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Abstract 
 

Elastography technique can measure stiffness which is a sign commonly noticed in muscular 

disorders or athletic injuries. Focusing on ultrasound compression elastography technique, this 

work aims to measure phase shift between ultrasound received RF signals which in turn can be 

used for stiffness (strain) estimation. To measure the phase information, quadrature phase 

detection technique was employed. Then, in an investigation, certain parameters that affect its 

functionality and outcomes (e.g., signal to noise ratio (SNR) and bandwidth) were explored. It 

was observed that by the SNR equal to 60 dB, the phase shift error is around 0.2 rad (equivalent 

to displacement error of 4.9 ) while it increases with decreases in SNR until becomes 18.03 

rad (equal to displacement error of 442.09 ) with the SNR of 0 dB. To reconstruct the less 

accurate phase outcomes of the quadrature method, a new algorithm was designed based on 

Gauss-Newton method. Using appropriate regularization parameter defined in this algorithm 

resulted in the reconstructed phase shift with the error around 14 rad (corresponding to 

displacement error of 343.28 )  when the SNR was 0 dB. It was concluded that, regularization 

parameter can act as filter coefficients with the ability to remove noise appeared in the phase 

measurements. 
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Chapter 1 

Introduction 

 

1.1 Overview  

In human body, the musculature has a great deal to do with physical condition and wellbeing of 

an individual. For instance, an athletic injury or a muscular disease can cause a number of health 

related problems. As such, preventing muscle injuries and/or quickly diagnosing them in case of 

occurrence are of ongoing interest to medical practitioners. The motivation behind the research 

done for this thesis is driven by the ongoing need to better monitor and diagnose muscle 

disorders.  

      Among several symptoms, stiffer muscle is a noticeable sign commonly found in different 

types of muscle injuries such as muscle strain, cramps and repetitive stress injuries. Techniques 

of muscle stiffness measurement could prove to be a valuable resource for the study of muscular 

diseases and athletic injuries. Ultrasound imaging techniques can provide information about 

muscle stiffness. These techniques may give more precise results if used as a tool to monitor 

muscles. 

 

1.2 Problem Statement  

Ultrasound compression elastography is a relatively new imaging technique that provides strain 

images of soft tissues under the compression. It uses ultrasound scanners to acquire radio-

frequency (RF) ultrasonic signals. In this technique, the tissue under inspection is externally, 



2 
 

internally or voluntarily compressed and the amount of displacement is calculated by estimating 

time (or phase) shift between consecutive RF signals (A-line pairs).  

     This thesis research focuses on the phase shift occurred between ultrasound received RF 

signals which correspond to the pre- and post-compression states of a tissue under a compressive 

force. One technique that can be used to measure this phase shift, which can be further used to 

provide displacement and strain information of the tissue, is a quadrature technique. Although 

quadrature technique has been previously employed in ultrasound-based elastography 

techniques, there is a requirement to improve the accuracy of estimates from this technique, 

especially in the presence of measurement noise. This thesis describes certain 

parameters/conditions affecting the quadrature technique outcomes and develops a new 

algorithm to improve fully or partially incorrect phase results obtained in these circumstances. 

Specifically, defined algorithm, as it will be explained in this research, acts as a filter able to 

remove the noise and fluctuations appeared in the phase measurements.  

 

 1.3 Objectives  

The goal of ultrasound-based elastography technique is to accurately represent displacement and 

strain information of a tissue under compression. In this technique, the amount of displacement 

of the compressed tissue is calculated by estimating the phase shift between consecutive RF 

signals corresponding to pre- and post-compression states of the tissue. As such, phase shift 

estimation needed to be exact and precise. The phase (phase shift) measurement can be 

conducted by the quadrature phase detection method. To achieve the goals, it is preliminary to 

test the quadrature method in different conditions finding the parameters affecting its outcomes. 

