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tomography
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Abstract—Several noninvasive modalities including electrical

impedance tomography (EIT), magnetic induction tomography

(MIT) and induced-current EIT (ICEIT) have been developed for

imaging the electrical conductivity distribution within a human

body. Although these modalities differ in how the excitation and

detection circuitry (electrodes or coils) are implemented, they

share a number of common principles not only within the image

reconstruction approaches but also with respect to the basic

principle of generating a current density distribution inside a

body and recording the resultant electric fields. In this paper, we

are interested in comparing differences between these modalities

and in theoretically understanding the compromises involved,

despite the increased hardware cost and complexity that such a

multi-modal system brings along. To systematically assess the

merits of combining data, we performed 3-D simulations for

each modality and for the multi-modal system by combining

all available data. The normalized sensitivity matrices were

computed for each modality based on the finite element method

and singular value decomposition was performed on the resultant

matrices. We used both global and regional quality measures to

evaluate and compare different modalities. This study has shown

that the condition number of the sensitivity matrix obtained

from the multi-modal tomography with 16-electrode and 16-

coil is much lower than the condition number produced in

the conventional 16-channel EIT and MIT systems, and thus,

produced promising results in terms of image stability. An

improvement of about 20% in image resolution can be achieved

considering feasible signal to noise ratio (SNR) levels.

Index Terms—Electrical impedance tomography, induced-

current EIT, magnetic induction tomography, multi-modal to-

mography, impedance imaging.

I. INTRODUCTION

Several noninvasive modalities have been developed for
imaging the electrical conductivity distribution inside a human
body. Figure 1 demonstrates the basic principles of three
modalities: electrical impedance tomography (EIT), induced-
current EIT (ICEIT) and magnetic induction tomography
(MIT). The common principles of those modalities are based
on generating a current density distribution inside the body
and recording the resultant electromagnetic fields by means of
sensors positioned around the body. In EIT, the currents are
usually applied between pairs of adjacent surface electrodes
and the data are collected by measuring the resulting surface
potentials [1]. The measured data are then used to recon-
struct the cross-sectional images of conductivity (or resistivity)
distribution within the body. Several notable features of the
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device such as high-speed data acquisition, low-cost hardware,
portability and noninvasive measurement characteristics make
the proposed modality attractive, particularly for monitoring
of physiological processes [2]. However, poor skin-electrode
contact [3] and electrode position uncertainties [4] yet present
a challenge and hinder the practical usage. To evade such
contact related issues, ICEIT was proposed as an alternative
method for conductivity imaging [5]. ICEIT uses coils to
induce currents, and electrodes to record the surface potentials,
partly like in EIT. In this way, a higher energy can be applied
into the body for the same average current density as in EIT so
a higher signal to noise ratio can be achieved [6]. Besides, the
number of independent measurements can easily be increased
by shifting the coils [7]. However, ICEIT still suffers from
problems associated with the electrodes. MIT, on the other
hand, offers a completely contactless data acquisition by using
coils instead of electrodes for both excitation and detection
[8]. Thus, the problems related with the skin electrode contact
can readily be eliminated. However, the low dynamic range of
measurements [9], image degradation due to the body motions
[10] and due to the uncertainties in the coil assembly [11]
remain as serious challenges that must be overcome before
clinical applications. As it is seen that these techniques differ
by how the excitation and detection are implemented, yet the
same principle underlies all.

All techniques suffer from the low spatial resolution which
is approximately on the order of 10% to 20% of the medium
diameter near surface regions and far worse at central regions
[12]. This is due to the fact that the current density introduced
either by coils or by electrodes is typically diffusive. Although
increasing the number of measurements by using more coils or
electrodes theoretically provides more information on model
parameters, which in turn results in an increase in spatial
resolution, the practically achievable maximum number of in-
dependent measurements is heavily restricted by the measure-
ment noise [13]. Previously, a methodology was proposed to
increase the number of independent measurements which ap-
propriately allocates the sources and sensors so that the overall
orthogonality between the data is maximized [14]. A new pos-
sibility, which we investigated in this paper, is to combine the
data acquired from different imaging techniques to increase the
number of independent measurements. Although such a multi-
modal system certainly brings about all the hardware related
issues of each modality, we are more interested in determining
how much enhancement can be expected from such a multi-
modal system and to theoretically understand and identify the
compromises involved in different modalities. Therefore, we
investigated the merits of augmenting data and the possibility
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Fig. 1. A comparative demonstration of the basic principles of different impedance imaging modalities: EIT, MIT and ICEIT.

