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Abstract 

Coronary artery disease is a leading cause of death, is routinely diagnosed using 

myocardial perfusion imaging (MPI), and can be managed effectively with proper therapy. 

However, uniform reduction in flow throughout the heart due to disease in multiple arteries 

may not be detected with MPI. Myocardial blood flow (MBF) quantification using positron 

emission tomography (PET) can overcome this limitation, but has limited clinical application 

due to a need for an onsite cyclotron. 
82

Rb PET MPI does not require a cyclotron and is 

being applied widely.  

In this work, a region-of-interest (ROI) based method to quantify MBF from dynamic 
82

Rb PET images was developed. Blood and myocardium time-activity-curves (TACs) were 

generated from dynamic PET images and used as input and output functions respectively to a 

tracer kinetic model. MBF was resolved by fitting the model to the TACs. The highly 

automated method had little operator-dependent variability of MBF. However, due to the 

limited resolution of PET, signal from myocardial tissue can spillover into blood regions, 

contaminate the blood TACs, and can degrade the accuracy of MBF.  

Factor analysis (FA) can decompose dynamic images into underlying components of 

the image, but requires constraints to ensure physiological accuracy. A model-based FA 

method (MB) that incorporates the tracer kinetic model into the FA process as a constraint is 

developed and compared with a previously proposed minimal-structure-overlap FA method 

(MSO). In simulations, MB was more accurate and reproducible than MSO. In rat 

experiments with arterial blood sampling as a standard, MB resolves more physiologically 

accurate blood TACs. Structures were more reproducible with MB vs. MSO in repeat images 

of the same dog with variable-length 
82

Rb infusion durations, and MBF estimates tended to 

be more reproducible. 

The accuracy of MBF in humans using ROI-based and MB-based methods was 

evaluated using 
15

O-water imaging as a standard, but no significant differences were found. 

However, MBF regional uniformity in normals was significantly improved over ROI based 

methods. In a patient population uniformity was not significantly different between methods, 

indicating that uniformity was not artificial. Thus MB based MBF values may be more 

sensitive to detect small changes in MBF. 
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Chapter 1.  

Introduction 

Coronary artery disease (CAD) can result in reduced blood supply to regions of the 

heart muscle (myocardium) and is the leading cause of death in Western society. CAD can 

be clinically detected with relative myocardial perfusion imaging (MPI). However, uniform, 

reductions in blood flow due to disease in multiple large coronary arteries or diffused disease 

in the small arteries may not be detected with MPI. Quantitative myocardial blood flow 

measurements (MBF) are sensitive to uniform changes in flow and can be measured most 

accurately, and non-invasively, using positron emission tomography (PET). In PET a radio-

active molecule, called a tracer, is injected to the patient and is imaged using a special 

camera. The images are then analyzed to quantify MBF.  

While PET is an excellent modality for measuring MBF, it has some limitations. In 

order to address these limitations several image analysis techniques have been developed. 

This work focuses on image analysis techniques for quantifying MBF from 
82

Rb PET images 

using factor analysis. A novel technique, referred to as kinetic model based factor analysis 

(MB) is developed and evaluated.  

The objective of this work is to improve quantification of MBF. Clinically, MBF is 

desired as a means to detect heart disease more accurately and to guide therapy. In a research 

setting, quantification is desirable to accurately measure changes in MBF during disease 

progression and to measure response to therapy. Chapter two introduces the background 

knowledge and terminology and describes the goal of this work. 

Chapter three describes a region-of-interest (ROI) based method for quantifying MBF 

from dynamic 
82

Rb PET images. The ROIs were defined using a novel, highly-automated 

method designed to minimize operator variability. The operator-dependent variability of this 

method is evaluated and compared with other software packages. The content of this chapter 

has been published in Klein R., et al., J. Nucl. Cardiol., 2010 (Online prepress). 

Chapter four evaluates the physiological accuracy of dynamic image decomposition 

using constrained factor analysis. A newly proposed, minimal factor overlap (MFO) method 

is compared with a previously published minimal spatial (MSO) method. The limited 

physiological merit of both methods and the need for a physiologically accurate constraint is 

highlighted. The content of this chapter has been published in Klein R., et al., IEEE-Med. 

Imag. Conf Record 2007;5(10):3268-72. 

Chapter five introduces the kinetic model based factor analysis method (MB) as a 

physiologically accurate image decomposition method. MB and MSO are compared using 
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simulation and experimental data. Experimental validation of factors was achieved using 

simultaneous arterial blood sampling in rats and structure validation was achieved using 

blood pool imaging in a dog. In addition reproducibility of structures in the same dog using 

different imaging conditions is described. Likewise, reproducibility of MBF quantification in 

the same dog under varying imaging conditions is described. MB agreed better with 

simulation data and experimental measurements, indicating improved physiologic accuracy 

of the decomposed factors and structures compared with MSO. Global MBF values in the 

same dog and with varying tracer infusion intervals also tended to be more reproducible with 

MB, indicating that MB may resolve more precise MBF values. The content of this chapter 

has been published in Klein, R., et al., Med. Phys., 2010 (In Press). 

Chapter six evaluates MBF quantification using MB factor analysis. MBF values are 

compared to those obtained using the ROI based method described in chapter 2, and 

previously described spillover correction methods. Accuracy is evaluated in comparison to 
15

O-water PET imaging as a gold-standard. While MB did not significantly improve the 

accuracy of MBF values, the regional uniformity of flow measurements in a healthy human 

population was significantly improved. This same trend was confirmed in a patient 

population along with the ability to resolve regional variability in flow. These results indicate 

that MB based MBF quantification can reduce the sensitivity to image noise and detect 

smaller regional MBF variations, while maintaining quantification accuracy. Some of the 

content of this chapter has been published in Klein, R., et al., Society of Nuclear Medicine 

Annual Meeting Abstracts, 2010 (In Press). 

The final chapter summarizes the results and discusses future work. 

 

Parts of this work have been published in: 

 Klein, R., Lortie, M.,Adler, A., Beanlands, R. S., deKemp, R. A., “Fully 

Automated Software for Polar-Map Registration and Sampling from PET 

Images”, Nucl. Sci. Symp. & Med. Imag. Conf. Record 2006:pp 3185-88. 

 Klein R., Bentourkia M., Adler A., DaSilva J., Wassenaar R., Beanlands R.S., 

deKemp R.A., “Anatomical accuracy & variability in factor analysis of 

dynamic structures (FADS) with cardiac 
18

FDG PET imaging.”, S. of Nucl. 

Med. annual meeting proceedings, 2007;48:408. 

 Klein R., Bentourkia M., Beanlands R.S., Adler A., deKemp R.A., “A Minimal 

Factor Overlap Method for Resolving Ambiguity in Factor Analysis of Dynamic 

Cardiac PET”, IEEE-Med. Imag. Conf Record 2007;5(10):3268-72. 

 Lortie, M., Beanlands, R. S., Yoshinaga, K., Klein, R., DaSilva, J. N., deKemp, 

R. A., “Quantification of myocardial blood flow with 82Rb dynamic PET 

imaging”, Eur. J. Nucl. Med. and Mol. Imaging., 2007;34(11):1765-74. 
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Chapter 2.  

Background 

Coronary artery disease (CAD) is the leading cause of death worldwide [1,2,3]. The 

economic burden in the US alone in 2006 was estimated to be $400 billion [4]. Early 

detection of disease can lead to more effective intervention and is therefore vital to 

improving patient outcome. Quantification of myocardial blood flow with positron emission 

tomography may detect CAD at its earliest stages and help guide therapy [5,6,7]. 

The heart is primarily composed of muscle tissue (myocardium) that contracts and 

dilates in a manner that pumps blood through the entire body via a circulatory system as 

demonstrated in Figure 2-1. The veins aggregate the blood in the body and deliver it to the 

right atrium and then on to the right ventricle (RV) of the heart, where a contraction of the 

heart pushes the blood through the lungs. In the lungs CO2 is extracted and the blood is 

oxygenated. The blood is then returned to the left atrium of the heart and onto the left 

ventricle (LV) where a contraction returns the blood to the body through arteries, thus 

completing the cycle.  

 

Figure 2-1 – Circulatory system 

diagram showing the four 

chambers of the heart, lungs 

and body. Oxygenated blood 

from the lungs is pumped 

through the left atrium and 

ventricle to the body (and the 

heart muscle) through arteries. 

The non-oxygenated blood is 

returned by the veins to the 

right atrium and ventricle to be 

pumped back to the lungs for 

oxygenation. 

 

Immediately at the output of the LV into the main artery (aortic root), the left and 

right coronary arteries branch off to feed blood to the heart itself. In the event that these 

arteries (or their distal branches) become narrowed (stenosis), blood supply to dependent 

regions of the heart is restricted or altogether stopped (occlusion). The tissue downstream 

from the stenosis can become deprived of oxygen (ischemia) which is necessary for cell 

Body 

Lungs 

LV 

RA 
LA 

RV 

Oxygenated blood 

Non-oxygenated blood 
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survival and function. When the heart is exercised (stressed) the demand for oxygen 

increases, and ischemia can worsen. Acutely, coronary artery occlusion can result in a heart 

attack and death. Chronically, stenosis can lead to reduced heart function, muscle damage, 

and eventually scarring. While therapies exist to restore blood flow, they can only benefit 

patients that are diagnosed sufficiently early and are treated successfully. 

In the heart myocardium, the arteries branch off into smaller and smaller arteries in a 

fractal manner [8] until they become capillaries. The capillaries receive oxygen-rich blood 

from the arteries, exchange oxygen, nutrients, CO2, and waste with the surrounding tissue, 

and deliver the waste-rich blood to the veins [9]. The small arteries, capillaries, and veins 

(<100 μm in diameter) are sometimes referred to as the micro-vasculature. Widespread 

(diffused) disease of the micro-vasculature can affect the supply of blood to the myocardium 

[9]. 

Myocardial blood flow (MBF) quantifies the rate at which blood perfuses the 

myocardial tissue and is usually measured in units of mL/min/g, read as mL/min of blood per 

g of tissue. MBF measurement, therefore, is an increasingly important screening, diagnostic, 

and prognostic tool [10,11,12], as it enables detection of disease at its earliest stage 

[7,13,14]. Clinically, an accurate means of measuring MBF is crucial for early detection of 

disease and tracking its development during therapy. In research settings, accuracy is critical 

for understanding disease progression, and evaluating the efficacy of new therapies. MBF 

can be most accurately measured in vivo using dynamic positron emission tomography and 

suitable tracer kinetic models. 

2.1 Cardiac Positron Emission Tomography 

With the ability to image the physiological distribution of specific molecules within 

the body in a relatively non-invasive manner, nuclear medicine imaging has become a 

leading diagnostic tool, including for measurement of MBF [15]. A compound labelled with 

a radioactive isotope is introduced to the patient, usually by intravenous injection, and its 

location in the body is later imaged using a scanner sensitive to the emitted radiation. The 

compounds, referred to as radio-labelled tracers, are designed to interact within the patient so 

that they aggregate in a region of interest by participating in a biochemical process of 

interest. The compounds are introduced in trace amounts so that they do not have a 

significant effect on the physiology of the subject and are therefore commonly referred to as 

tracers. Over time, the radioactive label in the tracer decays, resulting in emission of 

radiation. The emitted radiation is proportional to the concentration of the labelled molecule. 

Given a closed system containing radioactive material, an exponential decrease of 

activity is observed as time progresses [16]. The rate of decay is a characteristic property of 

the radioactive isotope, and is measured as a statistical average of the elapsed time until half 

the original activity remains. This measure is referred to as one half-life, T1/2, and can vary 

from split seconds to many millennia depending on the isotope. In molecular imaging, one 
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would like an isotope that lasts long enough to perform the measurement, but short enough to 

minimize exposure to the patient. A short half-life also carries the benefit of reducing the 

time between repeated scans of the same subject. Typical imaging applications use isotopes 

with a half-life ranging from several seconds to several hours. 

When imaging the patient, regions containing high tracer concentration radiate 

strongly, contrasting with the surroundings. A scanner that measures the radiation from the 

patient can reconstruct tomographic images through the field of view. The concentration of 

activity is dependent on the interaction of the tracer within the body and is therefore 

indicative of a corresponding biochemical and physiological function within the body, in 

contrast to anatomical images produced by modalities such as conventional x-ray computed 

tomography (CT) and magnetic resonance imaging (MRI). 

Positron Emission Tomography (PET) is the leading nuclear imaging modality in 

terms of precision, ability to make quantitative radiation concentration measurements, and 

minimizing the patient‟s radiation dose [17]. The radioactive label is an isotope that decays 

by positron emission. In the nucleus, a proton is converted into a neutron and excess positive 

charge is ejected in the form of a positron (positively charged electron). The positron travels 

a few mm through the surrounding medium and eventually interacts with an electron 

resulting in a mutual annihilation. The combined mass of the electron and positron is 

converted into two equal energy (511keV) collinear photons as shown in Figure 2-2-left. 

These high energy photons travel through the body and can be detected by dense scintillating 

crystals coupled to photomultiplier tubes. 

 

Figure 2-2 – Positron emission tomography. The positron discharge followed by annihilation with an 

electron producing two collinear photons (γ-rays) on the left. The projected line of response based on a 

detection of coincident events by the scanner is shown on the right.  The image is a cross-section of the 

chest with red depicting tracer uptake in the heart muscle. A transmission image is fused in gray, 

showing the lungs and arms for anatomical reference. 

A typical PET scanner consists of planar rings of detectors containing hundreds of 

detectors. Since the two photons formed during a decay are created at the same time and 

travel in opposite directions at the speed of light, their detection is expected to occur almost 
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simultaneously (i.e. in coincidence) by detectors on opposite sides of the event (black arrows 

Figure 2-2-right). If two coincident photons are detected by the scanner it is assumed that the 

decay event occurred along the line of response (LOR) connecting the two detectors. 

Coincident detections can be processed through various mathematical algorithms, such as 

filtered back projection or iterative algorithms, to reconstruct tomographic images (a volume 

made up of slices) of the scanner field of view (FOV).  

The quality of the image is degraded by scattered and random events which are 

detected by the camera and cannot be discerned from unscattered coincident events. Scatter 

results from interaction of a photon with the medium it is travelling through, resulting in a 

change of the photon‟s direction of travel (green arrows in Figure 2-2-right). In this case, the 

LOR connecting the coincident detectors does not traverse the location of the decay event. 

Random events result from two separate decay events which occur almost simultaneously 

and one photon from each (red arrows in Figure 2-2-right) is detected by the camera. The 

reconstruction algorithm treats these events as a single decay along the LOR connecting the 

detectors (along the same LOR shown with black arrows in Figure 2-2-right). Scatter and 

random events may result in a biasing (background offset), noise, and reduced resolution 

[16]. While scatter correction and randoms rejection and correction techniques are 

continuously being improved, the accuracy of PET is still limited by these events. 

 

Figure 2-3 – Various views of pet image volumes after reorientation to the LV reference frame. 
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The reconstructed PET image volumes can be viewed using specialized software that 

renders slices through the FOV (Figure 2-3 top left). Image units can be in activity 

concentration (Bq/cc) or raw counts, but for viewing purposes, images are often normalized 

to peak image intensity. In cardiac applications, the image is typically reoriented to the heart 

reference frame to generate short axis (SA), vertical long-axis (VLA), and horizontal long-

axis (HLA) slices through the LV (Figure 2-3 bottom left). The image may be registered to a 

mesh (top right) for viewing of the LV surface. The LV surface is often viewed in polar-map 

form (bottom-right) which presents the entire LV surface in one image (without visual 

occlusion). Synthetic artery structures (purple) can be superimposed to the LV mesh and 

polar-map. 

All PET tracers must be labelled with a positron-emitting isotope. A major advantage 

of PET over other molecular imaging modalities is that oxygen, carbon, and nitrogen, which 

are common building blocks in organic chemistry, have positron-emitting isotopes with 

practical half-lives (Table 2-1). These isotopes give the potential to synthesize almost any 

organic compound as a PET tracer. 

TABLE 2-1 – COMMONLY USED POSITRON-EMITTING ISOTOPES [18] 

Isotope Half Life (T1/2) 

[min] 

Mean distance to 

annihilation in water [mm] 

Cyclotron Produced 
15

O (oxygen-15) 2.1 1.1 
13

N (nitrogen-13) 10.0 0.72 
11

C (carbon-11) 20.3 0.56 
18

F (fluorine-18) 110 0.35 
68

Ga (gallium-62) 67.8 1.1 

Generator Produced 
82

Rb (rubidium-82) 1.27 2.4 

 

Various tracers have been developed to image different organs, tissue, and functions. 

Increased glucose consumption, for example, is used for detection of cancerous tumours 

[19,20,21] and distinguishing between hibernating (live) and necrotic (dead) tissue in the 

heart [22,23,24] using 
18

F-Fluorodeoxyglucose (FDG). In neuroscience FDG has been used 

to locate hypoactive and hyperactive regions in the brain to diagnose disease such as epilepsy 

and schizophrenia [18,25]. Another application used PET imaging to assess the integrity of 

the blood brain barrier [26] using 
82

Rb as a tracer. The list of applications goes on and is 

continuously growing. 

Although FDG scans for detection of tumours are by far the most common 

application of PET today, potential applications are only limited by the available tracers and 

image analysis techniques. As research into these fields progresses PET promises powerful 

new tools both for research and clinical applications. One of the most actively sought 

applications is accurate, efficient, and cheap measurement of MBF. 



Kinetic Model Based FA for MBF with 
82

Rb PET  Ran Klein, University of Ottawa 

  9 

 

2.1.1 MBF Tracers 

Currently 
15

O-water (water that is labelled with an 15-oxygen radionuclide) PET is 

considered to be the most accurate method for measuring MBF non-invasively [7]. Water is 

injected into the blood stream and diffuses freely across capillary and cell membranes and is 

therefore distributed to the body organs in proportion to the flow of blood. 
15

O-water is 

manufactured using an onsite cyclotron and must be administered immediately to the patient 

due to its short half-life (2.1 min) requiring specialized delivery and infusion equipment. 

Good coordination between the cyclotron lab, imaging technologists, and nursing staff is 

critical to successful water exams. Consequently, water imaging studies are prohibitively 

expensive for routine use and alternative tracers are being sought. 

Ammonia is taken up by cells from the blood stream through a variety of active 

transporters as well as passive diffusion. The cyclotron produced 13-nitrogen is synthesized 

to produce 
13

NH3. The 10 minute half-life of 
13

N makes administration of the tracer much 

simpler than water; however, the need for an onsite cyclotron and radiochemistry lab 

remains. 
13

N-ammonia is seen as a practical alternative to 
15

O-water with similar accuracy 

for perfusion imaging [7]. 

Rubidium (and its positron emitting isotope 
82

Rb) is a cation that is bio-chemically 

similar (analogous) to potassium [6,7,27]. Potassium is extracted by all living cells through 

ionic pumps that are present in the cell membrane [28]. Potassium analogues are taken up by 

the heart muscle cells at a rate that is dependent on blood flow [29,30]. After injection of 
82

Rb into the blood stream activity concentration in the myocardium increases, while activity 

concentration in the blood decreases over time. Several minutes after injection, PET images 

show retained activity in the heart contrasting with the low activity of the blood (as 

demonstrated in tomographic images in Figure 2-4). 

 Normal Perfusion  Abnormal Perfusion 

     

Figure 2-4 – Sample horizontal-long-axis images though the heart in 
82

Rb PET uptake images used to 

measure perfusion in the myocardium. A normal heart is shown on the left depicting the elliptic shape 

characteristic of a long axis cross section. The image on the right reveals reduced blood flow to the septal 

wall and apex of the left ventricle (blue arrows), shown by a relatively lower concentration of activity. 

Also, the larger heart may be indicative of heart failure.
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82
Sr/

82
Rb generators have been developed as an alternative to cyclotron produced 

tracers. The generators are loaded with 
82

Sr and can be used for 4-8 weeks as a constant 

source of 
82

Rb [31]. With sufficient patient throughput, 
82

Rb, can be very cost effective 

[32,33,34] (as much as 10 times cheaper than water/ammonia). In addition, the generators 

enable centres without a cyclotron to provide PET perfusion imaging services that would not 

be possible otherwise. During the life of the generator, 
82

Rb may be infused as frequently as 

every ten minutes, enabling fast serial imaging and high patient throughput. 

 A dedicated infuser is required to flush 
82

Rb activity from the generator and 

administer it to the patient. In [35] a custom 
82

Rb infuser to deliver a reproducible infusion 

profile regardless of the age of the generator is described, which may improve the 

reproducibility of MBF quantification [35,36]. The infuser also flushes the injection line 

automatically at the end of the infusion to remove activity outside the scanner field of view, 

which is important with the industry‟s transition from 2D to 3D PET instrumentation 

[37,38]. 

The shortcoming of using 
82

Rb is that its longer positron range (as listed in Table 2-1) 

results in lower resolution images. In addition, 
82

Rb decay discharges a 777KeV prompt 

photon with ~15% of the positron discharges, which may be detected in coincidence with an 

annihilation photon. The accumulation of these events leads to a nearly uniform background 

in the image which must be estimated and subtracted [16]. Finally, the extraction of 
82

Rb is 

dependent on flow and must be corrected for as part of the quantification process [39]. The 

benefits of 
82

Rb when compared to alternative perfusion agents outweigh these challenges. In 

the past five years 
82

Rb has seen exponential growth in the US market as well as increasing 

interest in Europe and Japan [40]. As 
82

Rb PET becomes routine in clinics, the demand for 

accurate diagnostics based on quantified cardiac blood flow has grown. 

2.2 Myocardial Perfusion Image Interpretation 

Relative myocardial perfusion imaging (MPI), after tracer uptake by the heart, is a 

well-established technique for the diagnosis and prognosis of CAD. Static uptake images are 

interpreted by physicians that evaluate the uniformity in tracer uptake between different 

regions of the heart under rest and stress conditions. A region with maximal uptake is 

assumed to be normally perfused, and regions with significantly reduced uptake are 

interpreted as abnormally perfused. Arteries associated with regions having reduced uptake 

at stress and normal uptake at rest are assumed to be narrowed (stenosis), as demonstrated in 

Figure 2-5. Arteries associated with regions having reduced uptake at rest and stresses are 

assumed to be completely occluded. Arteries associated with region having normal uptake at 

rest and stress are assumed healthy. 
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 Rest MPI Stress MPI 

         

Figure 2-5 – Relative MPI (Uptake) at rest (right) and stress (left) demonstrating partial stenosis of the 

LAD artery. The arteries are demonstrative of typical anatomy. 

False interpretation is common in cases where all regions of the heart exhibit reduced 

uptake [41]. This is particularly common in cases of multi-vessel disease [42], abnormal 

micro-vasculature function, and diabetes [43]. As a consequence, some of the most severe 

cases may go undetected or their severity may be underestimated [44]. 

2.3 Dynamic PET Imaging 

Absolute myocardial blood flow (MBF), as opposed to relative MPI, quantifies the 

rate of blood supply to tissue in units of mL/min/g (millilitres of blood per minute per gram 

of tissue). MBF can indicate whether the most highly perfused regions in the image are 

indeed normal as demonstrated in Figure 2-6. In normal patients rest MBF values are 

expected to be approximately 0.7-1.0 mL/min/g while at stress MBF values greater than 

approximately 2.5 mL/min/g are considered normal (demonstrated in Figure 2-6 left). In the 

presence of disease stress MBF may decrease below 2.0 mL/min/g (demonstrated in Figure 

2-6 right). In severe disease rest MBF may also be reduced. 

In order to quantify MBF, the rate at which the tracer is extracted from the blood and 

accumulated in the tissue is measured. To do so, a series of PET images are created 

sequentially from time of tracer injection until uptake is achieved.  

Dynamic image sequences are designed to have a minimal number of time frames to 

reduce image reconstruction time, to have sufficient temporal resolution to sample the tracer 

kinetics, and to accumulate enough photons to reconstruct good quality images. Typically, 

early time frames are short (2-20 s) and capture the fast redistribution of the tracer, and late 

time frames are longer (1-10 min) to reduce the image reconstruction time and accumulate 

sufficient coincidences when the tracer has decayed and dispersed in the patient‟s body. 

The administration of the tracer must also be optimized so that enough activity is 

present in the late time frames to support good image quality. However, one must not 

introduce so much activity so as to saturate the camera. While MPI tracer injections are 

commonly performed with a fast bolus, dynamic image infusions are often performed over a 

LAD 

RCA 

LCX 
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longer duration (10-30 s). With the generator produced 
82

Rb tracer, a specialized infuser is 

required to administer the tracer at a constant rate over a predefined infusion interval [35]. 

 

Figure 2-6 – Relative MPI uptake and absolute MBF in two patients with uniform uptake. In the normal 

patient (left), MBF is normal at rest and stress, while in the diseased patient (right) MBF is uniformly 

low at stress. 

 

Figure 2-7 – Regions of interest in a dynamic image sequence and their corresponding time-activity-

curves (TACs) shown below. 

Stress Uptake 

Rest Uptake 

Stress MBF Stress Uptake Stress MBF 

Rest MBF Rest Uptake Rest MBF 
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Time-activity-curves (TACs) can be generated by defining regions-of-interest (ROIs) 

and sampling the image over all time frames. An arterial blood input function is created by 

sampling a region in the image with high blood concentration and minimal contribution from 

other organs. Typically the left ventricle blood pool ROI is used [45], as demonstrated by the 

solid red curve in Figure 2-7. Since the LV blood pool is immediately upstream from the 

coronary arteries, it can be regarded as an arterial blood TAC, Ca(t). Similarly, sampling of 

the myocardium region over the image sequence generates a myocardial TAC, Cm(t). To 

assess regional variability, the myocardium ROI can also be segmented into several smaller 

ROIs [46,47]. 

A kinetic model relating arterial blood and myocardium activities can be assumed to 

describe the physiology with respect to the tracer molecule. The parameters of the kinetic 

model are obtained by minimizing the error between the measured and modeled myocardium 

TACs. Kinetic modeling may be equated to measuring system parameters by enforcing an 

input function (arterial blood TAC) and recording the system generated output function 

(myocardium TAC). 

The complexity of models varies based on the biochemical interaction of the tracer in 

vivo and the physical effects that are accounted for. However, the number of free parameters 

in a model is limited by the quality of the data, often requiring the use of simplified models 

[48,49]. Kinetic modelling results are validated for accuracy using a physiologic standard. In 

addition test-retest reproducibility is an important characteristic of the quantification method. 

While kinetic modeling is versatile and can be adapted to many tracers and physiologic 

functions of interest, this work focuses on quantification of MBF using 
82

Rb PET. 

2.4 MBF Quantification 

The kinetics of rubidium have been described using a two-compartment model 

consisting of blood, interstitial compartment, and tissue compartments [50,51]. However 

simplifications of the model have been favoured due to the complexity of the two 

compartment model compared to the quality of the data and also since the transfer of tracer 

from blood to tissue is of primary interest for quantification of MBF.  

The transfer of Rb from blood to myocardium tissue may be described by a model 

consisting of a compartment that is perfused by a flow of blood and an uptake rate, K1, 

describing the transfer of Rb into the compartment, as shown in Figure 2-8. An additional 

rate constant, k2, models the washout of Rb from the tissue compartment. The change in Rb 

concentrations in the compartment can be expressed using the following differential equation 

[39,52]: 

𝑑𝐶𝑡(𝑡)

𝑑𝑡
= 𝜌𝐾1𝐶𝑎 𝑡 − 𝑘2𝐶𝑡(𝑡) 2-1 
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Figure 2-8 – One compartment model for MBF quantification using 
82

Rb depicting that a voxel in the 

myocardium region of interest is composed of blood and a myocardium compartment. Tracer is taken up 

at rate K1 and is washed back out to the blood at rate k2. 

The uptake rate, K1, is measured in units of mL/min/g, read as mL/min of blood per g 

of tissue. The washout rate, k2, is measured in units of min
-1

. The density of myocardial 

tissue, ρ=1.04g/mL, must be included for units to agree. The same equation may be 

expressed using the convolution operation (equation 2-2) where Ct(t) [Bq/g] and Ca(t) 

[Bq/mL] are the respective tracer concentrations in the myocardial tissue and blood at time t. 

The convolution kernel (m(t)) is expressed as an exponent as in equation 2-3. 

𝐶𝑡 𝑡 = 𝐶𝑎(𝑡) ⊗ 𝑚 𝑡  2-2 

𝑚 𝑡 = 𝜌𝐾1𝑒
−𝑘2𝑡  2-3 

A region of interest overlapping the myocardium contains signal from the myocardial 

tissue as well as from arterial blood perfusing the tissue. Due to the limited resolution of 

PET, additional blood signal may “spillover” into the myocardium region increasing the 

proportion of blood in the ROI. Therefore, the corresponding myocardial TAC, Cm(t), may 

be modelled as a linear combination of myocardial tissue and arterial blood signals (Ct(t) and 

Ca(t) respectively) as demonstrated in Figure 2-8. The respective scalars Pt and Pa account 

for the fraction (0≤P≤1) of the ROI volume that can be attributed to either signal as in 

equation 2-4. Pt may also be referred to as the tissue recovery coefficient (RC). The recovery 

parameter Pa may also be referred to as the total blood fraction (TBF) which accounts for the 

combined contributions of signals from the tissue-blood volume and spillover from the blood 

in the adjacent LV cavity. 

𝐶𝑚  𝑡 = 𝑃𝑎𝐶𝑎 𝑡 + 𝑃𝑡𝐶𝑡 𝑡  

= 𝑇𝐵𝐹 ∙ 𝐶𝑎 𝑡 + 𝑅𝐶 ∙ 𝐶𝑡 𝑡  
2-4 
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By substitution of 2-2 and 2-3 for Ct(t) the following form may be obtained. 

𝐶𝑚  𝑡 = 𝑇𝐵𝐹 ∙ 𝐶𝑎 𝑡 +  𝑅𝐶 ∙ 𝐾1 ∙ 𝜌 ∙ 𝐶𝑎 𝑡 ⊗ 𝑒−𝑘2𝑡  2-5 

The impracticality of this approach becomes evident as the product contained in the 

curly brackets, which quantifies the myocardial signal, cannot be resolved into RC and K1 

without additional information or assumptions. The literature contains several methods for 

estimating RC including selection of calibrated values [42,53] and automatic estimation 

[54,55]. More commonly, it is assumed that the signal in the myocardial ROI is entirely 

composed of blood and myocardium signals, thus RC can be substituted by 1-TBF [56] 

giving 

𝐶𝑚  𝑡 = 𝑇𝐵𝐹 ∙ 𝐶𝑎 𝑡 +  1 − 𝑇𝐵𝐹 𝐶𝑡 𝑡  2-6 

This algebra would not be beneficial for quantifying flow, MBF, if it were not for a 

relationship with the uptake rate, K1. The relationship is through an extraction fraction that 

represents the micro-anatomy and the cell physiology with regards to the tracer. The 

extraction fraction refers to the ratio of the tracer in the blood that participates in the 

extraction process.  