These goals are pursued by development of an algorithm with the ability to improve the incorrect 

phase results which are obtained in these circumstances.  
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     In order to obtain the aforementioned goals, several steps were taken. To begin with, a 

simulation had to be designed in order to allow testing both the quadrature method and designed 

algorithm. First, the sample volume before and after compression along with consecutive 

received RF signals were simulated. Then, the phase shift between consecutive frames was 

measured by the quadrature method, while different parameters such as signal no noise ratio, 

bandwidth, and the number of particles in the sample volume were changed. Finally, an 

algorithm was designed to reconstruct incorrect and noisy phase results. After studying in the 

computer simulation environment, the algorithm was implemented on the measured RF signals 

captured from experimental phantoms. The latter step was taken to demonstrate the effectiveness 

of designed algorithm on phantoms mimicking human skeletal muscles. 

     

1.4 Thesis Contributions  

The following is a list of the main research contributions demonstrated in this thesis:         

- Developed a model-based computer simulation to create several RF signals and test the 

quadrature phase detection technique in different conditions. 

- Used a reference approach called phasor method with which the quadrature technique can 

be compared and the level of its accuracy can be determined. 

- Defined an inverse problem with model parameter of phase and described the associated 

model estimation technique known as Gauss-Newton (GN) algorithm. 

- Implemented the GN algorithm on simulated and measured RF signals 
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1.5 Thesis Organization  

Chapter 1 introduces the concepts discussed throughout this thesis. Chapter 2 provides 

background information about human muscular system, muscle injuries, and principles of 

medical ultrasound imaging. In addition, it presents a discussion of the current technologies used 

to measure the muscle stiffness. Chapter 3 serves as a source/reference for this research. It 

describes the ultrasonic hardware system and data processing done in previous works. It also 

provides information about data files of ultrasound signals gained from experimental phantoms 

designed in preceding researches. Chapter 4 defines the imaging environment, computer 

simulation and the quadrature phase detection technique. It provides a description of the pulse-

echo model and outlines the procedure of RF signals’ phase shift measurement. Finally, it 

defines a reference method by which the accuracy of the quadrature method and its outcomes can 

be tested. Chapter 5 represents numerical simulation results. It describes the relationship between 

the amount of displacement of the sample volume and the phase shift created in ultrasound 

received RF signals. It represents different parameters affecting the quadrature technique and its 

phase outcomes. Chapter 6 describes inverse problems in general while emphasizes on nonlinear 

category and associated solving techniques. It explains the Gauss-Newton algorithm, as a solving 

technique, which can be applied for ultrasound phase reconstruction. It also represents some 

reconstructed phase information when the GN algorithm is implemented. Chapter 7 generalizes 

the application of the GN algorithm to the measured RF ultrasound signals and illustrates a 

sample of reconstructed RF signals’ phase. Chapter 8 outlines conclusions and future works. 
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Chapter 2 

Background Review 
 

 

This chapter serves as an outline of human muscular system, muscle injuries, the physics and 

principles of medical ultrasound imaging, and the current technologies used to measure the 

human musculature stiffness mentioned in many literatures. 

 

2.1 Human Muscular System   

The human body contains various muscles used for a number of different purposes. Three 

distinct types of muscles are occurred in the human body: skeletal muscle, cardiac muscle and 

smooth muscle. Skeletal muscles are mainly attached to and cover the bones of the skeleton 

helping them to control all movements of the body. Muscles in the heart are classified as cardiac 

and together with skeletal muscles, are categorized as striated muscles. The primary muscle of 

visceral organs such as the stomach, urinary bladder, blood vessels and respiratory passages are 

known as smooth muscle. Skeletal muscles are the voluntary muscles while cardiac and smooth 

muscles are involuntary. Compare to cardiac and smooth muscles, skeletal muscles are exclusive 

in that they contract just in reaction to a signal generated from a motor neuron (Marieb, 1995; 

Silverthorn, 1998). The ultrasound imaging procedure we are studying targets the skeletal 

muscles. Therefore, for the rest of this chapter cardiac and smooth muscles are ignored.  
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2.1.1 Skeletal Muscle  

2.1.1.1Structure  

Skeletal muscles make up the large mass of muscles in the body, nearly 40% of total body 

weight. Each muscle consists of skeletal muscle tissue which itself is made up of the connective 

tissue, nerve tissue, and blood or vascular tissue (Silverthorn, 1998; U.S. National Cancer 

Institute, 2005). 