of improving the image quality or ill-conditioning of the
problem by fusing the electric and magnetic measurements.
To this end, we performed a simulation study considering a
homogenous cylindrical phantom as a conducting body. The
normalized sensitivity matrices were computed for each tech-
nique based on the finite element method and singular value
decomposition (SVD) was performed on the resultant matrices.
We used systematic approaches to evaluate and compare dif-
ferent modalities. Firstly, based on the singular value spectrum
the stability of the truncated-SVD (tSVD) reconstructions were
analyzed. Secondly, a radial resolution analysis for the central
slice was performed for the underlying techniques. For this,
a set of quality measures, which was proposed to quantify
cross-sectional EIT images [15], was adopted to evaluate the
key features of the point spread functions (PSF). Finally, we
displayed the PSFs for some particular locations inside the
phantom. This provides an extensive in-depth look into the
imaging characteristics of these modalities and helps a better
understanding of the compromises and limitations involved.

II. METHODOLOGY FOR MODELING

A. Overview of design and considerations

We systematically investigated the existing coil and elec-
trode based systems used for imaging such as EIT, MIT and
ICEIT as illustrated in Figure 1. As described in the introduc-
tion, each modality encountered various different challenges
related to the experimental design, which limits the achievable
spatial resolution. Hereafter, we refer to the modality which
makes use of the measurements acquired from the three
existing modalities as the multi-modal tomography (MMT).
Figure 1 illustrates three possible ways of data acquisition that
the coil and electrode based systems can provide to be used
for imaging. We focused on the commonly used 16-channel
systems with 16 sources and 16 sensors with the following
considerations:

Consideration 1: Generally, the complete dataset is ob-
tained by collecting the sensor responses corresponding to
each source. Such a data acquisition results in a number
of 16 × 16 = 256 available measurements to be used for
imaging. However, the reciprocity theorem states that only half
of the 256 measurements taken are linearly independent and
the remaining are redundant unless they are used for noise
averaging to increase the SNR. Note that, we assumed that an
active source can also be used as a detector for convenience

of performance comparison, although this introduces several
difficulties in practice and it is often not desired.

Consideration 2: The sources and detectors of most con-
ventional EIT and MIT systems are assembled on a single
ring which encircles the imaging target on a transverse plane.
This configuration is possibly the heritage of 2-D EIT imaging
and is still the configuration of choice by many groups.
However, such configuration brings forth several difficulties,
particularly for 3-D imaging, with the most important being
the mirroring artifacts. It was reported that due to the complete
symmetry of such configurations, the off-plane perturbations
are reconstructed on both sides of the central plane [16].
Therefore, in this paper, we placed sensors on two separate
rings to prevent the mirroring artifacts. We believe that optimal
placement of sources and detectors is crucial for particularly
3-D imaging and there is still need for novel approaches to
find configurations that provide better datasets.

Consideration 3: In EIT, an electrode pair is used to inject
currents and another electrode pair is used for measurements.
Although adjacent current injection and corresponding mea-
surement patterns have been widely used in many EIT sys-
tems, other stimulation and measurement patterns (e.g., quasi-
opposite stimulation patterns) were showed to have better
distinguishability than the extensively used adjacent patterns
[17]. In this paper, we considered both the adjacent and quasi-
opposite stimulation patterns to observe the effect on the PSFs.
Figure 2 illustrates the corresponding patterns used in this
paper.

