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Abstract 
Background: Changes in myocardial blood flow between rest and stress states are commonly used to diagnose 

coronary artery disease. Relative myocardial perfusion imaging (MPI) is used routinely while myocardial blood flow 

quantification (MBF) may improve the sensitivity for detection of early disease. The ratio of flow at stress and rest 

(S/R) and their difference (S-R) have both been proposed as a means to detect regions with reduced myocardial flow 

reserve (MFR). In this study we describe a highly automated method to calculate regional and global rest, stress, 

S/R, and S-R polar maps of the left ventricle myocardium. Methods: We measured the inter- and intra-operator 

variability using two randomized datasets (n=30 each) for each of 2 operators (novice and expert) with correlation 

and Bland-Altman reproducibility coefficient (RPC%) analyses. Results: S-R MBF had less inter-operator 

dependent variability than S/R (RPC%= 5.0% vs. 12.6%, p<0.001). While there was no difference in intra-operator 

variability with S-R MBF (novice vs. expert RPC%=6.4% vs. 5.9%, p=n.s.), variability was higher in the novice-

operator for S/R (RPC%=16.8% vs 8.5% respectively, p<0.001), suggesting that S-R may be preferred for detecting 

small changes in MFR. The novice operator’s intervention pattern became more similar to that of the expert in the 

later dataset, emphasizing the need for adequate training and quality assurance Conclusion:  The proposed method 

results in low operator-dependent variability, suitable for routine use. 
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Background 

Coronary artery disease (CAD) is the leading cause of death worldwide 
1-3

. Relative myocardial perfusion imaging 

(MPI) is a well-established technique for the diagnosis and prognostication of CAD. Assessment of absolute 

myocardial blood flow (MBF) and myocardial flow reserve (MFR; the ratio of stress to rest MBF) using dynamic 

PET may represent a more sensitive tool to detect multi-vessel disease 
4-8

 as well as sub-clinical  CAD 
9-11

. It has 

been proposed that the difference between MBF at stress and rest may be more suitable for detection of CAD 
6,12

. 

PET MPI has been shown to yield prognostic value for the prediction of adverse patient outcomes 
13-15

, but 

quantitative analysis has been limited mainly to research applications 
16

. Recent advances in PET instrumentation 
17

 

and tracer availability may facilitate the routine application of flow quantification in clinical practice. 

Our group and others have demonstrated that MBF can be measured accurately using 
82

Rb PET
18,19

 and that standard 

MPI with 
82

Rb PET is cost-effective compared to 
99m

Tc SPECT
20

. Instead of relying on an onsite cyclotron to 

produce short-lived PET tracers such as 
15

O-water, 
13

N-ammonia, or 
11

C-acetate, a 
82

Sr/
82

Rb generator may be used 

as a source of 
82

Rb for a 4-8 week period 
21

. During the life of the generator, 
82

Rb may be infused as frequently as 

every ten minutes, enabling fast serial imaging and high patient throughput. We developed a custom 
82

Rb infuser to 

deliver a reproducible infusion profile regardless of the age of the generator, which may improve the reproducibility 

of MBF quantification 
22,23

. The infuser also flushes the injection line automatically at the end of the infusion to 

remove activity outside the scanner field of view, which is important with the industry’s transition from 2D to 3D 

PET instrumentation 
24,25

.  

The accuracy of MBF and MFR quantification with PET has been validated in animal studies using micro-spheres 
5,13,26-29 

or other invasive measurements 
4
. In humans, accuracy has been measured through agreement of MBF 

quantification using different PET tracers 
18,30,31

. High precision is important for detection of serial changes during 

disease progression or therapy
 11,32

 and is evaluated through test-retest reproducibility 
19,29,31,33-38

, of which operator-

dependent variability 
30,33,39-42 

is an important factor 
43

. However, there are few reports of reproducibility of MBF 

quantification using 
82

Rb PET 
30

. 

Several software packages with the ability to quantify MBF from cardiac PET images have recently become 

available 
30,39,44

. We developed a highly automated image processing workflow, expected to reduced operator 

variability in MBF quantification by minimizing user interactions 
43,45

. We have previously evaluated the accuracy 

of this method for quantification of MBF using 
82

Rb PET 
18

. In this work we present a detailed description of our 

image processing workflow, and assess the inter-operator and intra-operator variability of our methodology for 

quantification of MBF, flow reserve, and flow differences using 
82

Rb PET. Likewise, we evaluate the operator 

dependent variability for MPI, which is referred to as relative uptake in this study. 

Methods and Materials 

Patient Cohort 
Thirty consecutive clinical patients that underwent a rest-stress 

82
Rb perfusion scan at the University of Ottawa 

Heart Institute, National Cardiac PET Centre, between the 15
th

 and 26
th

 of June, 2009 were selected. All patients 

gave informed consent under a cardiac PET registry study approved by the Ottawa Heart Institute Research Ethics 

Board. Patients were instructed to abstain from caffeine intake for 12 hours prior to the exam, beta-blockers for 24 

hours, and fast for at least 4 hours.  

