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Model-Based Factor Analysis of Dynamic Sequences of 

Cardiac Positron Emission Tomography 

 
1Abstract – Factor analysis has been pursued as a means to 

decompose dynamic cardiac PET images into different tissue types 

based on their unique temporal signatures. In this work we present 

a kinetic model-based (MB) method that includes physiological 

models of factor relationships within the decomposition process. A 

gamma-variate model was used to describe the transport of 82Rb in 

arterial blood from the right to left ventricle, and a one-

compartment model to describe the exchange between blood and 

myocardium. Simulations of canine and rat heart imaging were 

performed to evaluate parameter estimation errors. Arterial blood 

sampling and 11CO blood pool imaging were used to evaluate factor 

and structure accuracy. Variable infusion duration studies were 

used to evaluate MB structure and global myocardial blood flow 

(MBF) reproducibility. All results were compared with a previously 

published minimal structure overlap (MSO) method. Simulations 

demonstrated that MB has lower root-mean-square error (RMSE) 

for both factor (p<0.001) and structure (p<0.001) estimation 

compared with MSO. Compared to arterial blood samples, MB 

blood factors had lower RMSE than MSO (p=0.025). There was no 

difference in the RMSE of blood structures compared with 11CO 

blood pool images for MB vs. MSO (p=0.23). Myocardial structures 

were more reproducible with MB than with MSO (p<0.001), as were 

blood structures (p=0.006). Finally, MBF tended to be more 

reproducible with MB compared to MSO (p=0.16). The execution 

time of MB was on average 2.4 times shorter than MSO (p<0.001) 

due to fewer free parameters. Model-based factor analysis can be 

used to provide physiologically accurate decomposition of 82Rb 

dynamic PET images. 
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I. INTRODUCTION 

uantification of myocardial blood flow (MBF) from 

dynamic nuclear image sequences has been pursued as a 

diagnostic and prognostic indicator of heart disease [1]-[3]. 

Traditionally, an input and output function are derived using 

image regions of interest. These functions are then used to 

optimize the parameters of a tracer kinetic model representing a 

physiologic process of interest such as blood flow. However, the 

limited spatial resolution and signal-to-noise-ratio of these 

modalities can limit the accuracy and precision of the image-

derived functions [4][5].  

Factor analysis techniques have been explored as a means to 

obtain functions that are free of noise and spillover 

contamination from adjacent structures [6]. A dynamic series of 

images is decomposed into a finite number of temporal factors 

and their corresponding spatial structures which, ideally, should 

correspond to the physiology of the imaged tissue. The 

decomposition may be expressed in matrix form as: 

 

Y = FS+ε (1) 

 

where Y is the dynamic image sequence (the N pixels of each of 

M time frames in a row), the columns of F contain the time-

activity profiles of the P factors, the rows of S contain the spatial 

structure of the factor, and ε is error, or residual signal not 

accounted for by the factors. 

Scaling of factors and structures is arbitrary [7], which is 

evident from their product in equation 1. Typically the factors are 

normalized to unity area during decomposition and are later 

scaled based on the identification of assumed ‘pure’ pixels in the 

image [8][9], or based on blood sampling [6]. Even before 

scaling, decomposition is non-unique [8][10][11], requiring 

constraints that reduce the range of valid solutions. In cardiac 

positron emission tomography (PET), these constraints have 

historically defined non-negative factors and structures [12] 

based on the physical imaging process. In addition, Poisson 

statistics have been used to model the imaging process [13], but 

these constraints still do not ensure a unique solution. 

Minimization of the spatial overlap between the structures has 

been proposed as an additional constraint that ensures uniqueness 

of the solution. The minimal overlap constraint was originally 

incorporated as part of a penalized least-squares minimization 

problem [14][15] and later applied as a successive step[16][17]. 

Unfortunately, minimal structure overlap partially violates a 

priori knowledge of structure overlap that exists between blood 

and myocardium signals due to the limited spatial resolution of 

PET, and the normal anatomic presence of 10-15% arterial blood 

within the myocardial wall. An alternative constraint was 
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proposed that minimizes factor overlap under the assumption that 

the factors should be as distinct as possible temporally [18]. 

However, there is no absolute physiologic evidence to support 

this assumption either. 

In this work an alternative approach is developed that couples 

the factors using kinetic models that describe their physiological 

relationship in time. These models relate the three main 

components of the cardiac image dynamics – right cavity blood, 

left cavity blood (including myocardial vasculature), and 

myocardium (excluding myocardial vasculature). Consequently, 

model-based factor analysis is specific to this target application 

and is expected to benefit from increased a priori physiologic 

information. Cardiac PET with 
82

Rb may be expected to benefit 

more than other tracers due to the relatively long positron range, 

which results in increased image blur, greater mixing of signals 

and structure overlap. Implementation for 
82

Rb is relatively 

simple due to its kinetics being described with a one-

compartment model [19], and factor validation is simplified due 

to lack of blood or tissue metabolites.  

In this study we compare the performance of model-based and 

minimal-spatial overlap constrained factor analyses, using 

simulation data and experimental data in which arterial blood 

sampling and 
11

CO blood pool imaging served as anatomical 

standards [20]. We also evaluated the reproducibility of 

structures and MBF under varying image conditions.  

II. METHODS AND MATERIALS 

A. Minimal Structure Overlap (MSO) Constrained Factor 

Analysis 

MSO decomposition was achieved in two steps: 1) 

decomposition of the image and 2) rotation of the resulting 

factors (basis vectors) to minimize spatial overlap as in [16].  

Decomposition consisted of minimizing a cost function, CMSO, 

defined as a weighted sum of the norm of the error matrix |ε|, 

with penalties for negative structure and factor values as 

expressed by equation 2, where WE = 1/|ε|, WNF = 100 and WNS = 

1. Negativity was defined as the norm of all negative elements in 

matrix X as a ratio of the norm of all elements in X (equations 3 

and 4). The same negativity function, fneg(X) ∈[0,1], was used for 

both factors and structures, substituting F’ or S’ for X 

respectively. 

 

CMSO = WE |ε| + WNF fneg(F’) + WNS fneg(S’) (2) 

 (3) 

 (4) 

 

The cost function, CMSO, was minimized by optimizing F’ 

using a simplex gradient descent algorithm (fminsearch, Matlab, 

The MathWorks, Boston, MA) that was executed in several 

iterations (epochs) until the variance of ε stabilized to a value 

less than 10
-6

 of the mean. In each epoch the error penalty, WE, 

was set to the value of 1/|ε| from the previous epoch. This 

approach iteratively estimated the amount of noise in the image, 

resulting in consistent relative penalty weights without the need 

to assume a particular noise level. 

In the second step, the MSO constraint was applied to 

minimize the weighted sum of factor and structure negativity 

penalties as well as spatial overlap penalty, fovl(X)∈[0,1], as 
shown in equations 5 and 6.  The matrices F’ and S’ are the 

factor and structure matrices resulting from the decomposition 

stage and R is a P×P rotation matrix that is optimized to 

minimize ftot
MSO

, where P in the number of factors. The resulting 

factors and structures were defined as F=F’R and S=R
-1

S’ 

respectively. The parameter b (=0.001) was used to weight the 

overlap penalty, giving priority to the non-negativity constraint.  

 

 (5) 

 (6) 

B. Model-Based Factor Analysis (MB) 

The right ventricle (RV) cavity blood factor was treated as an 

input function that could take any shape, with unit area. Thus the 

RV factor, r(t), was considered a free variable vector with M-1 

degrees of freedom where M is the number of time frames. The 

left ventricle (LV) cavity blood was modeled by convolution of 

the RV blood with a model of the delay and dispersion resulting 

from transport of the RV blood through the lungs and pulmonary 

vessels to the LV. We adopted a standard gamma-variate 

function (equation 7) to model this transport [20]-[24], where the 

model parameter tp represents time delay to peak activity [21], 

and β controls the broadness of dispersion.  