16 circular electrodes of 1 cm radii are uniformly distributed
on two rings at the surface of a cylindrical phantom with a
radius of 10 cm and a height of 25 cm. In a similar manner, 16
coils of 2.5 cm radii are radially positioned 2 cm away from
the phantom surface located above the electrodes. We preferred
such a two-plane arrangement in order to avoid mirror arti-
facts which usually appear in the case of radially symmetric
measurement assemblies. The corresponding source/detector
configurations are depicted in figure 2. After both the coils
and the electrodes are available for measurements, one can
combine all possible data that these three systems can offer to
triple the amount of available measurements. In principle, such
a dataset contains all the information about model parameters
that EIT, MIT and ICEIT can possibly have and determine
the upper limit for the imaging performance. Note that MMT
provides a total number of 16 × 16 × 3 = 768 independent
measurements.
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Fig. 2. On the left: the cylindrical phantom and the positioning of measurement configuration. On the right: the measurement and stimulation patterns used
for the simulations.

B. Sensitivity formulation

The image reconstruction problems of EIT, MIT and ICEIT
typically consist of partitioning the body into small voxels
and calculating the sensitivity of measurements to conductivity
changes in each voxel. This requires numerical schemes that
can handle arbitrary shaped geometries and conductivity dis-
tributions within the body. Finite element discretization [18],
[19] is the standard method of choice, but other methods like
finite differences [20] and boundary elements [21], [22] have
also been studied in detail. A brief review of the formulation
is given here to provide a background for the quantitative
measures applied to evaluate the quality of reconstructions
(refer to [23] for details).

Assume that Ω represents the conducting medium with the
boundary ∂Ω. According to the reciprocity theorem [24], the
following expression approximates the change of measure-
ments, i.e., voltage data ∆v, due to a conductivity perturbation
∆σ, around a particular distribution σ in Ω:

∆v ≈ −1

I

�

Ω
∆σE1(σ) ·E2(σ)dV, (1)

where E1(.) and E2(.) denote the direct and adjoint electric
fields, respectively. I is the reciprocal current and is usually
assumed to be unity. σ can be thought of the reference state
and generally assumed to be uniform, however, nonuniform
distributions can also be used. In this paper, we assumed a
phantom with uniform conductivity of 1 Sm−1.

In essence, impedance imaging techniques differ by how the
electric fields (i.e., E1 and E2 in equation 1) are generated.
For instance, for the case of EIT, they are created by applying
time-varying currents via pairs of electrodes attached to ∂Ω.
Similarly, MIT and ICEIT also use time-varying currents,
however through the coils, to induce an electric field in Ω.
The formulation and computational details about the electric
fields for different techniques can be found in earlier studies
[6], [23].

C. Discretization of the conductivity

The approximation given by equation 1 must be discretized
for computational needs. Generally, Ω is partitioned into small
voxels and a piecewise constant conductivity distribution,
i.e., σ = [σ1, · · · ,σN ]T ∈ RN , is assumed within Ω. The

corresponding expression can be written as,

∆v ≈ −1

I

K�

e=1

�
∆σe

�

Ωe

E1(σ) · E2(σ)dve

�
, (2)

where K is the total number of discrete elements, e.g., the
number of voxels having a volume element represented by
Ωe. By introducing S(.) as the Jacobian operator, the so-
called sensitivity matrix, equation 2 can be expressed by a
linear matrix equation which relates the perturbations in the
conductivity distribution to the perturbations in the voltage
data,

∆v = S(σ)∆σ. (3)

Note that, hereafter, instead of S(σ), S will be used to denote
the sensitivity matrix for convenience. The entries of S are
obtained by successively evaluating the integrals appearing in
equation 2 for each voxel corresponding to independent pairs
of sources and detectors. In equation 3, ∆v is a vector and each
row of S corresponds to an independent set of voltage data and
each column corresponds to a single voxel in the mesh. Note
that this approximation is valid only for bounded conductivity
fluctuations around σ for which the linear approximation error
stays below a defined threshold. The validity of this linearity
assumption was previously validated with experimental data
by reconstructing single or multiple perturbations with sizes
on the order of 10% of the medium diameter [25].