The two primary means of tracer transport from blood into the compartment (tissue) 

are through diffusion and extraction [7]. Water has ideal properties as it diffuses freely, 

meaning that K1 directly represents flow and needs no extraction correction. 
82

Rb, 
13

NH3 

(Ammonia), 
62

Cu-PTSM, and 
99m

Tc-sestamibi are extracted from blood through diffusion 

and active transport, thus their extraction fractions decrease as the flow increases [29,30,39]. 

The Renkin-Crone model [29,30] shown in equation 2-7 can be used to compute K1 from 

MBF. The inverse is achieved by iteratively solving for MBF for a given K1 value.  

𝐾1 =  1 − 𝑎 ∙ 𝑒−𝑏 𝑀𝐵𝐹  𝑀𝐵𝐹 2-7 

Some previously published extraction parameters are shown in Table 2-2 along with 

a plot of their modeled response in Figure 2-9. Extraction functions are either determined 

experimentally [57] or more commonly calibrated based on known flow properties of a given 

population [39,55]. Population derived extraction function parameters can also serve as a 

calibration that compensate for biases introduced during the image acquisition and analysis 

processes. Variations in reported a and b values may be attributed to different sample 

populations as well as variations in scanning protocol, image reconstruction, ROI definitions, 

tracer kinetic model, and the quantification process. 

MBF values may be reported either globally or regionally. Global values may be used 

to characterize the overall health of the subject, while regional MBF may provide additional 

information on the distribution of the disease. Regional quantification may be used to 

discriminate between disease affecting a particular vessel and a homogenous reduction in 

blood flow.  
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TABLE 2-2 – REPORTED RENKIN-CRONE MODEL EXTRACTION FRACTION PARAMETERS 

Tracer Citation a b 

H2
15

O [5,7,58] 0 0 
13

NH3 Schelbert 1981 [59] 0.096 1.083 
62

Cu-PTSM Beanlands 1992 [60] 0.89 0.45 
82

Rb Lortie 2007 [39] 0.77 0.63 

Katoh 2008 [55] 0.86 0.54 

Schelber 2004 [61,62] 0.73 0.593 

Yoshida 1996 [41] 0.85 0.45 
99m

Tc-Sestamibi Phelps 2004 [62] 0.77 0.45 

 

Figure 2-9 – Extraction fractions in relationship to MBF values. 

2.4.1 Myocardial Flow Reserve 

The capacity of the heart to increase blood flow with physical load is referred to as 

myocardial flow reserve (MFR) and is defined as the ratio of flow between state of peak 

stress and state of rest. To measure MFR the imaging protocol includes a baseline scan at rest 

and after induced stress. While stress can be achieved through physical exercise (using 

treadmill or resistance pedaling) [63], it is more practical to use drugs (some of which are 

listed in Table 2-3) while the patient is positioned in the PET camera [7,38]. 

Assessment of absolute MBF and MFR (the ratio of stress to rest MBF) using 

dynamic PET may represent a more sensitive tool to detect multi-vessel disease  

[44,41,42,64,65] as well as pre-symptomatic CAD  [7,13,14]. Others have proposed that the 

difference between MBF at stress and rest may be more suitable for detection of CAD 

[42,66]. Assessment of MFR using PET has also been shown to yield prognostic value for 

the prediction of adverse patient outcomes [10,12,67,68].The principal use of quantitative 

analysis has been limited mainly to research applications [69], but recent advances in PET 

instrumentation [70] and tracer availability may facilitate the routine application of flow 
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quantification in clinical practice. Various software packages have been developed to process 

dynamic image sequences and to quantify MBF [39,71,72,73]. 

TABLE 2-3 – COMMON CARDIAC STRESSING DRUGS 

Chemical name Generic Name Cardiac stressing mechanism 

Dobutamine - Stimulation of sympathetic nervous system 

Persantine Dipyridamole Vasodilation 

Adenosine - Vasodilation 

2.5 Validation of MBF 

The accuracy of MBF and MFR quantification with PET has been validated in vivo 

using microspheres [44,57,67,74,75,76,77,78] or other invasive measurements [41,79]. As 

their name implies, microspheres are microscopic spheres that are radio-active (or 

fluorescent). They are administered into the arterial blood stream using a surgically installed 

catheter to the LA. The microspheres become lodged in the small capillaries of downstream 

myocardial tissue in proportion to MBF. After sacrificing the animal, the heart is excised and 

segmented. Each segment is weighed, and the microspheres are counted based on the 

radioactivity of the segment. MBF is calibrated to microspheres counted in a blood sample 

from a distal artery that was withdrawn at a fixed and known flow rate simultaneously with 

the microsphere injection. These experiments are limited to animal studies and at a single 

session. Microsphere blood flow measurements can be unreliable without skilled staff and if 

too few microspheres are aggregated in the target organ and/or reference samples
 
[74]. 

Variability in blood flow measurements with injection site and location of reference samples 

has been demonstrated
 
[74]. 

Doppler ultrasound [79] or electromagnetic flow meters [41] using a catheter that is 

inserted into an artery permit direct blood flow measurement, but is limited to the major 

arteries (which are sufficiently large for the probe), and therefore gives little insight into 

regional blood flow (only large territory estimates). In addition, the probes are not 

compatible with small animal experiments and are invasive [80], limiting their use in 

humans. 

In humans, accuracy has been measured through agreement of MBF using different 

PET tracers, of which 
15

O-water PET is considered to be the most accurate [39,72,81,82]. 

However, MBF quantification processes with different tracers may have commonalities that 

could introduce similar biases, limiting the ability to measure accuracy with regards to the 

physiology.  

Inverse correlation between MBF and lesion sizes measured using x-ray angiography 

or CT-angiography have also been reported [83]. However, angiography pertains to the large 

coronary arteries and not the micro-vasculature. Furthermore there is evidence that 

angiography is complimentary to PET, not equivalent [15]. 
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High precision is important for detection of serial changes during disease progression 

or therapy [66,84] and is evaluated through test-retest reproducibility 

[58,63,81,76,82,85,86,87,88], of which operator-dependent variability [53,71,72,85,89,90] is 

an important factor [91]. Test-retest repeatability is assessed by repeating the imaging and 

quantification on close and separate occasions [38,53]. The quality of the MBF measurement 

is judged by the reproducibility of the measurements. Thus the more reproducible a method 

is, the more sensitive it is to detecting small changes due to progression of disease, efficacy 

of therapy, or differences in populations. 

Classification performance of competing methods can be compared in an experiment 

consisting of two (or more) populations, such as normal/diseased [83] or normal/risk-factor 

[13]. In this context, sensitivity refers to the proportion of cases that are correctly classified 

as first population (true-positive) while specificity refers to the proportion of cases that are 

correctly classified as second population (true-negative). Thus a trade-off usually exists 

between improving sensitivity or specificity as visualized by receiver operating characteristic 

(ROC) curve analysis, but together they indicate the classification accuracy. Sensitivity and 

specificity, even if not related directly to physiology, are important characteristics of the 

application as they quantify the ability to discriminate between healthy and diseased MBF. 

2.6 The Effect of Image Resolution on MBF Quantification 

The accuracy of kinetic model analysis is often limited by the lack of pure arterial 

blood and myocardium signals [54], which results from the finite resolution of PET, 

cardiac/respiratory motion, and uncorrected scatter. Signal mixing, also referred to as 

spillover, results in arterial blood input functions that are biased by activity from the 

myocardium and myocardium functions that include more blood signal than is explained by 

the anatomy. In addition, signals from other organs that are adjacent to the heart may 

spillover into the myocardium and/or blood regions, further degrading the accuracy of the 

measured signal. Both scatter correction and the resolution of PET are continuously being 

improved. However, spatial resolution is inherently limited by the positron range, and scatter 

correction may never be perfect. 

The shortcomings of ROI based methods have prompted development of alternative 

ways to determine image based TACs for tracer kinetic modelling, in addition to methods of 

correcting for recovery losses that affect the scaling of the output signal [92]. This section 

discusses some of these methods in the context of 
82

Rb MBF quantification. A more precise 

explanation of the effects of image resolution on the MBF quantification process follows. 

The resolution of cardiac PET is limited by an accumulation of blurring effects. The 

blurring effect is often estimated as a three-dimensional Gaussian response function 

characterized by the full-width-at-half-maximum (FWHM) [93]. FWHM is defined as twice 

the distance between the centre of the response function and the point where the response is 
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half of the maximum. Assuming that all blurring effects have a Gaussian spatial distribution, 

the final image resolution can be expressed as: 

𝐹𝑊𝐻𝑀𝑖𝑚𝑎𝑔𝑒 =  𝐹𝑊𝐻𝑀𝑒𝑓𝑓𝑒𝑐𝑡 1
2 + 𝐹𝑊𝐻𝑀𝑒𝑓𝑓𝑒𝑐𝑡 2

2 + ⋯ 2-8 

 

In cardiac PET some blurring effects include: 

1. Radiation physics – Positron range, photon scatter, photon noncollinearity, and 

prompt coincidences are all physical effects that contribute to blurring the image. 

While scatter and randoms corrections do help, the range that the positron travels 

from its ejection during nuclear decay until its annihilation is currently seen as a 

fundamental limit of PET resolution. 

2. Motion – Cardiac contractile and respiratory motion cannot be avoided as their 

periods are orders of magnitude shorter than the image acquisition times. 

Furthermore motion in some pixels and not others means that the blur is spatially 

variant. Cardiac and respiratory gated images with specialized reconstruction 

algorithms have been sought as a means to overcome motion blur [94,95].  

3. Scanner design – the intrinsic resolution of the scanner is limited by the size of 

detectors and their photon stopping power [18]. In addition, limited temporal 

resolution of the crystals and electronics limit the size of coincidence windows 

which could help reject random events. Limited energy resolution also limits the 

ability to reject scattered photons [16]. 

4. Image reconstruction and image processing - Inherent and explicit smoothing are 

built into most reconstruction and image processing algorithms in order to 

accelerate computation, ensure convergence, and reduce noise [96]. 

Image resolution typically refers to the combined effects of scanner intrinsic 

resolution, image reconstruction, and radiation physics. While the image resolution in 

practice is rarely uniform throughout the image, in the small region of the heart (which is 

nearly centred in the camera field of view) the image resolution is typically assumed uniform 

if the effects of motion are neglected.  

Intuitively, one may attempt to remove the image blur using image sharpening 

techniques. Extensive research has been done into image sharpening, but this ill-posed 

problem often results in unsatisfactory results as noise is often amplified [97]. Non-uniform 

image resolution, as in cardiac PET [98], further complicates image sharpening, thus this 

approach has had limited success [93]. This work is primarily targeted at improving MBF 

quantification in the presence of recovery losses and signal mixing due to limited spatial 

resolution. 
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2.6.1 Recovery Loss 

Figure 2-10 demonstrates a series of profiles representing the myocardial wall with 

an arbitrary width and having uniform, unity intensity (blue). The profiles are smoothed 

using Gaussian kernels with varying FWHM ranging from 0.1 to 2 times the object width. 

The resulting, blurred, profiles are shown with superimposed red lines. With a small blur 

(FWHM = 0.1) the intensity of the structure may be recovered sufficiently accurately 

(although never exactly), however, as the blur reaches the same order as the structure size 

(FWHM>0.5), the intensity of the structure cannot be recovered from the blurred image 

without some recovery correction. The recovery loss depends on the structure size, geometry, 

and the degree of smoothing. Thus recovery may not be uniform throughout the image and 

requires additional information to resolve accurately. 

 

Figure 2-10 –Blurring due 

to finite spatial resolution 

leads to reduced recovery 

of image intensity. If the 

blur is much smaller than 

the object, full recovery is 

possible; however, as the 

blur increases image 

intensity (contrast) is 

reduced. 

 

 

2.6.2 Signal Mixing 

Recovery loss can also be regarded as a mixing problem [99] in which the object 

signal is mixed with the signals of the surrounding objects. In some cases the surroundings 

may consist of objects that contain no signal (no activity in all time frames) as in the example 

of Figure 2-10. The example in Figure 2-11 depicts a short-axis slice through a simulated LV 

(top row). The LV cavity consists of 100% blood and is surrounded by myocardium that is 

composed of 80% myocardial tissue and 20% blood. The total recovery in the heart region is 

uniformly 1 (or 100%) in both cavity and myocardium regions. The right-most plot shows a 

recovery profile along a line through the center of the image including blood recovery (red), 

myocardium recovery (blue), and their total recovery (TR) in black. 

After applying a uniform Gaussian (FWHM = 2×myocardial wall thickness) 

smoothing the resulting recovery images and profiles are shown in the second row. The 
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profiles through the smoothed image reveal 90% blood signal and 10% myocardium signal in 

the center of the LV cavity as opposed to 100% blood signal in the unsmoothed case. In the 

myocardial region, the profile of the smoothed image recovers about 40% myocardium 

signal and 25% blood signal as opposed to 80% and 20% respectively in the unsmoothed 

example. Blurring effects result in increasing recovery errors as object sizes decrease relative 

to the image resolution. 

 

Figure 2-11 – Blurring effects on signal mixing and recovery losses. Pure blood and myocardium 

contributions are shown in the top row along with their sum and a profile along a line in the center of the 

image. After blurring the recovery in the myocardium is much reduced, as well as a slight reduction in 

the blood recovery. Pure TACs and sampled TACs (ROIs shown in blurred blood image) are compared 

in the bottom figure. 

 

In Figure 2-11, blood and myocardium ROIs were defined as respective red and black 

regions in the blurred blood image (also shown as bars in the profile). The sampled blood 

TAC (dashed red line in the Time Activity Curve plot) and the sampled myocardium (dashed 
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blue line) can be compared with the respective pure TACs used during simulation (solid 

lines). Note that during late time frames the pure blood signal drops to zero, but the sampled 

blood reaches an asymptote that corresponds to ~10% of the myocardial signal which results 

from spillover from the myocardium into the blood sampling region. The sampled 

myocardial TAC is distorted, having an early peak activity relating to high blood 

contribution and low activity in the late frames due to recovery loss and the presence of 

blood in the ROI. 

The TR in the blood region is nearly unity as in the unsmoothed image. In the 

myocardium region, however, the TR is ~65% which is ~35% less than in the unsmoothed 

image. Within the extent of the myocardium region, signal mixing with a third structure, 

outside the heart and having no activity, takes place which decreases the perceived TR. The 

effect becomes more pronounced as the sampling region is shifted further radially outward as 

demonstrated by the blurred total recovery image and profile. 

2.6.3 Blood TAC Contaminations 

Typically, blood input functions are sampled inside the LV or LA cavities. This 

region consists of a large blood pool, the size of which is favourable for reducing spillover 

effects. In addition, there is negligible transfer delay to the myocardium as the LV cavity is 

immediately upstream from the coronary arteries that perfuse the myocardium [45]. While 

TR loss may be small in the LV blood cavity, signal mixing can include as much as 60% 

myocardium signal in small rodents [54], children, or adults with small hearts. Consequently 

blood input functions may not be pure, resulting in inaccurate MBF quantification [75].  

Contamination of the blood input function by myocardium signal is often observed as 

curves that either plateau in uptake phase to non-zero levels or even an increase in tracer 

concentrations. Perfusion tracers are designed to be taken up by the perfused tissue and 

retained. Thus, over time, the tracer is extracted from the blood. Although labelled-

metabolites can accumulate in the blood (as with ammonia), this is not the case with 
82

Rb 

[45]. 

Alternative ROIs such as the LA, ascending aorta, or descending aorta, which are 

fairly isolated from high uptake organs, may exhibit less signal contamination. However, 

these regions have been largely ignored due to their smaller feature sizes which results in 

reduced signal recovery, and therefore do not benefit MBF quantification. 

Some have attempted to correct for recovery losses of the blood input function by 

measuring activity in an arterial blood sample taken from the subject during imaging 

[100,101]. The activity concentration of this sample is measured using an external apparatus 

and is then used to scale the blood input function. The assumption is that the shape of the 

blood input function is accurate, but it is scaled incorrectly. This approach has been limited 

to research applications due to increased technical complexity and the invasiveness of 

extracting arterial blood. 
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2.6.4 Myocardial TAC Contamination 

Mixing of arterial blood and myocardium signal occurs in the myocardium ROI due 

to the limited resolution of PET as well as due to existence of arterial blood that perfuses the 

myocardium. The signal in the myocardial tissue ROI, Cm(t), can be expressed as a weighted 

sum of arterial blood and pure myocardial signal as in equation 2-4. This form disregards 

contributions from neighbouring organs (e.g. lungs, RV blood, liver, and stomach). This 

equation does however accommodate non-active tissue, as its signal is zero at all time points 

and can therefore be removed from the summation of signal contributions.  

To resolve ambiguity of tissue uptake and recovery loss, the myocardium TAC is 

more commonly expressed in the form of equation 2-6. While equation 2-6 can be uniquely 

solved, it neglects to account for contamination from non-active tissue outside the heart. One 

way to mitigate this inaccuracy is to sample the myocardium in a region that is slightly 

shifted towards the interior of the LV cavity (endocardium), thus minimizing the contribution 

of signals from tissues outside the heart [92]. This is equivalent to shifting the myocardial 

ROI in Figure 2-11 radially inwards. In doing so, the TR in the ROI increases, thus lowering 

the recovery loss. However, this approach is not likely to completely eliminate recovery loss. 

In [92], the extra-vascular (non blood) RC was estimated by subtracting an image of 

the blood (using a 
11

CO PET scan) from attenuation images to obtain an extravascular 

density image. A more clinically practical approach was also proposed in which early time 

frames of the perfusion scan were used to estimate a blood pool image, thus mitigating the 

need for a separate, co-registered 
11

CO scan. Both techniques however, assume that certain 

regions in the blood pool contains 100% blood signal. This assumption may be naïve, due to 

limited resolution and uncorrected scatter. 

 

Thus three major limitations of ROI based methods of MBF quantification have been 

illustrated: 1) Measuring pure blood input functions, 2) resolving RC, and 3) determining 

ROIs. Image decomposition approaches have been used in the past to estimate pure blood 

input functions, and may be beneficial for estimating RC as well. The next section introduces 

image decomposition with respect to MBF quantification. 

2.7 Dynamic Image Sequence Decomposition 

Image decomposition has been used successfully for many applications [102-113] in 

nuclear imaging. Each dixel (a pixel in a dynamic image sequence) represents the 

concentration of activity (Bq/cc) that is sampled in a finite volume over a sequence of time 

frames. Assuming that no motion has occurred between the patient and the camera during 

acquisition, each dixel represents the amount of tracer in a finite volume of the patient over 

time, and can be represented as a vector. 

Each dixel may be treated independently of others in the image and can represent any 

temporal pattern. However, one may assume that the image is composed of a finite number 



Kinetic Model Based FA for MBF with 
82

Rb PET  Ran Klein, University of Ottawa 

  24 

 

of components that have a spatial structure and a uniform temporal response. Under this 

assumption, one can decompose the original image sequence into a finite set of factors 

(temporal response) and associated structures (spatial distribution). Each dixel, y(i,j),  can 

then be reproduced through a linear combination of K factors, fk(j), which are weighted by K 

structures, sk(i), as demonstrated in equation 2-9, where j indexes the time frame and i 

indexes the pixel in the image. The product of corresponding factor and structure pairs define 

the dynamic image sequence of a single component. The sum of these components estimates 

the original image sequence. The remaining part of the image that is not modelled by the 

factors and structures, e(i,j), is referred to as the error or residue. 

𝑦 𝑖, 𝑗 =  𝑓𝑘 𝑗 

𝐾

𝑘=1

𝑠𝑘 𝑖 + 𝑒(𝑖, 𝑗) 

where,  y(i,j) – i
th

 dixel at time frame j 

 fk(j) – the j
th

 time frame of factor k  

 sk(i) – the i
th

 pixel in the structure k 

 e(i,j) – the error in the i
th

 pixel at time frame j 

2-9 

The literature refers to factors and structures using different names depending on the 

field, author, application, and context. Some of these terms are listed in Table 2-4. 

TABLE 2-4 – FACTOR AND STRUCTURE TERMS 

Name in this work Factors Structures 

Other names Basis Vectors 

Profiles 

Factor Images 

Factor Coefficients 

Image Coefficients 

Projections 

Different tissues interact differently with the tracer and therefore may exhibit 

different temporal responses (or TAC shapes). This notion has led to decomposition of 

images based on characteristic temporal responses of the tissues which comprise the image. 

In the context of cardiac PET images, decomposition attempts to recover components of the 

heart image such as right cavity blood, left cavity blood, and myocardium (shown in order 

from top to bottom on the left half of Figure 2-12). The factors define the time-activity 

curves of the components, while the structures define the spatial distribution of these factors. 

Each dixel signal is composed of signals from several types of tissues which may spatially 

overlap in the image due to anatomy, uncorrected scatter, finite image resolution, and 

motion. The summed products of well defined factors and their structures should reconstruct 

the measured signal (minus some noise or excluded component) as demonstrated in Figure 

2-12. 
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Figure 2-12 – Image decomposition into structures (spatial distribution) and corresponding factors 

(temporal response) can be used to reconstruct the original image sequence minus some residual signal. 

Diagram is from a short axis slice through a canine heart showing RV, LV, and myocardium components 

(from top to bottom on left). 

Dynamic PET images are represented as 4D data sets (3 spatial dimensions and one 

time dimension). In most cases, decomposition does not place an emphasis on the spatial 

relation between dixels; it is, therefore, convenient to rearrange the data in a 2D dataset. The 

columns of the data matrix, Y, represent the time samples while the rows contain the dixels 

in an order that can be reversed to reform the images. Thus a more convenient matrix 

notation may be used as in equation 2-10 where Y is the measured data, S is the structures 

matrix, F is the column-wise factor matrix and ε is error or noise in the image. 

Y=FS+ε 2-10 

Decomposition is a double blinded problem, meaning that both structures and factors 

are unknown, and for this reason there is no single solution to the decomposition problem. 

Various decomposition approaches (some of which are listed in Table 2-5) have been 

developed for different applications and rely on different assumptions and goals. While some 

decomposition methods are general and rely on general mathematical concepts, others are 

ad-hoc and target a specific application. 
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TABLE 2-5 – COMMON IMAGE DECOMPOSITION METHODS 

Name Description  

(with relation to sequences of images) 

PCA - Principal Component Analysis Maximizes the variability in the image that is 

accounted for by each factor in decreasing order. 

ICA - Independent Component Analysis Maximizes the independence between factors 

under the assumption that the sum of independent 

random distributions has a Gaussian distribution. 

CA - Cluster Analysis Groups together adjoined clusters with similar 

temporal characteristics. Typically designed to 

restrict spatial overlap between components. 

FA - Factor Analysis A broad definition that typically encompasses 

application dependent constraints. Typically 

optimizes the linear combination of PCA derived 

factors to compute new basis (factors). 

2.8 Matrix Decomposition Methods 

As stated above, a dynamic image may be represented as a two-dimensional matrix 

with the dixels running along the rows and time frames along the columns or vice-versa. 

Once the dynamic image is represented in a matrix form common matrix decomposition 

processes may be applied. Matrix decomposition methods have been developed for a wide 

range of applications including data-mining, data compression, noise removal, group 

classification, and separation of signal sources. The following is a brief overview of common 

matrix decomposition methods and their relevance to image decomposition of dynamic 
82

Rb 

cardiac PET image sequences. 

2.8.1 Principal Component Analysis – PCA 

The most common and simplest decomposition method is PCA [11]. This technique 

determines the Eigenvectors of the covariance matrix and uses them as a basis for 

decompositions. In doing so, the resulting basis contains orthogonal vectors that represent 

the maximal amount of image variance. The relative amount of variance represented by each 

Eigenvector is proportional to the corresponding Eigenvalue. Therefore PCA is ideal for 

determining the number of basis vectors required to represent a given percentage of the 

variance of a data set (section 2.9.2). PCA is useful for data compression and noise removal 

and benefits of a simple, well defined implementation that executes quickly on modern 

computers even for very large data sets. The PCA algorithm consists of the following steps: 

1. Subtract the data mean, 𝒀 , from the data, Y, along each dimension, so that the 

resulting mean is zero YC=Y-𝒀  

2. Compute the covariance matrix C=YC
T
YC 

3. Compute the Eigenvalues (λ1, λ2, ..., λN) and Eigenvectors (E1, E2, …, EN) of 

the covariance matrix C.  



Kinetic Model Based FA for MBF with 
82

Rb PET  Ran Klein, University of Ottawa 

  27 

 

4. The Eigenvectors form the basis of the data, and the Eigenvalues may be used 

to order them by the amount of variance in the data that they represent. The 

factor matrix columns are composed of the K≤N Eigenvectors (F=[E1  E2  …  

EK]). 

5. The structures are then computed as S = FYC 

The original image may be recomposed using: Ỹ = F
T
S + 𝒀  since F

T
F=I in this case 

due to F being orthonormal. If the condition  𝜆𝑖
𝐾
𝑖=1 =  𝜆𝑖

𝑁
𝑖=1  is met, then Ỹ =Y, and the 

original image can be completely recomposed. 

2.8.2 Cluster Analysis - CA 

Cluster analysis is a classification method that categorizes samples into groups with 

similar attributes by measuring the distance between each sample and group bases [114]. The 

attributes by which samples are classified can either be based directly on the samples 

themselves (for example based on the temporal response of each dixel) or derived indirectly 

from the samples (for example using the kinetic model parameters corresponding of each 

dixel). Cluster Analysis is a broad term as it does not specify how the groups are defined nor 

does it specify how the distances (or similarity) between samples and groups is measured. 

Being a classification method, cluster analysis may be most suitable for defining 

dixels as belonging to one tissue or another. However, cluster analysis is not intended to 

define the mixing of signals in an image and therefore is not ideal for decomposing dynamic 

image sequences in a physiologically accurate manner. 

2.8.3 Independent Component Analysis - ICA 

ICA focuses on resolving basis vectors (factors) which are independent and non-

Gaussian based on the central limit theorem, which states that the sum of independent 

random non-Gaussian signals approaches a Gaussian distribution [115]. ICA iteratively 

resolves basis vectors that are non-Gaussian. The Gaussian properties may be determined in 

several manners, such as kurtosis, negentropy (negative entropy), and approximations of the 

negentropy, all of which (in theory) should give similar measures. The measure of a 

Gaussian‟s kurtosis should be zero (3 by some definitions), thus a minimization function 

may be implemented to reduce the kurtosis of all components. 

The underlying assumptions of ICA may also be its limitation in the case of 

decomposition of cardiac PET images into physiological components. There are no strict 

physiological reasons why the factors cannot have a Gaussian distribution. More importantly, 

it is known that the activity concentrations in different tissue types are related (as is 

demonstrated by tracer kinetic models), which violates the independence assumption of the 

central limit theory. 
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2.8.4 Factor Analysis - FA 

FA is typically presented as an expansion of PCA [11] in which the PCA derived 

basis vectors are rotated to enforce specific conditions on the solution [116]. These 

constraints are intended to provide a solution with favourable properties for the specific 

application. Methods of rotation can be broken up into two types: 

 Orthogonal rotation – The basis vectors are rotated in such a manner so that 

they remain orthogonal (linearly independent) to one another. 

 Oblique rotation – The vectors may be rotated in any manner. This more 

general method accommodates cases in which factors are not necessarily 

independent of one another 

Regardless of which approach is used to rotate the basis vectors, these remain a linear 

combination of the basis vectors derived by PCA. Therefore, factor analysis still accounts for 

the maximum possible variance in the image given the number of factors [117,118,119]. 

2.8.4.1 Factor Analysis of Dynamic Structures (FADS) and Factor Analysis of 

Medical Image Sequences (FAMIS)  

The FADS algorithm was introduced in 1980 [120] for decomposition of dynamic 

planar scintigraphy. FADS has subsequently been expanded to other applications [121] and 

is still popular within the medical image analysis community. In 1992 FADS was 

incorporated into FAMIS, a software package for decomposition of multidimensional 

images, as its decomposition engine [107]. The FADS method consists of the following 

steps: 

1. Data pre-processing – a subset of dixels is selected by thresholding. These 

dixels are then scaled and centered. 

2. PCA – the scaled and centered dixels are decomposed using PCA to 

determine the basis vectors. 

3. Oblique Rotation – the basis vectors are obliquely rotated using an iterative 

apex-seeking algorithm with a non-negative constraint which defines a 

polytope that encompasses the projection of each scaled and centered dixel 

onto the basis vectors. Thus the factors are determined as the apices of the 

polytope. 

4. Factor Image Computation – The original dixels are finally projected on to the 

factors to produce the structures. 

FAMIS is a general purpose software package that can be used for any 

multidimensional image (such as SPECT, PET, fMRI, x-ray CT, etc) [122]. FAMIS provides 

tools to supervise and intervene in the decomposition process, and to view and analyze its 

results. FADS and FAMIS have been used to decompose dynamic images as well as to 

decompose energy-dependent images in which the energy dimension replaces the time 

dimension of the image [112]. 
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2.8.4.2 Least Squares Factor Analysis 

The main limitation of the FADS algorithm is the inability to constrain the solution 

with a priori information. Although additional constraints may be applied to the FADS-

derived solution [106,122,123], it is not possible to include a priori information during the 

PCA phase in which the solution subspace is determined. Optimization of an objective 

function is a more general framework that can incorporate any set of a priori information 

[108] and is summarized by the set of equations 2-11. An optimization problem is generally 

posed as a minimization of a cost function, ftot, by adjusting the factors matrix, F, for a given 

image, Y. The cost function includes terms for minimizing the magnitude of the error matrix 

(|ε| = |Y–FS|) as well as penalties for negative factors (fneg(F)), negative structures (fneg(S)), 

and additional priors (fprior(F,S|Y)). Each penalty must be weighted (wF, wS, and wp) 

according to predefined criteria. 

𝐹 = min
𝑭

𝑓𝑡𝑜𝑡  𝑭, 𝑺 𝒀  

𝑆 = 𝑖𝑛𝑣 𝑭 𝒀  
𝑓𝑡𝑜𝑡  𝑭, 𝑺 𝒀 =  𝒀 − 𝑭𝑺 + 𝑤𝐹𝑓𝑛𝑒𝑔  𝑭 + 𝑤𝑠𝑓𝑛𝑒𝑔  𝑺 + 𝑤𝑝𝑓𝑝𝑟𝑖𝑜𝑟  𝑭, 𝑺 𝒀  

2-11 

 

Since the optimization approach always includes a term for minimizing the sum of 

squares of the error matrix, this approach is commonly referred to as the least squares 

method [124]. The factor analysis term does not strictly apply to the least squares method as 

there is no rotation of an orthogonal set of basis vectors. 