     Skeletal muscle tissue is the contractile tissue which comprised of a number of cells that have 

the ability to contract in order to produce body movements. The tissue is highly supplied with 

blood vessels and muscle fibers which are long and slender constitutive cells (Silverthorn, 1998). 

The entire skeletal muscle is surrounded with a protective connective tissue called epimysium. 

The groups of fibers lined up in the muscle are also enclosed with further connective tissue 

called perimysium. These connective tissues protect the muscle and muscle fibers allowing them 

to resist the contraction forces. Commonly, the epimysium and perimysium expand beyond the 

muscle forming a tendon which attaches muscles to the connective tissues of other muscles. 

Typically, a muscle is attached to bones by tendons at both ends. One of the bones remains stable 

while the other end moves when the muscle is contracted (Marieb, 1995; Peachey et al., 1983). 

     When viewed at high magnification, each muscle fiber is made up of thousands of myofibrils 

which are cylindrical collections of contractile proteins. Myosin and actin (also known as thick 

and thin filaments) are two important types of proteins. Muscles contract as a result of myosin 

and actin interactions. During contraction, the thin filaments pulled toward the thick filaments 

causing myofibrils and therefore, muscle fibers to shorten (Marieb, 1995; Peachey et al., 1983; 

Silverthorn, 1998). 

http://en.wikipedia.org/wiki/Muscle_contraction
http://en.wikipedia.org/wiki/Tissue_(biology)
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     Axons of motor neurons meet muscles at a place called the neuromuscular junction where 

they convey messages from brain causing the muscle to contract and relax (Marieb, 1995; 

Peachey et al., 1983). Neurons (or nerve cells) are a type of cells in nervous system that consist 

of a cell body, a long appendage called axon, and branched processes called dendrites where the 

axon terminates. Dendrites are chemical transmitters from one neuron to the next neuron. 

Neurons are categorized as sensory and motor based on the direction in which they transmit 

impulses. Sensory neurons carry impulses from peripheral sense receptors to the central nervous 

system (CNS) while motor neurons transmit impulses from the CNS to organs such as glands 

and muscles causing them to contract and relax (Marieb, 1995; Silverthorn, 1998). 

 

2.1.1.2 Function 

     To explain skeletal muscles’ contraction, it is essential to explain the motor unit first. A motor 

unit is made of a motor neuron and a number of muscle fibers it innervates. If a motor neuron 

fires an action potential (an electrical impulse), all of the muscle fibers that it innervates will 

contract simultaneously, causing the action potential to be produced (Marieb, 1995; Silverthorn, 

1998). 

     Action potential is a self-propagating electrical potential difference that is produced across the 

membrane of nerve or muscle cells when they are adequately stimulated. It reverses the 

membrane potential from about  (resting potential) to mV. This electrical impulse is 

carried down the nerve through a series of action potentials (Lawrence, 2008; Matthews, 2003; 

Silverthorn, 1998). 

     As the nerve fiber branches, the action potential travels down each branch. In turn, the 

connected skeletal muscle fibers will be stimulated and an action potential will be produced on 
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their membrane. In this way, the action potential spreads along the muscle fibers. As more nerve 

branches and additional fibers are activated, the action potential spreads over the entire muscle. 

Upon activation, the muscle contracts (Marieb, 1995). 

     Almost all body movements are due to the skeletal muscle contraction. Joints, bones, and 

skeletal muscles act together to produces obvious movements such as walking and running. 

Some other important functions in the body such as posture control, joint stability, and heat 

production are also performed by muscle contraction. An important by-product of muscle 

metabolism is heat which maintains body temperatures. About 85 percent of body heat is 

produced by the muscle contraction (Plowman & Smith, 2007). 

