m+ λm δm;

y = y + min(1, λy) δy;

if sufficient reduction of PDGAP, set terminate=1;

if k>kmax, set terminate=1;

k=k+1;

end while

Figure 2. Pseudo code for the implementation of the image reconstruction algorithm

using an L2-L1 norm formulation as in (33) and (53)

for example we indicate the noisy data produced as d+0.01ν to have a 1% level of noise.

Additionally to the Gaussian noise, a set of 4 synthetic outliers was generated, to

be used for testing robustness of inverse formulations. In order to generate the outliers,

four random data points were selected out of the total 96, and the arbitrary value of 10

was added or subtracted from the original data. Figure 5 shows plots for the original

noiseless data, in blue color, and for the data corrupted with outliers, in red color. Data

points are indicated with circles.

The simulation of outliers is rather important to represent situations that occur in

the actual application of inverse problems techniques, and that often result in significant
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PD-IPM Algorithm - L1-L1 Norm

set β=1e-12;

set terminate=0;

find homogeneous m : m = argmin ‖W (h(m)− d)‖;
initialise dual variables x to zero;

set k=0; (iteration number)

while not terminate

f = (h(m)− d); (forward solve)

F = diag(fi);

X = diag(xi);

ηi =
√
f 2
i + β;

E = diag(ηi);

g = Lm;

G = diag(gi);

Y = diag(yi);

si =
√

(Lim)2 + β;

S = diag(si);

GPD =
∑
i

Wi|h(m)− d|+ α
∑
i

|Li(m−m0)| − xTW (h(m)− d)− αyTL(m−m0)

J = J(m); (compute/update Jacobian)

δm = −[JTWE−1(I −XE−1F )J + αLTS−1(I − Y S−1G)L]−1[JTWE−1f − αLTS−1g];

δx = E−1(f − Ex) + E−1(I −XE−1F ) J δm;

δy = S−1(g − Sy) + S−1(I − Y S−1G) L δm;

λm = argmin
∑
i

Wi|h(m)− d|+ α
∑
i

|Li(m−m0)|; (line search)

λx = max {λx : ‖xi + λxδxi‖ ≤ 1, ∀i}; (step length rule)

λy = max {λy : ‖yi + λyδyi‖ ≤ 1, ∀i}; (step length rule)

m = m+ λm δm;

x = x+ min(1, λx) δx;

y = y + min(1, λy) δy;

if sufficient reduction of PDGAP, set terminate=1;

if k>kmax, set terminate=1;

k=k+1;

end while

Figure 3. Pseudo code for the implementation of the image reconstruction algorithm

using an L1-L1 norm formulation as in (54) and (80)
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(a) Forward Fine Mesh (b) Test Resistivity Profile (c) Coarse Grid

Figure 4. Left, a FEM mesh presenting 30,937 nodes, and 16 electrodes (indicated

in red color) is used for computing synthetic data. Center, two round inclusions with

a resistivity value of 50 Ω ·m and a background resistivity of 100 Ω ·m are simulated

and used for generating synthetic data. Right, by grouping elements on a fine mesh,

and constraining them to have the same conductivity value, it is possible to generate

a coarse grid of 489 coarse elements to be used for estimating the resistivity. Coarse

elements are shown in random colors.

artifacts in the reconstructed data. As an example, EIT finds applications in medical

and geophysical applications. In both these fields it is not uncommon for a few elec-

trodes to present contact impedances that are much higher than anticipated, resulting

in data points that are outliers. In biomedical applications of EIT this can occur when

one electrode is about to detach from the skin, presenting a poorer electrical contact

with the body. In geophysical applications of EIT electrodes are applied to the surface

in order to image the sub-surface. Locations where the soil is particularly dry might

result in a particularly bad electrical contact between electrodes and the soil. Simi-

lar situations occur in other imaging modalities like electromagnetic and diffuse optical

imaging, where a few sensors might not couple with the imaged medium as expected,

resulting in bad data generated by one sensing channel. Being many of these problems

ill-posed, an outlier of a moderate amplitude, for example of 20% relative amplitude,

might be hard to spot by inspection of the data, but can disrupt the reconstruction.

As we will show through numerical experiments, the availability of algorithms that are

largely insensitive to outliers is therefore an important tool to deal with these sources

of uncertainty, which are common in many practical applications, and many times hard

to get rid of.