Image Acquisition 
Scans were acquired according to our standard clinical protocol (Fig.1). Following a scout scan for patient 

positioning, a low-dose (0.5 mSv) fast CT scan was performed for attenuation correction of the rest data. 
82

Rb (10 

MBq/kg) was administered intravenously using a custom infusion system 
22

 over a 30 s interval to limit the 
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coincidence deadtime to <35% and to ensure accurate measurement of the bolus first-pass activity 
23

. Dynamic data 

were acquired in 3D mode using a Discovery RX PET-VCT scanner (GE Healthcare, Waukeshaw, MI), and images 

of activity concentration were reconstructed using Fourier rebinning and filtered backprojection with a 12 mm Hann 

filter, into 15 time frames (10s × 9, 30s × 3, 60s × 1, 120s × 1, 240s × 1). 

Dipyridamole (0.14 mg/kg/min) was infused for 5 min, and 
82

Rb imaging initiated 3 min later following the same 

protocol used at rest. A second low-dose CT scan was then performed for attenuation correction of the stress 
82

Rb 

data. 

Image Analysis 

Images were processed using an in-house software program (FlowQuant, Ottawa, Canada) developed for 

quantification of cardiac molecular function using a variety of tracers and in different species. The rest-stress 

workflow started with processing of the rest scan, continued with a nearly identical process for the stress scan, and 

ended with the stress-rest flow reserve analysis (Fig. 2). 

Volume Reorientation 

Uptake images were generated by averaging the last 5 time frames (8 minutes) to maintain high myocardium:blood 

pool contrast and reduce image noise. The uptake images were automatically processed to detect the location, 

orientation, and size of the LV myocardium (Fig. 3a,b). Ellipses were fit to the myocardial data in 3 orthogonal 

planes in an evolving reference frame. The benefits of working with 2D planes rather than the full 3D volume are 

reduced computational complexity and the ability of the operator to supervise the process and intervene as needed. 

The process was fully visualized using the reorientation graphical user interface (GUI) shown in Fig. 3c.  

The LV processing began with automatic selection of a transverse plane intersecting the LV. In this transverse plane, 

the LV position was estimated using the center of mass of the pixel intensities. A full ellipse was then optimized to 

correlate with the uptake image as follows. A cost function maximized the correlation between the region 

overlapping a partial ellipse and its neighbourhood, by modifying five free parameters (x and y translation, ellipse 

rotation, and two ellipse dimensions (a and b in Fig. 3b). A mid vertical-long-axis (mid-VLA) image was created 

orthogonal to the transverse plane, along the estimated long-axis. A partial ellipse (4/3 of the long axis) was 

optimized in a similar manner with initial estimates of the ellipse location and dimensions derived from the previous 

stage. In theory, the LV orientation and position should be completely measured at this point, but a third orthogonal 

image along the mid horizontal-long-axis (mid-HLA) plane was also processed to further optimize the transverse 

rotation.  

For quality assurance (QA) purposes a fourth orthogonal, short-axis (basal-SA) image was displayed, which should 

have a circular pattern centered on the long axis, shown with cross-hairs in Figure 3c. For further validation the 

operator could toggle the display to view a mid-ventricle-SA image. 

For the rest scans, the initial parameter estimates at each orientation stage were based on characteristic values for the 

species type (human in this case). For stress scans, the LV myocardium size (ellipse dimensions) and orientation 

(angles) were presumed to be fixed and equal to those of the rest scan, but the positions could change. The LV 

position in the rest image was used as an initial estimate of the LV position in the stress image. 

The graphical report (Fig. 3c) displays the results of the optimization process, which also enabled the operator to 

intervene at each stage if necessary by manual adjustment of the fitted ellipses. Automated processing would 

continue from the point of intervention to minimize operator bias on the final results. If no operator intervention was 

performed, then the reorientation process was fully automated as described. Any operator interaction was labelled on 

the report for retrospective QA. 
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LV and Blood Pool Segmentation 

The transverse uptake images were reoriented to form 20 standard SA slices from apex to base, plus 3 slices beyond 

the apex and 3 slices past the base (in the atrium), thus the SA slice thickness was determined by the total long axis 

extent (4/3 a). The SA pixel dimensions were unchanged from those of the original image. 

The reoriented SA volume was sampled in a combined conical and planar coordinate system to generate a combined 

series of LV slices as shown in Fig. 4. The first 9 slices relate to the conical sampling of the apex, while the 

remaining 15 slices are SA planes from apex to atrium. The slice planes are superimposed (white dashed lines) on 

the VLA and HLA images in the right hand side. This coordinate system was used to define myocardial sample 

points at fixed (10°) angular intervals according to their radial distance from the LV long axis. Rather than fitting 

each point individually, a spline model was used to optimize the radii of 4 control points (at 90° intervals) in 3 slices 

(LV cavity, base, and atrium), as well as one control point at the apex as shown in Figure 4. For the rest scans, initial 

estimates of the spline points were based on the ellipse sizes determined in the reorientation stage. For the stress 

scans, the spline points from the rest scan were used as initial estimates. Having a spline model with only 13 degrees 

of freedom afforded fast execution of the optimization algorithm (Appendix A) as well as simple operator 

intervention. For quality assurance, the operator could monitor the automated sampling and intervene as needed by 

manipulating the radial position of the spline control points. 