 

2.1.2 Muscle Injury  

Muscle injuries are certain conditions that affect the skeletal muscles in response to the external 

forces. For example, accidents or overuse can cause muscles to be strained which in turn, causing 

them to swell, bruise or even tear. Muscle injuries vary based on the level of severity. They 

affect movement and functionality of the injured area differently. Appropriate treatment will also 

differ based on the area that is injured and the degree of the injury.   

     By sliding against each other, shortening and lengthening, the muscle fibers facilitate 

movement of skeletal joints. However, if these fibers experience stress, they may respond to 

great pressures by tearing, abruptly contracting, becoming rigid and other effects. 

     Muscle injuries have a variety of signs some of which are visible while others may not be 

instantly noticeable. It can cause inflammation and tenderness in the affected area, or result in 

contusion and bleeding if the injury is severe. Pain can also be felt by moving the injured muscle. 

A doctor can set a detailed physical test to determine the degree of the injury. Common types of 

http://www.medical-look.com/human_anatomy/organs/Skeletal_muscles.html
http://www.medical-look.com/human_anatomy/organs/Skeletal_joints.html
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muscle injuries are muscle strain, muscle cramps and repetitive strain injuries which are briefly 

described below. 

 

2.1.2.1 Muscle Strain 

Strain injury is the result of excessive muscle stretch or powerful muscle contractions which 

causes the muscle fibers to tear. Muscle strain is the most common injury in sports. It usually 

occurs as a result of activities that force the muscle to tighten. The muscle is strained either if it 

is not suitably stretched or warmed up before the activity, or if it is already injured and not 

recovered yet. Lengthening the muscle during muscle contraction, which is known as eccentric 

contraction, can more likely cause the muscle to strain (Garrett, 1996; Garrett, 1990; Walker, 

2007). Usual symptoms of a strain are regional pain, stiffness, and bruising around the strained 

muscle. As a treatment, four steps commonly known as R.I.C.E are taken.  

 Rest: all unnecessary activities, especially those result in pain, are recommended to be 

stopped. 

 Ice: ice which can restrict blood flow to the injury site should be applied. Icing should be 

less than 10–15 minutes and it should be done indirectly by placing a layer of fabric 

between the ice and the injury. 

 Compression: the strained area is suggested to be wrapped. 

 Elevation: the strained area is better to be kept as close to the level of the heart as is 

easily possible. 

In order to decrease the instant inflammation and lessen pain, this immediate treatment is often 

accompanied by the use of nonsteroidal anti-inflammatory drugs such as ibuprofen (Garrett, 

1990; Järvinen et al., 2007). 

http://en.wikipedia.org/wiki/Muscle_fiber
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Garrett%20WE%20Jr%22%5BAuthor%5D
http://en.wikipedia.org/wiki/Symptom
http://en.wikipedia.org/wiki/Joint_stiffness
http://en.wikipedia.org/wiki/Bruising
http://en.wikipedia.org/wiki/RICE_(medicine)
http://en.wikipedia.org/wiki/Nonsteroidal_anti-inflammatory_drugs
http://en.wikipedia.org/wiki/Ibuprofen
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Garrett%20WE%20Jr%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22J%C3%A4rvinen%20TA%22%5BAuthor%5D
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2.1.2.2 Muscle Cramps 

     Cramps are hurtful and annoying muscle injuries caused by sustained contraction or over 

shortening of skeletal muscles (Ylinen et al., 2008; Jones et al., 1990; Silverthorn, 1998). Muscle 

fatigue and body’s depletion of essential electrolytes (e.g., potassium, calcium or sodium 

chloride) are the common causes of skeletal muscle cramps (Marieb, 1995; Hoeger et al., 2008; 

Larson-Meyer, 2007; Jankovic et al., 2007). Hyperflexion, hypoxia (Lance-Adams syndrome) 

and exposure to large changes in temperature, or dehydration are other causes of cramping. It can 

also occur as a side effect of medications specially tablets and pills which cause the elimination 

of fluid from the body resulting in dehydration. Muscle cramps may also be occurred due to 

pregnancy, kidney disease, thyroid disease, or many other complications (Benjamin et al., 2005; 

Jankovic et al., 2007). 