In the image reconstruction experiments, in order to avoid committing what is

referred to as an inverse crime (Wirgin 2004), we use a mesh for image reconstruction

that is different from the one used for computing the synthetic measurements. This

second mesh was generated to have 20,663 nodes, and is used for forward solving in

the reconstruction process. The number of inverse parameters is reduced to 489 by

constraining several mesh elements to have the same resistivity value, forming thus

“coarse pixels”. This arrangement is described in (Borsic, Halter, Wan, Hartov &

Paulsen 2010). Figure 4(c) shows a rendering of the coarse grid resulting from grouping
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Figure 5. The above graph shows the noiseless synthetic data, plotted in blue color,

to which four outliers were added. The resulting noisy dataset is plotted in red color.

The vertical axis represents measured potential differences at electrode pairs, while the

horizontal line represents the data point index. Outliers were generated by adding or

subtracting an arbitrary value of 10 to 4 random data points. This results in outliers

with a relative amplitude ranging from 40% to 80%, depending on the data point.

FEM elements on the fine grid; coarse pixels have been randomly colored in order to

highlight them.

5.2. Choice of the Tikhonov Factor

Though not the focus of the present work, the choice of the Tikhonov factor affects

greatly image reconstruction results. Our purpose is to show the effect of using different

norms on the data and regularization terms of an inverse problem, and to demonstrate

a practical framework for implementing different formulations, without focusing on a

specific method for choosing the Tikhonov factor. Several methods exist for estimating

the Tikhonov factor, including the L-Curve criterion, Generalized Cross Validation

(Hansen 1998), and others (Graham & Adler 2006). While these methods have been

developed traditionally for the quadratic formulations (L2-L2), some of these methods

have been considered for application to inverse formulations involving the L1 norm

(Clason et al. 2010) (Ito et al. 2011).

Our aim in the present work is to generate several test cases, involving noise and

outliers, and to compare, test case by test case, the “best result” that each of the four

formulations resulting from the choices nd = 1, 2 and nm = 1, 2 can produce. We have

adopted a simple method method for choosing a Tikhonov factor, as follows

(i) Synthetic data is produced from the resistivity profile ρtest of Figure 4(b).

(ii) Noise and/or outliers are added to the synthetic data, to generate different test

cases.

(iii) For each inverse formulation and for each test case, the Tikhonov factor is optimized

as

αoptimal = argmin
α
‖ρ(α)recon − ρtest‖ (92)
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(a) L2-L2 Norm (b) L1-L2 Norm (c) L2-L1 Norm (d) L1-L1 Norm

Figure 6. Reconstructions of synthetic data with no noise added for the four

possible combinations of L1 and L2 norms on the data and regularization terms.

Reconstructions using the L1 norm (Figures 6(c) and 6(d)) on the regularization term

show sharper reconstructed profiles.

where ρ(α)recon is the reconstructed resistivity profile as a function of α, the Tikhonov

factor. In other words we optimize the Tikhonov factor in such a way that the

reconstructed image best matches the original image. This arrangement allows

comparing the “best results” that each method can produce. This is important, for

example, for comparing algorithms in the presence of outliers, where the formulations

using the L1 norm on the data term are able to correctly reconstruct images, but the

L2-based formulations are unable to produce meaningful results, even if the Tikhonov

factor is optimized against the known image. This approach of choosing the Tikhonov

factor is of course applicable only where the original resistivity profile is known. We

believe it might be appropriate in showing performances of different algorithms with an

optimal choice of the Tikhonov factor and to abstract this discussion as possible from

the choice of methods that estimate the Tikhonov factor.

5.3. Reconstructions

Several test cases have been prepared to compare reconstructed images resulting from

different inverse formulations using the L1 and L2 norms. In all simulations we use a

regularization matrix L which is a first order differential operator. This regularization

matrix, when used with the L1-norm, corresponds to the Total Variation regularization,

and it is well know to result in sharp reconstructed profiles.

In a first test case no noise was added to the synthetic data. Reconstructions for the L2-

L2, L1-L2, L2-L1, and L1-L1 formulations are shown respectively in Figures 6(a), 6(b),

6(c), and 6(d). In this test case data is corrupted only by the numerical imprecisions

in solving the forward model with finite computing precision. The four reconstructed

profiles are plotted using the same color scale, ranging from 50 Ωhm (blue color) to 110

Ωhm (red color). This scale extends beyond the range of the test profile (50 to 100 Ωhm)

to accommodate for the fact that reconstructed resistivity “shoots” over this range at

particular image locations.