 

 (7) 

 

The myocardium factor was modeled by convolution of the 

LV blood factor with a compartmental response function 

assumed for the specific tracer. In the case of 
82

Rb, a one 

compartment model impulse response function was used [19] 

with a single free parameter k2 (tracer washout) as in equation 8. 

 

 (8) 

 

Since the factors were scaled to unit area as part of the 

decomposition process, the scaling factors typically included in 

equations 7 and 8 are redundant, and so were removed. The use 

of these models to parameterize two of the three factors reduces 

the number of free parameters from 3(M-1) with MSO to M+2 

with the MB method. In addition, coupling of the factors through 

the modeled response functions imposes a constraint on the 

solution that agrees with our knowledge of the tracer physiology. 

1) Optimization 

The factor matrix, F, was constructed of columns containing 

RV blood, LV blood, and myocardium factors (equation 9), 

where the symbol  denotes the discrete point convolution 

operation and integration over the image time frames. 

 

 (9) 
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The model-based decomposition process consisted of 

optimization of the RV blood factor simultaneously with the 

model parameters to minimize the objective function, CMB, 

(equation 10) which contains the same error and non-negativity 

penalties used in MSO, but does not include a penalty for spatial 

overlap. To ensure uniqueness and robustness of the MB solution 

two penalties were added, fBR and fR:  

fBR∈[0,1] - Penalizes for blood factors that increase in the 

uptake phase. This penalty was defined as the area bound by the 

activity of the last RV blood factor time frame, F1,M, and activity 

of time frames post peak RV blood that are below F1,M, as 

demonstrated by the light shaded area in Fig. 1. This penalty aids 

convergence by promoting solutions with monotonic decrease in 

blood activity past the blood peak activity, again consistent with 

the known physiology. 

fR∈[0,1] – Penalizes for residual blood activity in the uptake 

phase (past the first 2 minutes) as demonstrated by the dark 

shaded area in Fig. 1.  

 

CMB = WE|ε| + WNFfneg(F) + WNS fneg(S)  + WBR fBR + WRfR (10) 

 

The cost function, CMB, was optimized using the same routine 

used to optimize CMSO. The penalty weights WBR and WR were 

empirically set to 10 and 0.01 respectively, while WE, WNF, and 

WNS were maintained the same as for MSO. The model 

parameters were bound based on typical experimental values 

(Table I). Thus, while MSO solves the ambiguity problem by 

minimizing the overlap between structure, MB imposes a priori 

physiologic constraints on the shape of the blood factor, as well 

as the other factors via the kinetic models. 

 

 
Fig. 1 - Blood increase penalty, fBR, is the integral of RV blood that is beyond the 
initial peak and below activity of the last time frame (light shaded area). Residual 

blood activity, fR, is the area under the curve from 2 minute to the end of the scan 

(dark shaded area). 

C. Number of Factors 

For both MSO and MB methods, the number of factors (2 or 3 

in this case) was determined automatically as the value beyond 

which |ε| decreased by less than 1%. In the event of 

decomposition into only two factors, a single blood factor and a 

myocardium factor were always resolved. In this case the blood 

factor was the free variable and the myocardium was modeled 

using the compartmental model (equation 8).  

D. Simulations 

1) Canine Simulation 

RV blood time activity curves were simulated as a 30 sec, 

constant rate of activity infusion with dispersion (modeled with a 

gamma-variate function) en route to the RV cavity. Two forms of 

RV blood TAC were created to assess the solution’s robustness 

to different input function characteristics: 

 Complete clearance of blood activity 

 Residual (non-zero) blood activity 

Each RV blood TAC was convolved with a gamma-variate 

impulse response function (equation 7) to generate an LV factor. 

The LV factor in turn was convolved with a one-compartment 

model impulse response function (equation 8) to generate a 

myocardium factor. The model parameters used for the 

simulations are shown in Table I. Different washout parameters, 

k2, were selected for the complete blood clearance and residual 

blood activity cases so that the myocardial TAC had a similar 

appearance during the late uptake phase of the dynamic image 

sequence. Each factor was sampled by integrating over 17 time 

intervals as used in clinical practice (12×10s, 2×30s, 1×60s, 

1×120s, and 1×240s).  

These factors were then cross multiplied with their respective 

partial volume (PV) images representing the anatomic structures 

 RV Blood LV Blood Myocardium 
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Fig. 2 – Horizontal long axis (top row) and short axis slices (second row) of 

simulated structures with a black line showing their intersection. The short-
axis slices of the smoothed structures simulate canine images (third row) and 

small animal images (bottom row). All images are scaled to maximum 

intensity pixel to emphasize contrast. 

 

 

TABLE I 

ERROR IN RESOLVED PHYSIOLOGIC PARAMETER VALUES WITH MODEL-BASED ANALYSIS (%) 

Blood 

Clearance 

Parameter 

Name 

units Lower 

Bound 

Initial 

Estimate 

Upper 

Bound 

Simulated 

Value  

Canine Simulation Small Animal Simulation 

No Noise 10% Noise No Noise 10% Noise 

Complete 

tp sec 2 10 30 15.0 15.0 15.2±0.5 - - 

β - 0.25 1 5 2.00 2.00 1.95±0.09 - - 

k2 min-1 0.01 0.1 1.5 0.050 0.050 0.051±0.004 0.050 0.049±0.001 

Residual 

tp sec 2 10 30 15.0 15.0 15.6±0.6 - - 

β - 0.25 1 5 2.00 2.00 2.24±0.27 - - 

k2 min-1 0.01 0.1 1.5 0.500 0.500 0.496±0.036 0.050 0.499±0.037 

Time 

A
ct

iv
it

y
 

fBR 

RV Blood Factor 

F1,M 

fR 

2  

min 

100 mm 

20 mm 
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(dimensions shown in Table II).  Representative horizontal 

long axis (HLA) and short axis (SA) images are shown in 

Fig. 2. Each PV image of the simulation was averaged over 

36 gates of sinusoidal cardiac motion and wall thickening to 

preserve the myocardial mass across all gates. Of the 

dynamic image sequences, one image did not have noise 

added to it while 5 images had Gaussian distributed random 

noise added. The images were then smoothed using a 13.6 

mm FWHM Gaussian filter. The variance of the noise in each 

pixel was proportional to the pixel intensity [25]. The noise 

gain was adjusted (100%) to generate the same post-

smoothing image variance in the myocardial region as 

measured in our canine images with our clinical scanner 

(~10% variance). By adding noise in image-space we 

assumed that scatter and attenuation were properly corrected 

for in the experimental data. Short axis slices of the canine 

motion blurred and spatially smoothed PV images are shown 

in Fig. 2. 

2) Small Animal Simulation 

Small animal images were simulated in a similar manner as 

the canine studies, but the dimension were changed as shown 

in Table II and the smoothing kernel was set to 4.4 mm 

FWHM, corresponding roughly to 
82

Rb imaging with a small 

animal PET system. Since RV and LV blood could not be 

distinguished in small animal 
82

Rb PET images, a single 

blood component was used. The blood structure was created 

by summation of the LV and RV blood structures. The 

resulting, motion blurred and smoothed, PV images are 

shown in Fig. 2. The same LV blood and myocardium TACs 

from the canine simulation were used for the small animal 

simulation.  