The myocardial radii determined from the spline model (36 points per slice x 24 slices= 864 points) were each 

shifted to the local maximum intensity position to account for regional shape variations. Local smoothness was 

enforced using a 2D median filter of the myocardial radii. Myocardial uptake values were averaged within regions 

of interest with specified endo- and epi-cardial extent (4 mm thickness) centered on the 864 LV sample points. 

The sampled uptake activity was viewed as a polar-map and as a 3D model for quality assurance of the segmented 

LV shape, as demonstrated in Fig.5. For subsequent analysis in this study the LV polar map was considered as the 

inner 16 of 24 slices, which excludes the membranous septum and some of the lateral wall.  

The standard 17 segment model was applied and segments were averaged according to ASNC guidelines 
46

 into 3 

vascular territories corresponding to the major coronary arteries: left anterior descending (LAD) artery, left 

circumflex (LCX) artery, and right coronary artery (RCA). Segments were averaged to report regional tracer uptake 

corresponding to the vascular territories. 

Three blood regions of interest were placed automatically in the LV cavity (C), base (B), and left atrium (A) as 

shown on the VLA and HLA images in Fig. 4. The extent of each region was predefined for each given species (8 

mm in humans), and their length was 4 SA slices each. The regions were shifted in each SA plane to center the ROI 

in the cavity and maximize the distance from the myocardium, to minimize myocardial spillover into the blood 

region. 

TAC Sampling 

The sampling points from the registration stage were applied to all of the time frames of the dynamic image 

sequence to generate time-activity-curves (TAC). In the myocardium, a TAC, Cmeas(t), was generated for each 

sample point resulting in 864 TACs (36×24 rings). In the blood, three TACs were generated for the cavity, base, and 

atrium blood pool regions. In order to reduce noise, the median of the three blood region TACs was used as a blood 

input function for tracer kinetic modelling (Fig. 6). 

Kinetic Modeling 

The last stage in the processing of each scan was to solve the parameters of a kinetic model, based on the blood 

(input) and myocardium (output) TAC functions. Each polar map sector of the LV myocardium (apex to base plane) 

was optimized separately resulting in 36×16=576 sets of kinetic parameters (Fig. 7).  
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The uptake rate of 
82

Rb, K1 ml/min/g, was quantified using a one-compartment constant distribution volume (DV) 

model 
47

 at both rest and stress states: 

)()(

1

1 tCeKtC a

t
DV

K

m  
(1) 

 

Cm(t) represents the modeled myocardial activity concentration, Ca(t) is the measured arterial blood concentration as 

a function of time, t. In the DV model, DV is the ratio of the tissue and blood tracer concentrations when the 

compartments have reached a state of equilibrium. Since the net exchange of tracer is zero at equilibrium, DV can be 

expressed as: 

2

1

k

K
DV  (2) 

 

To further simplify the kinetic model, DV was set to a scan-specific, constant value determined by fitting the 

unconstrained model to the region of normal uptake in the polar map.  

K1 was related to flow, MBF ml/min/g, through K1 = MBF x E(MBF), where 

MBFMBFPSeMBFE /)(1)(  (3) 

 

E (MBF) is a model-specific extraction fraction that accounts for non-linear tracer extraction as a function of MBF 

and the effective permeability x surface-area product, PS ml/min/g 
48,49

. This model is consistent with the 

observation that tracer extraction typically decreases with flow, despite the PS product increasing due to capillary 

recruitment. The following PS function was used, as determined previously in human subjects 
18

: 

MBFMBFPS 26.063.0)(  (4) 

 

The measured myocardial image concentration in each polar map sector, Cmeas (t), was estimated according to: 

)()1()()( tCTBVtCTBVtC mamodel  (5) 

 

where TBV was the estimated total blood volume and (1-TBV) corrected for regional partial-volume loss in the 

myocardium 
7
. 

The example in Fig. 7 shows a report for the kinetic modeling stage consisting of polar-maps of kinetic modeling 

parameters, K1, k2, and TBV. The DV estimate is included in the title. In addition, goodness–of-fit parameters (χ
2
, R

2
, 

the optimization convergence flag, and whether any of the parameters hit their upper bounds) are displayed in polar-

map format to indicate regional reliability of the kinetic parameters. Finally, MBF (flow) and the uptake polar-maps 

are shown. Regional correspondence between uptake and flow patterns is expected. 