D. Normalization of the sensitivity matrix

The excitation parameters, i.e., the operating frequency
and the amplitude of the source currents, show differences
depending on whether electrodes or coils are used. For in-
stance, in the case of EIT, the applied currents are typically
several milliamps with operating frequencies on the order
of several kHz. On the other hand, for the case of MIT,
the signal amplitudes can reach values as high as several
amperes and the frequency goes up to several MHz. This also
affects the measurements and the corresponding SNR levels.
Thus, the computed sensitivity matrices must be adjusted
for the comparison to be valid. For this, we normalized the
sensitivities as follows. By denoting si,j as the coefficients of
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S, each sensitivity matrix is normalized with the constant η:

η =
1

NK




N�

i

K�

j

s2i,j




1/2

, (4)

where N and K simply denote the number of measurements
and the voxels in the finite element mesh, respectively. The
normalized sensitivity matrices will be used for quality eval-
uations throughout the rest of the paper.

III. EVALUATION PARAMETERS

SVD based analysis (e.g., analysis of the decay of singular
values) provides global measures about the reconstruction
quality and does not provide much about the regional infor-
mation. Thus, in addition to a SVD analysis, we applied a
number of quality measures that evaluates the performances on
the radial axis. Besides, we presented the PSF distributions at
specific locations to investigate the regional effects. Different
regularization levels were selected in order to investigate the
practical and theoretical limits. For instance, 60 dB tSVD
regularization was used to evaluate the practical performances,
since, 60 dB is the maximum achievable SNR of the current
systems. On the other hand, 120 dB tSVD regularization was
preferred to investigate the theoretical limits of the modalities.
Note that even for simulating the theoretical case, we had
to apply a small amount of regularization to suppress the
computational errors originated from the FE solver.

A. SVD based analysis and reconstruction

We used SVD which is a conventional tool for the analysis
and comparison of such linear inverse problems. It provides
not only the reconstructed parameters but also a framework for
the quantification of key properties such as the resolution and
stability of the reconstructions [16]. By applying SVD to S,
we get UΣV

T , where U and V are the singular vectors which
form a basis for the data and the model space (conductivity
distribution in this case), respectively, and Σ is a diagonal
matrix, the diagonal entries of which are called the singular
values. The conductivity parameters can be reconstructed by
calculating the generalized inverse S

† which can be expressed
in terms of singular components as VΣ†

U
T , where Σ† is

the pseudo-inverse of S with every nonzero entry replaced
by its reciprocal. It is apparent that the small singular values
yield instability in reconstructions and must be suppressed.
Generally, a truncation by using only the t column vectors
of U and V corresponding to the t largest singular values
is preferred to stabilize the inversion when the data are
inaccurate. This improves the condition number and in turn
mitigates the ill-conditioning of S. The solution can eventually
be computed from,

∆σ = VΣ†
tU

T∆v (5)

where the subscript t is defined as the truncation index (or
regularization parameter) that determines the stability of the
inversion by ignoring the n – t number of small singular values
in Σ and the associated singular vectors in U and V.

There are several ways to select t (e.g., L-curve, discrepancy
principle, generalized cross validation, etc. [26]). In this paper,
t was selected based on the definition of SNR as explained
follows. Let ρ1 be the largest singular value and ρt the tth

largest one, the proper selection of the truncation level t
was established by choosing the maximum t that satisfies the
following equality [27],

SNR = 20 log10

�
∆vrms

δrms

�
≥ 20 log10

�
ρ1
ρt

�
(6)

where ∆vrms and δrms are the root mean square of the
perturbed voltage signal and the noise signal, respectively.
The left hand side of the inequality is defined as the SNR.
If the noise is modeled as an additive white Gaussian noise
of zero mean, δrms simply refers to standard deviation of the
noise. Note that, in numerical analysis, ρ1/ρt in equation 6
is commonly referred to as the condition number and is a
measure of the ill-conditioning of the problem.