 
TABLE II 

SIMULATED IMAGE DIMENSIONS 

Parameter Canine Small Animal 

Short axis slice pixel size (mm) 1.72 0.345 

Short axis slice thickness (mm) 2.62 0.80 

LV diameter (end systole) (mm) 50.40 10.67 

Wall thickness (mid cycle) (mm) 7.00 1.00 

LV wall motion (mm) 12.60 2.67 

RV cavity width (end systole) (mm) 20.59 2.76 

 

3) Analysis of Simulation Studies 

The canine and small animal simulated images were 

decomposed using both MSO and MB. Factors and structures 

were compared against the respective TACs and PV images 

from the simulation, measuring percent root-mean-squared-

error (RMSE%) as shown in equation 11 where Xref is a 

reference matrix from the simulation and X is the results 

matrix that is being evaluated. For factor evaluation, the 

weighting matrix, W, was the length of the imaging time 

frames, and for structure validation W was all ones, 

weighting each pixel equally. As shown in equation 11, the 

matrices X, Xref, and W were each normalized by their sum. 

 

 (11) 

 

Contrast in the myocardium structures was compared with 

that in the smoothed PV images. Contrast was defined using 

equation 12, where Myo is the maximal intensity in the 

Canine Simulation 
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Fig. 3 - Short axis slices of decomposed structures using MSO and MB methods on 

canine (top half) and small animal (bottom half) simulated dynamic images are 
compared with simulated structures and uptake images (frame 17). White numbers 

are contrast between myocardium and spillover into the LV cavity (equation 12). 
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myocardium structure and Cav is the mean intensity of the four 

pixels in the center of the cavity of the SA slice shown in Fig. 2. 

 

 (12) 

 

Robustness of convergence of the MB algorithm was assessed 

by modifying the initial model parameter estimates (default 

values in Table I) to tp=5 & 20 sec, β=0.5 & 3, and k2=0.01 & 1 

min
-1

 and decomposing the simulated canine images (resulting in 

7 sets of decomposed images). The resulting k2 parameter 

estimates were analyzed using box plots for changes in means 

and/or variances as a result of modifying the initial parameters. 

The resolved model parameters from MB were compared to 

the simulated model parameters. Since, MSO does not resolve 

similar parameters, an estimate of the washout parameter, k2’, 

was calculated for both MSO and MB by fitting the one 

compartment model (equation 13) to the LV blood and 

myocardium factors (l(t) and m(t) respectively). The parameter 

TBV represents the total blood volume in the ROI and K1 is the 

uptake rate, but both these parameters were not analyzed. 

 

 (13) 

E. Experimental Studies 

All animal experiments were conducted in accordance with 

protocols approved by the Animal Care Committee of the 

University of Ottawa. 

1) Factor Validation with Arterial Blood Sampling 

To test the physiological accuracy of factors (temporal 

domain), blood factors were compared with activity 

concentration measurements in arterial blood. Four rats were 

imaged using 
82

Rb a total of 6 times with simultaneous and 

continuous blood sampling. Rats were anesthetized with 1.5-2% 

isoflurane and a PE50 catheter was surgically introduced into the 

carotid artery and fed into the left atrium. A catheter was inserted 

into the tail vein for tracer injection and a 3-lead ECG, rectal 

thermometer, and respiration monitor were affixed for 

physiologic monitoring. A heated bed was used to maintain 

normal body temperature throughout the experiment. 

The rat was placed in an Inveon DPET (Siemens, Knoxville, 

TN) scanner with the heart centered in the field of view. The 

arterial catheter was attached to a micro-volumetric blood 

activity counter [26] (AMI, Sherbrooke, Quebec) for 2-3ml of 

blood withdrawal over a 10 min time interval. The PET scan and 

blood counter were started together approximately 10 seconds 

before manual injection of 
82

Rb from a 1 ml syringe, and 

followed by a 0.4 ml saline flush to clear activity from the 

catheter lock. List-mode data were acquired for 10 min using a 

350-650 keV energy window and a coincidence timing window 

of 3.4 ns.  The dynamic data (same time frames as simulation) 

were reconstructed on a 128×128 image matrix with 

0.345×0.345×0.80mm pixel size using OSEM3D/MAP (ß=1.0, 

OSEM3D iterations=2, MAP iterations=18) with corrections for 

dead-time, isotope decay, detector efficiencies, and randoms. The 

image sequences were decomposed using both MSO and MB 

methods as described above. 

Since arterial blood sampled time-activity concentration 

curves could not be corrected for background activity after tracer 

injection using the vendor provided software [26], we 

implemented our own analysis of the raw counts. Counts were 

corrected for tracer decay, background activity (10 sec preceding 

first rise in sampled activity), delivery delay, and the spatial 

resolution of the β
+
 detector. In addition, the corrected blood 

curves were integrated over the same time intervals as the 

dynamic image sequence. The integrated curves were normalized 

to unit area before comparison with the MSO and MB derived 

blood factors using RMSE (%) with each time frames weighed 

by its length normalized by the total scan duration as in equation 

11. 

2) Structure Validation with 
11

CO Blood Pool Imaging 

A single dog was anesthetized using ~2% isoflurane and 

positioned in a whole-body PET scanner (ECAT ART, 

Siemens/CTI, Knoxville, TN) with the heart centered in the field-

of-view. A series of ten dynamic scans (same time frames as 

simulation) was acquired with varying 
82

Rb constant-activity 

(150 MBq) rate infusion [27] durations (15, 30, 60, 120, 240, 

240, 120, 60, 30, 15 seconds). The images were reconstructed 

iteratively (OSEM) to 12 mm resolution. 

The images were cropped manually to include the entire heart 

(same crop applied to all 10 images). The cropped regions were 

then decomposed using both MSO and MB methods. The 

number of factors was automatically determined, but in cases 

having two blood structures (RV and LV), they were summed to 

form a single combined blood pool structure. 

The blood structures extracted from each of the 10 images 

were compared to a single 
11

CO blood pool image of the same 

animal acquired on a separate day and reconstructed to the same 

12 mm resolution. 
11

CO binds to hemoglobin in the blood 

resulting in images of the total blood distribution, therefore 

serving as a good anatomic reference to validate the accuracy of 

the factor analysis blood structures. 

Contrast in the myocardium structures was compared with that 

of the uptake phase (last 6 minutes) images. Contrast was defined 

using equation 12, where Myo and Cav are the mean pixel 

intensities in the LV myocardium and LV blood cavity ROIs 

respectively. The ROIs were automatically determined [19][28]. 

3) Global MBF Reproducibility using Variable Tracer Infusion 

Durations 

Global MBF was quantified in the same images. The 

myocardium ROI was used to sample kinetic modeling output 

function, m(t), from the dynamic image sequences. Likewise, the 

LV blood cavity ROI (ROIb) was used to sample the kinetic 

model input function, l(t). These were used with the kinetic 

model of equation 13 to determine uptake rate, K1, and MBF was 

calculated from K1 using a previously derived Renkin-Crone 

extraction function [19]. 

The MSO and MB blood factors were used as alternative input 

functions in equation 13 and were scaled by the average blood 

structure in the ROIb. If two blood factors (RV and LV) existed 

they were both scaled using their respective structure ROIb and 

summed, thus accommodating incomplete spatial separation of 

the blood factors into RV and LV cavity blood. We also 

evaluated the benefit of including the RV blood time activity 

curve, r(t), in the kinetic model using equation 14 where RBV 

and LBV are the right and left blood PV contributions in the 

myocardium ROI. The maximum pixel value in the RV structure 

was used to scale r(t).  
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(14) 

 

Reproducibility of MBF using the ROI based method as well 

as using all combinations of MB and MSO, with and without RV 

blood were evaluated. 