2.8.5 Other Decomposition Methods 

While the above mentioned decomposition methods describe general approaches to 

decompose a dataset, many applications are addressed by ad-hoc algorithms. Hybrid methods 

may combine the principles of more than one decomposition method. For example CA may 

be applied to ICA derived structures in order to determine cluster regions with similar 

dynamics [125]. In addition, a known stimulus may be used as one of the factors [125], or 

one of the factors may assume to have a temporal response defined by a function with free 

parameters which are resolved during decomposition. Since many ad-hoc approaches have 

been referred to as factor analysis, in the context of nuclear medicine factor analysis is often 

used as a general term for decomposition of image sequences. 

2.9 Quantitative PET Image Decomposition 

2.9.1 Scaling of Factors and Structures 

The units of the image, Y, are defined by the experiment. In the case of PET, images 

are typically expressed in units of activity concentration (e.g. Bq/cc). When the image is 

decomposed, the units may also be decomposed; however the product of the factor and 

structure units must always be equal to the units of the original data to remain quantitative. 
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Thus the factor and structure units are coupled. Example decompositions of activity 

concentration units include: 

 

[Bq/cc] =  [Bq/cc] × [1]  

 [Bq] × [cc
-1

] 

 [Bq/cc / cc] × [cc]  

 

The relationship stated in equation 2-10 can also be expressed in the form of equation 

2-12 where S‟ and F‟ represent the structures and factors respectively on an arbitrary scale. 

A rotation matrix, R, can be used to convert S‟ and F‟ to S and F respectively. If R is a 

diagonal matrix, then it simply scales the factors and structures without changing their 

pattern. This representation demonstrates that scaling factors and structures is not unique 

without an additional constraint. 

𝒀 − 𝑬 = 𝑭𝑺 = 𝑭′𝑹 
𝑭

𝑹−1𝑺′   
𝑺

 2-12 

In the literature the units of factors and structures are often not disclosed [106,108], 

or the factors are normalized to unit integral [104]. For quantification of physiologic function 

from images it is desirable that factors quantify the activity concentration in a volume of pure 

tissue [Bq/cc] and, correspondingly, structures quantify the recovery [0-1] of each 

component to each dixel [108]. 

2.9.2 Number of Components 

Regardless of the decomposition methods the number of components in the image 

must be predetermined. The quality of the image, number of organs, uniformity of the organ 

kinetics, and time frame intervals all play a role in the number of unique components that can 

be resolved reliably. If too few components are resolved, tissues with similar kinetics may be 

lumped together, each having error in different phases of the image sequence. If an excessive 

number of components are decomposed, an organ may be split between two or more 

components having different kinetics. As the number of components grows the 

decomposition process may become excessively sensitive to noise [126]. 

The number of factors, K, must be greater than one and less than or equal to the 

smallest dimension in Y. Since the number of time frames, M, is usually much smaller than 

the number of pixels, N, in an image, then 2≤K≤M. 

In cardiac imaging, one may expect to resolve a myocardium component and either 

one or two blood components, depending on the early frame lengths relative to the blood 

transit time between right and left heart chambers [110]. An additional component may be 

resolvable if other tissues (i.e. liver or stomach) are included in the field of view and have 

kinetics differ significantly from the myocardium [109]. 
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It is common practice to set the number of components based on the nature of the 

image and/or user experience. Alternatively, a desired variance in the image sequence that 

should be reproduced by the components can be set [104,120]. The Eigenvalues of the 

covariance matrix (loading factors), which can be obtained using PCA, are normalized to a 

sum of 1. The loading factors are then sorted in decreasing order, cumulatively summed, and 

thresholded by the desired image variance. This method is demonstrated in Figure 2-13 with 

the threshold shown in blue. The vertical axis of the plot is the cumulative normalized and 

sorted Eigenvalues and the horizontal axis is the number of factors. The data points in a high 

quality image will increase rapidly within the first few factors giving the curve a knee shape, 

while a noisy image will approach a diagonal from the origin to the point (M,1). 

 

Figure 2-13 – Demonstration of a method for resolving number of factors, K, based on the cumulative 

Eigenvalues of the image covariance matrix, which corresponds to the image variance. 

2.9.3 Assumptions of Image Decomposition 

2.9.3.1 No Motion 

Dynamic imaging inherently assumes that the subject has remained stationary relative 

to the camera during the entire imaging process so that each dixel corresponds to the same 

finite volume of the subject throughout the scan. This assumption may be violated either by 

motion of the patient (coughing, relaxing, fidgeting, etc.), or by motion of the organs as they 

settle under the patient‟s posture during the scan. Patient motion is kept to a minimum 

through coaching, ensuring patient comfort, and restraints, whereas animals are placed under 

anaesthesia. However, little can be done to counter the motion of internal organs aside from 

providing sufficient time between subject placement in the camera and beginning of the 

image acquisition. 

In the presence of motion, dixels in heterogeneous regions (having organs with 

diverse physiology) may exhibit signals that are not physiologic. For example a region in the 

epicardium (outer wall of the myocardium) may contain myocardial signal in early frames, 

and lung signal in later frames. A region in the endocardium (inner wall of the myocardium) 

may contain myocardial signal in early frames and blood signal in later frames. 
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The effect of motion on factor analysis results may be unpredictable. One possible 

scenario is the need for a greater number of factors to account for the same amount of 

variance in an image without motion. Another possibility is that some dixels may be 

composed of an erroneous linear combination of factors (error in structures). Finally it is 

possible that erroneous factors will be resolved. In any case, without the use of motion 

detection and correction, the scan may be of little value for accurate quantification. Common 

practice assumes that motion is non-existent and is only investigated in extreme cases. 

Typically, as is in this work, cases with motion are disqualified from further interpretation. 

2.9.3.2 No Scatter 

Scatter results from interactions of the photons in the medium, and is typically 

corrected during reconstruction. However, scatter may not be completely removed from the 

image. Scatter is a relatively uniform background activity within the heart, but its pattern 

may change with the distribution of activity. Therefore it can be regarded as an additional 

spatial blur of the image with a very broad kernel and its most likely effect is myocardium 

scatter into the blood pool. 

2.9.4 Physiologic Validation of Factors and Structures 

The limited application of image decomposition techniques for MBF quantification 

may be partially due to poor validation of the results from a physiologic perspective. In the 

absence of suitable standards to which factors and/or structures can be compared, simulations 

are often the only means. A set of structures and factors are defined and used to compose a 

dynamic image sequence. The image is then decomposed and the results are validated 

against the simulation data. Varying simulations can be used to characterize the 

decomposition results and assess robustness. Simple structures can be advantageous to 

qualitatively evaluate the accuracy of the structures and their preservation of intensity 

uniformity. Varying factors can give insight to the accuracy with varying physiology. 

A drawback of simulations is that relevance to real images may be limited by the 

accuracy of the simulation in replicating the real imaging process. While simulations are 

becoming ever more sophisticated, the need for anatomic and physiologic standards remains. 

Blood sampling is by far the most common means by which a factor may be validated 

[110,127,128,129]. Blood samples may be taken at set time intervals and assayed with an 

external activity counter and adjusted for volume so as to obtain activity concentration 

samples to which a blood factor may be compared. Alternatively, a continuous withdrawal of 

blood using a pump can be fed through an activity counter that samples the activity every 

few seconds. The blood-sampler can generate curves of the activity concentration in the 

sampled blood over time [45,130]. 

While structures are only validated qualitatively in the literature, images obtained by 

other means may serve as anatomical standards. Images of the blood pool may be obtained 



Kinetic Model Based FA for MBF with 
82

Rb PET  Ran Klein, University of Ottawa 

  33 

 

with PET using either 
11

C or 
15

O labelled carbon-monoxide (CO), which binds to the 

haemoglobin in the blood [92]. Blood pool imaging may be a good anatomical standard by 

which to validate blood structures. Magnetic resonance imaging (MRI) or contrast-enhanced 

x-ray CT may both be used to generate images of the myocardium by which to validate the 

myocardial structure. However, these images would have to be averaged over the entire 

cardiac and respiratory cycles and sufficiently blurred in order to reproduce PET image 

quality. 

In the absence of anatomic or physiologic standards, experimental data could be used 

to evaluate desirable properties of the decomposition process. For example, repeat imaging 

of the same subject under variable conditions could ensure that the structures are 

reproducible and reflect the constant anatomy. 

2.10 Summary 

While factor analysis has been the focus of research for over three decades, it still has 

not delivered an improvement in quantification of cardiac function. Factor analysis has been 

useful in defining myocardial regions of interest [75,90,111,131], and has been shown to 

resolve accurate input functions [102,110]. The failure of factor analysis therefore can be 

attributed to poor ability to derive accurate output functions [48] and/or to poor ability to 

scale factors and structures to correct for recovery losses.  

The following chapter describes an ROI based method for quantification of MBF that 

has been previously validated [39] and the operator-dependent variability is evaluated. In the 

subsequent two chapters (Chapter 4 and Chapter 5) a physiologically accurate method for 

decomposing dynamic cardiac PET image sequences is developed. Finally, Chapter 6 

evaluates MBF quantification using factor analysis. 
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Chapter 3.  

Highly-Automated Region of Interest Based 
82

Rb 

MBF Quantification 

This chapter discusses operator-dependent variability of FlowQuant, a myocardial 

blood flow quantification software package that is being developed at the University of 

Ottawa Heart Institute. Ran Klein is the primary author on this publication and has developed 

the FlowQuant menu interface, image orientation method, and LV segmentation method. 

This section also explains methods that are referred to in later chapters. This work is used as 

the standard of comparison for the factor analysis methods that are developed in subsequent 

chapters. The content of this chapter has been published [132] and a few changes 

(particularly in the background section) have been made to the text to improve readability as 

part of this thesis. 

3.1 Background 

Accurate MBF measurement using 
82

Rb PET has been previously demonstrated [39], 

but precision has not been evaluated. High precision is important for detection of serial 

changes during disease progression or therapy [66,84]  and is evaluated through test-retest 

reproducibility [58,63,76,81,82,85,86,87,88], of which operator-dependent variability 

[53,71,85,89,90] is an important factor [91]. However, there are few reports of 

reproducibility of MBF quantification using 
82

Rb PET [72]. 

Several software packages with the ability to quantify MBF from cardiac PET images 

have recently become available [71,72,73]. In this work, a highly automated image 

processing workflow to reduce operator variability in MBF quantification by minimizing 

user interactions [91,133], is presented. Assessment of the inter-operator and intra-operator 

variability for quantification of MBF, flow reserve, and flow differences using 
82

Rb PET 

follows. The operator-dependent variability for MPI, which is referred to as relative uptake 

in this study, is also evaluated. 

3.2 Methods and Materials 

3.2.1 Patient Cohort 

Thirty consecutive clinical patients that underwent a rest-stress 
82

Rb perfusion scan at 

the University of Ottawa Heart Institute, National Cardiac PET Centre, between the 15
th

 and 

26
th

 of June, 2009 were selected. All patients gave informed consent under a cardiac PET 

registry study approved by the Ottawa Heart Institute Research Ethics Board. Patients were 
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instructed to abstain from caffeine intake for 12 hours prior to the exam, beta-blockers for 24 

hours, and fast for at least 4 hours.  

3.2.2 Image Acquisition 

Scans were acquired according to the standard clinical protocol as outlined in Figure 

3-1. Following a scout scan for patient positioning, a low-dose (0.5 mSv) fast CT scan (1.5 s) 

was performed for attenuation correction of the rest data. 
82

Rb (10 MBq/kg) was 

administered intravenously using a custom infusion system [35] over a 30 s interval to limit 

the deadtime of the camera detectors to <35% and to ensure accurate measurement of the 

bolus first-pass activity [36]. Dynamic data were acquired in 3D mode using a Discovery RX 

PET-VCT scanner (GE Healthcare, Waukeshaw, MI), and images of activity concentration 

were reconstructed using Fourier rebinning and filtered backprojection with a 12 mm Hann 

filter, into 15 time frames (10s × 9, 30s × 3, 60s × 1, 120s × 1, 240s × 1). 

Dipyridamole (0.14 mg/kg/min) was infused for 5 min, and 
82

Rb imaging initiated 3 

min later following the same protocol used at rest. A second low-dose CT scan was then 

performed for attenuation correction of the stress 
82

Rb data. 

 

Figure 3-1 – Clinical rest-stress 
82

Rb PET/CT protocol using Dipyridamole pharmacologic stress. 

3.2.3 Image Analysis 

A software program (FlowQuant, Ottawa, Canada) was developed for quantification 

of cardiac molecular function using a variety of tracers and in several different species. The 

rest-stress workflow started with processing of the rest scan, continued with a nearly 

identical process for the stress scan, and ended with the stress-rest flow reserve analysis as 

illustrated in Figure 3-2. Default software settings in version 2.1.3 (July 2009), as shown in 

Table 3-1, were used in this study. 

TABLE 3-1 –SOFTWARE PROCESSING PARAMETERS USED IN ANALYSIS 

Parameter Value  Parameter Value 

Uptake frames Last 5  Dynamic polarmap smoothing Type Gaussian 

Uptake frame sum weighting Off  Dynamic polarmap smoothing kernel 1.5 pixels 

Uptake image resolution 12 mm  Blood spillover correction  Off 

Myocardium radial search range 140%  Global recovery coefficient estimation Off 

Endocardial radial sample 2 mm  Blood input function ROI ABC 

Epicardial radial sample 2 mm  Kinetic modeling fast flag On 
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3.2.4 Volume Reorientation 

Uptake images were generated by averaging the last 5 time frames (8 minutes) to 

maintain high myocardium:blood pool contrast and reduce image noise. The uptake images 

were automatically processed to detect the location, orientation, and size of the LV 

myocardium (Figure 3-3A,B). Ellipses were fit to the myocardial data in 3 orthogonal planes 

in an evolving reference frame. The benefits of working with 2D planes rather than the full 

3D volume are reduced computational complexity and the ability of the operator to supervise 

the process and intervene as needed. The process was fully visualized using the reorientation 

graphical user interface (GUI) shown in Figure 3-3C.  

 

Figure 3-2 – Dynamic 
82

Rb rest-stress analysis workflow. Rest and stress dynamic images are used to 

generate relative uptake, absolute MBF, and flow reserve polar-maps. The process is fully automated, 

with some user interaction possible at the reorientation and segmentation stages (gray filled boxes). 

The LV processing began with automatic selection of a transverse plane intersecting 

the LV. In this transverse plane, the LV position was estimated using the center of mass of 

the pixel intensities. A full ellipse was then optimized to correlate with the uptake image as 

follows. An optimization function maximized the correlation between the region overlapping 

a partial ellipse and its neighbourhood, by modifying five free parameters (x and y 

translation, ellipse rotation, and two ellipse dimensions (a and b in Figure 3-3B). A mid 

vertical-long-axis (mid-VLA) image was created orthogonal to the transverse plane, along 

the estimated long-axis. A partial ellipse (4/3 of the long axis) was optimized in a similar 

manner with initial estimates of the ellipse location and dimensions derived from the 

previous stage. In theory, the LV orientation and position should be completely measured at 

this point, but a third orthogonal image along the mid horizontal-long-axis (mid-HLA) plane 

was also processed to further optimize the transverse rotation.  

For quality assurance (QA) purposes a fourth orthogonal, short-axis (basal-SA) image 

was displayed, which should have a circular pattern centered on the long axis, shown with 

Rest Dynamic 

Average Uptake 

Reorient Volume 

Segment LV & Blood 

Sample TACs 

Kinetic Modelling 

Stress 

Dynamic 

Average Uptake 

Reorient Volume 

Segment LV & Blood 

 
Sample TACs 

Kinetic Modelling 

Absolute Flow Reserve 

Analysis 

Transverse uptake images 

Short-axis uptake images 

Uptake polar-map  

Input and Output TACs 

MBF Polar-maps 

LV Orientation 

& Size 

LV & Blood 

Regions 

R
el

at
iv

e 

U
p

ta
k

e 

P
o

la
r-

m
ap

 

Relative Uptake Reserve 

Analysis 



Kinetic Model Based FA for MBF with 
82

Rb PET  Ran Klein, University of Ottawa 

  37 

 

cross-hairs in Figure 3-3C. For further validation the operator could toggle the display to 

view a mid-ventricle-SA image. 

For the rest scans, the initial parameter estimates at each orientation stage were based 

on characteristic values for the species type (human in this case). For stress scans, the LV 

myocardium size (ellipse dimensions) and orientation (angles) were presumed to be fixed 

and equal to those of the rest scan, but the positions could change. The LV position in the 

rest image was used as an initial estimate of the LV position in the stress image. 

The graphical report (Figure 3-3C) displays the results of the optimization process, 

which also enabled the operator to intervene at each stage if necessary by manual adjustment 

of the fitted ellipses. Automated processing would continue from the point of intervention to 

minimize operator bias on the final results. If no operator intervention was performed, then 

the reorientation process was fully automated as described. Any operator interaction was 

labelled on the report for retrospective QA.  

 

Figure 3-3 – A. LV ellipse model and orientation in relation to the scanner reference frame. The axial 

angle φ and the sagittal angle θ describe the orientation in 3D.  B. Partial ellipse used to model a mid-

VLA cross-section. The ellipse dimensions are a and b along the long and short axes respectively. C.  

Automatic orientation GUI. 

3.2.5 LV and Blood Pool Segmentation 

The transverse uptake images were reoriented to form 20 standard SA slices from 

apex to base, plus 3 slices beyond the apex and 3 slices past the base (in the atrium), thus the 

SA slice thickness was determined by the total long axis extent (4/3 a). The SA pixel 

dimensions were unchanged from those of the original image. 
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The reoriented SA volume was sampled in a combined conical and planar coordinate 

system to generate a combined series of LV slices as shown in Figure 3-4. The first 9 slices 

relate to the conical sampling of the apex, while the remaining 15 slices are SA planes from 

apex to atrium. The slice planes are superimposed (white dashed lines) on the VLA and HLA 

images in the right hand side. This coordinate system was used to define myocardial sample 

points at fixed (10°) angular intervals according to their radial distance from the LV long 

axis. Rather than fitting each point individually, a spline model was used to optimize the 

radii of 4 control points (at 90° intervals) in 3 slices (LV cavity, base, and atrium), as well as 

one control point at the apex as shown in Figure 3-4. 

 

Figure 3-4 – Myocardial segmentation on conical (1-9) and planar (10-24) slices of the same case as in 

Fig. 3c. Vertical and horizontal long axis slices are also shown on the right, with the dashed lines 

depicting the locations of the slices to the left. The red contour lines show the myocardial sampling 

regions, and the yellow and cyan circles are the spline model control points. The white crosses indicate 

the long axis and the black circles indicate the blood ROIs. 

The spline optimization algorithm minimized a cost function, Cenergy , that resulted in 

maximization of the image energy overlapping the spline model, as shown in 3-1, where um 

is the pixel of maximum intensity in the uptake image and ui is the i
th

 pixel in the ROI 

defined by the spline model. 

𝐶𝑒𝑛𝑒𝑟𝑔𝑦 =  
𝑢𝑚 − 𝑢𝑖

𝑢𝑚
𝑖

 3-1 

 



Kinetic Model Based FA for MBF with 
82

Rb PET  Ran Klein, University of Ottawa 

  39 

 

 Penalties, with the weights and limits empirically determined [134], were applied to 

discourage abnormal myocardial shapes by minimizing the following metrics: 

1. Eccentricity of SA – the LV should be somewhat circular, thus if slices with a 

variation of radii greater than 30% exist, a penalty was applied. 
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2. Relative size of atrium – the cross section of the atrium should not be substantially 

bigger than that of the ventricle, thus a penalty was applied if the mean of its radii 

was more than 20% larger than the mean of the radii of the basal and cavity sections. 
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3. Offset of center of ellipse from LV long axis - the LV myocardium should be nearly 

centered on the LV long axis, thus a penalty was applied if the center of the 

myocardium was displaced from the LV long axis by more than 40% of the mean 

radius in the same slice. 
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The final cost function, C, defined by equation 3-5 accounted for all the above 

penalties while rewarding high pixel intensities in the LV model ROI (low Cenergy). Thus the 

LV model was constrained to have a characteristic shape, but abnormal myocardial shapes 

could be accommodated by the model, provided the image intensity is sufficient to offset the 

penalties. 

C=Cenergy(1+10×Celip+Catrium+Coffset) 3-5 

For the rest scans, initial estimates of the spline points were based on the ellipse sizes 

determined in the reorientation stage. For the stress scans, the spline points from the rest scan 

were used as initial estimates. Having a spline model with only 13 degrees of freedom 

afforded fast execution of the optimization algorithm as well as simple operator intervention. 

For quality assurance, the operator could monitor the automated sampling and intervene as 

needed by manipulating the radial position of the spline control points. 

The myocardial radii determined from the spline model (36 points per slice x 24 

slices= 864 points) were each shifted to the local maximum intensity position to account for 

regional shape variations. Local smoothness was enforced using a 2D median filter of the 

myocardial radii. Myocardial uptake values were averaged within regions of interest with 

specified endo- and epi-cardial extent (4 mm thickness) centered on the 864 LV sample 

points. 
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The sampled uptake activity was viewed as a polar-map and as a 3D model for 

quality assurance of the segmented LV shape, as demonstrated in Figure 3-5. For subsequent 

analysis in this study the LV polar-map was considered as the inner 16 of 24 slices, which 

excludes the membranous septum and basal lateral wall.  

The standard 17 segment model was applied and segments were averaged according 

to ASNC guidelines [46] into 3 vascular territories corresponding to the major coronary 

arteries: left anterior descending (LAD) artery, left circumflex (LCX) artery, and right 

coronary artery (RCA). 

Three blood regions of interest were placed automatically in the LV cavity (C), base 

(B), and left atrium (A) as shown on the VLA and HLA images in Figure 3-4. The extent of 

each region was predefined for each given species (8×8 mm in humans), and their length was 

4 SA slices each. The regions were shifted in each SA plane to center the ROI in the cavity 

and maximize the distance from the myocardium, to minimize myocardial spillover into the 

blood region. 

3.2.5.1 TAC Sampling 

The sampling points from the registration stage were applied to all of the time frames 

of the dynamic image sequence to generate time-activity-curves (TAC). In the myocardium, 

a TAC, Cmeas(t), was generated for each sample point resulting in 576 TACs (36×16 rings). 

In the blood, three TACs were generated for the cavity, base, and atrium blood pool regions. 

In order to reduce noise, the median of the three blood region TACs was used as a blood 

input function for tracer kinetic modelling (Figure 3-6). 

  

Figure 3-5 – Polar-map (top left) and 3D perspective 

views of the LV from different angles for the same case 

as in Figure 3-3C and Figure 3-4. Model coronary 

arteries are superimposed to relate polar-map regions to 

the three main vascular territories. 

Figure 3-6 – Time-activity-curves (TAC) for 

blood in three regions and their median 

(thick red) as well as the mean TAC for the 

myocardium region (blue) for the same case 

as in Figure 3-3C. and Figure 3-4. 
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3.2.5.2 Kinetic Modeling 

The last stage in the processing of each scan was to solve the parameters of a kinetic 

model, based on the blood (input) and myocardium (output) TAC functions. Each polar-map 

sector of the LV myocardium (apex to base plane) was optimized separately resulting in 

36×16=576 sets of kinetic parameters.  

The uptake rate of 
82

Rb, K1 mL/min/g, was quantified using a one-compartment 

constant distribution volume (DV) model [135] at both rest and stress states: 

)()(
1

1 tCeKtC a

t
DV

K

t 










 
3-6 

Ct(t) represents the modeled tissue activity concentration, Ca(t) is the measured 

arterial blood concentration as a function of time, t. In the DV model, DV is the ratio of the 

tissue and blood tracer concentrations when the compartments have reached a state of 

equilibrium. Since the net exchange of tracer is zero at equilibrium, DV can be expressed as: 

2

1

k

K
DV 

 

3-7 

To further simplify the kinetic model, DV was set to a scan-specific, constant value 

determined by fitting the unconstrained model to the region of normal uptake in the polar-

map.  

K1 was related to flow, MBF mL/min/g, through K1 = MBF x E(MBF), where 

MBFMBFPSeMBFE /)(1)( 
 

3-8 

E (MBF) is a model-specific extraction fraction that accounts for non-linear tracer extraction 

as a function of MBF and the effective permeability x surface-area product, PS mL/min/g 

[29,30]. This model is consistent with the observation that tracer extraction typically 

decreases with flow, despite the PS product increasing due to capillary recruitment. The 

following PS function was used, as determined previously in human subjects [39]: 

MBFMBFPS 26.063.0)(   3-9 

The measured myocardial image concentration in each polar-map sector, Cm (t), was 

estimated according to: 

)()1()()(mod tCTBFtCTBFtC tael   3-10 

where TBF was the estimated total blood volume and (1-TBF) corrected for regional 

recovery loss in the myocardium [64].  

 The example in Figure 3-7 shows a report for the kinetic modeling stage consisting of 

polar-maps of kinetic modeling parameters, K1, k2, and TBF. The DV estimate is included in 

the title. In addition, goodness–of-fit parameters (χ
2
, R

2
, the optimization convergence flag, 

and whether any of the parameters hit their upper bounds) are displayed in polar-map format 

to indicate regional reliability of the kinetic parameters. Finally, MBF (flow) and the uptake 
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polar-maps are shown. Regional correspondence between uptake and flow patterns is 

expected. 

The blood TAC (red line) and the mean sampled myocardium TAC in the high-

uptake (>75% of maximum) regions (blue dots) are shown in the bottom panel of the figure. 

The recovery corrected myocardial TAC, Ct(t), (cyan) and modeled-determined  TAC, 

Cmodel(t), (blue line) are also included together with the sampled myocardial TAC, Cmeas(t), 

(blue dots). The error between sampled and modeled myocardium TACs (green) shows little 

error and no temporal pattern, also indicating a good fit. The model fits and TAC data can 

also be viewed for any polar map sector with an interactive cursor selection. 

 

Figure 3-7 – Kinetic 

modeling report for the 

same case as in Figures 

2-3 through 2-6. 

 

3.2.6 Relative Uptake and MFR Analysis 

The rest and stress scans were compared to analyze changes between states using the 

relative uptake and absolute flow polar-maps. Each report included rest, stress, stress/rest, 

and stress-rest polar-maps (corresponding to rest MBF, stress MBF, MFR, and ΔMBF for 

absolute flow), as demonstrated in Figure 3-8. The polar-maps were then segmented into the 
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three vascular territories [46] to produce regional average values. Global (LV mean) values 

were also calculated by averaging the same polar-maps over the entire LV. 

 

Figure 3-8 – MBF, MFR, and 

ΔMBF analysis report with the 

rest case shown in Figures 2-3 

through 2-7 indicates uniform 

rest and stress flows with 

MFR≈3.1 and ΔMBF≈2.2 
mL/min/g, which indicate 
normal MBF. This case was 

interpreted as normal using 

relative uptake images (not 

shown). 

 

3.2.7 Inter- and Intra-Operator Variability 

All patient images were anonymized and copied in random order to two datasets 

consisting of all 60 images. All scans were first processed automatically (with no operator 

intervention) from the orientation phase through to the kinetic modeling and MFR analysis. 

The processed studies were then reviewed independently by each of two operators, 

one novice (operator 1) and one expert (operator 2). Thus each scan was processed twice by 

each of two operators. The novice operator had never used FlowQuant or any other software 

for quantifying cardiac function from images, while the expert operator had used FlowQuant 

for over 1 year to review and process hundreds of clinical studies. Both operators were 

instructed on use of the FlowQuant program and methods for quality assurance review of the 

automatically processed results, using a separate dataset which is not included in this work. 

The operators reviewed the QA reports (Figures 2-3 – 2-8) saved during the 

reorientation, LV segmentation, and kinetic modeling steps, and reprocessed with manual 

intervention, any scan that was considered suboptimal. Thus, each scan was processed four 

times (twice by each operator). Specifically, processing was considered to be suboptimal in 

cases where: 1) the ellipse did not properly track the myocardium in the LV orientation 

phase; 2)  the sampling points did not properly overlay the myocardium in the LV 

segmentation step due to the presence of adjacent organ activity ; 3) there was discordance 

between the TACs for the cavity, base and atrium blood regions; 4) there was discordance 

between the patterns of relative uptake and absolute MBF polar-maps in the kinetic modeling 
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phase; 5) the goodness-of-fit parameters indicated suboptimal fitting of the kinetic model to 

the measured data, i.e. non-uniform R
2
, high χ2

 values, or a non-random distribution of the 

residuals. 

The operators were instructed to correct these issues by first ensuring accurate ellipse 

placement during reprocessing, but intervening as little as possible. This could be 

accomplished by first changing the transaxial plane to choose an image with optimal contrast 

between the myocardium and the background and/or cropping the inferior slices to remove 

adjacent organ activity. The operator could also intervene on the subsequent VLA and HLA 

slices by properly resizing and repositioning the ellipse over the myocardium, if needed. In 

the LV segmentation phase the operator could adjust the spline control points to improve 

overlap of the model contour with the myocardium uptake. 

The reprocessed datasets were analyzed for inter- and intra-operator variability in 

rest, stress, stress/rest and stress-rest both in relative uptake and absolute flow. The analysis 

was performed in the three vascular territories as well as globally. For intra-operator 

agreement the two datasets processed by each operator were compared with one another, and 

the results for each operator were reported separately. For inter-operator agreement, the 

repeated analyses were combined and then compared between operators. 

3.2.8 Statistical Analysis 

Agreement between paired datasets was visualized using correlation analysis and a 

linear regression fit. Pearson‟s correlation (r
2
) was used to report agreement between 

datasets. Fisher‟s z-transform was used to calculate the probability of two r values being 

significantly different. In addition, a Bonferroni correction (n=6) was applied for multiple 

comparisons between operator and dataset combinations. 

Differences between datasets were analyzed using Bland-Altman plots [136] and a 

reproducibility coefficient (RPC), calculated as 1.96 times the standard deviation of the 

differences. Thus 5% of the data points are expected to fall outside the range of mean ± RPC, 

assuming the differences follow a Gaussian distribution. RPC values were compared by 

conversion to variance (σ=(RPC/1.96)
2
) and then applying an f-test with p<0.05 considered 

significant. In addition, the %RPC was reported as the ratio (%) of the mean rest, mean 

stress, mean stress/rest, and mean rest and stress for rest, stress, stress/rest, and stress-rest 

respectively. Likewise, biases were evaluated as the mean of differences between datasets 

and were reported as the ratio (%) of the bias scaled in the same way as %RPC. 

Group mean and variance differences were evaluated using a two-sided student t-test 

and F-test respectively with Bonferroni correction (n=12) and p<0.05 considered significant. 
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3.3 Results 

3.3.1 Patient Demographics 

Patient demographics are summarized in Table 3-2. The youngest and oldest patients 

were 32 and 81 years of age respectively. The mean±sd global MBF, MFR, and ΔMBF are 

listed for all 4 datasets (2 operators × 2 repeated datasets). No significant differences in 

means or variance were found between or within operator‟s repeated datasets (p>0.05). 