B. Quality measures

Previous sections clarified how the reconstructions can be
obtained from the sensitivity matrix as a means of applying
singular value decomposition. This section, however, is about
the measures that quantify the output images. The linear
inverse theory, permits us to attain various local or regional
quality measures with regard to the resolvability of conduc-
tivity parameters. For that purpose, a quantification of the
resolution matrix mean in terms of point spread functions is
the widely utilized method of choice. This allows obtaining the
resolution limits of the reconstructions without even having
measurements. The resolution matrix can simply be defined
as R = S

†
S ∈ RN×N with N being the number of model pa-

rameters. Ideally, all true parameters can be perfectly resolved
if R is an identity matrix; however, in practical applications
due to the limited amount of data and nonzero measurement
noise, R is far from an identity matrix. The columns of R are
commonly referred to as the point spread functions (PSF). In
terms of SVD components resolution matrix can be calculated
from:

R = VΣ†ΣV
T . (7)

Therefore, the resolution is simply VV
T considering only the

singular vectors corresponding to the nonzero singular values
determined by the truncation index t.

Although the complete analysis of the resolution matrix
by browsing through each PSF of individual voxels is highly
informative, it is non-trivial in practice due to the large number
of parameters. Practical measures to quantify the key features
of the PSFs are desired for performance evaluation. Therefore,
to evaluate the performance of these different modalities, we
used a set of evaluation criteria defined in GREIT (Graz
consensus Reconstruction algorithm for EIT) [15] which are in
order of importance: amplitude response (AR), position error
(PE), resolution (RES) and shape deformation (SD).

We characterized these modalities through the quality mea-
sures based on the selected PSF as the image of a point
conductivity change (i.e., the conductivity change of a single
voxel), which is much smaller than the resolution of EIT, MIT
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and ICEIT with 16 channels. We used 2-D cross-sectional
images of the PSFs for the evaluation and we refer to the
position of the perturbed voxel as the target position. The
location of the PSF peak is called the center of gravity

(CoG). Hereafter, the PSF is represented by the discrete vector
x̂. We considered the quarter maximum amplitude set, i.e.,
x̂q ≥ 0.25max(x̂), as the region of interest (ROI). In the
following, we briefly summarize the quality measures and
explain how they can be calculated efficiently:

1) Amplitude Response (AR) is defined as the maximum
amplitude of the PSF divided by the associated voxel
area VT . It can be written as:

AR = max(x̂)/VT , (8)

AR is regarded as the most important figure of merit to
decide the image quality at GREIT, which depends on
the accuracy of each measurement. It is desirable for AR
to be uniform over the range of target positions.

2) Position Error (PE) is used to measure the extent of
dislocation of the PSF peak from the target position. It is
calculated as the discrepancy between rq (the centre of
gravity of the ROI) and rt (the original position of the
target):

PE = rt − rq. (9)

It is important for PE to be small, because large PE may
lead to unreliable interpretation of images.

3) Resolution (RES) is used to measure the smallest visible
object within a system that reflects the system resolution.
It is calculated based on the ratio of the area of ROI
(Aq) to the area of entire cross-section (A0) and can be
expressed as:

RES =
�
Aq/A0, (10)

RES measures radius ratios rather than area ratios.
4) Shape Deformation (SD) quantifies the artifacts that often

appear for the target positions placed near the electrodes
or tank boundary. Those strange shaped artifacts may lead
to imaging artifacts and thus incorrect interpretation of
images. SD can be calculated as,

SD =
�

k �∈C

[x̂q]k/
�

k

[x̂q]k, (11)

where C is a circle centered at the CoG of x̂q with an
equivalent area of Aq .

In general, it is desirable for AR, PE, RES and SD to be
constant, while PE, RES and SD should be as small as possible
for any target position. AR and PE are regarded as the most
important figures of merit [15].