The blood TAC (red line) and the mean sampled myocardium TAC in the high-uptake (>75% of maximum) regions 

(blue dots) are shown in the bottom panel of the figure. The partial-volume corrected myocardial TAC, Cm(t), (cyan) 

and modeled-determined  TAC, Cmodel(t), (blue line) are also included together with the sampled myocardial TAC, 

Cmeas(t), (blue dots). The error between sampled and modeled myocardium TACs (green) shows little error and no 

temporal pattern, also indicating a good fit. The model fits and TAC data can also be viewed for any polar map 

sector with an interactive cursor selection. 

Relative Uptake and MFR Analysis 

The rest and stress scans were compared to analyze changes between states using the relative uptake and absolute 

flow polar maps. Each report included rest, stress, stress/rest, and stress-rest polar maps (corresponding to rest MBF, 

stress MBF, MFR, and ΔMBF for absolute flow), as demonstrated in Fig. 8. The polar maps were then segmented 

into the three vascular territories 
46

 to produce regional average values. Global average values were also calculated 

by averaging the same polar maps over the entire LV. 
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Inter- and Intra-Operator Variability 
All patients were anonymized and copied in random order for repeat analysis by 2 operators. All scans were first 

processed automatically (with no operator intervention) from the orientation phase through to the kinetic modeling 

and MFR analysis. 

The processed studies were reviewed independently by two operators, one novice (operator 1) and one expert 

(operator 2). The novice user had never used FlowQuant or any other software for quantifying cardiac function from 

images, while the expert user had used FlowQuant for over 1 year to review and process hundreds of clinical studies. 

Both operators were instructed on use of the FlowQuant program and methods for quality assurance review of the 

automatically processed results, using a separate dataset which is not included in this work. 

The operators reviewed the QA reports (Figures 3-8) saved during the reorientation, LV segmentation, and kinetic 

modeling steps, and reprocessed with manual intervention, any scan that was considered suboptimal. Thus, each 

scan was processed four times (twice by each operator). Specifically, processing was considered to be suboptimal in 

cases where: 1) the ellipse did not properly track the myocardium in the LV orientation phase; 2)  the sampling 

points did not properly overlay the myocardium in the LV segmentation step due to the presence of adjacent organ 

activity ; 3) there was discordance between the TACs for the cavity, base and atrium blood regions; 4) there was 

discordance between the patterns of relative uptake and absolute MBF polar maps in the kinetic modeling phase; 5) 

the goodness-of-fit parameters indicated suboptimal fitting of the kinetic model to the measured data, i.e. non-

uniform R
2
, high χ2

 values, or a non-random distribution of the residuals. 

The operators were instructed to correct these issues by first ensuring accurate ellipse placement during 

reprocessing, but intervening as little as possible. This could be accomplished by first changing the transaxial plane 

to choose an image with optimal contrast between the myocardium and the background and/or cropping the inferior 

slices to remove adjacent organ activity. The operator could also intervene on the subsequent VLA and HLA slices 

by properly resizing and repositioning the ellipse over the myocardium, if needed. In the LV segmentation phase the 

operator could adjust the spline control points to improve overlap of the model contour with the myocardium uptake. 

The reprocessed datasets were analyzed for inter- and intra-operator variability in rest, stress, stress/rest and stress-

rest both in relative uptake and absolute flow. The analysis was performed in the three vascular territories as well as 

globally. For intra-operator agreement the two datasets processed by each operator were compared with one another, 

and the results for each operator were reported separately. For inter-operator agreement, the repeated analyses were 

combined and then compared between operators. 

Statistical Analysis 
Agreement between paired datasets was visualized using correlation analysis and a linear regression fit. Pearson’s 

correlation (r
2
) was used to report agreement between datasets. Fisher’s z-transform was used to calculate the 

probability of two r values being significantly different. In addition, a Bonferroni correction was applied for multiple 

comparisons.  

Differences between datasets were analyzed using Bland-Altman plots 
50

 and a reproducibility coefficient (RPC), 

calculated as 1.96 times the standard deviation of the differences. Thus 5% of the data points are expected to fall 

outside the range of mean ± RPC, assuming the differences follow a Gaussian distribution. RPC values were 

compared by conversion to variance (σ
2
=(RPC/1.96)

2
) and then applying an f-test with p<0.05 considered 

significant. In addition the %RPC was reported as the ratio (%) of the mean rest, mean stress, mean stress/rest, and 

mean rest and stress for rest, stress, stress/rest, and stress-rest respectively. Likewise, biases were evaluated as the 

mean of differences between datasets and were reported as the ratio (%) of the bias scaled in the same way as 

%RPC. 
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Group mean and variance differences were evaluated using a two-sided student t-test and F-test respectively with 

Bonferroni correction and p<0.05 considered significant. 

Results 

Patient Demographics 
Patient demographics are summarized in Table 1. The youngest and oldest volunteers were 32 and 81 years of age 

respectively. The mean±sd global MBF, MFR, and ΔMBF are listed for all 4 datasets (2 operators × 2 repeated 

datasets), No significant differences in means or variance were found between or within operator’s repeated datasets 

(p>0.05). 