4) Structure Reproducibility using Variable Tracer Infusion 

Durations 

The myocardium and blood structures obtained from the 10 

variable infusion duration images were compared (RMSE%) in 

all possible combinations (n=45) to determine the reproducibility 

of blood and myocardium structures. In addition the coefficient 

of variation of each pixel across the 10 images was computed 

and was then averaged across all the pixels in the regions of 

interest, and was referred to as CV%. CV% was measured for 

blood structures and myocardium structures both for MSO and 

MB. 

F. Statistical Analysis 

Unless otherwise specified, all values are reported as mean ± 

standard-deviation. Comparison of means was performed using a 

two-tailed paired student t-tests, with p=0.05 as the cutoff for 

significance. Comparison of variability was performed using the 

parametric f-tests with the same significance cutoff. Both the 

student t-test and the f-test assume normal Gaussian distribution, 

which was not explicitly tested. Statistics regarding images 

and/or structures relate to all pixels within the entire region of 

interest. 

 Comparison of population variables is presented using 

notched box plots showing the median and inter-quartile range. 

Outliers are identified outside the whiskers extending to 1.5 

times the quartiles.  Non-overlapping notches reflect significantly 

different medians with 95% confidence. 

The Wilcoxon, non-parametric rank sum test was used to test 

the significance of differences in CV% with p=0.05 as the cutoff. 

III. RESULTS 

A. Canine Simulation 

Table III lists the RMSE between the simulated and resolved 

factors and structures using both decomposition methods. With 

few exceptions, MB errors were lower than corresponding MSO 

errors. With no noise the mean factor RMSE was 0.5% with 

MSO, while all factor RMSEs were <0.05 with MB. With noise 

the MSO factors had significantly (p<0.001) higher RMSE 

values (0.5%) compared to MB (0.2%). Similarly, the structure 

mean RMSE in the absence of noise were 2.5% and 0.0% for 

MSO and MB respectively. With noise the MSO and MB 

structure errors were 4.7% and 3.0% (p <0.001).  

The simulated factors and factors resolved from the images 

with noise are plotted in Fig. 4. For the simulation of complete 

blood clearance, MSO and MB agree with the simulation 

similarly well. In the simulation of residual blood activity MSO 

results exhibited systematic deviation from the simulated factors 

with confidence intervals that do not overlap the simulated lines 

in the early time frames. MB confidence intervals overlapped the 

simulated curves. 

Short axis slices of the resolved structures from the 

simulations without noise using both MSO and MB are shown in 

Fig. 3. In general, the myocardium structures reproducibly 

agreed with the simulated PV images. However, the MSO 

derived RV blood structure extended incorrectly into the septal 

wall and LV blood region for the case with complete blood 

clearance. Likewise, with residual blood activity the MSO 

derived LV blood structure extended somewhat into the septal 

wall and RV region, whereas the MB structures agreed more 

closely with the simulated PV images. With residual blood 

activity the myocardium:blood contrast (superimposed in white) 

in the uptake image (29%) was markedly improved both with 

MSO (89%) and MB (82%), but MB agreed more closely with 

the simulated myocardium structure (82%). 

The MB method recovered the model parameters accurately in 

the absence of noise and with modest errors in the presence of 

noise as shown in Table I. In the absence of noise, the simulated 

values were recovered to within three significant figures. In the 

presence of noise the simulated values were within the range of 

the mean ± one standard deviation. The largest bias in parameter 

estimates was 8.3% for the β, and the smallest average being 

3.5% for tp. The same analysis could not performed on MSO 

results because the kinetic model parameters are not resolved as 

part of the decomposition process.  

Estimates of k2 parameters, k2’, were determined by fitting the 

kinetic model (equation 8) to the LV blood and myocardium 

factors. For the complete blood clearance cases k2’ were 

0.065±0.020 and 0.048±0.004 with MSO and MB respectively, 

and for residual blood activity the corresponding values were 

0.486±0.100 and 0.478±0.032. In all cases the mean did not 

significantly differ from the simulated values 0.05 and 0.5 

TABLE III 
 SIMULATED IMAGE RESULTS – ROOT MEAN SQUARED ERROR (%) 

Canine Simulated Data 

Blood 

Clearance 
Factor 

Factors Structures 

No Noise 10% Noise (n=5) No Noise 10% Noise (n=5) 

MSO MB MSO MB p MSO MB MSO MB P 

Complete 

RV 0.0 0.0 0.3±0.1 0.3±0.2 1.000 1.4 0.0 2.7±0.5 1.7±0.1 0.015 

LV 0.6 0.0 0.6±0.1 0.1±0.0 0.001 1.3 0.0 2.9±1.2 2.7±0.6 0.658 

Myo 0.2 0.0 0.3±0.1 0.1±0.1 0.001 2.2 0.0 4.2±1.0 3.8±0.7 0.059 

Residual 

RV 1.3 0.0 0.9±0.4 0.2±0.1 0.027 0.0 0.0 2.7±0.3 1.6±0.1 0.002 

LV 0.2 0.0 0.5±0.2 0.2±0.1 0.095 7.1 0.0 8.0±1.8 2.8±0.6 0.001 

Myo 0.5 0.0 0.7±0.2 0.1±0.0 0.004 2.9 0.0 7.5±0.8 5.6±1.3 0.0275 

Mean 0.5 0.0 0.5±0.3 0.2±0.1 <0.001 2.5 0.0 4.7±2.5 3.0±1.5 <0.001 

Rat Simulated Data 

Complete 
Blood 1.7 0.0 1.7±0.2 0.2±0.1 <0.001 1.8 0.0 6.0±2.9 1.7±0.3 <0.001 

Myo 0.2 0.0 0.7±0.3 0.2±0.1 0.023 6.2 0.0 6.7±0.8 2.5±0.6 <0.001 

Residual 
Blood 0.4 0.0 0.4±0.1 0.4±0.2 0.529 0.6 0.0 8.4±2.2 1.9±0.6 <0.001 

Myo 0.1 0.0 0.8±0.1 0.1±0.0 <0.001 4.1 0.0 5.9±1.1 5.9±2.2 <0.001 

Mean 0.6 0.0 0.9±0.5 0.2±0.1 <0.001 3.2 0.0 6.7±2.1 3.0±2.1 <0.001 

 



 

7 

 

(p>0.1). However, the variance of k2’ with MSO was 

significantly greater than with MB (p<0.001). 

 

Convergence of the MB algorithm was found to be robust 

regardless of the initial model parameters and is demonstrated by 

the box plots of k2 parameter (Fig. 5) using 5 realizations of 

noise in the cases of complete blood clearance (C) and residual 

blood activity (R) for 7 different initial estimate combinations of 

the model parameters (tp, β, and k2). Variances were similar for 

the complete blood clearance case and identical for the residual 

blood case. Regardless of the initial estimates, mean k2 was not 

significantly different from the true values (green lines). In 

addition Fig. 5 shows the k2 values from the images without 

noise as blue stars, all of which deviated less than 0.002% from 

the simulated values. 

B. Small Animal Simulation 

In the presence of noise, significantly lower RMSE was 

obtained with MB factors (p<0.001) and structures (p<0.001) 

compared to MSO, as shown in Table III. Both the MB factors 

 Canine  Small Animal 

   
Fig. 4 – Comparison of resolved RV blood (green), LV blood (red), and myocardium (blue) factors from images with 10% noise (n=5) to the simulated profiles (lines). 

Top figures represent complete blood clearance and bottom figures represent residual blood activity. Left plots are for canine simulations and right plots are for small 
animal simulations. The height of the error bars represent 95% confidence intervals for MSO (color bares) and MB (black boxes). 