     Skeletal muscles function as opposing pairs. i.e., when one muscle contracts the opposing 

muscle in the pair has to be relaxed. Cramps may occur when muscles cannot relax 

appropriately. It happens when myosin and actin filaments are kept attached to each other. In 

skeletal muscle, myosin filaments need to obtain enough energy and magnesium in order to 

detach from the muscle and allow relaxation. Insufficient quantities of either of these causes the 

myosin remains attached to the actin and therefore, cause the muscle cramps (U.S. National 

Cancer Institute, 2005). 

     A cramp is characteristically painful and severe. Severe cramps which are accompanied with 

soreness and swelling can continue up to several days after the cramp has gradually lessened 

(Larson-Meyer, 2007). During the cramping, the knotted muscle might feel very firm.  

     Some sort of muscle cramps such as those occurred due to fatigue can be treated by stretching 

and massage, it can be painful though (Hoeger, et al., 2008; Jones et al., 1990; Marieb, 1995). In 

http://www.mamashealth.com/mcramp.asp
http://en.wikipedia.org/wiki/Skeletal_muscle
http://www.google.ca/search?tbs=bks:1&tbo=p&q=+inauthor:%22Joseph+Jankovic%22
http://en.wikipedia.org/wiki/Hyperflexion
http://en.wikipedia.org/wiki/Hypoxia_(medical)
http://en.wikipedia.org/wiki/Pregnancy
http://en.wikipedia.org/wiki/Kidney
http://en.wikipedia.org/wiki/Thyroid
http://www.google.ca/search?tbs=bks:1&tbo=p&q=+inauthor:%22Joseph+Jankovic%22
http://www.google.ca/search?tbs=bks:1&tbo=p&q=+inauthor:%22Joseph+Jankovic%22
http://en.wikipedia.org/wiki/Antagonist_(muscle)
http://en.wikipedia.org/wiki/Myosin
http://en.wikipedia.org/wiki/Actin
http://en.wikipedia.org/wiki/Magnesium
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some cases ice packs can help relaxing the tense muscles while heating pads can be effective in 

other cases (Järvinen et al., 2007). If cramp is occurred due to dehydration, then fluids with 

electrolytes such as sports drinks can balance the fluid loss (Benjamin et al., 2005; Jankovic et 

al., 2007). Those muscle cramps occurred as a side effect of certain medications can be treated 

by adjusting the dosages or changing the medication. Treating the illness is the solution when the 

cramps are caused by an illness.  

 

2.1.2.3 Repetitive Stress Injury 

Repetitive strain injury (RSI) is the musculoskeletal and nervous systems’ injury which may 

occur as a result of repetitive tasks, forceful actions (Helliwell, 1992; Sommerich, 1993), 

mechanical compression (e.g., pressing against hard surfaces), continual or uncomfortable 

positions, or muscle fatigue. These injuries happen when excessive pressure is applied on a part 

of the body, resulting in inflammation (pain and swelling), toughness of the muscles, or tissue 

damage. Those individuals who are involved with repetitive tasks, such as writing, playing 

musical instruments, computer work, and other cyclic tasks are more affected by RSIs. Over a 

long time, repetitive stress injuries can cause temporary or permanent damages to different 

tissues such as muscles, nerves, tendons and ligaments (Typer, 1994; Fry, 1986; Solly, 2007). 

     Symptoms of RSIs include tingling, numbness, pain and stiffness in the affected area, feelings 

of weakness or fatigue and clicking sensation (Typer, 1994). Reducing or stopping the motions 

or activities that cause symptoms are the usual treatment of RSIs. Taking breaks to give the 

injured area time to rest, doing stretching and relaxation exercises, applying ice to the affected 

area to lessen inflammation, and using medications such as pain relievers are other types of 

treatments (Järvinen et al., 2007). Ergonomic adjustments of the workstation are also 

http://www.google.ca/search?tbs=bks:1&tbo=p&q=+inauthor:%22Joseph+Jankovic%22
http://www.mamashealth.com/bodyparts/rsi.asp
http://en.wikipedia.org/wiki/Musculoskeletal
http://en.wikipedia.org/wiki/Nervous_system
http://arthritis.about.com/od/analgesic/a/factsanalgesics.htm
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recommended since prolonged and repetitive work at this area can create RSIs, particularly of 

hand and wrist (Aarås, 1994). 