Operator Intervention 
Operator intervention at each processing stage is summarized in Table 2. The intervention of Operator 2 remained 

consistent between datasets when compared to operator 1. Both operators intervened primarily by cropping adjacent 

organ activity on the inferior image. Operator 1 cropped 18 images in the first analysis but only 6 in the second 

analysis, which was more similar to the interventions of operator 2. This suggests some improvement of processing 

skills as operator 1 gained experience with the software, with less intervention required in the second analysis. 

Inter-operator Variability 
Relative uptake and absolute flow inter-operator analyses are shown in Fig. 9 and Fig.10 respectively. Both figures 

contain correlation and Bland-Altman plots for rest (bottom left), stress (top left), stress/rest, (top right), and stress-

rest (bottom right) using the data from the three vascular territories. Overall, excellent correlation, and low bias, was 

demonstrated both for relative uptake and absolute flow. In all cases the slope was close to unity (0.956-1.04) and 

the intercept was within ±5% of the mean values. 

Bias(%), correlation (r
2
), and RPC(%) values are summarized in Fig. 11, Fig. 12, and Fig. 13 respectively. While, 

relative uptake appears to have lower bias than absolute flow, none of the bias values significantly differed from 

zero (p>n.s.). All inter-operator correlations were higher for absolute flow compared to relative uptake, but were 

significant only in the case of rest and stress-rest (p<0.05). Finally, the reproducibility coefficients for relative 

uptake, were all lower (more reproducible) than for absolute flow (p<0.001). 

Intra-Operator Variability 
Intra-operator biases were also larger with absolute flow compared to relative flow (p<0.001). None of the biases 

were significantly greater than zero (p>n.s.) as with the inter-operator biases. In all cases correlation was excellent 

(r
2
≥0.97).  

Generally, intra-operator 2 (expert) had significantly higher correlations (p<0.001) and lower RPC% (p<0.001) for 

rest, stress, stress/rest and stress-rest than intra-operator 1 (novice), as shown in Fig. 12 and Fig. 13 respectively. 

Interestingly, only absolute flow stress-rest correlation (p=0.6) and RPC% (p=0.4) did not significantly differ 

between operators. These results may suggest better intra-operator reproducibility with experience, and that absolute 

stress-rest may be more robust against operator dependent variability. 

Regional Variability 
The inter- and intra-operator RPC% for absolute flow values (combined rest and stress) in the three vascular 

territories and globally are listed in Table 3. RPC in absolute units is also presented as 95% confidence intervals that 

could be used in serial comparisons that account for operator variability. The results suggest that the LCX region 

may be less sensitive to operator interaction than the LAD and RCA regions, but the general agreement remains very 
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good, with 95% of disagreements being below 6.1% (0.095 ml/min/g) in the territory with largest variation for intra-

operator 1. 

Discussion 
In this work we assessed the inter- and intra-operator variability of relative uptake and absolute flow measurements 

in rest, stress, stress/rest, and stress-rest using the FlowQuant software program with two operators and two 

identical, anonymized, and randomized sets of images. Operator 2 was an experienced user whereas operator 1 was 

a novice. Operator 1 was trained on a small, separate set of images and was then left to process the data 

independently. By measuring the variability with expert and novice users we can better define the range of operator 

variability.  

It is possible that the difference in user interactions (Table 2) between datasets 1 and 2 corresponds to operator 1’s 

learning curve. As experience was gained by the operator, less intervention was required. Thus operators 1 and 2 

form a worst and best case scenario respectively. While the intra-operator agreement of operator 1 remained 

consistently lower than that of operator 2, both the inter- and intra-operator metrics illustrated excellent agreement. 

 One patient scan, with the largest intra-operator discordance in MBF values, is exemplified in Fig. 14. In this rest 

scan the operator neglected to intervene during reorientation in dataset 1 (left), but did intervene in the dataset 2 

(right), resulting in an improved fit of the ellipse in the mid-VLA and mid-HLA slices. The largest discordances 

were in the inferior wall and the apex, corresponding to the RCA and LAD territories (not shown). The RCA and 

LAD data points associated with the dataset 1 are shown in the inter-operator rest, stress/rest, and stress-rest Bland-

Altman plots in Fig. 10 using filled blocks. Since the rest orientations and ellipse sizes were applied to the stress 

scans (not shown), the MBF stress/rest and stress-rest polar maps had similar, but shifted, spatial patterns (Fig. 14), 

and varied in scale due to different blood sampling. In a clinical setting, it is expected that this registration error 

would be identified as part of the QA process and that the image would not be interpreted until reprocessed. The 

importance of the saved graphical reports and their routine review is thus emphasized. 