 

 
 
Fig. 5 – Box plots (n=5 simulated images with noise) of k2 parameters with 7 

different initial parameter estimates each for complete blood clearance and 

residual blood activity (C and R respectively). The blue stars are results for (n=1) 
case with no noise and are not included in the box plot analysis. 

 

MSO 95% Confidence Interval 

Simulation 

MB 95% Confidence Interval 
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and structures agreed closely with the simulation data as shown 

by the estimated structures in Fig. 3 and the factors in Fig. 4. 

The MSO derived myocardial structure for the case of 

complete blood clearance had a noticeable reduction in the septal 

wall (left part of myocardium) as shown in Fig. 3 and The 

corresponding blood factors failed to decrease to near zero 

activity (Fig. 4). In the case of residual blood activity the MSO 

derived myocardium factors displayed greater activity at early 

time frames which is typical of contamination by blood signal 

[6] and activity in the septal wall was also reduced compared to 

the rest of the myocardium.  

The MB derived myocardium factors had myocardium:blood 

contrast (46%) that agreed well with the simulation values (Fig. 

3). As expected, MSO increased the contrast to 66% and 59% 

respectively for the cases of complete blood clearance and 

residual blood activity. Both methods significantly improved 

contrast over that of the uptake image (16%) in the case of 

residual blood activity. 

C. Experimental Factor Validation with Arterial Sampling 

Comparisons of blood factors obtained using MSO and MB 

are shown in Fig. 6 for all six rats. Various injection profiles 

were used: fast bolus (a and f), slow bolus (b), dual injections (c, 

d, and e). Both MB and MSO showed reasonable correspondence 

with the sampled blood curves in the first 2-3 minutes, but 

systematically differed in the late time frames (uptake phase). 

The MSO derived blood factor consistently had residual blood 

activity, while MB derived blood factors consistently dropped to 

near zero activity. Blood sampled curves consistently dropped to 

near zero activity, but not as fast as the MB blood factors did. 

Mean RMSE values were 2.2±0.7% and 1.6±0.4% with MSO 

and MB respectively (shown in the box plots of Fig. 7). The 

mean RMSE with MB was significantly lower than with MSO 

(p=0.027), but the variance was not (p=0.3). 

D. Structure Validation with 
11

CO Blood Pool Imaging 

The number of resolved factors was consistently 2 for long 

tracer infusions (≥120s) and 3 for short infusions (≤30s). Where 

  

  

  
Fig. 6 – Blood factors obtained using both MSO (blue) and MB (red) methods 

compared to blood sampled curve (black). All curves are normalized to unity area. 

 

 

Fig. 7 – Comparison of MSO and MB derived blood factors to arterial blood 
sampled curves. 

 

 

 

Infusion Factors 
Blood Structures Myocardium 

Structure 

Uptake Frame 

(Last 6 min) 
 

RV LV 

15s 

     

 

60s 

     

240s 

    

Fig. 8 - Example short axis slices of resolved factors and structures, and uptake (last 6 min) frames for a 15s, 60s, and 240s infusion duration example in a dog. 
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3 factors were resolved, spatially distinct RV and LV 

structures were observed as demonstrated in Fig. 8.  

Factors were representative of the infusion duration. Blood 

factors had a more gradual rise and delayed clearance with 

prolonged infusions. Likewise myocardial uptake was more 

gradual as expected. In all cases, blood activity cleared almost 

completely at the last time point, as demonstrated by the 

factors in Fig. 8. 

 Agreement of the blood structures with the 
11

CO blood pool 

image of the same animal was good, with RMSE<9.7% in all 

cases for both MSO and MB. Box plots of the RMSE are 

shown in Fig. 9, indicating no significant differences in RMSE 

(p=0.23) with MB compared to MSO values. No obvious 

trends in RMSE with infusion duration were observed with 

either method (data not shown). No significant difference was 

detected in the variability of RMSE (p=0.8) between MSO and 

MB. 

E. Structure Reproducibility using Variable Tracer Infusion 

Durations 

Reproducibility of structures was good to excellent. For all 

RMSE combinations (n=45), RMSE was ≤11.0% with MSO 

and ≤7.2% with MB. Box plots of the RMSE values for blood 

and myocardium structure reproducibility are shown in Fig. 

10. Mean myocardial RMSE was 6.2% with MSO vs. 3.9% 

with MB (p<0.01), and in blood structures respective mean 

RMSE values were 5.6 % vs 4.9% (p=0.006). The single 

outlier (red cross) was in MSO blood RMSE between a 15 and a 

60 sec infusion. Visual comparison of the structures in this study 

with others did not reveal an obvious difference in spatial 

patterns and a single outlier from 45 sets can be expected due to 

random distribution. 

Myocardium:blood contrasts were 49±5%, 62±7%, and 

52±3% in the uptake images, MSO myocardial structures, and 

MB myocardial structures respectively as demonstrated by the 

corresponding contrast superimposed on the images in Fig. 8. 

Mean contrasts using either MSO or MB were significantly 

higher than in the uptake images (p<0.001 for MSO and p=0.04 

for MB). The variance in the contrast across the 10 images 

tended to be reduced with MB compared to MSO (p=0.062) 

indicating better reproducibility. 

The mean CV% (n=75,782 pixels) across the 10 myocardial 

structures was 12.9% and 6.5% for MSO and MB respectively. 

Across the 10 blood factors respective CV% was 16.8%and 

11.4%. The combined CV% for myocardium and blood 

structures was 12.9% for MSO and 8.9% for MB. All the 

differences between MSO and MB were significant (p<0.001) 

indicating the MB resolved more reproducible structures in the 

same animal with varying tracer infusion. 

F. Global MBF Reproducibility using Variable Tracer Infusion 

Durations 

MBF quantification and estimates (shown in Table IV) with 

MB tended towards smaller variability than with MSO, as 

indicated by small CV% values, but did not reach statistical 

significance (p=0.2 and p=0.15 without and with RV respectively 

for K1, and p=0.32 and p=0.16 for MBF). Amplification of the 

MBF variability compared to that of K1 is expected due to the 

non-linear relationship of the extraction function. Both with 

MSO and MB factors, variability in global K1 and MBF 

estimates did not improve significantly (p>0.7) with the addition 

of the RV blood in the model. 

Mean K1 and MBF values both with MSO and MB factors 

were significantly higher than ROI based values (p-value<0.001) 

indicating that the extraction function may not be applicable for 

quantification using factors. 

IV. DISCUSSION 

We developed, validated, and compared two dynamic image 

decomposition methods, MSO and MB. These methods were 

implemented in an identical manner with the exception of the 

constraints imposed on the solution so as to resolve the non-

uniqueness problem. The previously reported MSO method 

[14][16][17] constrained the solution by minimizing the spatial 

overlap between structures. The method described in this work, 

MB, constrained the solution by use of kinetic models between 

the factors, and penalizing residual blood activity and rise in 

tracer blood concentrations in the uptake phase of the image to 

ensure uniqueness of the solution.  

Simulation results clearly showed that the MB method 

outperforms MSO for accuracy in recovering factors and 

structures, particularly in small hearts where the limited 

resolution of PET leads to greater spatial overlap between 

structures. The small animal simulations demonstrated that 

MSO’s inability to separate myocardium and blood signals can 

result in less accurate blood factors and myocardium factors 

contaminated by blood signal. In addition MSO derived 

myocardium structures may suffer from reduced intensity in the 

septal wall which could be misinterpreted as a defect. However 

 

Fig. 9 – Comparison of MSO and MB derived blood structures to 11CO blood-pool 
images (CO). 

 

 
Fig. 10 – Reproducibility of blood structures (top two rows) and myocardium 

structures (bottom two rows) obtained from variable duration infusions using MSO 

and MB.  