C. Simulation protocol for quality measures

Considering uniformly distributed electrodes and coils on
the surface, the differences in PSFs at a fixed radial distance
are marginal. Therefore, we investigated the PSF character-
istics on the radial axis. For a radial evaluation, the central
transverse slice, i.e. at z = 0, was divided into tiny coaxial
rings of different radii starting from the origin to the periphery
of the slice as shown in figure 3. The thickness and height of

the rings were selected as 1.25 cm and 5 cm, respectively.
Recall that the cylindrical phantom has a radius of 10 cm and
a height of 25 cm. The measures for the PSFs corresponding
to the perturbation at each voxel were calculated and averaged
over the ring that they were associated. A detailed illustration
describing the computations is given in figure 3 and the steps
taken are briefly summarized below:

1) The sensitivity matrices of EIT, MIT, ICEIT and MMT
were computed based on a uniform conductivity distribu-
tion within the cylindrical phantom and were normalized
based on equation 4.

2) The PSFs located at each voxel of the finite element
mesh (i.e., resolution matrices of the modalities) were
calculated and the corresponding quality measures were
computed for each PSF.

3) The phantom is divided into ring shaped regions of
different radii for a radial evaluation and the computed
quality measures were averaged over the ring volume that
they were associated.

As can be noted from equation 7, the PSFs are strictly
dependent on the regularization applied. Thus, we calculated
two sets of PSFs considering different levels of truncation
of the singular vectors. One is computed for a 120 dB SNR
and the other is for 60 dB SNR according to equation 6 and,
hereafter, these two cases will be referred to as 120 dB and
60 dB tSVD regularizations, respectively.

IV. RESULTS

A. Sensitivity maps

The sensitivity maps give ideas about the imaging char-
acteristics and suggests how the electrodes and sensors can
be positioned effectively. Figure 4 displays the calculated
sensitivity distributions of EIT, MIT and ICEIT systems for
particular sources and detector pairs. The locations of the
source and detector pairs are explicitly shown for all systems.
For the case of EIT, two neighboring electrodes are used to
inject currents and an oppositely located electrode pair is used
to measure surface voltages. Sharp peaks can be noted at the
proximity of the electrode locations. However, the sensitivity
map of MIT is found to be spatially smoother than that of
EIT. For both cases, large positive and negative sensitivities
are noted, particularly near-boundary zones. For the case of
ICEIT, the sensitivity is found to be zero for the cross-sectional
plane, which is expected due to the special symmetry of
the arrangement. That’s one of the reasons that we did not
consider coil and electrode configurations on a single plane.
Another reason was to avoid mirroring artifacts that are usually
observed for such symmetric configurations.

B. Singular value analysis

After SVD had been performed on the sensitivity matri-
ces, the truncation levels required for a stable image re-
construction were determined using the logarithmic ratios,
i.e., 20 log10 (ρ1/ρt), between the first and the remaining
singular values as compared to the SNR level as shown in
figure 5. The ascend of the curves indicate key properties of
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Fig. 3. Demonstration of how the radial analysis of quality measures is performed. The phantom was partitioned into coaxial rings of different radii starting
from the origin to the boundary. Each ring has a fixed 1.25cm thickness and 5cm height. The measures for the perturbation at each voxel within the ring are
calculated and averaged over the ring.

Fig. 4. The sensitivity distributions on the central plane for EIT, MIT
and ICEIT. Note that, for the case of ICEIT, the sensitivity is zero for
the cross-sectional plane, which is expected due to the special symmetry of
the single-plane arrangement (That’s why we considered coil and electrode
configurations on two separate planes).

the inversion such as imaging stability under noisy data. The
curve corresponding to EIT ascends more steeply than others
and therefore reflects a faster drop of the singular values. For
EIT, only 92 out of a total number of 256 singular values can
effectively be used for a stable image reconstruction consider-
ing 60 dB tSVD regularization. On the other hand, the curve of
MMT ascends with a smoother slope and the truncation index
is significantly larger considering SNR levels below 120 dB.
This clearly indicates improved conditioning of the inversion
and reconstruction stability. In addition, the continuous and
dashed curves in figure 5 represent the adjacent and quasi-
opposite stimulation and measurement patterns, respectively.
The curves for the adjacent pattern were found to ascend
more steeply than the quasi-opposite pattern at start and then it
ascends more slowly. However, the effect of different patterns
on the singular values were found to be marginal as compared
with the singular values of different modalities.