The first two images on the left (L2-L2 and L1-L2 reconstructions) use the L2-norm

on the regularization term, and thus result in reconstructions that correctly identify the
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(a) L2-L2 Norm (b) L1-L2 Norm (c) L2-L1 Norm (d) L1-L1 Norm

Figure 7. Reconstructions of synthetic data with 2% additive Gaussian noise for the

four possible combinations of L1 and L2 norms on the data and regularization terms.

The effect of using the L1 and L2 norms is similar to results of Figure 6 where no

noise was used: the use of the L1 norm on the regularization term results in sharper

reconstructions (Figures 7(c) and 7(d)), the use of the L1 or L2 norms on the data

term produces results that are equivalent.

location and size of the contrasts and that are relatively smooth. As there is no noise on

the data, the effect of using the L2-norm or the L1-norm on the data term is negligible

and the first two reconstructed profiles are almost identical. The last two images on the

right (L2-L1 and L1-L1 reconstructions) use the L1-norm on the regularization term,

and demonstrate how this results in much sharper reconstructed profiles. The effect of

using the L1-norm on the regularization term is therefore quite profound in terms of

reconstructed profiles, and it is useful when the original profile is know to present step,

or very fast, spatial changes.

These regularization characteristics of the L1-norm are preserved in the presence

of noise. Figure 7 illustrates results from a second test case, where 2% Gaussian noise

was added to the synthetic data. Reconstructions for the L2-L2, L1-L2, L2-L1, and

L1-L1 formulations are shown respectively in figures 7(a), 7(b), 7(c), and 7(d). This

test case represents a typical practical situation, where a certain amount of noise is

present on the data. The L2-L2 and L1-L2 reconstructions, shown in the left two

images, being both based on L2-norm regularization are similar. Both reconstructions

correctly identify and locate the inclusions and show some artifacts due to the presence

of noise. Both reconstructions are smooth, as quadratic regularization is used. The L2-

L2 reconstruction, corresponding to a Least Squares fitting of the data performs slightly

better than the L1-L2 reconstruction, as in the presence of purely Gaussian noise Least

Squares fitting is optimal (Tarantola 2005). The two images on the right show L2-L1

and L1-L1 reconstructions. As both these cases are based on L1-norm regularization,

reconstructions are sharper, and the L2-L1 reconstruction performs slightly better, as,

again, the use of the L2-norm on the data term is optimal in this case.

The previous two test cases (Figure 6 and 7) are useful to demonstrate the effect

of using different norms on the regularization term (smooth/sharp regularization). In

the next two test cases outliers are used to demonstrate the effect of the L2/L1-norm

on the data term when outliers are present in the data.
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In a first test case the 4 outliers generated as discussed in Section 5.1 were added to

the noiseless synthetic data, with no addition of Gaussian noise. Reconstruction results

for this test case are shown in Figure 8. The second and fourth images from the left,

Figures 8(b) and 8(d), correspond to the L1-L2 and L1-L1 formulations, they both are

based on Least Absolute Fitting of the data. These reconstructions are insensitive to

the presence of the outliers. Figure 8(b) is almost identical to Figure 6(b), which is

the corresponding L1-L2 case where no noise was used. Similarly, Figure 8(d) is almost

identical to Figure 6(d), which is the corresponding L1-L1 case where no noise was used.

For these two reconstructions the presence of the outliers has no visible effect compared

to the no-noise case. The difference between Figure 8(b) and 8(d) is that the first uses

use of the L2-norm regularization, and the second L1-norm regularization, resulting

respectively in a smooth or in a sharp reconstructed profile.