 

TABLE IV 

Reproducibility of MBF Quantification - Mean±standard-deviation (CV%) 

  

Without RV Blood With RV Blood 

 
ROI MSO MB MSO MB 

K1 
0.58±0.06 

(10%) 

0.76±0.08 

(11%) 

0.78±0.05 

(7%) 

0.77±0.08 

(10%) 

0.80±0.05 

(6%) 

MBF 
0.98±0.17 

(17%) 

1.56±0.30 

(19%) 

1.65±0.21 

(13%) 

1.61±0.29 

(18%) 

1.71±0.18 

(10%) 
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the higher myocardium to blood pool contrast of MSO derived 

myocardium structures may be beneficial for registration and 

segmentation purposes. If regions of pure blood exist in the 

image, such as in large hearts, MSO and MB are both expected to 

resolve accurate blood factors that have less noise than ROI 

based methods. Scatter in the image may be regarded as an 

additional, broad blurring kernel, in which case we expect MB to 

give more accurate blood factors than MSO. 

The experimental results largely agreed with simulations and 

suggested that MB can be more accurate and more reproducible 

than MSO. Blood factors were more accurate when derived with 

MB as indicated by arterial blood sampling. However, 

comparison of blood structures to blood pool imaging did not 

demonstrate superiority of either MSO or MB. 

A. Residual Signal 

The premise of dynamic image decomposition is that most of 

signals in the image are represented by the factors and that the 

residual signal contains a combination of noise and smaller 

signals that can be disregarded. Fig. 11 demonstrates the residue 

in decomposition of the canine simulation with no noise and 

complete blood clearance using MSO and MB. The three 

columns (left to right) show the original image sequence, the 

scaled structures that compose the image, and the residue. Both 

with MSO and MB the residue is random and is 5 orders of 

magnitude smaller than the dynamic image sequence. This 

qualitative information indicates good convergence using both 

methods as the combined factors and structures accurately 

represent the dynamic sequences in the image. This supports the 

notion that any difference in results between MSO and MB are a 

result of the constraints rather than implementation of the 

optimization routines. 

B. Penalty Weights 

Both MSO and MB cost functions (CMSO and CMB in equation 

(2) and (10) respectively) consist of weighted penalties. The 

respective weights were adjusted empirically using the simulated 

data to ensure convergence and good correspondence of factors 

and structures with the simulated data. Since the respective 

penalties are all bound between 0 and 1, their weights somewhat 

determine their relative importance. We prioritized the MSO 

penalties in order of non-negative factors, non-negative 

structures, and minimal spatial overlap. For MB, the penalties 

were prioritized in order of non-negative factors, no rise in blood 

activity during the uptake phase, non-negative structures, and 

minimal residual blood activity in the uptake phase. In order to 

test the sensitivity the chosen parameters, we varied the weights 

over 1 order of magnitude and found that the results changed 

little (data not shown). A limitation of this work is that automatic 

parameter selection was not demonstrated. Future work should 

evaluate the current penalty weights and/or tune them. 

C. Execution Time 

In 30 of the 40 images used in this work, the execution time 

with MB was shorter than with MSO. On average the execution 

times ratio (MSO/MB) was 2.4±2.4. Although MSO requires less 

computation per iteration compared to MB, MSO has more free 

parameters to optimize. The median execution time with MSO 

was 9.6 hours and 5.8 hours with MB on a modern PC. In this 

work, there was little emphasis on performance and more on 

precision, however there are several potential possibilities for 

accelerating execution, such as using a subset of pixels and 

reducing the tolerances on the optimization stopping criteria. A 

more efficient implementation in a non-interpreter based 

environment such as C language could also shorten execution 

time substantially. 

D. Blood Clearance 

Previous studies demonstrated that blood clearance results can 

vary with different decomposition methods and constraints [18]. 

The purpose of simulating data with and without blood clearance 

was to ensure that no bias existed in our solution. The results of 

Fig. 4 demonstrate an ability to reliably resolve both scenarios 

using the MB method even in the presence of noise. The blood 

factors obtained from real images tended towards complete blood 

clearance which agrees with previous observations [29]. 

The MSO method did not reliably result in clearance of 

activity form the blood factors. In the canine simulation where 

the structures were relatively large compared to feature sizes 

blood clearance was resolved correctly. However, this was not 

the case in the small-animal simulation where the relatively 

larger blur resulted in no pixels with pure blood signal. In the rat 

experiments, residual blood activity was observed in all images, 

agreeing with the simulation results. One could expect more 

accurate results with MSO in other organs without substantial 

blood contamination [14]. However in small animal studies and 

humans with small hearts MSO may be biased, especially with 

the high positron range of 
82

Rb.  

E. 11
CO Blood Pool Images 

Although MB derived blood structures tended to agree better 

with 
11

CO blood pool images than MSO derived blood 

structures, no significant difference was found (p=0.23). 

Qualitatively, MSO blood structures were more defined, having 

a smaller LV and RV cavity regions and a larger gap in the septal 

wall region as demonstrated for a 50 sec elution results in Fig. 8. 

The MSO myocardium factors (blue line in Fig. 12) had greater 

activity in the early time frames than the MB derived factor 

(dashed blue line), consistent with blood signal contamination 

[6]. Thus MSO reduces spatial overlap of myocardium and blood 

structures by attributing the blood signal in the myocardium 

region to myocardial signal. 

With either decomposition method, correspondence between 

blood structures and 
11

CO blood pool images (Fig. 9) was worse 

than between pairs of blood structures (Fig. 10) as reflected by 

MSO MB 

  

Fig. 11 – Decomposition results showing original image sequence as a series of 

frames from top to bottom, the scaled structures for all time frames, and the 

residual signal for MSO (left) and MB (right) for the noise-free total blood 
clearance case. The residue image using both methods is completely random and 

on the scale of 10-6. 
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significantly greater RMSE values (p<0.001). The 
11

CO image, 

which was taken on a separate occasion, was translated spatially 

to align with the blood factors, but no rotation correction was 

applied. In addition, 
82

Rb images may suffer from bias due to 

777keV prompt gammas that may not be fully corrected [30]. 

Image spatial resolution may also be slightly different due to 

positron range even though complimentary smoothing was 

applied to the 
11

CO image.  

While comparison of structures under different infusion 

durations enables good reproducibility measurement it does not 

ensure physiological accuracy. It is desirable to improve the 

correspondence with CO images. Repeating the experiment with 

CO imaging on the same session as 
82

Rb may be beneficial for 

optimal evaluation. Also labeling CO with 
15

O instead of 
11

C 

could more closely reproduce 
82

Rb resolution loss due to the 

longer positron range. 

F. 82
Rb Blood Sampling in Rats 

The use of 
82

Rb as an imaging agent in rats is not ideal due to 

the combination of small anatomy and large positron range. As a 

result the image resolution is on the same order (or less) as the 

size of the imaged organ. Rats were chosen to achieve 

sufficiently high tracer concentrations in the blood for the micro-

volumetric sampler to have adequate precision. This was not 

possible in larger animals since their larger blood volume 

significantly dilutes tracer concentrations. More sensitive blood 

sampling equipment would enable similar experiments in larger 

animals in which imaging conditions are more favorable.
 

Although the heart walls could not be resolved in the 

reconstructed images, it is impressive to note that reasonable 

decomposition could still be achieved using both MB and MSO 

methods as demonstrated by the results of Fig. 6 and Fig. 7. 