Comparison to other repeatability studies 
Previous studies have evaluated operator dependent variability of MBF and MFR with other software programs. The 

results of some of these studies are listed in Table 4 alongside the results of this study. While the methodology of 

each study is slightly different, it is reassuring that our proposed method performs similarly or better in most cases. 

The work of El Fahkri et al. 
30

 used the average across 4 datasets per operator to measure inter-operator variability. 

Reproducibility across averages is expected to result in higher correlations and lower RPC compared with the 

standard methodology used in the present study. Comparison of correlations is further complicated since inter and 

intra-operator correlation coefficients varied considerably. In addition, some of the correlations were reported using 

a Spearman non-parametric correlation coefficient (ρ) and some were reported using a Pearson correlation 

coefficient (as performed in this study) which is more sensitive to outliers.  

The work of Knešaurek at al. 
40

 used the PMOD software, which requires manual operator interaction, and may 

explain the increased operator variability at stress. It is not clear in this paper if both sets of data were processed by 

the same operator or two different operators (we assume the former). 

Schindler et al. 
41 

measured inter-operator agreement at rest, CPT, and stress. While the rest and stress results are 

included in Table 4, the CPT results (r
2
=0.61, RPC=26%) were excluded for simplicity. In addition, while Schindler 

et al. make reference to intra-operator variability, these were performed on separate, repeat scans, and thus include 

variability resulting from changes in the subject between scans, as well as variability in the imaging process. In 

Sawada et al. 
33 

and El Fakhri et al. 
31

 repeat measurement agreements were also reported, and referred to as inter-

study variability and reproducibility respectively. 
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Nestrov et al. 
39 

measured inter- and intra-operator variability at rest and stress in 10 patients using 4 operators with 

various degrees of experience. Each operator processed the data twice at two-week intervals. Analysis included 

global, 4 coronary artery territories (apex was isolated from the LAD territory), and 17 segments. Variability 

increased with the number of segments (inverse to ROI sizes) likely due to increases in noise and physiological 

MBF heterogeneity 
51,52

. Since the segmental and regional analysis was performed using interclass correlation 

coefficients we could not directly compare all Pearson correlation coefficients. However, comparison of RPC% 

values was possible, and showed less variability with our method. 

The operator dependent variability in our study is similar or lower than previously published methods, even when 

including the results of a novice operator. Thus the results suggest that a highly automated approach with minimal 

operator intervention is robust against operator induced variability.  

Relative Uptake vs. Absolute Flow 
The results demonstrated better reproducibility of relative uptake through lower biases and lower RPC compared to 

absolute uptake, while correlation tended to be better with absolute flow compared to relative uptake. The lower 

biases and RPC are due to 1) normalization of the relative uptake to a common scale and 2) avoidance of small rest 

values which amplify variation in stress/rest values. Thus the improved robustness of relative uptake comes at the 

expense of sensitivity to physiological global changes in blood flow as previously demonstrated 
6
. 

Stress/Rest vs. Stress-Rest Differences 
When using absolute flow, reproducibility of stress/rest was significantly worse than stress-rest as indicated by 

lower r
2
 (p<0.02 for intra-operator 2, and p<0.001 for intra-operator 2 and inter-operator) and higher RPC values 

(p<0.001 for intra-operator 1, intra-operator 2, and inter-operator) as shown in Fig. 12 and Fig. 13 respectively. The 

reduced reproducibility of stress/rest is due to the higher sensitivity of the ratio to changes in low resting flow 

values, to which the subtraction operation in stress-rest is more robust. Thus, stress-rest measurements appear to be 

more reproducible than stress/rest, and therefore may be more sensitive to monitor serial changes. Both the stress-

rest difference and ratio reflect the vasodilatory capacity to increase flow over baseline conditions. However, our 

results suggest that stress-rest is expected to be more robust, particularly in regions of infarction where low resting 

flow values may cause the stress/rest to appear artificially elevated. 

When using relative uptake, a systematic difference between reproducibility of stress/rest and stress-rest was not 

observed. This is explained by the removal of small rest values through normalization of the rest (and stress) images. 

Limitations 
This study is limited by having two operators and two datasets each. Furthermore, a single operator represented 

novices and a single operator represented experts. However, we do feel that by having two operators at opposite 

ends of the spectrum of experience we are able to bound the actual operator variability that will be experienced in 

the majority of operator groups. 

While this work did not address accuracy or test-retest reproducibility of our methods, previous studies addressed 
82

Rb quantification accuracy 
19

 and diagnostic accuracy in 3-vessel disease 
6
.  

Conclusion 
The FlowQuant software program has been developed for reproducible quantification of myocardial blood flow and 

myocardial flow reserve using 
82

Rb PET in routine practice and in clinical research. We have evaluated the intra- 

and inter-operator variability both for absolute flow quantification and for relative uptake analysis. We have 

demonstrated excellent agreement between both novice and expert operators; however, better reproducibility was 
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measured in the expert operator. To minimize variability, new operators must be trained using a small set of suitable 

cases and their performance should be tracked during the learning phase. 