The first and the second images from the left, Figure 8(a) and 8(c), show results

for the L2-L2 and L2-L1 formulations, correspond instead to a Least Squares fitting

of the data. The Least Squares method presents a high sensitivity to the outliers. In

Figure 8(a) the optimal choice of the Tikhonov factor, resulting in the best resemblance

to the original test image as discussed in Section 5.2, produces an image that is very

little informative about the location of the original contrasts. Given the sensitivity to

outliers of L2 formulations, the optimal Tikhonov factor results very strong, as otherwise

the image would be dominated by artifacts. Similarly the reconstruction based on the

L2-L1 formulation, shown in Figure 8(c), results in a Tikhonov factor so strong that

the reconstructed image is almost flat and completely uninformative. Any other choice

for the Tikhonov factor would result in a worse discrepancy with respect to the original

image. This test case shows therefore how the presence of outliers can severely affect

formulations based on L2-norm fitting of the data.

In a last test case both outliers and Gaussian noise were added to the original

synthetic data, to demonstrate performance in an application relevant scenario, where

both types of disturbances are likely to be present. Precisely the 4 outliers of the

previous case were used in conjunction with 2% Gaussian noise. As in the previous test

case reconstructions based on a Least Squares formulation suffer significantly from the

presence of outliers, while reconstructions based on Least Absolute Fitting cope well

with them. Figures 9(b) and 9(d), corresponding to the L1-L2 and L1-L1 formulations,

detect well the location of the contrasts. In Figure 9(b) the reconstructed profile is

smooth and very similar to the reconstructed profile in the sole presence of Gaussian

noise shown in Figure 7(b). The L1-L1 reconstruction, Figure 9(d), presents the sharp

characteristic of the L1-norm regularization, and the reconstructed profile is similar to

the profile in Figure 7(d), where only the gaussian noise was present. The use of the

L1-norm on the data provides therefore robustness to the presence of outliers. In further

numerical experiments we have found that the algorithms based on a Absolute Values

fitting formulation continued to provide a similar quality in the reconstructed images

with up to 20 outliers.
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(a) L2-L2 Norm (b) L1-L2 Norm (c) L2-L1 Norm (d) L1-L1 Norm

Figure 8. Reconstructions of synthetic data with outliers for the four possible

combinations of L1 and L2 norms on the data and regularization terms.

Reconstructions using the L2 norm on the data term (Figures 8(a) and 8(c)) are

very sensitive to outliers, and result in the selection of large Tikhonov factors. Given

the procedure for choosing the Tikhonov factor, reconstructed images are the closest

possible to the original profile - any other choice of regularization strength would result

in worse reconstructions. For the L2-L1 case the optimal Tikhonov factor is so large

that the reconstructed image is almost flat. Reconstructions using the L1 norm on the

data term (Figures 8(b) and 8(d)) are insensitive to the presence of the outlier, and

result in the same image quality as in shown in Figure 6 where no noise was present.

(a) L2-L2 Norm (b) L1-L2 Norm (c) L2-L1 Norm (d) L1-L1 Norm

Figure 9. Reconstructions of synthetic data with additive outliers plus additive

2% noise for the four possible combinations of L1 and L2 norms on the data and

regularization terms. As in Figure 8, reconstructions using the L2 norm on the data

term (Figures 9(a) and 9(c)) are very sensitive to outliers, and result in the selection

of large Tikhonov factors. Given the procedure for choosing the Tikhonov factor,

reconstructed images are the closest possible to the original profile - any other choice

of regularization strength would result in worse reconstructions. For the L2-L1 case

the optimal Tikhonov factor is so large that the reconstructed image is almost flat.

Reconstructions using the L1 norm on the data term are insensitive to the presence of

the outlier (Figures 9(b) and 9(d)), and result in the same image quality as in Figure

7, where only 2% noise was present (no outlier).

From the numerical experiments presented so far it is possible to appreciate how

L1 regularization facilitates the reconstruction of sharp spatial changes in the images.

At the same time L1 regularization might over-enhance certain transitions that are

smooth in the original image. For example, the round inclusions used in the tests are

reconstructed as two square objects when L1 regularization is used. In order to further

demonstrate when certain choices on the data / regularization norms might or might
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not be appropriate, we have conducted further experiments with a test resistivity profile

which is smooth. These experiments are presented in the next subsection.

5.4. Reconstructions With a Smooth Test Profile

The use of L1 regularization corresponds to the prior assumption that the profile to

be reconstructed presents sharp transitions. When this is not the case, use of L1

regularization might not be optimal, and reconstructions will typically present a blocky

appearance, even if the original profile is smooth. In order to demonstrate this behavior

we have generated a test profile presenting a slow spatial variation, shaped like a cone,

as illustrated in Figure 10. Synthetic data from this profile was generated with the same

procedures used for the previous test cases, and the same Gaussian noise and outliers

were used where needed.