TABLE 3-2 – CHARACTERISTICS OF STUDY POPULATION (N=30) 

Age  [yrs] 64.9±10.0 

Gender (Male)  [N (%)] 11 (37%) 

Normal*  [N (%)] 14 (47%) 

Single vessel disease*  [N (%)] 12 (40%) 

Multi-vessel disease*  [N (%)] 4 (13%) 

MBF (n=30) 
Operator 1 Operator 2 

Dataset 1 Dataset 2 Dataset 1 Dataset 2 

 Global rest MBF  [mL/min/g] 1.04±0.41 1.04±0.41 1.04±0.41 1.04±0.41 
 Global stress MBF  [mL/min/g] 2.24±0.92 2.25±0.92 2.25±0.92 2.25±0.92 
 Global MFR 2.40±1.20 2.40±1.08 2.41±1.21 2.43±1.21 
 Global ΔMBF  [mL/min/g] 1.20±0.80 1.21±0.79 1.21±0.80 1.22±0.80 
* Based on interpretation of standard relative uptake MPI 

p=NS for mean differences of all operator/analysis combinations 

p=NS for standard-deviation differences of all operator/analysis combinations 

3.3.2 Operator Intervention 

Operator intervention at each processing stage is summarized in Table 3-3. The 

intervention of Operator 2 remained consistent between datasets when compared to operator 

1. Both operators intervened primarily by cropping adjacent organ activity on the inferior 

image. Operator 1 cropped 18 images in the first analysis but only 6 in the second analysis, 

which was more similar to the interventions of operator 2. This suggests some improvement 

of processing skills as operator 1 gained experience with the software, with less intervention 

required in the second analysis. 

TABLE 3-3 – NUMBER OF OPERATOR INTERVENTIONS PER DATASET (OUT OF 60 IMAGES) 

O
p

er
a

to
r 

D
a

ta
se

t Orientation Stage Segmentation  

Stage 
Gut 

TV 

Plane 

Position Angle Ellipse Size 

TV VLA HLA TV VLA HLA TV VLA HLA 

1 
1 18 4 0 0 0 0 0 0 0 0 0 5 

2 6 0 0 4 0 0 1 0 0 2 0 4 

2 
1 4 0 0 0 0 0 0 0 0 0 0 1 

2 4 0 0 2 0 0 0 0 0 1 0 1 

TV – Transverse Plane 

VLA – Vertical Long Axis Plane 

HLA – Horizontal Long Axis Plane 
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Figure 3-9 – Bland-Altman graphs for inter-operator agreement of rest uptake, stress uptake, stress/rest uptake, and stress-rest (datasets 1 and 2 

combined). 
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Figure 3-10 – Bland-Altman graphs for inter-operator agreement of MBF, stress/rest MBF, and stress-rest MBF (datasets 1 and 2 combined). 
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3.3.3 Inter-operator Variability 

Relative uptake and absolute flow inter-operator analyses are shown in Figure 3-9 

and Figure 3-10 respectively. Both figures contain correlation and Bland-Altman plots for 

rest (bottom left), stress (top left), stress/rest, (top right), and stress-rest (bottom right) using 

the data from the three vascular territories. Overall, excellent correlation, and low bias, was 

demonstrated both for relative uptake and absolute flow. In all cases the slope was close to 

unity (0.956-1.04) and the intercept was within ±5% of the mean values. 

Bias(%), correlation (r
2
), and RPC(%) values are summarized in Figure 3-11, Figure 

3-12, and Figure 3-13 respectively. While, relative uptake appears to have lower bias than 

absolute flow, none of the bias values differed significantly from zero (p=ns). All inter-

operator correlations were higher for absolute flow compared to relative uptake, but were 

significant only in the case of rest and stress-rest (p<0.05). Finally, the reproducibility 

coefficients for relative uptake, were all lower (more reproducible) than for absolute flow 

(p<0.001). 

 

 

 

Figure 3-11 – Biases in intra- and inter-operator agreement of relative uptake and absolute flow. All 

biases were not significantly different from zero (p>0.05) and remained below 1%. 
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Figure 3-12 – Biases in intra- and inter-operator agreement of relative uptake and absolute flow. All 

biases were not significantly different from zero (p>0.05) and remained below 1%. 

 

Figure 3-13 – RPC for intra- and inter-operator differences of relative uptake and absolute flow. In all 

cases relative uptake analysis is less variable than absolute flow (p<0.001) (black *). Generally, operator 

2 (experienced) had less variability than operator 1 (novice) for relative uptake (blue *) and absolute flow 

(red *). 

3.3.4 Intra-Operator Variability 

Intra-operator biases were also larger with absolute flow compared to relative flow 

(p<0.001). None of the biases were significantly different from zero (p=ns) as with the inter-

operator biases. In all cases correlation was excellent (r
2
≥0.97).  
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Generally, intra-operator 2 (expert) had significantly higher correlations (p<0.001) 

and lower RPC% (p<0.001) for rest, stress, and stress/rest than intra-operator 1 (novice), as 

shown in Figure 3-12 and Figure 3-13 respectively. Interestingly, only absolute flow stress-

rest correlation (p=0.6) and RPC% (p=0.4) did not differ significantly between operators. 

These results suggest slightly better intra-operator reproducibility with experience, and that 

absolute stress-rest may be more robust against operator-dependent variability. 

3.3.5 Regional Variability 

The inter- and intra-operator RPC% for absolute flow values (combined rest and 

stress) in the three vascular territories and globally are listed in Table 3-4. RPC in absolute 

units is also presented as 95% confidence intervals that could be used in serial comparisons 

accounting for operator variability. The results suggest that the LCX region may be less 

sensitive to operator interaction than the LAD and RCA regions, but the general agreement 

remains very good, with 95% of disagreements still below 6.1% (0.095 mL/min/g) in the 

territory with largest variation for intra-operator 1. 

TABLE 3-4 – REGIONAL AND GLOBAL RPC FOR INTER- AND INTRA-OPERATOR AGREEMENT OF ABSOLUTE 

FLOW 

 Absolute (mL/min/g) % (of mean MBF) 

 Intra-operator 

1 

Intra-operator 

2 

Inter-operator Intra-operator 

1 

Intra-operator 

2 

Inter-operator 

LAD  0.080 0.076 0.065 4.80% 4.52% 3.90% 

RCA  0.095 0.049 0.061  6.08% 3.11%  3.88% 

LCX  0.075 0.038 0.048  4.51% 2.29%  2.86% 

Global  0.068 0.053 0.050  4.13% 3.22%  3.06% 

3.4 Discussion 

In this chapter we assessed the inter- and intra-operator variability of relative uptake 

and absolute flow measurements assessed at rest, stress, stress/rest, and stress-rest using the 

FlowQuant software program with two operators and two identical, anonymized, and 

randomized sets of images. Operator 2 was an experienced user whereas operator 1 was a 

novice. Operator 1 was trained on a small, separate set of images and was then left to process 

the data independently. By measuring the variability with expert and novice users the range 

of operator variability is defined.  

It is possible that the difference in user interactions (Table 3-3) between datasets 1 

and 2 corresponds to operator 1‟s learning curve. As experience was gained by the operator, 

less intervention was required. Thus operators 1 and 2 form a worst and best case scenario 

respectively. While the intra-operator agreement of operator 1 remained consistently lower 

than that of operator 2, both the inter- and intra-operator metrics illustrated excellent 

agreement. 
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Figure 3-14 – Example of analysis with the largest MBF discordance (intra-operator and inter-operator) demonstrating that the operator failed to 

correct for suboptimal detection of the LV in the mid-VLA (left) but did intervene in the second dataset (right). Similar orientations were copied to 

stress without further intervention. Consequently, the stress/rest and stress-rest maps differed mainly in scale, but less in spatial distribution. 
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One patient scan, with the largest intra-operator discordance in MBF values, is shown 

in Figure 3-14. In this rest scan the operator neglected to intervene during reorientation in 

dataset 1 (left), but did intervene in the dataset 2 (right), resulting in an improved fit of the 

ellipse in the mid-VLA and mid-HLA slices. The MBF differences were in the inferior wall 

and the apex, corresponding to the RCA and LAD territories. The RCA and LAD data points 

associated with the dataset 1 are shown in the inter-operator rest, stress/rest, and stress-rest 

Bland-Altman plots in Figure 3-10 using filled blocks. In a clinical setting, it is expected that 

this type of registration error should be identified as part of the QA process and that the 

image would not be interpreted until reprocessed. The importance of the saved graphical 

reports and their routine review is thus emphasized. 

3.4.1 Comparison to other repeatability studies 

Previous studies have evaluated intra- and inter-operator variability of MBF and 

MFR with other software programs. The results of some of these studies are listed in Table 

3-5 alongside the results of this study. While the methodology of each study is slightly 

different, it is reassuring that the method presented here performs similarly or better in most 

cases. The work of El Fahkri et al. [72] used the average across 4 datasets per operator to 

measure inter-operator variability. Reproducibility across averages is expected to result in 

higher correlations and lower RPC compared with the standard methodology used in the 

present study. Comparison of correlations is further complicated since inter and intra-

operator correlation coefficients varied considerably. In addition, some of the correlations 

were reported using a Spearman non-parametric correlation coefficient (ρ) and some were 

reported using a Pearson correlation coefficient (as performed in this study) which is more 

sensitive to outliers.  

The work of Knešaurek at al. [53] used the PMOD software, which requires manual 

operator interaction, and may explain the increased operator variability. It is not clear in this 

paper if both sets of data were processed by the same operator or two different operators (the 

former is assumed). 

Schindler et al. [89] measured inter-operator agreement at rest, CPT, and stress. 

While the rest and stress results are included in Table 3-5, the CPT results (r
2
=0.61, 

RPC=26%) were excluded for simplicity. In addition, while Schindler et al. make reference 

to intra-operator variability, these were performed on separate, repeat scans, and thus include 

variability resulting from changes in the subject between scans, as well as variability in the 

imaging process. In Sawada et al. [85] and El Fakhri et al. [72] repeat measurement 

agreements were also reported, and referred to as inter-study variability and reproducibility 

respectively. 

Nestrov et al. [71] measured inter- and intra-operator variability at rest and stress in 

10 patients using 4 operators with various degrees of experience. Each operator processed 

the data twice at two-week intervals. Analysis included global, 4 coronary artery territories 
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(apex was isolated from the LAD territory), and 17 segments. Variability increased with the 

number of segments (inverse to ROI sizes) likely due to increases in noise and physiological 

MBF heterogeneity [137,138]. Since the segmental and regional analysis was performed 

using interclass correlation coefficients, direct comparison of with Pearson correlation 

coefficients was not possible. However, comparison of RPC% values was possible, and 

showed less variability with the proposed method. 

TABLE 3-5 – MBF AND MFR INTRA- AND INTER-OPERATOR CORRELATIONS AND RPC% IN DIFFERENT 

STUDIES 

 Klein et al. 

(Present 

study) 

El Fakhri et al. 

[72]
‡ 

Knešaurek 

et al. 

[53] 

Schindler 

et al. 

[89] 

Sawada et 

al. 

 [85]
 
 א

Adachi 

et al. 

[90] 

Nesterov 

et al. 

[71] 

Software 

Program 

FlowQuant GFADS PMOD n.a. n.a. n.a Carimas™ 

Radiotracer 
82

Rb 
82

Rb 
82

Rb 
13

N-

ammonia 

13
N-

ammonia
 

15
O-

water 

15
O-water

 

N 30 22 12 20 12 23 10 

Population Patients Mixed Normals Mixed Mixed Normals Patients 

Myocardium 

Segments 

3 3 16 1 5 16 4 

Inter-operator Correlation (r
2
)  

Rest MBF 0.994 
0.827<ρ<0.935 

n.a. 0.92 
0.99 

n.a. n.a. 

Stress MBF 0.999 n.a. 0.76 n.a. n.a. 

MFR 0.986  n.a. n.a. 0.97 n.a. n.a. 

Intra-operator Correlation (r
2
)  

Rest MBF 0.990-0.998 
0.99 

n.a. n.a. n.a. 
0.712 ≤0.986 

Stress MBF 0.998-0.999 n.a. n.a. n.a. 

MFR 0.976-0.993 0.97 0.98 n.a. n.a. n.a. n.a. 

Inter-operator Reproducibility (RPC%)  

Rest MBF 6.1% n.a. n.a. 12.0% ~9% n.a. <15% 

Stress MBF 2.3% n.a. n.a. 28.1% ~13% n.a. <15% 

MFR 12.6% n.a. n.a. n.a. ~27% n.a. n.a. 

Intra-operator Reproducibility (RPC%)  

Rest MBF 3.7-8.0% 1.7 % 8.5 % n.a. n.a. 
~73% 

<50% 

Stress MBF 3.0-3.8% 1.4 % 6.3 % n.a. n.a. <20% 

MFR 8.5-16.8% 2.8 % 10.6 % n.a. n.a. n.a. n.a. 

n.a. – not available 

r –Pearson correlation 

ρ –Spearman correlation 
‡ – means of 4 repeat results for each operator 

 Estimated from reported results – א

The operator-dependent variability in this study is similar or lower than previously 

published methods, even when including the results of a novice operator. Thus the results 

suggest that a highly automated approach with minimal operator intervention is robust 

against operator induced variability. 
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3.4.2 Relative Uptake vs. Absolute Flow 

The results demonstrated better reproducibility of relative uptake through lower 

biases and lower RPC compared to absolute uptake, while correlation tended to be better 

with absolute flow compared to relative uptake. The lower biases and RPC are due to 1) 

normalization of the relative uptake to a common scale and 2) avoidance of small rest values 

which amplify variation in stress/rest values. Thus, the improved robustness of relative 

uptake comes at the expense of sensitivity to physiological global changes in blood flow as 

previously demonstrated [42]. 

3.4.3 Stress/Rest vs. Stress-Rest Differences 

When using absolute flow, reproducibility of stress/rest was significantly worse than 

stress-rest as indicated by lower r
2
 (p<0.02 for intra-operator 2, and p<0.001 for intra-

operator 1 and inter-operator) and higher RPC values (p<0.001 for intra-operator 1, intra-

operator 2, and inter-operator) as shown in Figure 3-12 and Figure 3-13 respectively. The 

reduced reproducibility of stress/rest is due to the higher sensitivity of the ratio to changes in 

low resting flow values, to which the subtraction operation in stress-rest is more robust. 

Thus, stress-rest measurements appear to be more reproducible than stress/rest, and therefore 

may be more sensitive to monitor serial changes. Both the stress-rest difference and ratio 

reflect the vasodilatory capacity to increase flow over baseline conditions. However, our 

results suggest that stress-rest is expected to be more robust, particularly in regions of 

infarction where low resting flow values may cause the stress/rest to appear artificially 

elevated. 

When using relative uptake, a systematic difference between reproducibility of 

stress/rest and stress-rest was not observed. This is explained by the removal of small rest 

values through normalization of the rest (and stress) images. 

3.4.4 Limitation 

This study is limited by having two operators and two datasets each. Furthermore, a 

single operator represented novices and a single operator represented experts. However, two 

operators at opposite ends of the spectrum of experience are expected to bound the actual 

operator variability that will be experienced in the majority of operator groups. 

This work has not characterized the accuracy or test-retest reproducibility of this 

method in quantifying MBF, MFR, or ΔMBF, although previous studies addressed 
82

Rb 

quantification accuracy [39] and diagnostic accuracy in 3-vessel disease [42].  

3.5 Conclusion 

The FlowQuant software program has been developed for reproducible quantification 

of myocardial blood flow and myocardial flow reserve using 
82

Rb PET in routine clinical 

practice and in research. Excellent intra- and inter-operator variability was observed both for 
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absolute flow quantification and for relative uptake analysis between both novice and expert 

operators. However, better reproducibility was measured in the expert operator. To minimize 

variability, new operators should be trained using a small set of suitable cases and their 

performance should be tracked during the learning phase. 
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Chapter 4.  

Overlap Constrained Factor Analysis of Dynamic 

Cardiac 
82

Rb PET Images 

The contents of this chapter have been presented at the IEEE-Medical Imaging 

Conference in Honolulu, Hawaii 2007 [139]. Ran Klein was the primary author. The chapter 

consists of the published manuscript in its entirety and demonstrates the importance of 

selecting physiologically accurate constraints during image decomposition. A detailed 

description of the methodology used to resolve the number of components was appended in 

the beginning of the methods section.  

4.1 Background 

The success of FADS in resolving physiologically accurate blood input functions has 

been demonstrated in canine with 
13

N-ammonia and in humans with 
18

F-FDG, but has failed 

in smaller subjects such as small monkeys and paediatrics [110]. It is understood that FADS 

may succeed when pure pixels exist in the image, but under this assumption FADS has 

limited application. 

A major limitation of factor analysis is non-uniqueness of the solution, even when 

non-negativity is imposed [140,141,142]. In the mid 1980s ambiguity of FADS solutions 

was addressed by constraining one of the factors to the time-activity profile of the image 

background in a method referred to as image based FADS [143]. This approach was limited 

to resolving factors of isolated organs. Application of maximum entropy as an additional 

constraint was shown to somewhat improve correspondence of factors with simulated data, 

and was only validated in canine models using ROI derived curves [144]. ROI derived 

curves are a poor standard for validation of factors as the whole premise of image 

decomposition is to overcome the limitations of ROI derived curves. A priori information on 

the mixing of cardiac tissues was also investigated [108] and in simulations showed 

improved accuracy of blood factors, but not of myocardium factors. Once again, 

experimental validation in canines was limited to ROI defined curves. 

Instead of addressing the physiology directly, some have attempted to constrain the 

solution based on the imaging process or image properties. For example, a spatial 

regularization of FAMIS has been implemented by enforcing uniformity between 

neighbouring pixels [123]. These results were validated with simulations [123] and later 

applied to myocardial perfusion reserve in 
15

O-water imaging [79]. 

Recently, minimal structure overlap, also referred to as minimal spatial overlap 

(MSO), has been proposed as an alternative constraint [106,124]. While the MSO approach 
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may seem intuitive at first, it does violate some knowledge of the nature of the images and of 

the cardiac anatomy. Arterial blood and myocardial tissue signals overlap in the myocardial 

region due to the heart muscle being perfused by arterial blood which accounts for as much 

as 20% of the volume in this region [49,108]. In addition the blurry nature of the images as 

well as incomplete scatter correction introduces spillover (or cross contamination) of blood 

and myocardium. Validation of MSO has been limited to simulation and MBF quantification 

in 8 rest-stress studies [106]. 

This section explores a new constraint that penalizes against temporal overlap of the 

factors. The proposed method resolves ambiguity of the solution by producing factors that 

are as temporally distinct as possible without violating the non-negativity constraints. The 

method is compared with the MSO constraint and the results are evaluated using simulation 

and experimental results. 

4.2 Methods and Materials 

4.2.1 Number of Components 

The number of components, K, was determined automatically based on the 

cumulative variance. The K-dependent cumulative variance was calculated using 

Eigenvalues of the image co-variance matrix which were normalized, sorted, and cumulated. 

The cumulative variance (y-axis) may be plotted against the normalized number of time 

frames (x-axis) as shown with black dots in Figure 4-1. Typically, K is determined by 

thresholding the variance as demonstrated by the blue line in Figure 4-1 and as described in 

section 2.9.2. To mitigate an excessively large number of components in the case of noisy 

images a penalty was included by selecting the point with the shortest Euclidean distance to 

the point (0,1) as demonstrated by the red dots. The number of frames corresponding to the 

selected dot was used as the number of components, K. 

 

Figure 4-1 – Demonstration of two alternative methods for resolving number of factors, K, base on the 

cumulative variance in the image. 

1 

1 

M=10 

0 

0 
Relative frames 

Number of frames 

C
u
m

u
la

ti
v
e 

V
ar

ia
n
ce

 

0.2 

K=2 

Variance 

threshold 

1 

1 

M=10 

0 

0 

0.2 

K=2 

0.4 

K=4 

Low-Noise Image High-Noise Image 



Kinetic Model Based FA for MBF with 
82

Rb PET  Ran Klein, University of Ottawa 

  58 

 

In a hypothetical low-noise image (Figure 4-1 left) both methods resolve two factors. 

In a hypothetical image with high random noise (right) the threshold method resolves 4 

factors as the cumulative variance increases gradually with more factors while the proposed 

method maintains 2 factors. 

4.2.2 Factor Analysis Algorithms 

Dynamic sequence of images were decomposed using FADS [121], as described in 

section 2.8.4.1, resulting in non-negative factors and structure (F‟ and S‟ respectively). In a 

subsequent processing stage an additional constraint was introduced in order to resolve non-

uniqueness, while maintaining the non-negativity of the rotated factors and structures. Two 

different constraints were implemented by optimizing the rotation matrix, R, so as to 

minimize the following penalty functions  

𝑓𝑡𝑜𝑡
𝑀𝑆𝑂 𝑹 𝑭′ , 𝑺′ = 𝑓𝑛𝑒𝑔  𝑭′𝑹 + 𝑓𝑛𝑒𝑔  𝑹−𝟏𝑺′ + 0.01𝑓𝑜𝑣𝑙  𝑹

−𝟏𝑺′  4-1 

𝑓𝑡𝑜𝑡
𝑀𝐹𝑂 𝑹 𝑭′ , 𝑺′ = 𝑓𝑛𝑒𝑔  𝑭′𝑹 + 𝑓𝑛𝑒𝑔  𝑹−𝟏𝑺′ + 0.01𝑓𝑜𝑣𝑙   𝑭′𝑹 𝑇  4-2 

The first two elements in the penalty functions penalize for negative values in the 

rotated factors (F=F'R) and rotated structures (S=R
-1

S'). The negativity penalty, fneg(X), was 

defined by the magnitude of the negative elements in X relative to the magnitude of all the 

elements in matrix X as described in equation 4-3 and 4-4. 

𝑓𝑛𝑒𝑔  𝑿 =
 𝑯(𝑿) 

 𝑿 
=

1

 𝑿  
  𝐻 𝑥𝑖 ,𝑗  

𝑗𝑖

 4-3 

𝐻 𝑥 =  
𝑥2 , 𝑥 < 𝜖
0, 𝑥 ≥ 𝜖

  4-4 

The third element of the penalty functions penalized for overlap between the rows of 

the input matrix X [106] as shown in equation 4-5. Thus by substituting the arguments with 

the rotated structures or rotated factors, MSO minimizes spatial overlap between structures, 

and MFO minimizes temporal overlap between factors. 

𝑓𝑜𝑣𝑙 𝑿 =    
 𝑥𝑖𝑝  

  𝑥𝑗𝑝
2𝑁

𝑗 =1

 𝑥𝑖𝑝  

  𝑥𝑗𝑞
2𝑁

𝑗 =1

𝑃

𝑖=1

𝐾

𝑞=𝑝+1

𝐾

𝑝=1

 4-5 

4.2.3 Simulated Dynamic Image Sequences 

A dynamic image sequence containing two components (shown in Figure 4-2) was 

simulated. The first region was a centered circle containing 100% blood. The second region 

was a centered ring containing 85% myocardium and 15% blood factors. 10% Gaussian 
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noise was added to each time frame and was then smoothed with a 12mm FWHM Gaussian 

filter. The resulting image sequence (ignoring noise) is a series of linear combinations 

(defined by the factors) of the structures shown in the top-most row (Simulation) of Figure 

4-3. 

 

Figure 4-2 – Structures and corresponding factors used to create a simulated dynamic sequence of 

images. 

The simulated image sequence was submitted for decomposition with FADS both 

with MSO and with MFO constraints. The factors and structures obtained using both 

constraints were validated against the known results of the simulated data using percent root-

mean-squared error and using correlation (r
2
) respectively. 

4.2.4 Experimental Image Sequences 

A single dog underwent a series of dynamic PET scans with varying 
82

Rb (150 MBq) 

infusion intervals (15, 30, 60, 120, 240, 240, 120, 60, 30, 15 seconds) with a Siemens ECAT 

ART scanner. The images were iteratively reconstructed using OSEM with a 12 mm 

resolution. The reconstructed dynamic image sequence was 10 min long and contained 17 

time frames (12×10s, 2×30s, 1×60s, 1×120s, and 1×240s). The images were corrected for 

radioactive decay. 

Since the structures are representative of the anatomy of the subject they are expected 

to remain constant regardless of the tracer infusion duration. Robustness of the resolved 

structures against variability with infusion duration was measured using cross-correlation 

between the structures obtained from all 10 images. 

Factors, on the other hand, are expected to reflect the variation in infusion duration. 

Blood factors are expected to rise from time zero until the end of the infusion and then 

decrease to near zero activity, as suggested in [45]. The relative decrease from peak activity 
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to the activity in the final frame was defined as blood clearance, where 100% clearance 

refers to a drop to zero activity in the final frame and 0% clearance refers to no drop from 

peak activity. Myocardium factors are expected to increase monotonically past the blood 

peak and then plateau during the final uptake time frames, consistent with the retention of 

rubidium in the myocardium. 

Contrast between blood pool and myocardium was measured in the myocardium 

structures using an automated registration algorithm [134]. The algorithm automatically 

reoriented the myocardium structure to the LV reference frame and then registered the LV by 

optimizing a spline model of a partial ellipsoid. A fixed size blood pool region of interest 

was automatically defined in the center of the LV cavity. Contrast was defined as the 

difference between the mean LV and mean blood intensities relative to the mean LV 

intensity. 

4.3 Results 

4.3.1 Simulated Dynamic Image Sequences 

The simulated structures were nearly exactly recovered using the MFO method, but 

not with the MSO method. The MSO derived blood structure was smaller compared to the 

simulated structure, while the MFO derived blood structure agreed closely with the 

simulation as shown in the left column of Figure 4-3. The measured error was greater with 

MSO (RMSE=24%) than with MFO (RMSE= 9%) indicating improved accuracy with MFO. 
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Figure 4-3 – Comparison of resolved blood (red) and myocardium (blue) factors using MFO (x) MSO (o) 

to the source profiles (lines) used in simulating the dynamic image sequence. 
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The graph on the right of Figure 4-3 compares the MSO and MFO derived factors 

with the simulated factors. The blood factors obtained with both MSO and MFO follow the 

simulated data closely, although MFO appears slightly more accurate (r
2
=0.943) than MSO 

(r
2
=0.927). While the MFO obtained myocardium factor follows the simulated data closely 

(r
2
>0.999), the MSO factor does not (r

2
=0.247). Most of the error in the MSO myocardium 

factor occurred in the early time frames, in the form of a local peak associated with blood 

signal spillover. 

4.3.2 Canine Model 

All ten images were decomposed into two factors (automatically determined), which 

accounted for 77-91% of the image variance. Similarly shaped factors were obtained with 

both MSO and MFO constraints as demonstrated in Figure 4-4. The factors were 

automatically labelled (and verified) as blood (combined LV and RV) and myocardium.  

 The myocardium factors obtained with MSO consistently exhibited a larger local 

peak synchronized with the blood factor peak (insert in top of Figure 4-4), suggesting that 

the myocardium factor was slightly biased with blood signal.  

 

 

Figure 4-4 – (TOP) Example of comparison of resolved blood (red) and myocardium (blue) factors using 

MFO (x) and MSO (o) in a dog with a 30 second constant activity rate 
82

Rb infusion. The insert 

emphasizes the local peak in the myocardium factors, which is associated with blood signal 

contamination. (BOTTOM) MSO and MFO factors with 15, 60, and 240 s infusion durations reflect the 

infusion duration in the broader blood peaks and more gradual uptake by the myocardium. 
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The blood factors obtained with the MFO constraint exhibited ~100% blood 

clearance (near zero activity in the last time frame) in all cases. Blood clearance in MSO 

blood factors was 60-85%, depending on the infusion interval (Table 4-1). Incomplete blood 

clearance with MSO is inconsistent with experimental observations [45]  and may indicate 

that the blood factor is biased with myocardium signal.  

TABLE 4-1 – BLOOD CLEARANCE 

(MEAN OF TWO STUDIES FOR EACH ELUTION DURATION) 

Elution duration MSO MFO 

15 s 84 % 100 % 

30 s 80 % 100 % 

60 s 76 % 100 % 

120 s 65 % 100 % 

240 s 60 % 100 % 

The structures obtained both with MSO and MFO had similar patterns, as 

demonstrate in Figure 4-5 for the extreme cases of 15s and 240s elution durations. The MFO 

blood structure is more dilated than MSO resulting in increased overlap between the blood 

and myocardium structures. In addition, MFO myocardium structures appear to be thinner in 

the apex region compared to MSO. 

 

Figure 4-5 – Comparison of structures obtained using both MSO and MFO constraints at extreme 

elution intervals. Both constraints provide similar structures regardless of the elution duration, 

indicating robustness of both algorithms. The blood pool image obtained with MFO is consistently more 

dilated than that obtained with MSO. MSO provides myocardial structures with higher myocardium to 

blood pool contrast. 

Excellent correlation (r
2
>0.95) between structures was reported for all infusion times, 

when the same constraint was used, indicating that the results are highly reproducible with 

both MSO and MFO constraints. But the constraints do give different results as indicated by 

lower correlation between structures derived using the different constraints (0.75<r
2
<0.87). 

Contrast between blood pool cavity and myocardium (red and blue region 

respectively in Figure 4-6) in the myocardial structures was consistently greater with MSO as 

demonstrated in Table 4-2. These results are consistent with the MSO constraint which 

maximizes the spatial separation between factors. 

Minimal Structure Overlap 
(MSO) 

Minimal Factor Overlap 
(MFO) 

Blood 

Myocardium 

Example 15s 
infusion 

Example 15s 
infusion 

Example 240s 
infusion 

Example 240s 
infusion 
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MSO MFO  

   

Figure 4-6 – Example of regions used to calculate contrast in 

myocardium structures. Red blocks show the blood pool 

region and the blue lines show the myocardium contour. MSO 

consistently produces higher contrast images than MFO. 

TABLE 4-2 – MYOCARDIUM CONTRAST 

(MEAN OF TWO STUDIES FOR EACH 

ELUTION DURATION) 

Elution 

duration 

MSO MFO 

15 s 0.94 0.53 

30 s 0.95 0.54 

60 s 0.91 0.52 

120 s 0.94 0.57 

240 s 0.88 0.56 

Mean ± SD 0.92 ± 0.05 0.55 ± 0.04 

   

4.4 Discussion 

In this work dynamic image sequences were decomposed using FADS and then 

applied additional constraints to resolve the ambiguity of the solution. The noise or residue in 

the image was removed by FADS as part of the decomposition. In all cases the images were 

decomposed into two factors. Visual inspection of the residue did not reveal any persistent 

temporal patterns. In addition, the residue was nearly equal in all time frames and was one to 

two orders of magnitude weaker than the image signal, indicating that the residue consisted 

primarily of noise. 