MSO blood factors always demonstrated residual blood 

activity in the late time frames, which was consistent with 

inaccuracies in the small animal simulations. MB blood factors 

on the other hand showed complete blood clearance which 

agreed more closely with the blood samples. Nevertheless, a 

sudden drop to near zero activity in the MB blood factors is 

apparent in the rat data, which may indicate that the residual 

blood penalty is too severe. As mentioned above, penalty weights 

were manually adjusted and MB could potentially benefit of a 

more rigorous tuning including the penalty weight and the 

number of frames which constitute the uptake phase. 

G. 82
Rb Infusion Duration 

Optimal 
82

Rb infusion duration for perfusion quantification 

has been explored previously [31]. While mean perfusion values 

did not change with infusion durations, regional variability 

decreased with longer infusions (possibly increasing 

quantification accuracy). The disadvantage of long infusions, 

however, is that the uptake image, reported clinically, suffers 

from reduced myocardium to blood contrast (Fig. 8). The 

reduction in contrast is due to insufficient time for complete 

tracer clearance from the blood. The myocardium structures 

obtained with model-based factor analysis can recover image 

contrast by removing blood signal contribution. Model-based 

factor analysis may make long 
82

Rb infusions practical, with 

improved perfusion quantification and high contrast myocardial 

structure images for routine clinical applications. 

H. MB with Other Tracers 

To the best of our knowledge, all previous PET image 

decomposition methods were not tracer specific. While the one-

compartment model used in this work is also applicable to other 

tracers, such as ammonia [32], acetate [33], and HED [34], the 

kinetics of some tracers may be better modeled with a two-

compartment model. The MB method is compatible with two-

compartment kinetic models as well as blood metabolite 

corrections, however further validation is required. 

I. Number of Factors 

 While MSO can be used to resolve any number of 

components, MB assumes the existence of specific types of 

components in the image. In this work we dealt with solving one 

blood component and one myocardium component as well as two 

blood components and one myocardium component. Additional 

tissue components (such as stomach or liver) could be 

accommodated with additional factors with a response function 

as in equation 8 or a different model and associated model 

parameter constraints. Models need to be customized for the 

tracer and organ in question. Regardless of implementation, the 

temporal response of additional tissues would have to be 

sufficiently different from that of the myocardium to obtain 

reliable component separation. 

J. Application of FA to Quantification of Myocardial 

Physiology 

Regardless of the decomposition method, it is assumed that 

factors represent uniform temporal responses of image 

components. This has raised concerns, particularly in diseased 

myocardium, where the temporal responses of diseased and 

healthy regions may vary. In MB this issue is manifested by 

resolving a single washout parameter, k2, which is assumed 

constant for the entire myocardium. To resolve this issue we and 

others [16][17]  propose to use the blood factors as the input 

functions to the kinetic model, and ROI sampled myocardial 

TACs as the output functions. The disadvantage of using ROI 

derived output function compared to myocardium factors is that 

they contain noise 

Quantification of MBF using 
82

Rb and kinetic modeling 

requires the implementation of an extraction fraction correction 

[35][36] which is calibrated to a standard [19]. In the variable 

infusion duration results it was evident that the extraction 

correction function was calibrated for the ROI based method, but 

 

CO MSO MB 

   

 

Fig. 12 – Example short axis slice through blood pool images using CO 
imaging, and through MSO and MB derived structures from the same 60 sec 

infusion image shown in Fig. 8. Factors for MSO are shown below, with the 

myocardium factor from Fig. 8 (dashed line). 
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not when factors were used as the input function (MBF changed 

from ~0.98 with ROI to ~1.65 with factors). Calibration was not 

possible in this case since we did not have data that spans the 

range of physiologic flow values. Thus future work on MBF 

quantification with factors analysis should include calibration of 

the extraction function to a standard. 

V. CONCLUSION 

Constraints must be placed on dynamic cardiac PET image 

decomposition in order to resolve physiologically accurate 

factors. We used simulation and experimental data to compare 

the physiological accuracy of the MSO and MB methods. Factors 

and structures obtained using MB agreed with simulations 

significantly better than MSO. In experimental 
82

Rb PET data 

MB agree better than MSO with the physiological standards of 

arterial blood sampling. In addition, MB had more reproducible 

structure images and tended towards more reproducible global 

myocardial blood flow measurements with varying tracer 

infusion durations. The potential benefit of model-based factor 

analysis for quantification of myocardial blood flow should be 

explored in future validation studies. 

 

REFERENCES 

 

[1] K. Yoshinaga, B. J. W. Chow, K. Williams, L. Chen, R. A. 

deKemp, L. Garrard, A. L.-T. Szeto, M. Aung, R. A. 

Davies, T. D. Ruddy, and R. S. B. Beanlands, "What is the 

prognostic value of myocardial perfusion imaging using 

rubidium-82 positron emission tomography?," J. Am. Coll. 

of Cardiol., vol. 48, no. 5, pp. 1029-1039, 2006. 

[2] P. A. Kaufmann and P. G. Camici, "Myocardial blood flow 

measurements by PET: Technical aspects and clinical 

applications," J. Nuc. Med., vol. 46, no. 1, pp. 75-88, 2005. 

[3] R. A. Tio, A. Dabeshlim, H.-M. J. Siebelink, J. de Sutter, H. 

L. Hillege, C. J. Zeebregts, R. A. J. O. Dierckx, D. J. van 

Veldhuisen, F. Zijlstra, and R. H. J. A. Slart, "Comparison 

between the prognostic value of left ventricular function and 

myocardial perfusion reserve in patients with ischemic heart 

disease," J. Nucl. Med., vol. 50, no. 2, pp. 214-9, 2009. 

[4] K. Zierler, "A critique of compartmental analysis," Ann. 

Rev. Biophys. Bioeng., vol. 10, pp. 531-562, 1981. 

[5] R. S. Beanlands, S. Thorn, J. N. DaSilva, T. Ruddy, and J. 

Maddahi, "Myocardial Viability," in Principles and 

Practice of Positron Emission Tomography, second edition, 

R. Wahl, Ed. Philadelphia: Lippincott Williams & Wilkins, 

2009. 

[6] J. Kim, P. Herrero, T. Sharp, R. Laforest, D. J. Rowland, Y.-

C. Tai, J. S. Lewis, and M. J. Welch, "Minimally invasive 

method of determining blood input function from PET 

images in rodents," J. Nucl. Med., vol. 47, no. 2, pp. 330-

336, 2006. 

[7] F. Hermansen and A. A. Lammertsma, "Linear dimension 

reduction of sequences of medical images: I. Optimal inner 

products," Phys. Med. Biol., vol. 40, pp. 1909-1920, 1995. 

 

 

 

[8] H.-M. Wu, C. K. Hoh, Y. Choi, H. R. Schelbert, R. A. 

Hawkins, M. E. Phelps, and S.-C. Huang, "Factor analysis 

for extraction of blood time-activity curves in dynamic 

FDG-PET studies," J. Nucl. Med., vol. 36, no. 9, pp. 1714-

1722, 1995. 

[9] C. Schiepers, C. K. Hoh, J. Nuyts, H.-M. Wu, M. E. Phelps, 

and M. Dahlbom, "Factor Analysis in Prostate Cancer: 

Delineation of Organ Structures and Automatic Generation 

of In- and Output Functions," IEEE Trans. Nucl. Sci., vol. 

49, no. 5, pp. 2338-4233, 2002. 

[10] H. Benali, I. Buvat, F. Frouin, J. P. Bazin, and R. Di Paolo, 

"Foundations of factor analysis of medical image sequences: 

a unified appraoach and some practical implications," Img. 

and Vis. Comp., vol. 12, no. 6, pp. 375-385, 1994. 

[11] A. Hyvärinen and E. Oja, "Independent Component 

Analysis Algorithms and Applications," Neural Networks, 

vol. 13, no. 4-5, pp. 411-430, 2000. 