A general consideration applies to the next reconstructions we present, which are

produced from the smooth test profile. As this profile presents lower spatial frequencies

compared to the test profile in Figure 4(b), it is less challenging to reconstruct, as

few lower singular vectors of the Jacobian matrix can span relatively well the shape of

the resistivity variation. The effect of the outliers across the simulations is therefore

somewhat less pronounced: optimal values of the Tikhonov factor result in a sufficient

strength of the regularization that artifacts are attenuated, at the same time the lower

spatial frequencies allowed by this regularization settings can span relatively well the

image.

Figure 11 shows reconstructions with no noise or outliers for the four possible

combinations of the L1 and L2 norms. As no noise or outliers are present, the optimal

Tikhonov factor is rather small for all the four formulations of the inverse problem,

resulting in a lesser effect of the regularization, and in similar reconstructions. In Figure

11(d) it is possible to appreciate a somewhat a blocky effect deriving from the use of L1

regularization.

Differences between formulations become apparent when errors are added to the

data, as in Figure 12, where the previously generated 2% Gaussian noise and outliers

are used to corrupt the synthetic data. Figure 12(a) presents an L2-L2 reconstruction,

where a strong value of the Tikhonov factor suppresses to some degree the effects of the

outliers, which remain visible particularly at the bottom of the figure. The reconstructed

image captures an area of lower resistivity on the right part of the figure, but the profile

overall is disrupted by the presence of artifacts caused by outliers. Figure 12(b) is

relative to an L1-L2 formulation. This formulation is optimal for this particular test

case and results in the most faithful reconstruction: the L1 norm on the data renders

the reconstruction robust to outliers, while the L2 regularization assumes a smooth

resistivity prior, which matches the test case. Being this formulation less sensitive to

outliers, the optimal Tikhonov factor is relatively small, allowing more singular vectors

to contribute effectively to the image compared to the L2-L2 case, and results in a more

faithful reconstruction which captures the conic characteristic of test profile.
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Figure 10. In order to study performance of different formulations involving the L2

and L1 norms in the presence of slowly varying resistivity profiles, a new test profile,

illustrated in the above figure, was generated. The profile presents a conical resistivity

change which spans smoothly the whole domain.

Figures 12(c) and 12(d) show results for formulations implementing L1

regularization, respectively the L2-L1 and L1-L1 formulations. As the test profile is

smooth, this choice on the regularization norm, which assumes sharp transitions, is not

optimal. Reconstructions are blocky even if the test profile is not. The main difference

between Figure 12(c) and Figure 12(d) resides in the fact that the L1-L1 reconstruction

is robust to outliers, and the resulting optimal Tikhonov factor is smaller than the

one for L2-L1. This allows capturing better the shape of the test profile. The L2-L1

reconstruction, in Figure 12(c) is instead sensitive to outliers, and the optimal Tikhonov

factor is so high that the test profile is reconstructed incorrectly.

The tendency of reconstructing blocky images in the presence of slow spatial

variations shown by L1 regularization, which appears in this second test case, is known

in literature, and referred to as staircase effect. Approaches to avoid this undesired

behavior are usually based on building regularization functionals that comprise an L1

term and an L2 term, and where the relative weight of the two terms is adaptively

adjusted in such a way that L1 regularization is dominant in those regions of the image

where fast spatial changes occur. One of the first of these approaches is the Higher Order

Total Variation proposed by T. Chan, (Chan et al. 2000), several other works exist where

L1 and L2 terms are mixed in an adaptive fashion. In the present manuscript we did

not consider the possibility of building regularization terms that mix L1 and L2 norms,

but this is possible with the PD-IPM framework, and it will be considered as future

work.