The dynamic sequence of residue images, demonstrated in Figure 4-7, for 15 s and 

240 s infusion intervals using both MSO and MFO revealed similar results regardless of the 

constraint. The right chambers of the heart could be discerned in the first time frame, 

indicating that the transport delay between the left and right chambers of the heart is visible 

and not accounted for by resolving two factors. However, the signal from this residue is very 

small when scaled to the original image data, as presented in Figure 4-7. 
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Figure 4-7 – Example of residue in 15s and 240 s infusion images using both MSO and MFO reveals 

similar patterns regardless of the constraint. In the first time frame some unaccounted residual activity is 

present due to transport delay between left and right chambers of the heart, but this signal is very low 

compared to the original image.  
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The reproducibility of the structures regardless of infusion duration demonstrates the 

effectiveness of both constraints in resolving a reproducible and unique solution. In addition 

the importance of a physiologically accurate constrained is emphasized by the difference in 

the solutions obtained using either constraint. 

MSO resolves structures with reduced overlap as expected which may be attractive 

for applications where improved contrast between regions is desired. The simulation data 

highlights the inability of MSO to separate blood and tissue signals in the myocardium 

region. Consequently the myocardium factor consists of tissue signal which was biased by 

blood signal. A similar effect may be expected in the blood factor, where incomplete 

separation of myocardium signal is manifested as non-zero activity in late time frames as 

was observed in both the simulation and canine data. 

While MFO appears to overcome the limitations of MSO, this section lacks 

validation against a physiological standard. In the absence of such a standard, it is especially 

important to use a constraint that describes the physiology in an accurate and robust manner. 

There is no physiologic evidence that strictly supports the merit MFO. Thus a need exists for 

a physiologically accurate constraints and/or physiological validation standards. 

4.5 Conclusion 

Constraints must be placed on the solutions of decomposed dynamic PET image 

sequences in order to ensure a unique solution. These constraints must be consistent with 

knowledge of the physiology in order to ensure physiologically accurate solutions. This 

section demonstrates that MSO violates our knowledge of spatial overlap between arterial 

blood and myocardial structures and therefore results in less accurate factors and structures 

in simulations than the proposed MFO constraint. In repeat images of the same dog MSO 

results were more variable than MFO results. However, there is no strict evidence to support 

the validity of MFO and a need remains for a physiologically accurate constraints. In 

addition a need exists for physiological standards by which to validate the solutions. Both 

these needs are addressed in the next chapter. 
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Chapter 5.  

Kinetic Model-Based Factor Analysis 

The need for physiologically accurate constraints on the decomposition process was 

demonstrated in the previous chapter. The same chapter also demonstrated the need for better 

validation of the decomposition results with regards to their physiologic accuracy. This 

section presents a novel model-based decomposition process that includes a model of the 

cardiac physiology as part of the decomposition process. The method is validated using both 

simulation data and physiologic standards. The performance of the proposed method is 

compared with the performance of MSO. The content of this chapter has been accepted for 

publication [145]. 

5.1 Background 

Quantification of myocardial blood flow (MBF) from dynamic nuclear image 

sequences has been pursued as a diagnostic and prognostic indicator of heart disease 

[10,67,12]. Traditionally, an input and output function are derived using image regions of 

interest. These functions are then used to optimize the parameters of a tracer kinetic model 

representing a physiologic process of interest such as blood flow. However, the limited 

spatial resolution and signal-to-noise-ratio of these modalities can limit the accuracy and 

precision of the image-derived functions [48,49].  

Factor analysis techniques have been explored as a means to obtain functions that are 

free of noise and spillover contamination from adjacent structures [101]. A dynamic series of 

images is decomposed into a finite number of temporal factors and their corresponding 

spatial structures which, ideally, should correspond to the physiology of the imaged tissue. 

The decomposition may be expressed in matrix form as: 

Y = FS+ε 5-1 

where Y is the dynamic image sequence (the N pixels of each of M time frames in a row), the 

columns of F contain the time-activity profiles of the P factors, the rows of S contain the 

spatial structure of the factor, and ε is error, or residual signal not accounted for by the 

factors. 

Scaling of factors and structures is arbitrary [11], which is evident from their product 

in equation 5-1. Typically the factors are normalized to unity area during decomposition and 

are later scaled based on the identification of assumed „pure‟ pixels in the image [102,110], 

or based on blood sampling [101]. Even before scaling, decomposition is non-unique 

[110,115,146], requiring constraints that reduce the range of valid solutions. In cardiac 
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positron emission tomography (PET), these constraints have historically defined non-

negative factors and structures [104] based on the physical imaging process. In addition, 

Poisson statistics have been used to model the imaging process [103], but these constraints 

still do not ensure a unique solution. 

Minimization of the spatial overlap between the structures has been proposed as an 

additional constraint that ensures uniqueness of the solution. The minimal overlap constraint 

was originally incorporated as part of a penalized least-squares minimization problem 

[109,124] and later applied as a successive step [72,106]. Unfortunately, minimal structure 

overlap partially violates a priori knowledge of structure overlap that exists between blood 

and myocardium signals due to the limited spatial resolution of PET, and the normal 

anatomic presence of 10-15% arterial blood within the myocardial wall. An alternative 

constraint was proposed that minimizes factor overlap under the assumption that the factors 

should be as distinct as possible temporally [139]. However, there is no absolute physiologic 

evidence to support this assumption either. 

In this work an alternative approach is developed that couples the factors using 

kinetic models that describe their physiological relationship in time. These models relate the 

three main components of the cardiac image dynamics – right cavity blood, left cavity blood 

(including myocardial vasculature), and myocardium (excluding myocardial vasculature). 

Consequently, model-based factor analysis is specific to this target application and is 

expected to benefit from increased a priori physiologic information. Cardiac PET with 
82

Rb 

may be expected to benefit more than other tracers due to the relatively long positron range, 

which results in increased image blur, greater mixing of signals and more structure overlap. 

Implementation for 
82

Rb is relatively simple due to its kinetics being described with a one-

compartment model [39], and factor validation is simplified due to lack of blood or tissue 

metabolites.  

In this study the performance of model-based and minimal-spatial overlap 

constrained factor analyses was compared using simulation data and experimental data, in 

which arterial blood sampling and 
11

CO blood pool imaging served as anatomical standards 

[145]. Reproducibility of structures and MBF under varying image conditions was also 

evaluated. A preliminary evaluation of MBF reproducibility is also included. 

5.2 Methods and Materials 

5.2.1 Minimal Structure Overlap (MSO) Constrained Factor Analysis 

MSO decomposition was achieved in two steps: 1) decomposition of the image and 

2) rotation of the resulting factors (basis vectors) to minimize spatial overlap as in [106].  

Decomposition consisted of minimizing a cost function, CMSO, defined as a weighted 

sum of the norm of the error matrix |ε|, with penalties for negative structure and factor values 

as expressed by equation 5-2, where WE = 1/|ε|, WNF = 100 and WNS = 1. Negativity was 
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defined as the norm of all negative elements in matrix X as a ratio of the norm of all elements 

in X (equations 5-3 and 5-4). The same negativity function, fneg(X) ∈[0-1], was used for both 

factors and structures, substituting F’ or S’ for X respectively. 

CMSO = WE |ε| + WNF fneg(F’) + WNS fneg(S’) 5-2 

𝑓𝑛𝑒𝑔  𝑿 =
1

 𝑿  
  𝐻 𝑥𝑖 ,𝑗  

𝑗𝑖

 5-3 

𝐻 𝑥 =  
𝑥2 , 𝑥 < 𝜖
0, 𝑥 ≥ 𝜖

  5-4 

 

The cost function, CMSO, was minimized by optimizing F’ using a simplex gradient 

descent algorithm (fminsearch, Matlab, The MathWorks, Boston, MA) that was executed in 

several iterations (epochs) until the variance of ε stabilized to a value less than 10
-6

 of the 

mean. In each epoch the error penalty, WE, was set to the value of 1/|ε| from the previous 

epoch. This approach iteratively estimated the amount of noise in the image, resulting in 

consistent relative penalty weights without the need to assume a particular noise level. 

In the second step, the MSO constraint was applied to minimize the weighted sum of 

factor and structure negativity penalties as well as spatial overlap penalty, fovl(X)∈[0,1], as 

shown in equations 5-5 and 5-6.  The matrices F’ and S’ are the factor and structure 

matrices resulting from the decomposition stage and R is a P×P rotation matrix that is 

optimized to minimize ftot
MSO

, where P in the number of factors. The resulting factors and 

structures were defined as F=F‟R and S=R
-1

S‟ respectively. The parameter b (=0.001) was 

used to weight the overlap penalty, giving priority to the non-negativity constraint.  

𝑓𝑡𝑜𝑡
𝑀𝑆𝑂 = 𝑓𝑛𝑒𝑔  𝑭′𝑹 + 𝑓𝑛𝑒𝑔  𝑹−1𝑺′ + 𝑏𝑓𝑜𝑣𝑙  𝑹

−1, 𝑺′  5-5 

𝑓𝑜𝑣𝑙  𝑿 =
2

𝑃 𝑃 − 1 
   

 𝑋𝑖𝑝  

  𝑥𝑗𝑝
2𝑁

𝑗 =1

 𝑋𝑖𝑞  

  𝑥𝑗𝑞
2𝑁

𝑗=1

𝑁

𝑖=1

𝑃

𝑞=𝑝+1

𝑃

𝑝=1

 5-6 

5.2.2 Model-Based Factor Analysis (MB) 

The right ventricle (RV) cavity blood factor was treated as an input function that 

could take any shape, with unit area. Thus the RV factor, r(t), was considered a free variable 

vector with M-1 degrees of freedom where M is the number of time frames. The left ventricle 

(LV) cavity blood was modeled by convolution of the RV blood with a model of the delay 

and dispersion resulting from transport of the RV blood through the lungs and pulmonary 

vessels to the LV. A standard gamma-variate function (equation 5-7) was adopted to model 
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this transport [145,147,148,149,150], where the model parameter tp represents time delay to 

peak activity [147], and β controls the broadness of dispersion.  

𝐺 𝑡 = 𝑡𝛽𝑒−𝛽𝑡 /𝑡𝑝  5-7 

The myocardium factor was modeled by convolution of the LV blood factor with a 

compartmental response function assumed for the specific tracer. In the case of 
82

Rb, a one 

compartment model impulse response function was used [39] with a single free parameter k2 

(tracer washout) as in equation 5-8. 

𝑀 𝑡 = 𝑒−𝑘2𝑡  5-8 

Since the factors were scaled to unit area as part of the decomposition process, the 

scaling factors typically included in equations 5-7 and 5-8 are redundant, and so were 

removed. The use of these models to parameterize two of the three factors reduces the 

number of free parameters from 3(M-1) with MSO to M+2 with the MB method. In addition, 

coupling of the factors through the modeled response functions imposes a constraint on the 

solution that agrees with knowledge of the tracer physiology. 

5.2.2.1 Optimization 

The factor matrix, F, was constructed of columns containing RV blood, LV blood, 

and myocardium factors (equation 5-9), where the symbol ⨂ denotes the discrete point 

convolution operation and integration over the image time frames. 

𝑭 =  

𝑟(𝑡)
𝑟(𝑡) ⊗ 𝐺

𝑟(𝑡) ⊗ 𝐺 ⊗ 𝑀
 

𝑇

 5-9 

The model-based decomposition process consisted of optimization of the RV blood 

factor simultaneously with the model parameters to minimize the objective function, CMB, 

(equation 5-10) which contains the same error and non-negativity penalties used in MSO, but 

does not include a penalty for spatial overlap. To ensure uniqueness and robustness of the 

MB solution two penalties were added, fBR and fR:  

fBR∈[0-1] - Penalizes for blood factors that increase in the uptake phase. This penalty 

was defined as the area bound by the activity of the last RV blood factor time frame, F1,M, 

and activity of time frames post peak RV blood that are below F1,M, as demonstrated by the 

light shaded area in Figure 5-1. This penalty aids convergence by promoting solutions with 

monotonic decrease in blood activity past the blood peak activity, again consistent with the 

known physiology. 

fR∈[0-1] – Penalizes for residual blood activity in the uptake phase (past the first 2 

minutes) as demonstrated by the dark shaded area in Figure 5-1.  
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CMB = WE|ε| + WNFfneg(F) + WNS fneg(S)  + WBR fBR + WRfR 5-10 

The cost function, CMB, was optimized using the same routine used to optimize CMSO. 

The penalty weights WBR and WR were empirically set to 10 and 0.01 respectively, while WE, 

WNF, and WNS were maintained the same as for MSO. The model parameters were bound 

based on typical experimental values (Table 5-1). Thus, while MSO solves the ambiguity 

problem by minimizing the overlap between structures, MB imposes a priori physiologic 

constraints on the shape of the blood factor, as well as the other factors via the kinetic 

models. 

 

Figure 5-1 – Blood increase penalty, fBR, is the integral of RV blood that is beyond the initial peak and 

below activity of the last time frame (light shaded area). Residual blood activity, fR, is the area under the 

curve from 2 minute to the end of the scan (dark shaded area). 

5.2.3 Number of Factors 

For both MSO and MB methods, the number of factors (2 or 3 in this case) was 

determined automatically as the value beyond which |ε| decreased by less than 1%. In the 

event of decomposition into only two factors, a single blood factor and a myocardium factor 

were always resolved. In this case the blood factor was the free variable and the myocardium 

was modeled using the compartmental model (equation 5-8).  

5.2.4 Simulations 

5.2.4.1 Canine Simulation 

RV blood time activity curves were simulated as a 30 sec, constant rate of activity 

infusion with dispersion (modeled with a gamma-variate function) en route to the RV cavity. 

Two forms of RV blood TAC were created to assess the solution‟s robustness to different 

input function characteristics: 

 Complete clearance of blood activity 

 Residual (non-zero) blood activity 

Each RV blood TAC was convolved with a gamma-variate impulse response function 

(equation 5-7) to generate an LV factor. The LV factor in turn was convolved with a one-

compartment model impulse response function (equation 5-8) to generate a myocardium 

factor. The model parameters used for the simulations are shown in Table 5-1. Different 
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washout parameters, k2, were selected for the complete blood clearance and residual blood 

activity cases so that the myocardial TAC had a similar appearance during the late uptake 

phase of the dynamic image sequence. Each factor was sampled by integrating over 17 time 

intervals as used in clinical practice (12×10s, 2×30s, 1×60s, 1×120s, and 1×240s). 

TABLE 5-1 – ERROR IN RESOLVED PHYSIOLOGIC PARAMETER VALUES WITH MODEL-BASED ANALYSIS (%) 

Blood 

Clearance 

Parameter 

Name 

Units Lower 

Bound 

Initial 

Value 

Upper 

Bound 

Simulated 

Value 

Canine Simulation Small Animal Simulation 

No Noise 10% Noise No Noise 10% Noise 

Complete 

tp sec 2 10 30 15.0 15.0 15.2±0.5 - - 

β - 0.25 1 5 2.00 2.00 1.95±0.09 - - 

k2 min-1 0.01 0.1 1.5 0.050 0.050 0.051±0.004 0.050 0.049±0.001 

Residual 

tp sec 2 10 30 15.0 15.0 15.6±0.6 - - 

β - 0.25 1 5 2.00 2.00 2.24±0.27 - - 

k2 min-1 0.01 0.1 1.5 0.500 0.500 0.496±0.036 0.050 0.499±0.037 
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Figure 5-2 – Horizontal long axis (top row) and short axis slices (second row) of simulated structures 

with a black line showing their intersection. The short-axis slices of the smoothed structures simulate 

canine images (third row) and small animal images (bottom row). All images are scaled to maximum 

intensity pixel to emphasize contrast. 

These factors were then cross multiplied with their respective recovery images 

representing the anatomic structures (dimensions shown in Table 5-2) to generate a dynamic 

sequence of images of tracer redistribution in the heart region.  Representative horizontal 

long axis (HLA) and short axis (SA) images are shown in Figure 5-2. Each recovery image 

of the simulation was averaged over 36 gates of sinusoidal cardiac motion and wall 

thickening to preserve the myocardial mass across all gates. Of the dynamic image 

sequences, one image did not have noise added to it while 5 images had Gaussian distributed 

random noise added. The images were then smoothed using a 13.6 mm FWHM Gaussian 

filter. The variance of the noise in each pixel was proportional to the pixel intensity [151]. 

100 mm 

20 mm 
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The noise gain was adjusted (100%) to generate the same post-smoothing image variance in 

the myocardial region as measured in canine images using a clinical scanner (~10% 

variance). By adding noise in image-space it was assumed that scatter and attenuation were 

properly corrected for in the experimental data. Simulated cardiac motion resulted in a 

spatially variant image blur which is increased in the heart region. Short axis slices of the 

canine motion blurred and spatially smoothed recovery images are shown in Figure 5-2. 

TABLE 5-2 – SIMULATED IMAGE DIMENSIONS 

Parameter Canine Small Animal 

Short axis slice pixel size (mm) 1.72 0.345 

Short axis slice thickness (mm) 2.62 0.80 

LV diameter (end systole) (mm) 50.40 10.67 

Wall thickness (mid cycle) (mm) 7.00 1.00 

LV wall motion (mm) 12.60 2.67 

RV cavity width (end systole) (mm) 20.59 2.76 

5.2.4.2 Small Animal Simulation 

Small animal images were simulated in a similar manner as the canine studies, but the 

dimension were changed as shown in Table 5-2 and the smoothing kernel was set to 4.4 mm 

FWHM, corresponding roughly to 
82

Rb imaging with a small animal PET system. Since RV 

and LV blood could not be distinguished in small animal 
82

Rb PET images due to the limited 

temporal resolution of the image, a single blood component was used. The blood structure 

was created by summation of the LV and RV blood structures. The resulting motion blurred 

and smoothed recovery images are shown in Figure 5-2. The same LV blood and 

myocardium TACs from the canine simulation were used for the small animal simulation.  

5.2.4.3 Analysis of Simulation Studies 

The canine and small animal simulated images were decomposed using both MSO 

and MB. Factors and structures were compared against the respective TACs and recovery 

images from the simulation, measuring percent root-mean-squared-error (RMSE%) as shown 

in equation 5-11 where Xref is a reference matrix from the simulation and X is the results 

matrix that is being evaluated. For factor evaluation, the weighting matrix, W, was the length 

of the imaging time frames, and for structure validation W was all ones, weighting each pixel 

equally. As shown in equation 5-11, the matrices X, Xref, and W were each normalized by 

their sum. 

𝑅𝑀𝑆𝐸% =   
𝑾

 𝑾
∙  

𝑿

 𝑿
−

𝑿𝒓𝒆𝒇

 𝑿𝒓𝒆𝒇
  × 100% 5-11 

Contrast in the myocardium structures was compared with that in the smoothed 

recovery images. Contrast was defined using equation 5-12, where Myo is the maximal 
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intensity in the myocardium structure and Cav is the mean intensity of the four pixels in the 

center of the cavity of the SA slice shown in Figure 5-2. 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =
𝑀𝑦𝑜 − 𝐶𝑎𝑣

𝑀𝑦𝑜
× 100% 5-12 

Robustness of convergence of the MB algorithm was assessed by modifying the 

initial model parameter estimates (default values in Table 5-1) to tp=5 & 20 sec, β=0.5 & 3, 

and k2=0.01 & 1 min
-1

 and decomposing the simulated canine images (resulting in 7 sets of 

decomposed images). The resulting k2 parameter estimates were analyzed using box plots for 

changes in means and/or variances as a result of modifying the initial parameters. 

The resolved model parameters from MB were compared to the simulated model 

parameters. Since, MSO does not resolve similar parameters, an estimate of the washout 

parameter, k2’, was calculated for both MSO and MB by fitting the one compartment model 

(equation 5-13) to the LV blood and myocardium factors (l(t) and m(t) respectively). The 

parameter TBF represents the total blood volume in the ROI and K1 is the uptake rate, but 

both these parameters were not analyzed. In this model, it was assumed that the total 

recovery in the myocardium region consists entirely of LV blood and myocardial tissue due 

to limited spatial resolution, motion blur, and tissue blood volume. 

𝑚 𝑡 = 𝑇𝐵𝐹 ∙ 𝑙 𝑡 + (1 − 𝑇𝐵𝐹) ∙ 𝐾1𝑙(𝑡) ⊗ 𝑒−𝑘2 ′𝑡  5-13 

5.2.5 Experimental Studies 

All animal experiments were conducted in accordance with protocols approved by the 

Animal Care Committee of the University of Ottawa. 

5.2.5.1 Factor Validation with Arterial Blood Sampling 

To test the physiological accuracy of factors (temporal domain), blood factors were 

compared with activity concentration measurements in arterial blood. Four rats were imaged 

using 
82

Rb a total of 6 times with simultaneous and continuous blood sampling. Rats were 

anaesthetized with 1.5-2% isoflurane and a PE50 catheter was surgically introduced into the 

carotid artery and fed into the left atrium. A catheter was inserted into the tail vein for tracer 

injection and a 3-lead ECG, rectal thermometer, and respiration monitor were affixed for 

physiologic monitoring. A heated bed was used to maintain normal body temperature 

throughout the experiment. 

The rats were placed in an Inveon DPET (Siemens, Knoxville, TN) scanner with the 

heart centered in the field of view. The arterial catheter was attached to a micro-volumetric 

blood activity counter [130] (AMI, Sherbrooke, Quebec) for 2-3 mL of blood withdrawal 

over a 10 min time interval. The PET scan and blood counter were started together 

approximately 10 seconds before manual injection of 
82

Rb from a 1 mL syringe, and 

followed by a 0.4 mL saline flush to clear activity from the catheter lock. List-mode data 
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were acquired for 10 min using a 350-650 keV energy window and a coincidence timing 

window of 3.4 ns.  The dynamic data (same time frames as simulation) were reconstructed 

on a 128×128 image matrix with 0.345×0.345×0.80 mm pixel size using OSEM3D/MAP 

(ß=1.0, OSEM3D iterations=2, MAP iterations=18) with corrections for dead-time, isotope 

decay, detector efficiencies, and randoms. The image sequences were decomposed using 

both MSO and MB methods as described above. 

Since arterial blood sampled time-activity concentration curves could not be 

corrected for background activity after tracer injection using the vendor provided software 

[130], raw counts were analyzed. Counts were corrected for tracer decay, background 

activity (10 sec preceding first rise in sampled activity), delivery delay, and the spatial 

resolution of the β
+
 detector. In addition, the corrected blood curves were integrated over the 

same time intervals as the dynamic image sequence. The integrated curves were normalized 

to unit area before comparison with the MSO and MB derived blood factors using RMSE 

(%) with each time frames weighed by its length normalized by the total scan duration as in 

equation 5-11. 

5.2.5.2 Structure Validation with 
11

CO Blood Pool Imaging 

A single dog was anaesthetized using ~2% isoflurane and positioned in a whole-body 

PET scanner (ECAT ART, Siemens/CTI, Knoxville, TN) with the heart centered in the field-

of-view. A series of ten dynamic scans (same time frames as simulation) was acquired with 

varying 
82

Rb constant-activity (150 MBq) rate infusion [35] durations (15, 30, 60, 120, 240, 

240, 120, 60, 30, 15 seconds). All images were acquired at rest flow state with blood 

pressure, heart rate, and respiration maintained constant. The images were reconstructed 

iteratively (OSEM) to 12 mm resolution. 

The images were cropped manually to include the entire heart (same crop applied to 

all 10 images). The cropped regions were then decomposed using both MSO and MB 

methods. The number of factors was automatically determined, but in cases having two 

blood structures (RV and LV), they were summed to form a single combined blood pool 

structure. 

The blood structures extracted from each of the 10 images were compared to a single 
11

CO blood pool image of the same animal acquired on a separate day and reconstructed to 

the same 12 mm resolution. 
11

CO binds to haemoglobin in the blood resulting in images of 

the total blood distribution, therefore serving as a good anatomic reference to validate the 

accuracy of the factor analysis blood structures. 

Contrast in the myocardium structures was compared with that of the uptake phase 

(last 6 minutes) images. Contrast was defined using equation 5-12, where Myo and Cav are 

the mean pixel intensities in the LV myocardium and LV blood cavity ROIs respectively. 

The ROIs were automatically determined [39,134]. 
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5.2.5.3 Global MBF Reproducibility using Variable Tracer Infusion Durations 

Global MBF was quantified in the same canine images. The myocardium ROI was 

used to sample kinetic modeling output function, m(t), from the dynamic image sequences. 

Likewise, the LV blood cavity ROI (ROIb) was used to sample the kinetic model input 

function, l(t). These were used with the kinetic model of equation 5-13 to determine uptake 

rate, K1, and MBF was calculated from K1 using a previously derived Renkin-Crone 

extraction function [39]. 

The MSO and MB blood factors were used as alternative input functions in equation 

5-13 and were scaled by the average blood structure in the ROIb. If two blood factors (RV 

and LV) existed they were both scaled using their respective structure ROIb and summed, 

thus accommodating incomplete spatial separation of the blood factors into RV and LV 

cavity blood. The benefit of including the RV blood time activity curve, r(t), in the kinetic 

model using equation 5-14, where RVBF and LVBF are the right and left ventricle blood 

fractions in the myocardium ROI, was also evaluated. The maximum pixel value in the RV 

structure was used to scale r(t). As in equation 5-13, equation 5-14 also assumed that the 

total recovery in the myocardial region consists entirely of RV blood, LV blood, and 

myocardial tissue. 

𝑚 𝑡 = 𝑅𝑉𝐵𝐹 ∙ 𝑟 𝑡 + 𝐿𝑉𝐵𝐹 ∙ 𝑙 𝑡  

+ 1 − 𝑅𝑉𝐵𝐹 − 𝐿𝑉𝐵𝐹 ∙ 𝐾1𝑒−𝑘2 ′𝑡 ⊗ 𝑙(𝑡) 
5-14 

Reproducibility of MBF using the ROI based method as well as using all 

combinations of MB and MSO, with and without RV blood were evaluated. 

5.2.5.4 Structure Reproducibility using Variable Tracer Infusion Durations 

The myocardium and blood structures obtained from the 10 variable infusion duration 

images were compared (RMSE%) in all possible combinations (n=45) to determine the 

reproducibility of blood and myocardium structures. In addition, the coefficient of variation 

of each pixel across the 10 images was computed and was then averaged across all the pixels 

in the regions of interest, and was referred to as CV%. CV% was measured for blood 

structures and myocardium structures both for MSO and MB. 

5.2.6 Statistical Analysis 

Unless otherwise specified, all values are reported as mean ± standard-deviation. 

Comparison of means was performed using a two-tailed paired student t-tests, with p=0.05 as 

the cut-off for significance. Comparison of variability was performed using the parametric f-

tests with the same significance cut-off. Both the student t-test and the f-test assume normal 

Gaussian distribution, which was not explicitly tested. Statistics regarding images and/or 

structures relate to all pixels within the entire region of interest. 

 Comparison of population variables is presented using notched box plots showing 

the median and inter-quartile range. Outliers are identified outside the whiskers extending to 
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1.5 times the quartiles.  Non-overlapping notches reflect significantly different medians with 

95% confidence. 

The Wilcoxon, non-parametric rank sum test was used to test the significance of 

differences in CV% with p=0.05 as the cut-off. 

5.3 Results 

5.3.1 Canine Simulation 

Table 5-3 lists the RMSE between the simulated and resolved factors and structures 

using both decomposition methods. With few exceptions, MB errors were lower than 

corresponding MSO errors. With no noise the mean factor RMSE was 0.5% with MSO, 

while all factor RMSEs were <0.05% with MB. With noise the MSO factors had 

significantly (p<0.001) higher RMSE values (0.5%) compared to MB (0.2%). Similarly, in 

the absence of noise, the structures mean RMSE were 2.5% and <0.05% for MSO and MB 

respectively. With noise the MSO and MB structure errors were 4.7% and 3.0% (p <0.001). 

TABLE 5-3 – SIMULATED IMAGE RESULTS – ROOT MEAN SQUARED ERROR (%) 

Canine Simulated Data 

Blood 

Clearance 
Factor 

Factors Structures 

No Noise 10% Noise (n=5) No Noise 10% Noise (n=5) 

MSO
 

MB MSO
 

MB p MSO
 

MB MSO
 

MB P 

Complete 

RV 0.0 0.0 0.3±0.1 0.3±0.2 1.000 1.4 0.0 2.7±0.5 1.7±0.1 0.015 

LV 0.6 0.0 0.6±0.1 0.1±0.0 0.001 1.3 0.0 2.9±1.2 2.7±0.6 0.658 

Myo 0.2 0.0 0.3±0.1 0.1±0.1 0.001 2.2 0.0 4.2±1.0 3.8±0.7 0.059 

Residual 

RV 1.3 0.0 0.9±0.4 0.2±0.1 0.027 0.0 0.0 2.7±0.3 1.6±0.1 0.002 

LV 0.2 0.0 0.5±0.2 0.2±0.1 0.095 7.1 0.0 8.0±1.8 2.8±0.6 0.001 

Myo 0.5 0.0 0.7±0.2 0.1±0.0 0.004 2.9 0.0 7.5±0.8 5.6±1.3 0.0275 

Mean 0.5 0.0 0.5±0.3 0.2±0.1 <0.001 2.5 0.0 4.7±2.5 3.0±1.5 <0.001 

Rat Simulated Data 

Complete 
Blood 1.7 0.0 1.7±0.2 0.2±0.1 <0.001 1.8 0.0 6.0±2.9 1.7±0.3 <0.001 

Myo 0.2 0.0 0.7±0.3 0.2±0.1 0.023 6.2 0.0 6.7±0.8 2.5±0.6 <0.001 

Residual 
Blood 0.4 0.0 0.4±0.1 0.4±0.2 0.529 0.6 0.0 8.4±2.2 1.9±0.6 <0.001 

Myo 0.1 0.0 0.8±0.1 0.1±0.0 <0.001 4.1 0.0 5.9±1.1 5.9±2.2 <0.001 

Mean 0.6 0.0 0.9±0.5 0.2±0.1 <0.001 3.2 0.0 6.7±2.1 3.0±2.1 <0.001 

 

The simulated factors and factors resolved from the images with noise are plotted in 

Figure 5-3. For the simulation of complete blood clearance, MSO and MB agree with the 

simulation similarly well. In the simulation of residual blood activity MSO results exhibited 

systematic deviation from the simulated factors with confidence intervals that do not overlap 

the simulated lines in the early time frames. MB confidence intervals overlapped the 

simulated curves. 
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 Canine  Small Animal 

   

Figure 5-3 – Comparison of resolved RV blood (green), LV blood (red), and myocardium (blue) factors 

from images with 10% noise (n=5) to the simulated profiles (lines). Top figures represent complete blood 

clearance and bottom figures represent residual blood activity. Left plots are for canine simulations and 

right plots are for small animal simulations. The heights of the error bars represent 95% confidence 

intervals for MSO (color) and MB (black). 