 

2.1.3 Diagnosis and Monitoring by Ultrasound 

Muscle injury and common examples of it were described above. Statistics show that many 

people experience muscle injuries. For instance: 

 30 to 80% of those people carrying out repetitive tasks without work breaks are involved 

with some sort of RSIs.  

 Within a three year period, 60% of the workforces were reporting symptoms of muscle 

cramp or pain due to utilizing the new technology (Typer, 1994). 

In some cases, quickly diagnosis is necessary while delay would lead patient to more serious 

problems. For example, any warning signs of RSIs even symptoms look as they come and go 

shouldn’t be ignored or they may conduct to permanent or serious problems. If RSIs are not 

treated, they can prevent patient from doing simple everyday tasks such as doing sports, playing 

music, and participating in other favorite activities. 

     Based on these facts, muscle injuries should be diagnosed and monitored properly and treated 

in an appropriate manner. The diagnosis of muscle injuries is usually made by history and 

physical examination. The therapist will take the patient medical history and ask a number of 

questions to figure out the problem.  

     Ultrasound is a good monitoring tool since it can represent information about the stiffness of 

the muscle. As stated earlier, besides pain and soreness, stiffer muscle is a noticeable symptom 

commonly observed in an injured muscle. The amount of stiffness can be measured and revealed 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Aar%C3%A5s%20A%22%5BAuthor%5D
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by the means of ultrasound techniques. Ultrasound may in fact, give more accurate results if it is 

used as a tool for monitoring diseased muscles.  

 

2.2 Ultrasound Imaging   

A basic ultrasound imaging system contains a transducer and associated electronics such as a 

display. It utilizes electrical-to-acoustical transducers to produce pulses of high frequency sound. 

These pulses are transmitted through a patient’s body and reflected back at organ boundaries and 

complex tissues. The transducer is again used to detect these created echoes. The ultrasound 

imaging system processes the echoes received by the transducer and provides a grayscale image 

of the body structure on a display. Each point in the image corresponds to the anatomic location 

of an echo-generating structure (Prince & Links, 2006).   

     Ultrasound itself is sound with frequencies higher than the highest frequency that can be 

heard by humans. Any sound above about 20 KHz is known as ultrasound. Medical ultrasound 

systems operate at much higher frequencies, typically between 1 and 10 MHz (Prince & Links, 

2006).  In the following section, the basic physics behind the ultrasound, ultrasonic transducer, 

and the most common ultrasound imaging modalities are described. 

 

2.2.1 Ultrasound Physics  

Ultrasound is an acoustical pressure wave that propagates through materials via compression and 

expansion of the material. These waves can have different patterns. As an acoustic wave 

propagates, small particles of the material move back and forth in order to generate the 

compression and expansion of the acoustic wave. In medical ultrasound, where waves propagate 

only in soft tissues, these particles move back and forth in the same direction that the acoustic 
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wave is traveling. When this happens, the acoustic wave is called a longitudinal wave or 

compressional wave. Harder materials also support shear waves or transient waves, in which the 

particles move at the right angles to the direction of acoustic wave propagation (Prince & Links, 

2006).   

     Ultrasound imaging technology is conducted by the physics of sound propagation. The first 

important property of sound, which is the acoustic velocity, and some physical properties of the 

interaction of ultrasound with tissue are outlined in the following subsections (Hedrick, Hykes, 

& Starchman, 2005). 