5.5. Objective Function Plots

A last figure is used for illustrating the non-smooth characteristics of the optimization

problems involving the L1 norm. Figure 13 illustrates contour plots for the objective

functions resulting from the four possible inverse formulations. In each figure two

resistivity image elements were swept in the interval of values [-0.005 +0.005] around

the optimal value found by the reconstruction algorithms. Depending on whether one

pixel value becomes greater than the other, resulting in a sign change in |Lj(m−m0)|,
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(a) L2-L2 Norm (b) L1-L2 Norm (c) L2-L1 Norm (d) L1-L1 Norm

Figure 11. In a first test no noise was added to the synthetic test data, and

reconstructions were performed for the four possible combinations of L1 and L2 norms

on the data and regularization terms. As in this case the optimal Tikhonov factor is

small in value, the effect of regularization is limited, and all the reconstructed images

shows similar characteristics: they match well the original profile. In Figure 11(d),

on the top left part, it is possible to faintly appreciate the blocky behavior of L1

regularization.

(a) L2-L2 Norm (b) L1-L2 Norm (c) L2-L1 Norm (d) L1-L1 Norm

Figure 12. Reconstructions with 2% additive Gaussian noise and outliers for the four

possible combinations of L1 and L2 norms on the data and regularization terms. The

use of the L2 norm on the data term in Figure 12(a) results in sensitivity to outliers.

The L1-L2 reconstruction in Figure 12(b) is instead optimal, as the use of the L1

norm on the data term reduces sensitivity to outliers, and the L2 model prior matches

well the test profile. Reconstructions that use L1 norm regularization, Figures 12(c)

and 12(c), suffer from the characteristic blockiness of this formulation, and the L2-L1

reconstruction of 12(c) suffers additionally from sensitivity to outliers, resulting in an

incorrect reconstruction.

or, on whether the resistivity change results in a sign change in |hi(m) − di|, ridges of

non-differentiability are crossed. Ridges are evident in Figures 13(c), and 13(d), while

Figure 13(b) is evidently non-quadratic.

6. Conclusions

The possibility of formulating an inverse problem using the L1-norm or the L2-norm

on the data and regularization terms is attractive, as this allows better robustness

to outliers and sharper profiles compared to reconstructions of quadratic algorithms.

Unfortunately, the use of the L1 norm on either the data or the regularization terms

results in an objective function that is not differentiable everywhere. While quadratic

formulations of inverse problems can be solved with Gauss Newton methods and do
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−0.005 0 0.005
(a) L2-L2 Objec-

tive Function

 

−0.005 0 0.005
(b) L1-L2 Objec-

tive Function

 

−0.005 0 0.005
(c) L2-L1 Objec-

tive Function

 

−0.005 0 0.005
(d) L1-L1 Objec-

tive Function

Figure 13. The above graphs represent contour plots for the objective functions of

the four MAP formulations. The graphs were produced by perturbing the values of

two image pixels around the optimal point, therefore producing a surface in 3D space.

Kinks occur in the objective functions when either one pixel value becomes greater

than the other, or when the difference between any predicted data point and measured

data point switches sign.

not pose issues from the optimization point of view, formulations that use the L1-

norm require specific implementations. We derive a framework, based on the Primal-

Dual Interior Point Method, that allows using the L1/L2 norm on the data term and

the L1/L2 norm on the regularization term. The framework is efficient at dealing

with the resulting non-differentiability, and it is of general application to inverse

problems. We use EIT, an ill-posed inverse problem, as a test case and provide detailed

pseudo-code for facilitating re-implementation of the algorithms (a public domain

implementation for EIT has been made available also through the toolbox EIDORS

(Adler & Lionheart 2006) at http://eidors.org). We show through numerical test

cases the effect of using different norms on the two terms of an inverse problem.

Reconstructions using the L1-norm on the regularization term, with an appropriate

choice of the regularization matrix, correspond to Total Variation regularization, and

show the sharp transitions in the reconstructed profiles that are typical of this technique.

Reconstructions using the L1-norm on the data, corresponding to a Least Absolute

Squares fitting, result in improved robustness to the presence of outliers in the data,

producing meaningful reconstructions where the quadratic approach fails or shows great

sensitivity to the data errors. In terms of practical implementation, the computational

time per single iteration of PD-IPM is similar to that of the Gauss Newton algorithm, but

more steps are usually required for convergence, approximately 10 in our experiments.

The PD-IPM framework we present is therefore a viable solution to using the L1

norm in inverse problems, allowing to benefit from increased robustness to outliers and

from shaper reconstructions, where necessary. We believe these results can be useful in

numerous inverse problems. The proposed implementations are shown to work on test

cases with syntectic noise and to cope well with data outliers. Work is currently under

way to test these implementations on experimental data.

http://eidors.org
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