C. Quality distributions

Figure 6 displays the resulting quality measure plots of the
cross-sectional PSFs (in order of importance) along the radial
axis for two different regularization applied (i.e., different
truncation levels). The plots in the left and right columns
represent the cases for 120 dB and 60 dB tSVD regularizations
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Fig. 5. Y-axis represents the logarithmic ratio between the first and the kth
singular value in dB (i.e., the condition number of the sensitivity matrices
in dB). k represents the measurement index. Only the values below 100 dB
are shown. The abbreviations adj and opp represents the adjacent and quasi-
opposite stimulation and measurement patterns, respectively.

and they represent the imaging performances for the case
of low-noise and high-noise, respectively. The corresponding
simulation protocol is described in the ”simulation protocol
for quality measures” section, previously and illustrated in
figure 3.

It was found that the AR value of the hybrid method is
approximately double the values produced by other methods. It
clearly indicates a larger peak of the PSF in the hybrid method
for both cases of 120 dB and 60 dB tSVD regularizations.
The shape of the AR plots showed similar patterns for all
modalities, so we calculated the dynamic range which is the
ratio between the maximum and minimum AR values. The
dynamic ranges for EIT, MIT, ICEIT and MMT are found to
be 3.3, 4, 5.8 and 3 for the case of 120 dB tSVD regularization
and 3.5, 4, 3.4 and 2.8 for for 60 dB tSVD regularization,
respectively. The lower dynamic range means smoother curve
with more constant values and AR also should be constant for
any PSF position. The results showed that AR of MMT has
the least dynamic range among all.

The PEs of all methods are found to increase with the radial
distance. The PE curve of MMT is the most constant and the
average PE of MMT over the entire cross-section is about two
times smaller than the PEs of other modalities for both 120 dB
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Fig. 6. The plots of the average quality measures along the radial axis. Y-axes refer to the quality measures and x-axes refer to the index of the rings with
different radii (1 denotes the central ring and 8 denotes the ring close to the boundary). The left and right columns represent the cases for 120 dB and 60 dB
tSVD regularizations, respectively.

and 60 dB tSVD regularizations. The effect of regularization
on the PE values of MIT is found to be marginal.

The RES plots show that 60 dB tSVD regularization results
in high RES values particularly at the central locations, except
for the case of MIT. The RES of MMT is more uniformly
distributed from center to the edge and smallest, which are
the desired behavior. Considering zero truncation, MMT pro-
duces RES values about 0.18 at central regions and 0.10 at
regions close to the boundary whereas the best among other
modalities produces 0.26 for inner and 0.17 for near-boundary
regions. Considering 60 dB tSVD regularization, MMT shows
approximately %10-20 lower RES values than others.

The SD of MMT is very similar to that of ICEIT, particu-
larly for 60 dB tSVD regularization. The SD values of MIT
near central regions are found to be very high. The SD of EIT
is very low compared to others.

D. Point spread functions

For a detailed investigation, the PSFs at six specific lo-
cations were computed for both 120 dB and 60 dB tSVD
regularizations in order to analyze the imaging characteristics
of the modalities. The corresponding PSFs are depicted in
figure 7 and figure 8. The coronal and transversal images were
chosen to cut through the object for particular target locations.
For convenience, hereafter, the PSFs corresponding to different
locations will be referred by the labels given in bottom-left of
the images (i.e, P1, · · · , P6). For instance, P1-MIT will refer
to the PSF of MIT at location [3.33, 0, 6.66] cm. From the
images, the PSFs located close to the z-axis (i.e., P1, P2 and
P3) provide more diffused characteristics as opposed to the

locations close to the surface (i.e., P4, P5 and P6). The position
errors of the PSFs are relatively low for P5 and P6, however,
for P4 the localization errors become visible, particularly
for EIT and MIT. With increasing distance from the sensor
locations, the PSFs show more blurry characteristics. P5 and
P6 produced the most accurate and reasonable results with
regard to the peak location and shape. Although, not visible
from the colormap, the more blurry the distribution the less
the peak amplitude of the PSF is. The PSFs computed with
all singular values and vectors show better localization and
resolution compared to PSFs corresponding to 60 dB tSVD
regularization, particularly at central regions.