Short axis slices of the resolved structures from the simulations without noise using 

both MSO and MB are shown in Figure 5-4. In general, the myocardium structures 

reproducibly agreed with the simulated recovery images. However, the MSO derived RV 

blood structure extended incorrectly into the septal wall (left part of myocardium) and LV 

blood region for the case with complete blood clearance. Likewise, with residual blood 

activity the MSO derived LV blood structure extended somewhat into the septal wall and RV 

region, whereas the MB structures agreed more closely with the simulated recovery images. 

With residual blood activity the myocardium:blood contrast (superimposed in white) in the 

uptake image (29%) was markedly improved both with MSO (89%) and MB (82%), but MB 

agreed more closely with the simulated myocardium structure (82%). 

 

 

 

MSO 95% Confidence Interval 

Simulation 

MB 95% Confidence Interval 
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Figure 5-4 – Short axis slices of decomposed structures using MSO and MB methods on canine (top half) 

and small animal (bottom half) simulated dynamic images are compared with simulated structures and 

uptake images (frame 17). White numbers are contrast between myocardium and spillover into the LV 

cavity (equation 5-12). 
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The MB method recovered the model parameters accurately in the absence of noise 

and with modest errors in the presence of noise as shown in Table 5-1. In the absence of 

noise, the simulated values were recovered to within three significant figures. In the presence 

of noise the simulated values were within the range of the mean ± one standard deviation. 

The largest bias in parameter estimates was 8.3% for the β, and the smallest average being 

3.5% for tp. The same analysis could not be performed on MSO results because the kinetic 

model parameters are not resolved as part of the decomposition process.  

Estimates of k2 parameters, k2’, were determined by fitting the kinetic model 

(equation 5-8) to the LV blood and myocardium factors. For the complete blood clearance 

cases k2‟ were 0.065±0.020 and 0.048±0.004 with MSO and MB respectively, and for 

residual blood activity the corresponding values were 0.486±0.100 and 0.478±0.032. In all 

cases the mean did not significantly differ from the simulated values 0.05 and 0.5 (p>0.1). 

However, the variance of k2’ with MSO was significantly greater than with MB (p<0.001). 

Convergence of the MB algorithm was found to be robust regardless of the initial 

model parameters and is demonstrated by the box plots of k2 parameter (Figure 5-5) using 5 

realizations of noise in the cases of complete blood clearance (C) and residual blood activity 

(R) for 7 different initial estimate combinations of the model parameters (tp, β, and k2). 

Variances were similar for the complete blood clearance case and identical for the residual 

blood case. Regardless of the initial estimates, mean k2 was not significantly different from 

the true values (green lines). In addition, Figure 5-5 shows the k2 values from the images 

without noise as blue stars, all of which deviated less than 0.002% from the simulated values. 

 

Figure 5-5 – Box plots (n=5 simulated images with noise) of k2 parameters with 7 different initial 

parameter estimates each for complete blood clearance and residual blood activity (C and R 

respectively). The blue stars are results for (n=1) case with no noise and are not included in the box plot 

analysis. 



Kinetic Model Based FA for MBF with 
82

Rb PET  Ran Klein, University of Ottawa 

  79 

 

5.3.2 Small Animal Simulation 

In the presence of noise, significantly lower RMSE was obtained with MB factors 

(p<0.001) and structures (p<0.001) compared to MSO, as shown in Table 5-3. Both the MB 

factors and structures agreed closely with the simulation data as shown by the estimated 

structures in Figure 5-4 and the factors in Figure 5-3. 

The MSO derived myocardial structure for the case of complete blood clearance had 

a noticeable reduction in the septal wall as shown in Figure 5-4 and the corresponding blood 

factors failed to decrease to near zero activity (Figure 5-3). In the case of residual blood 

activity the MSO derived myocardium factors displayed greater activity at early time frames 

which is typical of contamination by blood signal [101] and activity in the septal wall was 

also reduced compared to the rest of the myocardium.  

The MB derived myocardium factors had myocardium:blood contrast (46%) that 

agreed well with the simulation values (Figure 5-4). As expected, MSO increased the 

contrast to 66% and 59% respectively for the cases of complete blood clearance and residual 

blood activity. Both methods significantly improved contrast over that of the uptake image 

(16%) in the case of residual blood activity. 

5.3.3 Experimental Factor Validation with Arterial Sampling 

Comparisons of blood factors obtained using MSO and MB are shown in Figure 5-7 

for all six rats. Various injection profiles were used: fast bolus (a and f), slow bolus (b), dual 

injections (c, d, and e). Both MB and MSO showed reasonable correspondence with the 

sampled blood curves in the first 2-3 minutes, but systematically differed in the late time 

frames (uptake phase). The MSO derived blood factor consistently had residual blood 

activity, while MB derived blood factors consistently dropped to near zero activity. Blood 

sampled curves consistently dropped to near zero activity, but not as fast as the MB blood 

factors did. 

Mean RMSE values were 2.2±0.7% and 1.6±0.4% with MSO and MB respectively 

(shown in the box plots of Figure 5-6). The mean RMSE with MB was significantly lower 

than with MSO (p=0.027), but the variance was not (p=0.3). 

 

Figure 5-6 – Comparison of MSO and MB derived blood factors to arterial blood sampled curves. 
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Figure 5-7 – Blood factors obtained using both MSO (blue) and MB (red) methods compared to blood 

sampled curve (black). All curves are normalized to unity area. 

5.3.4 Structure Validation with 11CO Blood Pool Imaging 

The number of resolved factors was consistently 2 for long tracer infusions (≥120s) 

and 3 for short infusions (≤30s). Where 3 factors were resolved, spatially distinct RV and LV 

structures were observed as demonstrated in Figure 5-8.  

Factors were representative of the infusion duration. Blood factors had a more 

gradual rise and delayed clearance with prolonged infusions. Likewise myocardial uptake 

was more gradual as expected. In all cases, blood activity cleared almost completely at the 

last time point, as demonstrated by the factors in Figure 5-8. 
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Figure 5-8 – Example short axis slices of resolved factors and structures, and uptake (last 6 min) frames 

for a 15s, 60s, and 240s infusion duration example in a dog. 

 Agreement of the blood structures with the 
11

CO blood pool image of the same 

animal was good, with RMSE<9.7% in all cases for both MSO and MB. Box plots of the 

RMSE are shown in Figure 5-9, indicating no significant differences in RMSE (p=0.23) with 

MB compared to MSO values. No obvious trends in RMSE with infusion duration were 

observed with either method (data not shown). No significant difference was detected in the 

variability of RMSE (p=0.8) between MSO and MB. 

5.3.5 Structure Reproducibility using Variable Tracer Infusion 
Durations 

Reproducibility of structures was good to excellent. For all RMSE combinations 

(n=45), RMSE was ≤11.0% with MSO and ≤7.2% with MB. Box plots of the RMSE values 

for blood and myocardium structure reproducibility are shown in Figure 5-10. Mean 

myocardial RMSE was 6.2% with MSO vs. 3.9% with MB (p<0.01), and in blood structures 

respective mean RMSE values were 5.6 % vs. 4.9% (p=0.006). The single outlier (red cross) 

was in MSO blood RMSE between a 15 and a 60 sec infusion. Visual comparison of the 

structures in this study with others did not reveal an obvious difference in spatial patterns and 

a single outlier from 45 sets can be expected due to random distribution. 

Myocardium:blood contrasts were 49±5%, 62±7%, and 52±3% in the uptake images, 

MSO myocardial structures, and MB myocardial structures respectively as demonstrated by 

the corresponding contrast superimposed on the images in Figure 5-8. Mean contrasts using 

either MSO or MB were significantly higher than in the uptake images (p<0.001 for MSO 
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and p=0.04 for MB). The variance in the contrast across the 10 images tended to be reduced 

with MB compared to MSO (p=0.062) indicating better reproducibility. 

The mean CV% (n=75,782 pixels) across the 10 myocardial structures was 12.9% 

and 6.5% for MSO and MB respectively. Across the 10 blood factors respective CV% was 

16.8% and 11.4%. The combined CV% for myocardium and blood structures was 12.9% for 

MSO and 8.9% for MB. All the differences between MSO and MB were significant 

(p<0.001), indicating that MB resolved more reproducible structures in the same animal with 

varying tracer infusion. 

Figure 5-9 – Comparison of MSO 

and MB derived blood structures 

to 
11

CO blood-pool images (CO). 

 

 

Figure 5-10 – Reproducibility of 

blood structures (top two rows) 

and myocardium structures 

(bottom two rows) obtained from 

variable duration infusions using 

MSO and MB.  

 

 
TABLE 5-4 – REPRODUCIBILITY OF MBF QUANTIFICATION 

MEAN±STANDARD-DEVIATION (CV%) 

  

Without RV Blood With RV Blood 

 

ROI MSO MB MSO MB 

K1 0.58±0.06 (10%) 0.76±0.08 (11%) 0.78±0.05 (7%) 0.77±0.08 (10%) 0.80±0.05 (6%) 

MBF 0.98±0.17 (17%) 1.56±0.30 (19%) 1.65±0.21 (13%) 1.61±0.29 (18%) 1.71±0.18 (10%) 

5.3.6 Global MBF Reproducibility using Variable Tracer Infusion 
Durations 

MBF quantification and estimates (shown in Table 5-4) with MB tended towards 

smaller variability than with MSO, as indicated by small CV% values, but did not reach 

statistical significance (p=0.21 and p=0.15 without and with RV respectively for K1, and 

p=0.32 and p=0.16 for MBF). Amplification of the MBF variability compared to that of K1 is 

expected due to the non-linear relationship of the extraction function. Both with MSO and 

MB factors, variability in global K1 and MBF estimates did not improve significantly (p>0.7) 

with the addition of the RV blood in the model. 
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Mean K1 and MBF values both with MSO and MB factors were significantly higher 

than ROI based values (p-value<0.001) indicating that the extraction function may not be 

applicable for quantification using factors, and that a new calibrated extraction function must 

be derived. 

5.4 Discussion 

This work described the development, validation, and comparison of two dynamic 

image decomposition methods, MSO and MB. These methods were implemented in an 

identical manner with the exception of the constraints imposed on the solution so as to 

resolve the non-uniqueness problem. The previously reported MSO method [72,106,124] 

constrained the solution be minimizing the spatial overlap between structures. The method 

described in this work, MB, constrained the solution by use of kinetic models between the 

factors, and penalizing residual blood activity and rise in tracer blood concentrations in the 

uptake phase of the image to ensure uniqueness of the solution.  

Simulation results clearly showed that the MB method outperforms MSO for 

accuracy in recovering factors and structures, particularly in small hearts where the limited 

resolution of PET leads to greater spatial overlap between structures. The small animal 

simulations demonstrated that MSO‟s inability to separate myocardium and blood signals 

can result in less accurate blood factors and myocardium factors contaminated by blood 

signal. In addition, MSO derived myocardium structures may suffer from reduced intensity 

in the septal wall which could be misinterpreted as a defect. However the higher myocardium 

to blood pool contrast of MSO derived myocardium structures may be beneficial for 

registration and segmentation purposes. If regions of pure blood exist in the image, such as in 

large hearts, MSO and MB are both expected to resolve accurate blood factors that have less 

noise than ROI based methods. Scatter in the image may be regarded as an additional, broad 

blurring kernel, in which case MB is expected to yield more accurate blood factors than 

MSO. 

The experimental results largely agreed with simulations and suggested that MB can 

be more accurate and more reproducible than MSO. Blood factors were more accurate when 

derived with MB as indicated by arterial blood sampling. However, comparison of blood 

structures to blood pool imaging did not demonstrate superiority of either MSO or MB. 

5.4.1 Residual Signal 

The premise of dynamic image decomposition is that most of signals in the image are 

represented by the factors and that the residual signal contains a combination of noise and 

smaller signals that can be disregarded. Figure 5-11 demonstrates the residue in 

decomposition of the canine simulation with no noise and complete blood clearance using 

MSO and MB. The three columns (left to right) show the original image sequence, the scaled 

structures that compose the image, and the residue. Both with MSO and MB the residue is 



Kinetic Model Based FA for MBF with 
82

Rb PET  Ran Klein, University of Ottawa 

  84 

 

random and is 5 orders of magnitude smaller than the dynamic image sequence. This 

qualitative information indicates good convergence using both methods as the combined 

factors and structures accurately represent the dynamic sequences in the image. This supports 

the notion that any difference in results between MSO and MB are a result of the constraints 

rather than implementation of the optimization routines. 

MSO MB 

  

Figure 5-11 – Decomposition results showing original image sequence as a series of frames from top to 

bottom, the scaled structures for all time frames, and the residual signal for MSO (left) and MB (right) 

for the noise-free total blood clearance case. The residue image using both methods is completely random 

and on the scale of 10
-6

. 

5.4.2 Penalty Weights 

Both MSO and MB cost functions (CMSO and CMB in equation 5-2 and 5-10 

respectively) consist of weighted penalties. The respective weights were adjusted empirically 

using the simulated data to ensure convergence and good correspondence of factors and 

structures with the simulated data. Since the respective penalties are all bound between 0 and 

1, their weights somewhat determine their relative importance. We prioritized the MSO 

penalties in order of non-negative factors, non-negative structures, and minimal spatial 

overlap and for MB, the penalties were prioritized in order of non-negative factors, no rise in 

blood activity during the uptake phase, non-negative structures, and minimal residual blood 

activity in the uptake phase. In order to test the sensitivity of the chosen parameters, we 

varied the weights over 1 order of magnitude and found that the results changed little (data 
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not shown). The reported penalty weights were used for all images and are assumed suitable 

for future images (normal and diseased humans and animals). A limitation of this work is 

that automatic parameter selection was not demonstrated. Future work should evaluate the 

current penalty weights and/or tune them in a wider population consisting of healthy and 

diseased individuals. 

5.4.3 Execution Time 

In 30 of the 40 images used in this work, the execution time with MB was shorter 

than with MSO. On average the execution times ratio (MSO/MB) was 2.4±2.4. Although 

MSO requires less computation per iteration compared to MB, MSO has more free 

parameters to optimize. The median execution time with MSO was 9.6 hours and 5.8 hours 

with MB on a 2.1 GHz Intel Quad Core 2, with 4GB RAM under Windows XP 32 bit. In a 

clinical setting, where several dozen images could be acquired in a single day, MB in its 

current form could not be sustained as part of the routine workflow without powerful 

computing infrastructure.  

In this work, there was little emphasis on performance and more on precision, 

however there are several potential possibilities for accelerating execution, such as using a 

subset of pixels and reducing the tolerances on the optimization stopping criteria. Execution 

time could be reduced by implementing the algorithm in a more efficient, non-interpreter 

based language such as C as opposed to Matlab. Since the MB optimization is parallelizable 

and involves many floating point operations, execution could be drastically accelerated by 

employing a graphical processing unit (GPU) [152,153] such as CUDA (NVIDIA, Santa 

Clara, California). 

Execution time could also be shortened by reducing the number of dixels that are 

used during the decomposition process. This could be achieved either by defining smaller 

ROIs, or using a subset of the dixels in the ROI. A commonly used approach in large scale 

optimization problems is to use ordered subsets of the dixels that change during iterations of 

the optimization [152,154]. Once decomposition is completed, the resulting factors can be 

applied to the entire image, or any ROI, to resolve the structures within the same region. 

5.4.4 Blood Clearance 

Previous studies demonstrated that blood clearance results can vary with different 

decomposition methods and constraints [139]. The purpose of simulating data with and 

without blood clearance was to ensure that no bias existed in MB. The results of Figure 5-3 

demonstrate an ability to reliably resolve both scenarios using the MB method even in the 

presence of noise. The blood factors obtained from real images tended towards complete 

blood clearance which agrees with previous observations [45]. 

The MSO method did not reliably result in clearance of activity from the blood 

factors. In the canine simulation where the structures were relatively large compared to 
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image resolution, blood clearance was resolved correctly. However, this was not the case in 

the small-animal simulation where the relatively larger blur resulted in no pixels with pure 

blood signal. In the rat experiments, residual blood activity was observed in all images, 

agreeing with the simulation results. One could expect more accurate results with MSO in 

other organs without substantial blood contamination [124]. However in small animal studies 

and humans with small hearts MSO may be biased, especially with the high positron range of 
82

Rb.  

5.4.5 11CO Blood Pool Images 

Although MB derived blood structures tended to agree better with 
11

CO blood pool 

images than MSO derived blood structures, no significant difference was found (p=0.23). 

Qualitatively, MSO blood structures were more defined, having a smaller LV and RV cavity 

regions and a larger gap in the septal wall region as demonstrated for a 50 sec elution results 

in Figure 5-8. The MSO myocardium factors (blue line in Figure 5-12) had greater activity in 

the early time frames than the MB derived factor (dashed blue line), consistent with blood 

signal contamination [101]. Thus MSO reduces spatial overlap of myocardium and blood 

structures by attributing the blood signal in the myocardium region to myocardial signal. 

Figure 5-12 – Example short axis slice 

through blood pool images using CO 

imaging, and through MSO and MB 

derived structures from the same 60 sec 

infusion image shown in Figure 5-8. 

Factors for MSO are shown below, with 

the myocardium factor from Figure 5-8 

(dashed line). 

CO MSO MB 

   

 

With either decomposition method, correspondence between blood structures and 
11

CO blood pool images (Figure 5-9) was worse than between pairs of blood structures 

(Figure 5-10) as reflected by significantly greater RMSE values (p<0.001). The 
11

CO image, 

which was taken on a separate occasion, was translated spatially to align with the blood 

factors, but no rotation correction was applied. In addition, 
82

Rb images may suffer from bias 

due to 777keV prompt gammas that may not be fully corrected [155]. Image spatial 

resolution may also be slightly different due to positron range even though complimentary 

smoothing was applied to the 
11

CO image.  

While comparison of structures under different infusion durations enables good 

reproducibility measurement it does not ensure physiological accuracy. It is desirable to 

improve the correspondence with CO images. Repeating the experiment with CO imaging on 



Kinetic Model Based FA for MBF with 
82

Rb PET  Ran Klein, University of Ottawa 

  87 

 

the same session as 
82

Rb may be beneficial for optimal evaluation. Also labelling CO with 
15

O instead of 
11

C could more closely reproduce 
82

Rb resolution loss due to the longer 

positron range. 

5.4.6 82Rb Blood Sampling in Rats 

The use of 
82

Rb as an imaging agent in rats is not ideal due to the combination of 

small anatomy and large positron range. As a result the image resolution is on the same order 

(or less) as the size of the imaged organ. Rats were chosen to achieve sufficiently high tracer 

concentrations in the blood for the micro-volumetric sampler to have adequate precision. 

This was not possible in larger animals since their larger blood volume significantly dilutes 

tracer concentrations. More sensitive blood sampling equipment would enable similar 

experiments in larger animals in which imaging conditions are more favourable.
 

Although the heart walls could not be resolved in the reconstructed images, it is 

impressive to note that reasonable decomposition could still be achieved using both MB and 

MSO methods as demonstrated by the results of Figure 5-6 and Figure 5-7. 

MSO blood factors always demonstrated residual blood activity in the late time 

frames, which was consistent with inaccuracies in the small animal simulations. MB blood 

factors on the other hand showed complete blood clearance which agreed more closely with 

the blood samples. Nevertheless, a sudden drop to near zero activity in the MB blood factors 

is apparent in the rat data, which may indicate that the residual blood penalty is too severe. 

As mentioned above, penalty weights were manually adjusted and MB could potentially 

benefit of a more rigorous tuning including the penalty weight and the number of frames 

which constitute the uptake phase. 

5.4.7 82Rb Infusion Duration 

Optimal 
82

Rb infusion duration for perfusion quantification has been explored 

previously [36]. While mean perfusion values did not change with infusion durations, 

regional variability decreased with longer infusions (possibly increasing quantification 

precision). The disadvantage of long infusions, however, is that the uptake image, reported 

clinically, suffers from reduced myocardium to blood contrast (Figure 5-8). The reduction in 

contrast is due to insufficient time for complete tracer clearance from the blood. The 

myocardium structures obtained with model-based factor analysis can recover image contrast 

by removing blood signal contribution. Model-based factor analysis may make long 
82

Rb 

infusions practical, with improved perfusion quantification and high contrast myocardial 

structure images for routine clinical applications. 

5.4.8 MB with Other Tracers 

Previous PET image decomposition methods were not tracer specific. While, the one-

compartment model used in this work is also applicable to other tracers, such as ammonia 

[76], acetate [156], and HED [157], the kinetics of some tracers may be better modeled with 
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a two-compartment model. The MB method is compatible with two-compartment kinetic 

models as well as blood metabolite corrections, however further validation is required. 

5.4.9 Number of Factors 

 While MSO can be used to resolve any number of components, MB assumes the 

existence of specific types of components in the image. This work dealt with solving one 

blood component and one myocardium component as well as two blood components and one 

myocardium component. Additional tissue components (such as stomach or liver) could be 

accommodated with additional factors with a response function as in equation 5-8 or a 

different model and associated model parameter constraints. Models need to be customized 

for the tracer and organ in question. Regardless of implementation, the temporal response of 

additional tissues would have to be sufficiently different from that of the myocardium to 

obtain reliable component separation. 

5.4.10 Application of FA to Quantification of Myocardial Physiology 

Regardless of the decomposition method, it is assumed that factors represent uniform 

temporal responses of image components. This has raised concerns, particularly in diseased 

myocardium, where the temporal responses of diseased and healthy regions may vary. In MB 

this issue is manifested by resolving a single washout parameter, k2, which is assumed 

constant for the entire myocardium. This issue may be resolved  by using the blood factors as 

the input functions to the kinetic model and ROI sampled myocardial TACs as the output 

functions[72,106]. The disadvantage of using ROI derived output function compared to 

myocardium factors is that they contain noise 

Quantification of MBF using 
82

Rb and kinetic modeling requires the implementation 

of an extraction fraction correction [29,30] which is calibrated to a standard [39]. Calibration 

of the extraction function can also correct for biases of the input and output TACs and of the 

physiologic model parameters. In the variable infusion duration results it was evident that the 

extraction correction function was calibrated for the ROI based method, but not for the use of 

factors as the input functions (MBF changed from ~0.98 with ROI to ~1.65 with factors). 

Calibration was not possible in this case since the data did not span the range of physiologic 

flow values, only rest flows. Thus future work on MBF quantification with factor analysis 

should include calibration of the extraction function to a standard measured over the full 

physiologic flow range. 

The mean MBF values did not differ significantly between MSO and MB derived 

factors (p=0.22 and p=0.15 without and with RV blood respectively). This may be explained 

by the blood factors differing primarily in shape, which is accounted for by the washout 

parameter k2, while K1 (and MBF) are mostly dependent on the scale of the blood factor 

relative to the myocardium TAC, and which were similar for both MSO and MB scaled 

blood factors (not shown).  
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The variance of MBF values using MB tended (p=0.15) to be less than with MSO 

(CV=10% vs. 18% respectively). The lack of statistical significance may be partially due to 

the small number of measurements (n=10) in a single animal. 

Calibration of the extraction function to a standard is likely to result in similar MBF 

accuracy between ROI, MSO or MB methods. However, MB is expected to have better 

precision which could benefit longitudinal follow-up studies to track disease progression or 

treatment efficacy. 

 

5.5 Conclusion 

Constraints must be placed on dynamic cardiac PET image decomposition in order to 

resolve physiologically accurate factors. Simulation and experimental data were used to 

compare the physiological accuracy of the MSO and MB methods. Factors and structures 

obtained using MB agreed with simulations significantly better than MSO. In experimental 
82

Rb PET data MB agree better than MSO with the physiological standards of arterial blood 

sampling. In addition, MB had more reproducible structure images and tended towards more 

reproducible global myocardial blood flow measurements with varying tracer infusion 

durations. The potential benefit of model-based factor analysis for quantification of 

myocardial blood flow should be explored in future validation studies. 
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Chapter 6.  

MBF Quantification Using FA 

In the previous chapter model-based factor analysis was demonstrated as a 

physiologically accurate method for decomposing dynamic 
82

Rb PET image sequences. This 

chapter develops a method to quantify MBF using the FA results. MBF results are validated 

against MBF from 
15

O-water PET imaging. FA derived MBF is also compared with the ROI 

derived MBF which was described in Chapter 3, and with a previously proposed spillover 

corrected method. A portion of this chapter has been published in [158]. 

The normal patient population Rb and Water PET images that are used in this study 

were provided by The School of Medicine at Hokkaido University, Sapporo, Japan. 

6.1 Background 

6.1.1 MBF Quantification using 82Rb and Factor Analysis 

Factor analysis has been sought as a complimentary method to kinetic modeling 

primarily in order to derive physiologically accurate blood input functions that are free of 

noise and signal contamination from neighbouring organs [72,75,106,127]. However, the 

spatial relationship of the structures has largely been neglected. 

6.1.1.1 Scaling of Factors and Structures 

Typically with factor analysis, the blood input functions are estimated as the LV 

blood factor which is scaled to image units using highest intensity pixels in the LV blood 

structure. The exact number of pixels and their location varies between methods, but in 

general a trade-off exists between minimizing the number of pixels to avoid recovery loss, 

due to finite spatial resolution, and increasing the number of pixels to average out noise. 

Regardless, this approach assumes that the scaling pixels are pure blood, and do not suffer 

from recovery losses [72,75,106,127]. However, signal mixing, which also results in reduced 

recovery, is one of the main reasons for pursuing factor analysis [107,108,120]. The 

decomposed components, although free of spillover contaminations still suffer of recovery 

loss, since the structures have the same finite spatial resolution as the original image. 

In this chapter, an alternative scaling method is proposed, which scales all the 

structures simultaneously based on an estimated image of the total recovery (TR). It is 

assumed that the heart is sufficiently large relative to the spatial resolution of the image, and 

that the TR near the center of the heart approaches unity (i.e. no recovery loss exists). 

Assuming that the image is entirely decomposed (the residue consisting entirely of random 

noise), the TR image may be used to scale the structures to recovery coefficient (RC) of the 
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respective components. The factors, in turn, can be scaled into pure tissue activity 

concentrations.  

6.1.1.2 Blood Input Functions 

Cardiac images that are decomposed into two factors are expected to contain a blood 

and myocardium factor, and the blood factor is used as the input function of the kinetic 

model [75]. In images that are decomposed into three (or more) factors, RV blood and an LV 

blood factor are expected and the LV blood factor is used as the input function of the kinetic 

model [72,102,106,110,159]. RV and LV blood structures are assumed to be spatially 

separated and that the activity in each is uniformly distributed.  

6.1.1.3 Myocardium Output Functions 

While it may be tempting to use the myocardium factor for the output function, it 

assumes a uniform temporal response throughout the myocardium; albeit with varying 

magnitude. Uniformity cannot be assumed, particularly in the presence of disease 

[8,137,138,160]. For this reason ROI defined output functions are still used with factor 

analysis [72,102,106,110,159], even though they may contain more noise. Despite this 

limitation, myocardial factors have been used to quantify global MBF in small animals [75]. 

6.1.1.4 RV Blood Spillover Model 

Spillover of RV blood signal in the septal region can be accounted for in the 

myocardial model, but requires a reliable and sufficiently large ROI for RV blood sampling. 

In addition, the stability of the myocardium model may be jeopardized by adding additional 

free parameters [48]. With factor analysis, a reliable RV blood TAC may be obtainable and 

enough noise may be removed to enable modeling of the RV spillover [72,106]. 

6.1.2 MBF Quantification using 82Rb and Spillover Correction 

A method to correct spillover contamination of the ROI derived blood TAC has been 

reported in the literature [54,58,81,161,162,163] as an alternative to factor analysis. A pair of 

signal mixing equations is defined. The equations describe mixing of pure blood and pure 

myocardium signals in the blood and myocardium TACs. Physiologic constraints are 

included to enforce a unique solution to the set of equations. A pure blood TAC that is free 

of recovery loss is estimated and used as the input to the tracer kinetic model. In addition, a 

global estimate of the myocardium RC can be obtained. 

6.1.3 Accuracy Validation 

Due to its ideal tracer kinetics, 
15

O-water PET is considered the gold-standard for 

non-invasive MBF quantification, and it has been validated extensively [75,164,165,166]. 

Because water diffuses freely to all perfused tissues of the body, an anatomical image of the 

myocardium which could be used to register ROIs does not exist. This limitation has been 
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addressed either through blood pool imaging with additional tracers [58], subtraction of 

normalized early time frame images from normalized late time frame images to create a 

myocardium image [159,167], or by using myocardium structures from image decomposition 

[79]. Image decomposition is preferable for this application since it does not require 

additional imaging of the patient, thus reducing radiation exposure, simplifying the imaging 

protocol, and minimizing the chance of image misalignment due to patient motion.  

In the following section MBF quantification with 
15

O-water PET and factor analysis 

is used to evaluate the accuracy of MBF quantification with 
82

Rb PET. The ROI-based 

method described in Chapter 3, a spillover correction based method, and two FA-based 

methods for 
82

Rb-MBF quantification are compared. 

6.2 Methods 

6.2.1 Evaluation of MBF Accuracy 

6.2.1.1 Study Population 

All participants (n=20) had a low pre-test likelihood of CAD (<5%) based on risk-

factors, had a normal resting electrocardiogram and did not have any cardiac medications. 

Each subject underwent rest, stress, and cold pressor test (CPT) imaging with both 
15

O-water 

and 
82

Rb PET. The 
15

O-water and 
82

Rb imaging were performed in a randomized order, 

18±13 days apart. There was no significant difference in rest hemodynamics between the 
15

O-water and 
82

Rb studies (data not shown). The study was approved by the Hokkaido 

University Graduate School of Medicine Human Research Ethics Board. Written informed 

consent was obtained from all participants.  

Participants were instructed to fast for at least 6 hours, to refrain from smoking for at 

least 12 hours, and to abstain from caffeine-containing products for at least 24 hours prior to 

PET studies [5,168,169] 

6.2.1.2 PET acquisition protocol 

Participants were positioned in a whole body PET scanner (ECAT HR+, 

Siemens/CTI, Knoxville, Tennessee). A 6-minute transmission scan was performed for 

attenuation correction followed by a dynamic emission at rest, adenosine stress, and CPT 

states in the 2-dimensional acquisition mode. During the entire protocol, symptoms, heart 

rate, blood pressure, and the electrocardiogram were monitored continuously.  

6.2.1.2.1 Water Imaging 

Immediately following the transmission scan, participants inhaled 2000 MBq of 
15

O-

labelled CO (0.14% CO mixed with room air) for 1 minute to obtain a blood volume image 

[5,170]. In this work the CO images were not used. Approximately 10 min later 1500 MBq 

of 
15

O labelled water was administered intravenously over a 2 minute interval at rest and a 
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24-frame dynamic PET acquisition was initiated with varying frame duration (18×10 s, 6×30 

s, total = 6 min) [5,170].  