[12] I. Buvat, H. Benali, F. Frouin, J. P. Banzin, and R. Di Paola, 

"Target apex-seeking in factor analysis of medical image 

sequences," Phys. Med. Biolo., vol. 38, pp. 123-138, 1993. 

[13] I. Buvat, H. Benali, and R. Di Paola, "Statistical 

Distribution of Factors and Factor Images in factor Analysis 

of Medical Image Sequences," Phys. Med. Biol., vol. 43, pp. 

1695-1711, 1998. 

[14] A. Sitek, G. T. Gullberg, and R. H. Huesman, "Correction 

for Ambiguous Solutions in Factor Analysis Using 

Penalized Least Squares Objectives," IEEE Trans. Med. 

Imaging, vol. 21, no. 3, pp. 216-225, 2002. 

[15] A. Sitek, E. V. R. Di Bella, G. T. Gullberg, and R. H. 

Huesman, "Removal of Liver Activity Contamination in 

Teboroxime Dynamic Cardiac SPECT Imaging with the Use 

of Factor Analysis," J. Nucl. Cardiol., vol. 9, no. 2, pp. 197-

205, 2002. 

[16] G. El Fahkri, A. Sitek, B. Guérin, M. F. Kijewski, M. F. Di 

Carli, and S. C. Moore, "Quantitative Dynamic Cardiac 

82Rb PET Using Generalized Factor and Compartment 

Analyses," J. Nuc. Med, vol. 46, no. 8, pp. 1264-1271, 2005. 

[17] G. El Fakhri, A. Kardan, A. Sitek, S. Dorbala, N. Abi-

Hatem, Y. Lahoud, A. Fischman, M. Coughlan, T. Yasuda, 

and M. F. Di Carli, "Reproducibility and accuracy of 

quantitative myocardial blood flow assesment with 82Rb 

PET: Comaprison with 13N-ammonia PET," J. Nucl. Med., 

vol. 50, no. 7, pp. 1062-1071, 2009. 

[18] R. Klein, M. Bentourkia, R. R. S. Beanlands, A. Adler, and 

R. A. deKemp, "A minimal factor overlap method for 

resolving ambiguity in factor analysis of dynamic cardiac 

PET," in Nucl. Sci. Symp. Conf. Record, vol. 5, Honolulu, 

HI, 2007, pp. 3268-3272. 

[19] M. Lortie, R. S. B. Beanlands, K. Yoshinaga, R. Klein, J. N. 

DaSilva, and R. A. deKemp, "Quantification of Myocardial 

Blood Flow with 82Rb Dynamic PET Imaging," Eur. J. 

Nucl. Med. Mol. Imaging, vol. 34, no. 11, pp. 1765-1774, 

2007. 

[20] R. Klein, R. S. Beanlands, A. Adler, and R. A. deKemp, 

"Model-based factor analysis of dynamic sequences of 

cardiac positron emission tomography," in Nucl. Sci. Symp. 

Conf. Record, Dresden, Germany, October 2008, pp. 5198-

5202. 

 



 

13 

 

[21] M. T. Madsen, "A Simplified Formulation of the Gamma 

Variate Function," Phys. Med. Biol., vol. 37, no. 7, pp. 

1597-1600, 1992. 

[22] M. D. Harper and M. L. Lecklitner, "Derivation of gamma 

variate indicator dilution function from simple convective 

dispersion model of blood flow," Med. Phys., vol. 11, no. 5, 

pp. 690-692, 1984. 

[23] R. Davenport, "The Derivation of the Gamma-Variate 

Relationship for Tracer Dilution Curves," J. Nucl. Med., vol. 

24, no. 10, pp. 945-948, 1983. 

[24] H. K. Thompson, C. F. Starmer, R. E. Whalen, and H. D. 

McIntosh, "Indicator Transit Time Considered as a Gamma 

Variate," Circ. Res., vol. 14, no. 6, pp. 502-515, 1964. 

[25] Q. Jinyi and R. M. Leahy, "Resolution and noise properties 

of MAP reconstruction for fully 3-D PET," IEEE Trans. 

Med. Imaging, vol. 19, no. 5, pp. 493-506, 2000. 

[26] L. Convert, G. Morin-Bassard, J. Cadorette, M. 

Archambault, M. Bentourkia, and R. Lecomte, "A New 

Tool for Molecular Imaging: The Microvolumetric ß Blood 

Counter," J. Nucl. Med., vol. 48, no. 7, pp. 1197-1206, 

2007. 

[27] R. Klein, A. Adler, R. S. Beanlands, and R. A. deKemp, 

"Precision-controlled elution of a 82Sr/82Rb generator for 

cardiac perfusion imaging with positron emission 

tomography," Phys. Med. Biol., vol. 52, no. 3, pp. 659-673, 

2007. 

[28] R. Klein, M. Lortie, A. Adler, R. S. Beanlands, and R. A. 

deKemp, "Fully automated software for polar-map 

registration and sampling from PET images," Nucl. Sci 

Symp. and Med. Imag. Conf. Record, pp. 3185-3188, 2006. 

[29] I. N. Weinberg, S. C. Huang, E. J. Hoffman, L. Araujo, C. 

Nienaber, M. Grover-McKay, M. Dahlbom, and H. 

Schelbert, "Validation of PET-acquired input functions for 

cardiac studies," J. Nucl. Med., vol. 29, no. 2, pp. 241-247, 

1988. 

[30] C. Watson, C. Hayden, M. Casey, J. Hamill, and B. 

Bendriem, "Prompt gamma correction for improved 

quantification in 82Rb PET," J. Nucl. Med., vol. 49, p. 64P, 

2008. 

[31] R. deKemp, R. Klein, M. Lortie, and R. Beanlands, 

"Constant-Activity-Rate Infusions for Myocardial Blood 

Flow Quantification with 82Rb and 3D PET," Nucl. Sci. 

Symp. Conf. Record, vol. 6, pp. 3519-3521, 2006. 

[32] T. R. DeGrado, M. W. Hanson, T. G. Turkington, D. M. 

Delong, D. A. Brezinski, J.-P. Vallée, L. W. Hedlund, J. 

Zhang, F. Cobb, M. J. Sullivan, and R. E. Coleman, 

"Estimation of myocardial blood flow for longitudinal 

studies with 13N-labeled ammonia and positron emission 

tomography," J. Nucl. Med., vol. 3, no. 6, pp. 494-507, 

1996. 

[33] J. ven den Hoff, W. Burchert, H. G. Wolpers, G. J. Meyer, 

and H. Hundeshagen, "A kinetic model for cardiac PET 

with [1-carbon-11]-acetate," J. Nucl. Med., vol. 37, no. 3, 

pp. 521-529, 1996. 

 

 

 

 

 

[34] T. Wichter, M. Schäfers, C. G. Rhodes, M. Borggrefe, H. 

Lerch, A. A. Lammertsma, F. Hermansen, O. Schober, G. 

Breithardt, and P. G. Camici, "Abnormalities of cardiac 

sympathetic innervation in arrhythmogenic right ventricular 

cardiomyopathy : Quantitative assessment of presynaptic 

norepinephrine reuptake and postsynaptic ß-adrenergic 

receptor density with positron emission tomography," Circ., 

vol. 101, pp. 1552-1558, 2000. 

[35] E. M. Renkin, "Transport of potassium-42 from blood to 

tissue isolated mammalian skeltal muscles," Am. J. Physiol., 

no. 197, pp. 1205-1210, 1959. 

[36] C. Crone, "Permeability of capillaries in various organs as 

determined by use of the idicator diffusion method," Acta. 

Physiol, Scand., no. 58, pp. 292-305, 1963. 

 

 