V. DISCUSSIONS AND CONCLUSIONS

Our primary motivation was to investigate how much addi-
tional performance improvements can be expected by combin-
ing datasets of different modalities. Therefore, we compared
the imaging characteristics of 16-channel conventional EIT,
MIT and ICEIT systems, and combined them to investigate
how much the imaging quality of the systems can be enhanced.
The analysis is mainly based on the evaluation of the PSFs
using a set of quality measures.

In general, the cross-sectional reconstructions are imaged
rather than visualizing the whole 3-D reconstructions. There-
fore, for the calculation of the measures, we calculated the
complete 3-D PSF at first, however used the 2-D transverse
PSFs at the target voxel locations. It was shown that the con-
dition number of such a hybrid system (MMT) with 16 pairs
of electrodes and coils is much lower than the conventional
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Fig. 7. The PSFs for different measurement techniques considering 120 dB tSVD regularization. The small dots on the images represent the target positions
of the PSFs. MAX and MIN values on the colorbar represent the maximum and minimum values for each image.

Fig. 8. The PSFs for different measurement techniques considering 60 dB tSVD regularization. The small dots on the images represent the target positions
of the PSFs. MAX and MIN values on the colorbar represent the maximum and minimum values for each image.
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16-channel EIT and MIT systems and thus, shows promising
results in terms of image stability.

The quality measures are preferred to quantify the key
features of the PSFs to characterize these modalities. The
PSFs were calculated considering 120 dB and 60 dB tSVD
regularizations to investigate the theoretical and practical limits
of image qualities, respectively. All modalities showed similar
AR plots, where MMT yielding the highest values with
more uniformly distributed values. MMT also yields a more
constant PE and RES plots with smaller values than those of
other modalities for both regularizations applied. This clearly
indicates that MMT offers an improved imaging performance
and can be an alternative to the existing modalities.

As a final evaluation, the PSFs in several particular locations
inside the phantom is calculated to provide an extensive in-
depth look into the imaging characteristics of these modalities
at both the coronal and transversal planes. It was noticed
from figures 7 and 8 that the images become more blurry
with increasing distance between target and sensors. The
120 dB tSVD regularized images show better localization and
resolution properties than 60 dB tSVD regularized images,
particularly at central regions. The performance of EIT and
MIT is found to be poor overall, particularly for central
regions, however, MMT and ICEIT showed promising results.

ICEIT was proposed as an alternative method for conduc-
tivity imaging [28], [29], yet, with a completely different coil
configuration compared to the one we used in this paper.
Conventional ICEIT systems use typically several large coils
with their axis perpendicular to the imaged cross-section to
be used as sources. This arrangement has been used to obtain
improved resolution at the central locations as compared with
the EIT [30]. However, it is not possible to have a sensitive
zone with the single plane configurations as proposed in this
paper. On the other hand, the two-plane configurations also
favored ICEIT over EIT for reasonable levels of SNR in terms
of resolution. Nevertheless, ICEIT outperforms EIT also in the
plane analyzed in this paper.

In this paper, we consider normalization based on the L2-
norm of the the sensitivity matrix for the comparisons. With
this approach the systems can be assessed using only the
sensitivity matrices even without having measurements and
renders possible to understand the theoretical limits of the
imaging performances. Alternatively, another option would
be normalizing by the noise inherent in the modality. For
instance, introducing data covariance matrices to be used
for regularization [13] and make inferences on the resulting
images.

We conclude that electrical and magnetic measurements
complement each other and can be used to gather additional
information about the model parameters. Such a multi-modal
dataset results in an improvement of about 20% in spatial
resolution for feasible levels of SNR. Although the proposed
multi-modality system provides more opportunities to improve
image quality, it may comprise all the hardware drawbacks
of electrode and coil based measurement systems. In this
regard, body motions should still be tracked during data
acquisition, the dynamic range of the receiving circuits must
be large enough to record the signals due to the conductivity

perturbations and electrode artifacts must be considered.
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