Appendix A 
The spline optimization algorithm minimized a cost function, Cenergy , that resulted in maximization of the image 

energy overlapping the spline model. Penalties were applied to discourage abnormal myocardial shapes by 

minimizing the following metrics: 

1. Eccentricity of SA – the LV should be somewhat circular, thus if slices with a variation of radii greater than 

30% exist, a penalty was applied. 

)/log(max
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3.00
ii verhorielip rre

ee

e
C  (6) 

 

2. Relative size of atrium – the cross section of the atrium should not be bigger than that of the ventricle, thus 

a penalty was applied if the mean of its radii was more than 20% larger than the mean of the radii of the 

basal and cavity sections. 
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3. Offset of center of ellipse from LV long axis - the LV myocardium should be nearly centered on the LV 

long axis, thus a penalty was applied if the center of the myocardium was displaced from the LV long axis 

by more than 40% of the mean radius in the same slice. 
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The final cost function, C, defined by equation (9) accounted for all the above penalties while rewarding for energy 

overlapping the LV model. Thus the LV model was constrained to have a characteristic shape, but abnormal 

myocardial shapes could be accommodated by the model, provided the image intensity is sufficient to offset the 

penalties. 

C=Cenergy(1+10×Celip+Catrium+Coffset) (9) 
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Table 1 – Characteristics of Study Population (n=30) 

 

 Mean ± Standard Deviation 

Age  [yrs] 64.9±10.0 

Gender (Male)  [N (%)] 11 (37%) 

Normal*  [N (%)] 14 (47%) 

Single vessel disease*  [N (%)] 12 (40%) 

Multi-vessel disease*  [N (%)] 4 (13%) 

MBF (n=30) 
Operator 1 Operator 2 

Dataset 1 Dataset 2 Dataset 1 Dataset 2 

 Global rest MBF  [ml/min / g] 1.04±0.41 1.04±0.41 1.04±0.41 1.04±0.41 

 Global stress MBF  [ml/min / g] 2.24±0.92 2.25±0.92 2.25±0.92 2.25±0.92 

 Global MFR 2.40±1.20 2.40±1.08 2.41±1.21 2.43±1.21 

 Global ΔMBF  [ml/min / g] 1.20±0.80 1.21±0.79 1.21±0.80 1.22±0.80 

* Based on interpretation of standard relative uptake MPI 

p=NS for mean differences of all operator/analysis combinations 

p=NS for standard-deviation differences of all operator/analysis combinations 
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Table 2 – Number of operator interventions per dataset (out of 60 images) 

 Orientation Stage 

Segmentation  

Stage Gut TV Plane 

Position Angle  Ellipse Size 

         

TV VLA HLA TV VLA HLA TV VLA HLA 

Op1S1 18 4 0 0 0 0 0 0 0 0 0 5 

Op1S2 6 0 0 4 0 0 1 0 0 2 0 4 

Op2S1 4 0 0 0 0 0 0 0 0 0 0 1 

Op2S2 4 0 0 2 0 0 0 0 0 1 0 1 
TV – Transverse Plane 

VLA – Vertical Long Axis Plane 

HLA – Horizontal Long Axis Plane 
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Table 3 – Regional and global RPC for inter- and intra-operator agreement of absolute flow 

 Absolute (ml/min/g) % (of mean MBF) 

 Intra-operator 

1 

Intra-operator 

2 

Inter-operator Intra-operator 

1 

Intra-operator 

2 

Inter-operator 

LAD  0.080 0.076 0.065 4.80% 4.52% 3.90% 

RCA  0.095 0.049 0.061  6.08% 3.11%  3.88% 

LCX  0.075 0.038 0.048  4.51% 2.29%  2.86% 

Global  0.068 0.053 0.050  4.13% 3.22%  3.06% 
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Table 4 – MBF and MFR intra- and inter-operator correlations and RPC% in different studies 

 Klein et al. 

(Present study) 

El Fakhri et 

al. 
30‡ 

Knesaurek 

et al. 
40

 

Schindler 

et al. 
41

 

Sawada 

et al.
33 

 

Adachi 

et al. 
42

 

Nesterov 

et al. 
39

 

Software 

Program 

FlowQuant GFADS PMOD n.a. n.a. n.a Carimas™ 

Radiotracer 
82

Rb 
82

Rb 
82

Rb 
13

N-

ammonia 

13
N-

ammonia
 

15
O-

water 

15
O-water

 

N 30 22 12 20 12 23 10 

Population Patients Mixed Normals Mixed Mixed Normals Patients 

Myocardium 

Segments 

3 3 16 1 5 16 4 

Inter-operator Correlation (r
2
)  

Rest MBF 0.994 0.827<ρ<0.

935 

n.a. 0.92 
0.99 

n.a. n.a. 

Stress MBF 0.999 n.a. 0.76 n.a. n.a. 

MFR 0.986  n.a. n.a. 0.97 n.a. n.a. 