 

2.2.1.1 Acoustic Velocity 

Acoustic velocity is the speed of sound transmission in a medium, which is normally represented 

by . The medium through which the sound is travelling determines the acoustic velocity. As 

such, the speed of sound propagation can vary while it is travelling through tissue (Hedrick et al., 

2005). 

     Density (mass of the medium per unit volume) and compressibility (the fractional decrease in 

volume as a result of pressure application) are two physical characteristics of a medium that can 

affect the acoustic velocity. An increase in density or compressibility will oppose the sound 

propagation through the medium. Numerically, the acoustic velocity is inversely proportional to 

the square root of both the density and compressibility of the medium. However, a variation in 

density is often coupled with a greater and opposing variation in compressibility. Therefore, 

compressibility is considered as the dominant factor. In overall, the effect is summarized by the 

statement that, as the density increases the velocity of sound through a medium increases. 
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Combining compressibility  and density  into one equation, the acoustic velocity  for a 

particular medium is defined by 

 

  (2.1) 

 

The velocity of sound in air, bone and soft tissues is 330, 4080 and around 1500 m/s, 

respectively (Hedrick et al., 2005). 

 

2.2.1.2 Attenuation  

When an ultrasound wave is transmitted into the body, it interacts with tissues based on their 

characteristics. The result of these interactions is recorded for diagnosis in the form of reflected 

ultrasound waves (echoes) (Bhargava, 2002). Reflection, scattering, refraction, diffraction and 

absorption are the most common interactions. By redirecting the energy of the ultrasonic beam, 

these interactions, which are termed as attenuation, decrease the amplitude and intensity of the 

beam (Hedrick et al., 2005). Attenuation mostly includes the reflection and scattering of the 

sound as it crosses tissue boundaries or heterogeneous tissues, and the absorption (conversion of 

ultrasonic energy to heat) of the sound as it travels. From theses interactions, absorption is the 

dominant factor contributing to the ultrasound attenuation in soft tissues (Kremkau, 2006). 

 

2.2.1.3 Acoustic Impedance   

Acoustic impedance is the product of density and acoustic velocity. It measures the resistance to 

sound traveling through the medium (Hedrick et al., 2005). When the ultrasound wave crosses an 

interface (e.g. the boundary between different tissue types), a portion of the incident will be 
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passed to the second tissue while the rest is reflected back to the first tissue due to the difference 

in tissues’ acoustic impedances. The impedance ratio between the two tissues specifies how 

much of the incident sound wave is reflected back to the first tissue (Kremkau, 2006). 

Visualization of soft tissue structures with an ultrasonic beam is the result of this change in 

acoustic impedance at a biological interface (Hedrick et al., 2005). 

 

 2.2.1.4 Reflection  

Ultrasound images are created from echoes generated by reflections of ultrasound waves at tissue 

interfaces and by scattering resulted from small irregularities or inhomogeneities within the 

tissue.  

     In diagnostic ultrasound, reflection is the major interaction. If a sound beam incidence is 

conducted to a smooth interface larger than the beam width, a portion of it will be reflected 

toward the sound source due to different impedances. These large interfaces are called specular 

reflectors which constitute the major organ outlines in ultrasound images. At these boundaries, 

the angle of sound beam incidence and reflection are the same. These angles are defined with 

respect to a line drawn perpendicular to the interface surface (Figure 2.1). The maximum 

detection of reflected echo can be obtained by orienting the transducer in a way that the 

generated sound beam hits the interface perpendicularly, and in return, the reflected wave passes 

the same path back toward the transducer (Figure 2.2) (Hedrick et al., 2005). 
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2.2.1.5 Scattering 

Another important interaction between ultrasound and tissue is scattering, or nonspecular 

reflection. Internal pattern of organs in the image is provided as a result of scattering. Scattering 

occurs at the small boundaries with physical dimensions around the size of wavelength or even 

smaller. A boundary (interface) of this size is often called as a scatterer. Each scatterer acts as a 

Figure 2.2 Reflection caused by a sound wave striking a specular reflector at normal incidence; 

the acoustic impedances of the media that compose the interface determine the relative 

intensities of the transmitted and reflected waves (Hedrick et al., 2005). 