Cardiac stress was induced using Adenosine (0.14mg/kg/min) over 9 min and water 

infusion and imaging were repeated at 3 min. The same dynamic image acquisition used in 

rest was repeated. Sufficient time was allotted for radioactive decay of 
15

O-water and return 

to baseline heart rate and blood pressure and a transmission scan was repeated. 

The participant‟s foot (randomly selected [169]) was immersed into ice water up to 

the ankle [5,168,169]. PET data acquisition started 60 seconds after the beginning of CPT 

using the same dynamic sequence as used for rest and stress states. The CPT continued for a 

total of 4 minutes [168,170]. 

6.2.1.2.2 82
Rb Imaging 

A similar rest, stress, and CPT imaging protocol was performed with 
82

Rb, except 

that CO imaging was not performed. Immediately following the transmission scan, 1,480 

MBq of 
82

Rb (Bracco Diagnosis, Princeton, NJ) was administered intravenously over one 

minute [81]. A 10 minute, 17-frame dynamic scan was initiated with increasing frame 

durations (12×10 s, 2×30 s, 1×60 s, 1×120 s, 1×240 s) [39,81]. To avoid adaptation, the CPT 

measurement was performed with immersion of the opposite foot as with 
15

O-water. 

6.2.1.3 Water Image Processing 

To obtain an uptake image with good contrast between the myocardium and the 

surrounding tissues, each image was decomposed using FADS [75,131] followed by oblique 

rotation of the factors to minimize spatial overlap between structures [106,124]. The 

myocardium structure was automatically identified based on the temporal profiles of all 

factors, and criterion of low activity concentration in early time frames relative to late time 

frames. The myocardium structure was used to reorient the volume and define myocardial 

and LV blood cavity ROIs as described in Chapter 3 (section 3.2). The myocardium was 

sampled in 16 rings each having 36 sectors, totalling 576 segments. The ROIs were applied 

to all dynamic frames to sample arterial blood input functions Cb(t) and myocardial output 

functions Ct(t). 

The image derived blood TAC, Cb(t), was corrected for myocardial to blood pool 

spillover using established ROI-based methods [58,162]. Cb(t) was modeled as a mixture of 

β=85% pure arterial blood signal, Ca(t), with spillover (1-β=15%) from pure tissue signal, 

Ct(t), as shown in 6-1. The blood recovery, β, was determined experimentally for humans 

using CO blood imaging and the measured activity concentration in blood samples [58].  

𝐶𝑏 𝑡 = 𝛽 ∙ 𝐶𝑎 𝑡 +  1 − 𝛽 ∙ 𝐶𝑡 𝑡  6-1 

Likewise sampled activity concentrations in the myocardium, Cm(t), were modelled 

using a spillover model of pure blood and tissue, as shown in equation 6-2, where 

TR=RC+TBF [0-1] is the total recovery of tissue and blood in the myocardium ROI. 
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𝐶𝑚 𝑡 = 𝑇𝐵𝐹 ∙ 𝐶𝑎 𝑡 + 𝑅𝐶 ∙ 𝐶𝑡 𝑡   =   𝑇𝐵𝐹 ∙ 𝐶𝑎 𝑡 + (𝑇𝑅 − 𝑇𝐵𝐹) ∙  𝐶𝑡 𝑡  6-2 

A water-specific one-tissue-compartment kinetic model was used to model tissue 

activity, Ct(t), as a function of myocardial blood flow, MBFH2O, as shown in equation 6-3, 

where λ=0.91 [58,171,172] is the partition coefficient of water in the myocardial tissue and 

ρ=1.04 g/mL is the density of tissue [58,171,172]. 

𝐶𝑡 𝑡 =𝜌 ∙ 𝐶𝑎 𝑡 ⊗ 𝑀𝐵𝐹𝐻2𝑂𝑒−(𝑀𝐵𝐹𝐻2𝑂 /𝜆)∙𝑡  6-3 

In equation 6-1, Ca(t) was isolated and substituted into equation 6-2 which was then 

fit to the sampled global myocardium TAC by solving for TBF, TR, and MBFH2O 

simultaneously.  

Regional MBFH2O was then estimated using the pure blood, Ca(t), as the arterial blood 

input function instead of the sampled blood TAC, Cb(t). The regional sampled myocardium 

TACs were modeled using equation 6-2 and 6-3. The TBF and TR were optimized together 

with MBFH2O to minimize the error of the measured and modeled myocardial TAC (Cm(t)). 

6.2.1.4 82
Rb Image Processing 

Images were manually cropped to include the entire heart and remove other high 

uptake organs such as stomach. The cropped image was summed across all time frames and 

thresholded to 30% maximum pixel intensity. A 3D flooding algorithm was seeded at the 

pixel of maximum intensity and was used to define a single continuous ROI encompassing 

the heart.  

The dixels in the ROI were then decomposed using the model-based factor analysis 

algorithm described in the previous chapter into 3 factors (RV blood, LV blood, and 

myocardium). The factors were then applied to the entire image field-of-view to resolve 

corresponding structures. 

Since the myocardium structure has equal or better contrast than the uptake image of 
82

Rb and less noise, it was used to automatically reorient the volumes and to define blood 

pool and myocardium ROIs. Reorientation and segmentation employed the same methods 

used for the water images (described in chapter 3). The ROIs could then be applied to the 

dynamic image sequence, or to the structures. Four methods for MBF quantification using 
82

Rb PET were evaluated as listed in Table 6-1 and compared to the standard 
15

O-water PET 

method. 

TABLE 6-1 – KINETIC MODEL INPUT AND OUTPUT FUNCTION COMBINATIONS 

Tracer Method Input function Output function RC 
15

O-water  Image Derived-SOC Image Derived RC 

82
Rb 

IDF Image Derived Image Derived 1-TBF 

SOC Image Derived-SOC Image Derived 1-TBF 

FA Total Blood Factors Image Derived 1-TBF 

FARV Total Blood Factors+RV Factor Image Derived 1-RVBF-LVBF 
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6.2.1.4.1 Quantification Using Image Derived Input Functions (IDF) 

The myocardium and blood cavity ROIs were used to sample the dynamic image 

sequence to derive myocardial output, Cm(t), and arterial blood input, Ca(t)=Cb(t), TACs. A 

one tissue compartment kinetic model was solved with a geometric recovery correction [56] 

which accounts for the mixing of blood (TBF) and myocardial (1-TBF) signals as in Chapter 

3 and reiterated in equation 6-4. 

𝐶𝑚  𝑡 = 𝑇𝐵𝐹 ∙ 𝐶𝑎 𝑡 +  1 − 𝑇𝐵𝐹 ∙ 𝐶𝑡 𝑡              
= 𝑇𝐵𝐹 ∙ 𝐶𝑎 𝑡 + (1 − 𝑇𝐵𝐹) ∙ 𝜌 ∙ 𝐶𝑎 𝑡 ⊗ 𝐾1𝑒

−𝑘2 ∙𝑡  6-4 

6.2.1.4.2 Quantification Using Spillover Correction (SOC) 

Similarly to 
15

O-water, contamination of the blood signal from myocardial spillover 

was corrected (SOC). The blood pool and myocardial signals were modeled using equations 

6-5 and 6-6, and these equations were combined by isolating Ca(t) in equation 6-6 and 

substituting into equation 6-4. 

𝐶𝑚 𝑡 = 𝑇𝐵𝐹 ∙ 𝐶𝑎 𝑡 +  𝑇𝑅 − 𝑇𝐵𝐹 ∙ 𝐶𝑡 𝑡  
             = 𝑇𝐵𝐹 ∙ 𝐶𝑎 𝑡 + (𝑇𝑅 − 𝑇𝐵𝐹) ∙ 𝜌 ∙ 𝐶𝑎 𝑡 ⊗ 𝐾1𝑒

−𝑘2 ∙𝑡  
6-5 

𝐶𝑏 𝑡 = 𝛽 ∙ 𝐶𝑎 𝑡 +  1 − 𝛽 ∙ 𝐶𝑡 𝑡  
            = 𝛽 ∙ 𝐶𝑎 𝑡 + (1 − 𝛽) ∙ 𝜌 ∙ 𝐶𝑎 𝑡 ⊗ 𝐾1𝑒

−𝑘2 ∙𝑡  
6-6 

The cost function shown in equations 6-7, 6-8, and 6-9 was minimized by optimizing 

TBF, TR, β, K1, and k2 using whole-LV average Cm(t). Equation 6-7 penalizes for the 

magnitude of error between sampled and modelled myocardial and blood TACs, for negative 

values in the pure tissue and pure arterial blood TACs, Ct(t) and Ca(t) respectively 

(Wneg=10
6
). It also penalizes for residual blood activity in the last time frame, T 

(Wblood_residual=5). The weighting vector, w(t), was set to the duration of the imaging time 

frames. 

 𝐶 =   𝑤 𝑡 ∙  𝐶𝑚  𝑡 − 𝐶𝑚 ′ 𝑡    +   𝑤 𝑡 ∙  𝐶𝑏 𝑡 − 𝐶𝑏 ′(𝑡)   ×

          1 + 𝑊𝑛𝑒𝑔   𝑤 𝑡 ∙ 𝐻 𝐶𝑡 𝑡   
2

+  𝑤 𝑡 ∙ 𝐻 𝐶𝑎 𝑡   
2

 +

                    𝑊𝑏𝑙𝑜𝑜𝑑_𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙∙𝐶𝑏𝑙𝑜𝑜𝑑_𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 

6-7 

𝐻 𝑥 𝑡  =  
0 𝑥 ≥ 0
𝑥 𝑥 < 0

  6-8 

𝐶𝑏𝑙𝑜𝑜𝑑 _𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =
𝑤(𝑇)∙𝐶𝑎 (𝑇)

 𝑤(𝑡)𝐶𝑎  𝑡 𝑇
𝑡=1

  
6-9 

The pure arterial blood TAC, Ca(t), was used as the blood input function to the 

kinetic model (equation 6-4). 
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6.2.1.4.3 Quantification Using Factor Analysis 

MB derived structures and factors were scaled, blood input functions were generated 

from the scaled factors, and tracer kinetic modeling was performed to quantify uptake rates. 

The ROI sampled myocardial TACs were used as output function for tracer kinetic 

modelling. 

Scaling of Factors and Structures 

A map of the total recovery, TR
0
, was created using the reorientation and LV 

segmentation data. The mid-myocardial contour was shifted radially outward in the septal 

wall region to include some of the RV. A mask containing all pixels enclosed by the contour 

was then generated as demonstrated in Figure 6-1 top-left. The mask was then smoothed to 

the same resolution as the image, resulting in an estimate of the TR due to anatomy and 

image resolution, but neglecting motion. Since motion blur is not accounted for and the 

recovery contribution of the right chambers is estimated grossly, only a subset of pixels, p, 

corresponding to TR
0
 above a threshold (TRco) was included (Figure 6-1 top-right). 

 

Figure 6-1 – Estimation of TR image using LV myocardium contours. 

The scale of each structure, ak where k=1..K, (K=3 in this chapter) was optimized to 

minimize the summed squared differences between scaled structures and TR in each pixel, p, 

as shown in the first part of equation 6-10. The second part of equation 6-10 penalizes for 

pixels having TR>1. 

Septal wall 

shift into RV  

Iteration 0 

Iteration 10 
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(𝑎𝑘 , 𝑘 = 1. . 𝐾) = min
𝑎𝑘

  𝑇𝑅𝑝
𝑖 −  𝑎𝑘𝑆𝑘 ,𝑝

𝐾

𝑘=1

 

2

𝑝

+  𝐻   𝑎𝑘𝑆𝑘 ,𝑝

𝐾

𝑘=1

 

2

𝑝

 6-10 

𝐻 𝑥 =  
𝑥 − 1, 𝑥 > 1

0, 𝑥 ≤ 1
  6-11 

To overcome inaccuracies resulting from neglect of the right cavities of the heart, a 

new TR
i
 image was estimated by summing the scaled structures (Figure 6-1 bottom-left), 

generating a mask of all pixels TR>50% to detect the edges, and blurring the mask to the 

original image resolution. Once again the scales, ak, were optimized for a subset of pixels 

TR
i
>TRco (Figure 6-1 bottom-right) to avoid inaccuracies near the edges of the heart. This 

process was iteratively repeated 10 times to refine the estimate of TR and the scaling 

parameters, ak. 

 

Figure 6-2 – Heart TR without (black) and with Gaussian smoothing (blue) and background activity 

recovery (red) as a function of distance from the edge of the heart. The TR cut-off (TRco) can be adjusted 

to reject regions close to the myocardium edge so as to reduce recovery loss and background signal 

spillover in the structure scaling process (left of dashed blue line). 

The TR cut-off (TRCO) can be adjusted to include varying amounts of the heart region 

in the scaling process. When TRCO≈50% the entire heart region is used, since the edge of the 

mask approximates the edge of the heart. Values of TRCO which are smaller than 50% 

include regions outside of the heart and are expected to be more inaccurate since the 

estimation of TR in these regions neglects background activity from other organs. TR 

estimates at the center of the heart (TRCO approaches 100%) are expected to be most 

accurate, but may result in small regions with insufficient mixing ratios between structures to 

ensure a robust solution. In this work TRCO=95%, which results in a small reduction in 

recovery or contamination from background activity as demonstrated in Figure 6-2. 
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The inverse scaling was applied to respective factors to preserve the original image 

units. Subsequently structures were in units of recovery coefficient, between 0 and 1, and 

factors were in image units [Bq/cc] representing the activity of a pure physiologic signal with 

complete recovery (no recovery loss). 

Arterial Blood Input Functions 

The scaled LV blood factor was assumed to be physiologically accurate (as is 

common in the literature [72,102,106,110,159]) and a fully recovered free measure of the 

arterial blood input function and was labelled Ca
FA

(t). 

Myocardial Models 

Two models of the myocardial sample TACs were developed, without and with 

inclusion of RV blood spillover into the myocardial region. In both cases Ca(t) = Ca
FA

(t) was 

used as the blood input function. 

1) Factor Analysis without Right Ventricle Blood Spillover (FA) 

The same kinetic model used in the ROI based method (equation 6-4) was used. 

2) Factor Analysis with Right Ventricle Blood Spillover (FARV) 

RV blood spillover into the myocardium region, RVBF, was included in the model of 

the myocardium. The Geometric-model estimation of RC was expanded to include separate 

RV and LV blood contribution [72] (RVBF and LVBF respectively) as shown in equation 

6-12. For simplicity, the RV blood contribution was included in the entire polar-map region 

(as opposed to the septal region only [90]). The recovery corrected RV blood factor was used 

for the RV blood TAC, Cr(t). 

𝐶𝑚 𝑡 = 𝑅𝑉𝐵𝐹 ∙ 𝐶𝑟 𝑡 + 𝐿𝑉𝐵𝐹 ∙ 𝐶𝑎 𝑡 +  1 − 𝑅𝑉𝐵𝐹 − 𝐿𝑉𝐵𝐹 ∙ 𝐶𝑡 𝑡  

             = 𝑅𝑉𝐵𝐹 ∙ 𝐶𝑟 𝑡 + 𝐿𝑉𝐵𝐹 ∙ 𝐶𝑎 𝑡 + 

                                                          (1 − 𝑅𝑉𝐵𝐹 − 𝐿𝑉𝐵𝐹) ∙ 𝜌 ∙ 𝐶𝑎 𝑡 ⊗ 𝐾1𝑒
−𝑘2 ∙𝑡  

6-12 

6.2.1.5 Extraction Fraction Calibration 

A flow dependent extraction fraction relating K1 and MBFRb as described by a 

generalized Renkin-Crone model [29,30] was used as reiterated in equation 6-13. The 

extraction fraction was calibrated (optimizing parameters a and b) by minimizing the squared 

error between extraction corrected K1,i values and MBFH2O,i values as shown in equation 

6-14, where i denotes an image number. For each combination of water and Rb 

quantification methods, the extraction function was calibrated using global (average of all 

576 polar-map segments) K1 and MBFH2O values. The respective extraction function 

parameters were then applied to convert K1 values to MBFRb values using equation 6-13.  

𝐾1 = (1 − 𝑎𝑒−𝑏/𝑀𝐵𝐹𝑅𝑏 )𝑀𝐵𝐹𝑅𝑏  6-13 

 𝑎, 𝑏 = min
𝑎 ,𝑏

  𝑀𝐵𝐹𝐻2𝑂𝑖
 1 − 𝑎𝑒

−
𝑏

𝑀𝐵𝐹𝐻2𝑂 𝑖 − 𝐾1𝑖
 

2

𝑖

 6-14 
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6.2.1.6 Regional Blood Flow 

MBF values were reported for the three vascular territories by segmenting the polar-

maps into 17 segments and then averaging the segments in each territory corresponding to 

the left anterior descending artery (LAD), left circumflex artery (LCX, and right coronary 

artery (RCA) as described in the ASNC guidelines [46]. 

6.2.1.7 Comparison with 
15

O-Water 

Rb-derived MBF values were compared with water MBF values. Both global MBF 

values and regional MBF values of the three vascular territories were analyzed. 

6.2.1.8 Polar-map Uniformity 

Uniformity of MBF throughout the polar-maps is expected in healthy populations as 

in this study. Polar-map MBF uniformity was reported as the percent standard-deviation to 

mean ratio, also referred to as the percent coefficient of variation (CV%). For each MBF 

quantification method the mean CV% across all subjects were reported for rest, stress, CPT, 

and all images combined. 

6.2.2 Evaluation of MBF in a Patient Population 

Images from 30 clinical patients that had undergone a standard rest-stress diagnostic 
82

Rb PET exam (same population as in Chapter 3) were processed using the same 
82

Rb MBF 

quantification methods described above. Since the images were acquired on a different 

scanner a previously reported extraction function [39] was used. The uniformity of the 

polarmaps was evaluated. 

6.2.3  Statistical Analysis 

Rb-derived MBF values were compared with water MBF values using correlation and 

Bland–Altman analyses [136]. Correlation was reported using a Pearson correlation 

coefficient, r, and agreement was reported using the coefficient of reproducibility, CR, which 

is equal to 1.96 times the standard-deviation of the error between MBFH2O and MBFRb. 

Differences in population means were tested using a student t-test, and CV% and CR 

differences were tested using an f-test, assuming a Gaussian distribution which was not 

tested. Significant differences in Pearson correlation coefficients were evaluated using the 

Fisher transform. Differences between average spillover corrections (β) were calculated 

using a Wilcoxon non-parametric test.  

Repeat significance tests across the four Rb MBF quantification methods included a 

Bonferroni correction of 4. When water data were also compared, a Bonferroni correction of 

5 was applied. Differences were considered significant for p-values less than 0.05. 
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6.3 Results 

In all 
82

Rb images decomposition achieved good quality myocardial structures on 

which reorientation and segmentation could be conducted. In 1/60 normal and 18/60 patient 

images, high stomach activity required manual intervention at the reorientation stage, which 

was limited to adjusting the transaxial slice in all but 11 cases. Respectively, in 0/60 and 4/60 

cases manual intervention was required at the segmentation stage as well. 

In ~13/60 images, myocardium structures generated from decomposed (FADS with 

MSO) water images had poor contrast for reorientation and segmentation. Manual 

intervention was required during 22/60 reorientations and 10/60 segmentations. 

6.3.1 Normal Population 

6.3.1.1 Extraction Fractions 

The extraction function parameters, a and b, are listed in Table 6-2 and vary with Rb-

MBF quantification methods. However, as shown in Figure 6-3, the extraction functions for 

Rb-IDF and Rb-SOC (green lines) are nearly identical to previously reported extraction 

functions by the same group that acquired these data [55,81]. The Rb-FA and Rb-FARV 

extraction functions (blue) had lower extraction values. 

 

Figure 6-3 – Previously reported (red) 
82

Rb extraction fractions (left) and corresponding net extractions 

(right) (references in Table 2-2). The green lines are Rb-IDF and Rb-SOC extraction fractions calibrated 

to the water-MBF data as shown in Table 6-2. The blue are Rb-FA and Rb-FARV extraction fractions.  

TABLE 6-2 – EXTRACTION FUNCTION PARAMETERS AND ACCURACY OF MBF  

W
a

te
r
-S

O
C

 Rb method 
Extraction Fraction Correlation & Agreement with water-MBF 

a b r Slope Intercept CR 

IDF 0.87 0.67 0.70 0.98 0.23 2.46 

SOC 0.87 0.65 0.70 0.98 0.21 2.46 

FA 0.88 0.21 0.77 0.98 0.09 2.02 

FARV 0.88 0.23 0.74 0.98 0.10 2.24 
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6.3.1.2 Flow Values 

Global MBF values at rest, stress, and CPT are shown in Figure 6-4 for all 

quantification methods. No significant differences were detected with the exception of FA 

rest MBF, indicating that the extraction functions were calibrated successfully. 

 

Figure 6-4 – Mean ± one standard-deviation global MBF of all normals (n=20) and all patients (n=30) at 

rest, stress, and CPT using all quantification methods. * indicate significant differences in MBF 

compared to water. 

6.3.1.3 Accuracy 

Agreement parameters of Rb and water derived MBF values are shown in the right 

half of Table 6-2 and also in the correlation and Bland-Altman plots in Figure 6-5. All linear 

regression slopes were within 2% of unity, and the intercepts were between 0.09 mL/min/g 

for Rb-FA and Rb-FARV and 0.23 mL/min/g using Rb-IDF.  

Pearson correlation coefficients (r) and coefficients of reproducibility (CR) are 

graphed in Figure 6-6 for comparison. No significant differences were reported between any 

two sets of data, although FA values were more favourable (higher r and lower CR). 

Inclusion of RV in the myocardium TAC model did not result in significant differences (FA 

vs. FARV) in either r (p=0.67) or CR (p=0.42). Likewise, spillover correction (Rb-SOC) did 

not significantly improve agreement with water compared to Rb-IDF (p=ns. for both r and 

CR). 
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Figure 6-5 – Correlation and Bland-Altman graphs of MBF with Rb compared to water. 

 

 

 

ID
F

 

S
O

C
 

F
A

 

F
A

R
V

 

IDF -    

SOC  -   

FA   -  

FARV    - 

 

 

 

ID
F

 

S
O

C
 

F
A

 

F
A

R
V

 

IDF -    

SOC  -   

FA   -  

FARV    - 

Figure 6-6 – Pearson correlation coefficient (r) (top) and coefficient of reproducibility (CR) (bottom) of 

MBF values between Rb and water. The tables on the right indicate significant differences (*) between 

methods. No significant differences in r or CR were found between methods. 
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With all Rb methods mean biases, as measured with Bland-Altman analysis, did not 

significantly differ from zero, as expected due to calibration of the extraction functions for 

each dataset. 

6.3.1.4 Polar-map Uniformity 

The mean coefficients of variation across all polar-maps are plotted in Figure 6-7 (in 

red for normals) along with a table of significant differences. The lowest polar-map non-

uniformities were achieved using the Rb-FA and Rb-FARV methods which had less than 

half the variability of either Rb-IDF or Rb-SOC (p<0.001 for all combinations). Rb-IDF had 

the highest non-uniformity in the group but was not significantly greater than Rb-SOC or 

water (p=0.70 and p=0.08 respectively). Inclusion of the RV spillover in the myocardium 

model (FA v.s. FARV) did not significantly change the uniformity of the polar-maps 

(p=0.65). 
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Figure 6-7 – Mean of coefficient of variation (CV%) of MBF polar-maps for normals and patients as 

measures of average polar-map uniformity. Significant differences between methods are indicated in the 

table (right) in red and blue corresponding to normal and patient datasets. Factor analysis based 

methods generated significantly more uniform polar-maps than ROI based methods. Differences between 

populations using the same method were not significant. 

Global CV% at rest, CPT, and stress states are shown in Figure 6-8. Interestingly in 

all methods rest-CV% and CPT-CV% values were larger than stress-CV%, which may be 

related to the more non-linear extraction at low MBF, but none of these differences were 

significant (p=ns). 
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Figure 6-8 – Mean of coefficient of variation (CV%) of MBF polar-maps at rest, CPT, and stress. No 

significant differences were detected between rest, CPT, or stress. 
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Figure 6-9 – Mean MBF polar-maps across all (n=60) images for each of the quantification methods. 
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Mean regional MBF polar-maps are shown in Figure 6-9 to demonstrate regional 

biases that would contribute to non-uniformity. The mean water-MBF polar-map was fairly 

uniform with slightly higher MBF in the apex region. The Rb-IDF and Rb-SOC methods 

both had higher MBF in the septal wall which may be due to unaccounted RV blood 

spillover. The Rb-FA method demonstrated the greatest degree of uniformity, but still had a 

slight increase (~20%) in the septal region, which was not resolved by including RV 

spillover in the model. 

Regional uniformities (CV%) in the three vascular territories are plotted in Figure 

6-10. In all cases uniformity was greatest (smallest CV%) in the LCX territory (lateral wall) 

compared to LAD (p<0.05) and in ROI based methods also compared to RCA territories 

(p<0.05). No statistically significance differences were found between territories with water. 

 

Figure 6-10 – MBF non-uniformity (CV%) in the three vascular territories using each MBF 

quantification method (average of all rest, stress, and CPT polar-map territories). Non-uniformity was 

significantly (*) higher in the LAD and RCA vs. LCX using all Rb methods but not with water. 

6.3.2 Patient Population 

Mean±std MBF values at rest and stress are plotted in Figure 6-4 for the patient 

population (n=30). There were no significant differences in average rest or stress MBF 

values between methods (p=ns). MBF rest values were higher than normally reported, 

indicating that the extraction fraction may not be accurately calibrated for this dataset. The 

variance of MBF values did not significantly differ between methods. 

Polar-map uniformity measures (CV%) for all patients are shown in Figure 6-7 in 

blue. As in the normal population, CV% values were lower in both FA-based methods 

compared to ROI based methods, but were not significantly different (0.13<p<0.3 for all 

combinations). However, the variations in MBF values (error bars in Figure 6-4) indicates 
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that the dynamic range of MBF is not restricted with FA compared to ROI. The examples in 

Figure 6-11 and Figure 6-12 demonstrate that the FA polar-maps appear to maintain the 

spatial pattern of MBF vs. tracer uptake, as expected. Generally FA results agreed with 

uptake polar-maps more closely, which may suggest that IDF and SOC are less robust for 

regional estimates of MBF. 

 

Figure 6-11 – Example with good correspondence between all quantification methods in a patient with 

reduced MBF in the septal, posterior, and lateral walls that worsens at stress, suggesting obstructed RCA 

and LCX arteries. 

 

Figure 6-12 – Example of increased heterogeneity in MBF with ROI based methods compared to FA 

based methods. The FA based results correspond better with uptake images. 

Polar-map uniformity values were surprisingly higher (lower CV%) in normal 

population compared to the patient population, with Rb-IDF and Rb-SOC although not 

significantly (p=ns). This may be due to the differences in PET cameras and the 

reconstruction algorithms. 

6.4 Discussion: 

Four different methods to quantify MBF from 
82

Rb PET images were evaluated in 

this chapter. The findings are summarized in Table 6-3. The accuracy of MBF quantification 

with 
82

Rb PET was evaluated using 
15

O-water PET. Accuracy (r and CR) did not differ 

between methods. However, MBF quantification using FA did improve polar-map 

uniformity significantly in the normal population. 

In the patient population, which included the presence of clinically reported CAD 

(Table 3-2) polar-map uniformity values were also higher using Rb-FA and Rb-FARV, but 

not significantly, likely due to the increased variability in physiologic flow. Visual inspection 
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of the MBF polar-maps confirmed that Rb-FA and Rb-FARV can resolve heterogeneous 

patterns, which indicates that the increased uniformity is not artificial. Thus Rb-FA and Rb-

FARV may both be more sensitive to detecting true physiologic variations in MBF. 

MBF uniformity in normals has been validated using microspheres [173] suggesting 

that the FA based methods are physiologically accurate. Mean MBF polar-maps (Figure 6-9) 

demonstrate biasing in the septal wall using the ROI based methods which may be related to 

uncorrected RV blood spillover into the myocardium ROI. The water polar-map seems to 

have slightly elevated MBF values in the apex regions, which may be due to the larger 

recovery loss in the apex region.  

TABLE 6-3 – COMPARISON OF MBF QUANTIFICATION METHODS 

Trait ID SOC FA FARV 

Accuracy (compared to 
15

O-water PET) = = = = 

Uniformity in normals ↓ ↓ ↑ ↑ 

Uniformity in patients = = = = 

Processing speed ↑ ↑ ↓ ↓ 

↑ – advantageous 

↓ – disadvantageous 

=    – equivalent to other methods 

 

6.4.1 Blood Spillover Correction 

Addition of a myocardium to blood pool spillover correction to the ROI based 

method did not significantly change the results (correlation, agreement, MBF values, or 

CFR). The degree of spillover correction is inversely related to the blood pool recovery 

parameter, β, where β =1 implies that no correction was performed. Respective β values for 

normals and patients were 0.980±0.019 and 0.994±0.016 (p<0.001 for mean and p=ns for 

variance). It is likely that the slightly greater correction in normals was attributed to smaller 

heart sizes (due to normal population and the smaller Japanese population) resulting in more 

spillover into the blood pool. However, the increased spillover may also be attributed to 

differences in scanner, reconstruction algorithms, and reconstruction parameters between the 

two datasets. 

6.4.2 RV to Myocardium Spillover 

Including RV blood spillover in the myocardium model with FA did not result in any 

significant changes (correlation, agreement, MBF values, or CFR). As the RVBF polar-maps 

for both normals and patients demonstrate (Figure 6-13) the average RVBF in the septal 

region was only ~6%. Assuming that LVBF is not greater than 50%, the recovery coefficient, 

RC=(1–LVBF–RVBF), which scales K1, would vary on the order of 12%, or less. Variability 

of K1 would decrease for smaller LVBF values, which are often assumed to be on the order of 

30-40% [42]. 
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 RVBF Normals RVBF Patients 

  

Figure 6-13 – Mean RVBF polar-map for all normals (right) and all patients (left) (n=60 for each). 

Differences between normals and patients RVBF polar-maps can be attributed to a 

combination of differences in subject populations, instrumentation, reconstruction 

algorithms, and reconstruction parameters. 

6.4.3 Myocardium Structures for ROI 

While the ROI-based quantification method described in Chapter 3 used uptake 

images to determine the ROIs, in this chapter, myocardium structures were used, which were 

visually validated. Theoretically, shifting of myocardium ROIs radially outwards beyond the 

mid-myocardium (into the epicardium region) could result in lower TBF values, which 

would lead to higher RC values (1-TBF), and therefore lower K1 and MBF values. In the 

septal region, due to the presence of RV blood which has a similar TAC to LV blood, 

shifting the myocardium ROI into the RV blood region could result in higher TBF values, 

lower RC values, and therefore increased MBF values. If this were the case, polar-map 

uniformity would decrease (higher CV%) and average flow values would increase, which 

corresponds with the results observed in this work for the IDF and SOC methods. The 

difference between ROIs derived from uptake and myocardium FA structures was not 

evaluated. However, shifting the myocardium ROIs radially inward by 2 mm did effect the 

results (MBF, accuracy, or polar-map uniformity) only slightly, indicating that the septal 

wall MBF derived with ROI-based methods may be biased due to physiologically inaccurate 

blood input functions. 