Intra-operator Correlation (r
2
)  

Rest MBF 0.990 - 0.998 
0.99 

n.a. n.a. n.a. 
0.712 ≤0.986 

Stress MBF 0.998 - 0.999 n.a. n.a. n.a. 

MFR 0.976 - 0.993 0.97 0.98 n.a. n.a. n.a. n.a. 

Inter-operator Reproducibility (RPC%)  

Rest MBF 6.1% n.a. n.a. 12.0% ~9% n.a. <15% 

Stress MBF 2.3% n.a. n.a. 28.1% ~13% n.a. <15% 

MFR 12.6% n.a. n.a. n.a. ~27% n.a. n.a. 

Intra-operator Reproducibility (RPC%)  

Rest MBF 3.7% - 8.0% 1.7 % 8.5 % n.a. n.a. 
~73% 

<50% 

Stress MBF 3.0% - 3.8% 1.4 % 6.3 % n.a. n.a. <20% 

MFR 8.5% - 16.8% 2.8 % 10.6 % n.a. n.a. n.a. n.a. 
n.a. – not available 

r –Pearson correlation 

ρ –Spearman correlation 
† – computed from reported standard error estimates 
‡ – means of 4 repeat results for each operator 

 – Estimated from reported results 
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Fig. 1 – Clinical rest-stress 
82

Rb PET/CT protocol using Dipyridamole pharmacologic stress. 
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Fig. 2 – Dynamic 
82

Rb rest-stress analysis workflow. Rest and stress dynamic images are used to generate relative 

uptake, absolute MBF, and flow reserve polar maps. The process is fully automated, with some user interaction 

possible at the reorientation and segmentation stages (gray filled boxes). 
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Fig. 3 – A. LV ellipse model and orientation in relation to the scanner reference frame. The axial angle φ and the 

sagittal angle θ describe the orientation in 3D.  B. Partial ellipse used to model a mid-VLA cross-section. The ellipse 

dimensions are a and b along the long and short axes respectively. C.  Automatic orientation GUI. 
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Fig. 4 – Myocardial segmentation on conical (1-9) and planar (10-24) slices of the same case as in Fig. 3c. Vertical 

and horizontal long axis slices are also shown on the right, with the dashed lines depicting the locations of the slices 

to the left. The red contour lines show the myocardial sampling regions, and the yellow and cyan circles are the 

spline model control points. The white crosses indicate the long axis and the black circles indicate the blood ROIs. 
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Fig. 5 – Polar map (top left) and 3D perspective views of the LV from different angles for the same case as in Fig. 

3c and Fig 4. Model coronary arteries are superimposed to relate polar-map regions to the three main vascular 

territories. 
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Fig. 6 – Time-activity-curves (TAC) for blood in three regions and their median (thick red) as well as the mean TAC 

for the myocardium region (blue) for the same case as in Fig. 3c and Fig. 4. 

 



25 

 

 

Fig. 7 – Kinetic modeling report for the same case as in Figures 3-6. 
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Fig. 8 – MBF, MFR, and ΔMBF analysis report with the rest case shown in Figures 3-7 indicates uniform rest and 

stress flows with MFR≈3.1 and ΔMBF≈2.2 mL/min/g, which indicate normal MBF. This case was interpreted as 

normal using relative uptake images (not shown). 
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Fig. 9 – Bland-Altman graphs for inter-operator agreement of rest uptake, stress uptake, stress/rest uptake, and 

stress-rest (datasets 1 and 2 combined). 
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Fig. 10 – Bland-Altman graphs for inter-operator agreement of MBF, stress/rest MBF, and stress-rest MBF (datasets 

1 and 2 combined). 

 

 

Fig. 11 – Biases in intra- and inter-operator agreement of relative uptake and absolute flow. All biases were not 

significantly different from zero (p>0.05) and remained below 1%. 
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Fig. 12 – Pearson correlation (r
2
) for intra- and inter-operator agreement of relative uptake and absolute flow. 

Operator 2 (experienced) had slightly higher agreement than operator 1 (novice) both with relative uptake (blue *) 

and absolute flow (red *). Absolute flow generally had better agreement than relative uptake, but was significant in 

only 6/12 comparisons (black *). Note the y-axis scale set to emphasize difference between data.  
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Fig. 13 – RPC for intra- and inter-operator differences of relative uptake and absolute flow. In all cases relative 

uptake analysis is less variable than absolute flow (p<0.001) (black *). Generally, operator 2 (experienced) had less 

variability than operator 1 (novice) for relative uptake (blue *) and absolute flow (red *). 
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Fig. 14 – Example of analysis with the largest MBF discordance (intra-operator and inter-operator) demonstrating 

that the operator failed to correct for suboptimal detection of the LV in the mid-VLA (left) but did intervene in the 

second dataset (right). Similar orientations were copied to stress without further intervention. Consequently, the 

stress/rest and stress-rest maps differed mainly in scale, but less in spatial distribution. 