6.4.4 Extraction Functions 

The extractions for ROI-based MBF were within the range of previously reported 
82

Rb extraction fractions (Figure 6-3 and Table 6-2), however the extraction fractions for the 

FA based methods were lower over the entire range of MBF values. While the a parameters 

were similar for all the quantification methods, b parameters were lower for FA based 
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methods than ROIs based methods. Physiologically, the results for FA based methods 

indicate lower baseline permeability x surface-area product, PS (ml/min/g), than previously 

reported using ROI based methods, but similar flow dependence amongst these 

quantification methods.  

The lower extraction fractions of the FA based methods correspond to lower K1 

values which likely resulted from blood input functions with higher intensity peaks due to 

recovery correction which was not performed in the ROI method. Biases in K1 are offset by 

calibrating the extraction function to a standard as was performed in this work using 
15

O-

water imaging. 

6.4.5 Comparison to Previous Work 

The accuracy of MBF from 
82

Rb PET has been evaluated in previous works using 

other PET tracers or using microspheres. Microsphere measurements are typically conducted 

simultaneously with the PET image acquisition which is ideal, but are restricted to animal 

use since they require dissection and extraction of the heart. In humans, studies are often 

conducted with a PET tracer that has been previously validated in animals. Due to the length 

of multi-tracer exams and side-effects of pharmacologic stress agents, comparative studies 

are often conducted on separate days. Ideally the time interval between exams is kept short to 

mitigate changes in the health of participants, However, baseline variations in MBF may still 

be present due to diet, sleep patterns, stress levels, etc. In addition, co-registration of images 

may be compromised.  

Table 6-4 lists previous work evaluating the accuracy of MBF using 
82

Rb PET and 

reported Pearson correlation coefficients (r). 

TABLE 6-4 – MBF CORRELATIONS REPORTED IN PREVIOUS WORK 

Work Reference Time apart Subjects Data Points Correlation 

Present work Water 17±13 days 20 60 0.77 

Katoh [55] Water n.a. 21 21×16segments 0.89 

Lortie, [39] Ammonia <14 days 14 28 0.85 

El Fakhri, [72] Ammonia <14 days 20 40×3segments 0.93
 

Herrero, [50] Microspheres Simultaneous 13 Dogs 36 0.91 

Lautamäki,  [69] Microspheres Simultaneous 9 Dogs 18 0.92 

The correlation coefficients in this work are lower than correlation coefficients 

reported by others. The work of Katoh et al. [55] used nearly the same Rb and water data 

(one more subject but neglecting the CPT images) as in this work. The method of Katoh et 

al. involves significantly more operator intervention which may bias the results. The 

operator-dependent variability of this method has not been reported. 

Lortie et al. [39] used the same method described in Chapter 3. The methods in this 

chapter and in Lortie et al. differ in the image used to define the ROI as discussed in section 

6.4.3. 
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In Katoh et al., Lortie et al., and El Fakhri et al. the reference MBF and the Rb MBF 

were calculated using the same methods. Correlation could be high even though accuracy is 

reduced if the quantification method biases MBF values similarly with Rb and with the 

reference tracer. In this work several Rb quantification methods were evaluated, of which 

Rb-SOC was most similar to the water quantification method, but also had the lowest 

agreement parameter values, but not significantly. 

The methods of Herrero et al. and Lautamäki et al. have been evaluated for accuracy 

using microspheres in dogs, but have not been reported in humans. 

6.4.6 Limitation 

Accuracy of MBF quantification using 
82

Rb PET and factor analysis did not 

significantly improve over ROI-based methods. This may be partially due to the small 

number of patients, particularly in the high flow range. However, disagreements between 

water and Rb derived MBF in individuals were often high, which is reflected by the modest 

correlation coefficients (r≈0.7) and relatively high RC (≈2.5 mL/min/g). Agreement between 

water and Rb MBFs may be partially attributed to the long duration between imaging 

sessions. Ideally, imaging with both tracers should be conducted under identical conditions 

and on the same day. 

The use of 
15

O-water PET as a gold-standard for non-invasive MBF quantification is 

well established [7,58,75,90,131,162], however, the accuracy of 
15

O-water PET is also finite. 

The degree of agreement between MBF measurements with water and Rb PET is limited by 

the accuracy and precision of both methods. Water MBF is useful as a gold-standard so long 

as water is significantly more accurate than Rb. This work did not evaluate the accuracy of 

the MBF quantification using water, but reproduced a previously reported and accepted 

method. Several potential limitations of MBF quantification using water are noted. 

Because water is not retained in the myocardium an uptake image with good 

delineating of myocardium and blood pool does not exist. Image decomposition can be 

useful to generate myocardium structures from which ROIs can be derived. With the FADS 

+ MSO constraint that was applied in this work, not all the myocardium structures had 

sufficient contrast for automatic reorientation and segmentation, and some operator 

intervention was required. Another disadvantage of water imaging is that patient motion is 

difficult to notice or correct.  

Finally, it was observed that the water images tended to be noisier than Rb images, 

which is likely due to water‟s diffusion property (high k2 tracer kinetic model parameter). 

Instead of being extracted from the blood and retained in the myocardium as Rb, water 

diffused freely to all perfused tissues, and back into the blood. The concentration of activity 

in the myocardium region at late time frames is therefore lower than Rb, resulting in images 

that may be count poor. 
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6.4.7 TR in Small Hearts 

Figure 6-14 shows the RC in the center of a sphere that is blurred with an isotropic 

Gaussian smoothing kernel. RC approaches unity when the sphere diameter is >3×FWHM of 

the blurring kernel. In a standard 
82

Rb cardiac PET image, with 12 mm spatial resolution, 

this condition is met at the centre of any heart that is larger than 3.6 cm in diameter at its 

narrowest cross-section during systole (when heart diameter is smallest). This criterion may 

be relaxed slightly since the heart is fully contracted for only a fraction of the cardiac cycle 

[174]. Thus even in small adults [174,175], children, and large animals (e.g. dogs, and pigs 

>20 kg) this assumption may be valid. 

 

Figure 6-14 – Recovery coefficient at 

the center of a sphere with uniform 

activity with varying isotropic 

Gaussian blur. When the blur 

FWHM<diameter/3 nearly perfect RC 

is present at the center of the sphere. 

In rats and mice a typical heart diameter is on the order of 10 and 7 mm respectively 

[174]. 
82

Rb is not typically used in small animal imaging due to its long positron range and 

relatively low activity concentration. PET images using 
18

F and a dedicated small-animal 

camera have resolutions on the order of 1.0-1.6 mm depending on the camera and 

reconstruction algorithm. Thus even in low resolution mouse images the TR scaling method 

may be applied. 

6.4.8 TR in Other Organs 

Factor analysis has been explored for quantification in other organs such as the brain 

[176], prostate [102], kidneys [164], liver [177]. Scaling of factors using TR may be applied 

in these organs, assuming they are sufficiently large compared to the image spatial 

resolution, that all the components in the organ region are accurately accounted for, and that 

the relative recovery of each component is heterogeneous. However, physiologically 

inaccurate structures may result in inaccurate recovery estimates. Therefore accuracy in each 

application should be evaluated before quantification is attempted. 
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6.4.9 Factor Analysis Reproducibility 

Reproducibility of MBF using factor analysis is dependent on the reproducibility of 

the MBF over time, reproducibility of the imaging, and reproducibility of the analysis. It may 

not be possible to isolate the contribution of each of these elements on test-retest 

reproducibility. In the context of this work operator-dependent variability influences the 

reproducibility of image analysis and may be validated by repeat processing of the same 

images by the same and by different operators as was carried out in Chapter 3 for ROI-based 

MBF quantification. 

In the proposed workflow, operator variability may involve manipulation of the ROI 

for factor analysis, in addition to optional operator interventions during the reorientation and 

LV segmentation stage. Ideally, the ROI should be broad enough to include the entire heart, 

including left and right blood cavities, but narrow enough to reduce contamination from 

neighbouring high uptake organs (e.g. stomach and liver). Inclusion of dixels with purest 

temporal response is expected to make the solution more numerically stable due to the non-

negativity constraints [104,108]. 

The results in Chapter 5 indicate that myocardial structures, which are used for 

reorientation and segmentation, have superior myocardium to blood cavity contrast and less 

noise than uptake images. The use of myocardium images is therefore expected to improve 

reproducibility at these stages by minimizing the need for user intervention. Nevertheless, 

evaluation of operator-dependent variability and test-retest reproducibility are important 

characteristics of MBF quantification and should be investigated. 

6.5 Conclusion 

Evaluation of 
82

Rb MBF accuracy as compared to 
15

O-water derived MBF did not 

significantly benefit of factor analysis, but polar-map uniformity in normal individuals did 

significantly improve. Early evaluation of MBF quantification in patients using 
82

Rb PET 

and factor analysis demonstrated that the increase in uniformity is not artificial and does not 

impair ability to detect regional defects. These results suggest that factor analysis derived 

blood input functions for MBF quantification with 
82

Rb may be able to better detect true 

physiologic changes and may enable detecting CAD at earlier stages than standard ROI 

based methods. 
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Chapter 7.  

Discussion and Future Directions 

7.1 Summary 

Coronary artery disease can be effectively treated with early detection and 

appropriate therapy. While MPI is routinely practiced in the clinic for detection of CAD, it 

can fail to detect narrowing in multiple coronary arteries when disease is severe. MPI may 

also be insensitive to detect diffused disease in the micro-vascular (the smallest blood 

vessels) which can slow delivery of nutrients to the cells and may be associated with early 

stages of disease. MBF quantification has long been sought as a means to detect multi-vessel 

disease and diffused micro-vessel disease, to track the progression of disease and response to 

therapy, to determine prognosis of the patient, and to guide therapy. 

Cardiac PET is currently the gold-standard for non-invasive MBF quantification, but 

has only been used in the clinic on a limited basis, due its perceived high costs associated 

with installation and with the need for cyclotron produced tracers. The generator produced 
82

Rb is a suitable tracer for MPI, but is less suited for MBF quantification due to incomplete 

extraction of the tracer and its physical properties which lead to reduced image spatial 

resolution. 

Region of interest based methods have been used typically to measure image defined 

arterial blood and myocardial tissue TACs. The blood and myocardium TACs are used as 

input and output functions respectively to a kinetic model describing the transfer of activity 

between compartments. The blood-to-myocardium uptake rate constant K1 along with other 

model parameters are optimized to fit the measured TACs. MBF is derived from K1 using an 

extraction function that has been previously calibrated. 

Greater reproducibility enables detection of smaller serial changes, which is 

important for tracking of disease and determining patient response to therapy. Chapter 3 

described a highly automated ROI based method for MBF quantification that was developed 

to reduce operator-dependent variability and therefore improve reproducibility. Both inter- 

and intra-operator variability were evaluated using one novice and one expert user. The 

expert operator had more reproducible results than the novice operator emphasizing the need 

for adequate training and quality assurance. The inter- and intra-operator-dependent 

reproducibility of MBF was similar or better than previously reported methods. These 

findings were published in [132]. 

Accuracy is a second important characteristic of MBF quantification as it determines 

the ability to diagnose individuals through comparison to a database of normal MBF. The 

finite resolution of PET and the existence of arterial blood in the myocardium result in 
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spillover of signals between myocardial and blood ROIs. Spillover contaminates the TACs 

and can reduce the accuracy of MBF measurements. Factor analysis uses a mathematical 

model to decompose an image into distinct components based on unique temporal responses 

and may be able to correct spillover effects. Each component is modeled by the product of a 

spatial pattern (structure) and temporal response (factor). 

Factor analysis does not guarantee unique solutions and therefore requires constraints 

to ensure a unique and accurate solution. In Chapter 4 the FADS (factor analysis of dynamic 

structures) method was constrained by minimizing the structure overlap (MSO) of the 

components and alternatively by minimizing the factor overlap (MFO) of the components. 

The MSO and MFO methods were compared using simulation and experimental data. 

Simulation results showed more accurate decomposition of the image using the MFO 

constraint. Simulated MSO myocardium factors were contaminated with blood signal, while 

the blood factors were recovered accurately. A series of images of the same dog were 

acquired under identical conditions, but with varying tracer infusion intervals. Thus the 

structures were expected to be reproducible, as confirmed using both MSO and MFO. MSO 

structures were more defined, had less spatial overlap, and had higher contrast between 

myocardium and blood pool when compared to MFO structures. MFO blood factors 

demonstrated more complete clearance from the blood at late time frames which is consistent 

with the physiology of an extracted tracer such as 
82

Rb, suggesting that MFO results may be 

more physiologically accurate. The content of this chapter was published in [139]. 

While MSO partially violates our understanding of the physiology by assuming 

minimal spatial overlap of structures, there is no physiologic basis to support MFO either. In 

Chapter 5, a physiologically defined constraint was developed. The more general penalized-

sum-of-least-squares frame work was used in place of FADS, and the tracer kinetic model 

was explicitly incorporated, giving rise to the model-based factor analysis (MB) method. The 

RV blood factor was a free parameter, LV blood factor was modeled as a delayed and 

dispersed RV blood factor using the gamma-variate model, and the myocardium factor was 

modeled using a 1-tissue-compartment model of tracer extraction. MB was also constrained 

to have decreasing blood factors in the late time frames. The MSO constraint was similarly 

integrated into the penalized-sum-of-least-squares frame work so that the two methods 

differed only in constraints. Both MSO and MB were evaluated and compared using 

simulated and experimental data. 

Both canine and rodent cardiac structures were simulated, which differed in spatial 

dimensions, resolution, and cardiac motion – and therefore in the degree of spatial overlap of 

the structures. Canine simulations consisted of three components (RV blood, LV blood, and 

myocardium) and rodent simulation consisted of only two components (blood and 

myocardium). To evaluate if either method was biased, both canine and small animal 

simulations were generated with complete blood clearance and with residual blood activity. 

The simulation results indicated that MB was more accurate at resolving factors and 



Kinetic Model Based FA for MBF with 
82

Rb PET  Ran Klein, University of Ottawa 

  115 

 

structures, particularly in small animals where structure overlap was more severe. MB results 

were also more reproducible in the presence of noise and were less variable between cases 

with complete blood clearance and residual blood activity. 

Blood factors were evaluated using continuous arterial blood sampling performed 

simultaneously with image acquisition in rats. MB derived factors agreed more closely than 

MSO derived blood factor indicating better physiological accuracy. Accuracy of blood 

structures derived from dog images with variable 
82

Rb infusion durations were evaluated 

using 
11

CO blood pool imaging, and did not reveal significant differences between MB and 

MSO. MB did, however, resolve more reproducible blood and myocardium structures than 

MSO under variable tracer infusion durations.  

K1 and MBF were also measured from the same canine images and tended to be more 

reproducible using blood TACs derived from MB factors than either MSO derived or ROI 

derived blood TACs. MBF values derived using MB or MSO were significantly higher than 

ROI derived values, indicating a need to recalibrate the extraction function in order to 

achieve accurate MBF quantification. The content of Chapter 5 were also published in [145]. 

A comparison of the assumptions of the MSO, MFO, and MB methods is 

summarized in Table 7-1 along with their relative performance properties. 

TABLE 7-1 – COMPARISON OF FA METHODS 

Assumptions MSO MFO MB 

Number of factors is known X X X 

Non-negative factors X X X 

Non-negative structures X X X 

Minimal spatial overlap X   

Minimal factor overlap  X  

Kinetic model (arterial blood to myocardial tissue)   X 

Gamma-variate model (RV blood to LV blood)   X 

Blood clearance   X 

Performance Property MSO MFO MB 

Conforms to knowledge of physiology and physics ↓ ↓ ↑ 

Compatible with other tracers ↑ ↑ ↑ – with appropriate kinetic model 

Compatible with other modalities ↑ ↑ ↓ 

Accuracy vs. simulation ↓↓ ↓ ↑ 

Accuracy of blood factors vs. arterial blood sampling ↓ n.a. ↑ 

Accuracy of blood structures vs. CO imaging = n.a. = 

Reproducibility of structures with varying tracer 

infusion 

↓ ↓ ↑ 

MBF reproducibility = n.a = 

Myocardium:blood contrast ↑ ↓ ↓ – better than uptake images 

Blood activity clearance ↓ ↑ ↑ 

Processing speed ↓ ↓ ↑ 

↑ - advantageous    ↓ - disadvantageous     = – equivalent between methods    n.a. – not available 
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The accuracy of MBF quantification using MB was addressed in Chapter 6 using 
15

O-

water as a gold-standard. While MBF accuracy did not improve significantly compared to 

ROI based methods, the polar-map uniformity was significantly improved in normals. MBF 

spatial patterns in patients indicated that the increased uniformity was not artificial. Thus 

image decomposition could be useful for detecting smaller regional MBF abnormalities than 

ROI based methods. These results were published in [158]. 

7.2 Future Work 

Before these methods can be employed widely in research and clinical applications 

further validation of the MBF quantification is recommended. Future work could address the 

following issues. 

7.2.1 Reproducibility 

Precision of MBF can be evaluated through repeat measurement using test-retest 

experiments with representative subject populations for the desired application. For routine 

clinical applications test subjects should consist of patients with varying degrees of disease. 

A population of normals, having a low likelihood of disease, should also be considered, 

especially for research applications and for developing normal population databases for 

clinical interpretations. 

To minimize experimental variability, repeat tests should be conducted under 

conditions that are as similar as possible. To reduce variability associated with disease 

progression, subject state, equipment calibration, and staffing, repeat image acquisitions 

should be conducted as closely as possible. Ideally, tests should be conducted in a single 

back-to-back session assuming that the state of subject can be maintained stable throughout 

the exam. Stability of the subject may be of particular concern during stress imaging due to 

patient fatigue, drug side-effects, and adaptation of the subject to the stressing agent. 

In a clinical setting, MBF reproducibility data can be useful for determining 

confidence intervals on patient data for stratification of patients into risk groups. In research 

settings reproducibility data can be used to determine sample sizes needed to detect 

differences of a desired magnitude between groups. Alternatively, for a given sample size, 

the differences in MBF that can be reliably detected in repeat scans or between groups can be 

forecasted. 

7.2.2 Accuracy in Patient Populations 

In this work, accuracy of MBF was only evaluated in a normal, healthy population 

with a low likelihood of disease. Accuracy in a patient population should also be evaluated. 

While microsphere measurements are possible for animal applications, in human studies, a 

non-invasive standard such as 
15

O-water PET imaging is ideal, and 
13

N-ammonia is another 
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possible standard. Alternatively angiography data may be used to evaluate accurate 

classification of absence or presence of stenosis in the large coronary arteries using MBF. 

7.2.3 Quality Assurance 

Chapter 3 highlighted the importance of quality assurance of the MBF quantification 

process as the accuracy of MBF depends on successful application of the quantification 

process. MBF results alone may not always reveal a problem in the quantification process, 

and intermediate stages should also be reviewed. The methods described in Chapter 3 

consisted of quality assurance reports for each stage. MBF quantification with factor analysis 

should include quality assurance of the factor-analysis and the factor scaling stages in 

addition to the reorientation, segmentation, and kinetic model stages described in Chapter 3. 

This work has only hinted at means of quality assurance during the factor-analysis stage that 

are based on intuition and anecdotal evidence.  

 

  

Figure 7-1 – A factor analysis report of a clinical 

patient showing a cropped transaxial slice through 

the mid-LV. The dynamic image sequence 

(Original) was successfully decomposed into three 

structures (RV blood, LV blood, and myocardium) 

as revealed by good quality structures and a 

residue signal with a random pattern. Time frames 

are from top to bottom. 

Figure 7-2 – A factor analysis report of a clinical 

patient showing a cropped transaxial slice through 

the mid-LV. The image was not well decomposed 

as indicated by an obvious pattern resembling the 

LV myocardium in the residue, primarily in the 

last time frame (bottom). Corresponding motion in 

the dynamic image (original) is apparent. 
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An example factor analysis report is demonstrated in Figure 7-1 and Figure 7-2. The 

residual signal should be inspected for prominent structures that would indicate incomplete 

decomposition of the image, which may be addressed in some cases by increasing the 

number of factors. The structures should be visually inspected for obvious anatomical 

abnormalities, or inappropriate splitting of a single anatomical component into multiple 

structures, which may be addressed by reducing the number of factors.  

A QA report for scaling of structures to recovery units is shown in Figure 7-3. Mid-

myocardial horizontal-long-axis slices in the scaled structures as well as their total, which 

estimates TR, can indicate to the operator cases where scaling may have failed. The TR 

image should be uniformly scaled to ~1 in the heart regions as demonstrated in Figure 7-3. A 

histogram of estimated and fitted TR values may also be informative.  

The scaling QA could also be used for visual inspection of the individual structures. 

Structures should correspondence with the known anatomy of the heart as is the case in 

Figure 7-3. Fragmented structures could indicate decomposition to too many factors and may 

be addressed by reducing the number of factors. Thus the decomposition report and the 

scaling reports can both be useful for evaluating the factor analysis results. 

 

 

Figure 7-3 – Proposed QA report for scaling of structures to recovery units. 

7.3 Clinical Considerations 

The increasing prevalence of cardiac disease, reduction in price of PET equipment 

and 
82

Rb, and reimbursement of MPI have all contributed to increase the adoption of 
82

Rb 

PET MPI in recent years. In addition, the demand for routine MBF quantification is 

increasing and can be conducted without significant increased expenses or study complexity. 

As 
82

Rb PET becomes more prevalent the need for standardization of image acquisition 

protocols will become more important for comparative studies, multicenter collaboration, 

and standardized patient reporting.  

Standardization should include consideration of tracer infusion including imaging 

mode (2D or 3D), amount of activity, and infusion time. Since dynamic imaging is required 
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for MBF quantification, the infusion must be optimized to maximize the activity in the late 

time frames and to avoid camera saturation in the early time frames. 

7.3.1 Imaging Protocol 

The number of time frames and their durations, as well as the tracer infusion 

durations have not been optimized. While short time frames can better resolve fast changes 

in tracer concentrations, they do so at the expense of image quality. With more efficient, 

high-count-rate systems, it may be advantageous to shorten the early imaging time frames to 

5 s [54,72,75,101], while some have used time frames as short as 0.5 s [54]. A more practical 

limitation to shortening the duration of time frames is the increased computation cost 

associated with the increase in number of frames to reconstruct. 

An alternative approach could be to lengthen the interval over which 
82

Rb is 

administered so that the difference between RV blood and LV blood TACs becomes 

negligible (as demonstrated by the variable infusion duration results of Chapter 5) mitigating 

the potential need to model separate spillover coefficients (RVBF and LVBF in Chapter 6) 

[178]. Long infusions can also reduce the high frequency components of the input function 

directly and of the output function indirectly, and therefore could overcome the need for 

many short time frames. With an extremely long elution, it may be possible to use a single 

equilibrium image to measure MBF using the ratio of myocardium and blood tissue 

concentrations, and possibly remove the need for factor analysis kinetic modelling entirely. 

7.3.2 Image Reconstruction 

Scanner technology and reconstruction algorithms are constantly evolving and 

improving the quality of reconstructed images. In general, images reconstructed with 

modern, iterative algorithms such as OSEM or MAP are considered superior to filtered back-

projection images. In addition, iterative reconstruction methods are constrained to resolve 

non-negative pixel values in accordance with the known properties of tracer concentrations 

and consistent with the assumption of factor analysis methods [103,104,106]. However, since 

PET is most commonly used for tumour detection and tracking in static oncology studies, 

reconstruction algorithms may be optimized for contrast and resolution at the expense of 

accurate regional quantification [179,180]. Validation of TACs and/or factors should be 

considered when equipment or reconstructions are modified. 

To overcome potential limitations due to reconstruction some have attempted to 

conduct factor analysis and kinetic modelling on the projection data (pre-reconstruction) 

[181]. Although a comparison of factor analysis on pre- and post-reconstruction data has 

been reported [90], it was limited to generating myocardium structures for image 

segmentation with 
15

O-water. Manipulation of projection data may limit the operator‟s 

ability to reject organs that are not of interest from the analysis. It is not clear how factor 

analysis of pre- and post-reconstruction data compare for MBF quantification with 
82

Rb.  
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7.4 Additional Utility of Factor analysis 

The model based factor analysis method described in this work was designed for the 

specific purpose of quantifying MBF with 
82

Rb PET. As discussed in Chapter 5, this method 

could be adapted to other tracers by incorporating their kinetic model. The software consists 

of an application programming interface (API) that can be used to rapidly prototype kinetic 

models for other tracers. The API accommodates models with and without RV blood 

spillover components as demonstrated in Chapter 6, and with and without an estimate of RC. 

The API also supports models for correcting blood TACs for accumulation of radio-labelled 

metabolites (e.g. 
13

N-ammonia [182]). Since these kinetic models can be included as part of 

the decomposition process as well as the quantification process, both processes may benefit 

from accurate modeling of tracer kinetics. 

In multi-tracer imaging protocols, sufficient delay is needed for tracer decay between 

exams. Factor analysis has been explored for multi-tracer applications to remove background 

activity from previous injections, provide rapid imaging in a single session, and therefore 

improve patient comfort and image co-registration [183,184]. For this application, the 

current form of MB is inappropriate, however a form with two independent input functions 

and associated tracer kinetic models could be conceived. 

7.5 Validation Data 

The need for a non-invasive, accurate, precise, affordable and readily available means 

to quantify MBF in a clinical setting persists. Currently 
82

Rb PET is the most suitable 

technology to address this need, particularly in light of the recent shortage of SPECT 

isotopes. However, the biochemical and physical properties of 
82

Rb limit its accuracy and 

precision. This work and that of others have proposed methods to overcome these 

limitations. After nearly two decades, application of MBF quantification with 
82

Rb PET is 

still limited to research applications. 

Clinical application of MBF quantification with 
82

Rb PET has been limited due to a 

shortage of rigorous, large population data to support its diagnostic and prognostic value, as 

well a shortage of data to characterize its accuracy and precision in a diverse clinical setting. 

While several groups have developed MBF quantification methods, comparison is difficult 

or impossible due to a lack of standardization. The reported methods are evaluated using 

different species and populations and with a range of equipment, protocols, and 

reconstructions. In addition, the evaluation methods vary and rarely consist of accuracy, 

precision, and reproducibility measures. In addition, the datasets are often too small to instil 

confidence. 

The following data could be useful to validate factor analysis and MBF quantification 

results using 
82

Rb PET. Variations of these experiments could also be useful to factor 

analysis and physiological function quantification with other tracers and organs. 
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7.5.1 Animal Studies 

Imaging of large animals (e.g. dogs or pigs) using 
82

Rb can generate images with 

similar attenuation, scatter, anatomy, and physiology as humans and are therefore accepted 

evaluation methods. In addition, controlled disease states can be induced in animals. A 

comprehensive imaging protocol is proposed in Figure 7-4 consisting of repeat 
82

Rb 

acquisitions, C
15

O blood pool imaging, arterial blood sampling, and microsphere 

measurements. Repeated attenuation scans should be included between scans to avoid 

misregistration between attenuation and emission data due to motion. 

 

Figure 7-4 – Proposed image acquisition protocol for a factor analysis and MBF validation experiment 

using 
82

Rb in a large animal. 

MBF reproducibility can be evaluated using repeat acquisitions with 
82

Rb under 

constant imaging conditions, while sets of rest and stress measurement can be used to 

evaluate MFR reproducibility. Reproducibility of factor analysis derived structures can also 

be evaluated using all (rest and stress) image sets.  

With the addition of a C
15

O blood pool image acquisition in the same session, blood 

structures can be evaluated for anatomical accuracy. The activity concentration could be 

measured in a blood sample taken during the C
15

O image acquisition and used to convert the 

blood pool images to units of recovery, which could be used to validate scaling of the blood 

structures. This requires quantitative calibration of the camera. 

Arterial blood sampling can be conducted simultaneously with 
82

Rb image 

acquisition in order to validate arterial blood factors. With proper calibration, blood factors 

can be validated not only for temporal shape, but also for scaling. Blood samples must be 

corrected for background activity, for transport delay from the end of the catheter to the 

detector, and for radio-active decay. Since blood pool sampling requires insertion of a 

catheter to the aorta or left atrium via an artery, surgery is required and the animal may need 

to be terminated at the end of the exam. 

Microspheres can be administered at the same time as 
82

Rb injections in order to 

measure MBF for evaluating accuracy. The microspheres must be administered to the left 
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atrium through a catheter and a continuous, fixed flow rate withdrawal of blood must be 

conducted simultaneously at a distal artery (e.g. femoral artery) as a standard. At the end of 

the exam the animal must be terminated, the heart excised, and dissected to segments 

corresponding to image ROIs. To perform several microsphere measurements in the same 

animal, microspheres labelled with different radio-nuclides or fluorescent dyes must be used. 

Validation of structures may also be possible using anatomical imaging modalities 

such as CT or MRI. These images would need to be acquired over all phases of the cardiac 

and respiratory cycles and averaged in order to account for cardiac and respiratory motion. In 

addition the images would require spatial smoothing to match the resolution of PET. 

Anatomical information may be useful for validating not only the shape of the structures, but 

potentially recovery correction and structure scaling as well. 

7.5.2 Human Studies 

Validation studies in humans are limited to minimally-invasive measurements. 

Accuracy and test-retest (including operator-dependent variability) studies are of key 

concern for characterization of MBF measurements. Large cohorts and diverse populations 

are required to understand the incremental value of MBF and to instil confidence, which 

would support clinical use of MBF. Participant cohorts should consist of both sexes, a range 

of ages, and a range of disease states. Multicentre trials are most likely to produce such data. 

7.5.3 Clinical Trials 

Once MBF is reported routinely, guidelines for clinical interpretation will 

undoubtedly need to be developed and evaluated. Evaluation will include accuracy of 

diagnosis using standards such as angiography to confirm interpretation of disease in the 

large coronary arteries. In addition, inter- and intra-reader reproducibility will be of interest 

to evaluate the robustness of MBF based reporting. 

Retrospective studies may be useful to give first indications of the added diagnostic 

and prognostic benefit of clinical utility of MBF. Data on patients, with past scans and whose 

outcomes are already known can be evaluated to determine MBF‟s ability to forecast 

patients‟ outcomes (prognosis) such as myocardial infractions or death. In addition, these 

data could be used to develop guidelines for treatment planning based on MBF 

interpretation. 

Current trends indicate that widespread clinical use of MBF may still be a few years 

away. Only after MBF is available routinely in the clinic can prospective and follow-up 

studies be conducted. These studies will ultimately determine the true value of MBF 

quantification for affecting patient outcome. 
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