Figure 2.1 Reflection caused by a sound wave striking a specular reflector at an angle; 

the resulting angle of relection is equal to the angle of incidence (Hedrick et al., 2005). 
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new separate sound source and reflects the sound in all directions independent of the direction of 

arriving incident. The scattered ultrasound has much weaker intensity than specular reflection 

(Hedrick et al., 2005). Figure 2.3 demonstrates the nonspecular reflection.  

     An ultrasound pulse simultaneously encounters many scatterers at different positions in its 

path causing several echoes to be generated. During scanning, the resulted echoes interact 

constructively or destructively with each other making a displayed grainy appearance that 

illustrates the interference pattern of the scatterer distribution scanned. This phenomenon is 

known as acoustic speckle and echoes generated at the position of scatterers are referred to as 

speckle echoes (Kremkau, 2006).  

 

 

FIGURE 2. 1NONSPECULAR REFLECTIONS (SCATTERING) 

  

 

2.2.2 Ultrasonic Transducer Elements and Probes 

An ultrasound transducer is an instrument that converts electrical pulses into ultrasonic pulses, 

and conversely, ultrasonic echoes into electrical echoes (Hoskins, Thrush, Martin, & 

Figure 2.3 The incident wave is simultaneously encounters many scatterers at any location in its travel and 

reflected back resulting in nonspecular reflections; only the scatterings that travel in similar path but in 

opposite direction of incident wave are detected by the ultrasound transducer.  



19 
 

Whittingam, 2003). The number of transducers and the way they are arranged in an ultrasound 

probe varies depending on the intended application. All ultrasonic probes, however, contain at 

least one transducer component made up of typically a piezoelectric material (lead zirconate 

titanate or PZT), matching layer(s) and a backing layer (Hoskins et al., 2003). The piezoelectric 

material exhibits a strong piezoelectric effect in a way that an applied electric field produces 

mechanical displacement, which consequently causes an acoustic wave. It also satisfies the 

reciprocal property that a mechanical displacement induces an electric potential which can sense 

an acoustic wave (Prince & Links, 2006). An example of ultrasonic transducer is shown in 

Figure 2.4. As it can be seen, matching layers are located at the face of transducer after PZT and 

just before the tissue that aimed to be imaged. These layers are used to match the impedances of 

PZT and the human tissue. If not employed, the majority of sound wave will be reflected back to 

the tissue at the PZT-tissue boundary due to the high impedance of PZT (Hedrick et al., 2005). 

When the sound wave is initiated, it moves in both forward and backward directions into the 

tissue and the PZT material, respectively. The backing layers are employed to remove the 

backward travelling wave which hits the back face of transducer and reflects toward the tissue. 

This backward travelling wave should be removed before it reaches the tissue boundary since it 

is not obtained from within the tissue aimed to be imaged (Prince & Links, 2006). Therefore, the 

backing layer should have an acoustic impedance close to that of the PZT material so that the 

wave completely transmits from PZT to backing layer. Besides, it should have a high absorption 

coefficient to absorb the backward propagating wave preventing it from entering the PZT 

material again (Hedrick et al., 2005). 
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2.2.3 Imaging Modalities  

Ultrasound imaging can be used for a number of different applications which are all involved 

with the principles of sound propagation. Currently, various imaging modalities are used to 

provide a helpful tool to practitioners. The most common ultrasound imaging modalities are A-

mode, B-mode and M-mode which are explained in the following subsections.   

 

 2.2.3.1 A-Mode   

A-mode or amplitude mode is the simplest ultrasound imaging mode. In A-mode imaging, 

spatial information is one-dimensional since pulses are transmitted in only one direction. In this 

mode, the amplified amplitudes of the received echoes are plotted on the vertical axis of the 

oscilloscope’s screen as a function of the transient time represented on the horizontal axis 

(Mantke & Peitz, 2007). In order to create and display a sequence of these signals, the transducer 

is repeatedly fired. The time between successive firings (excitations) of the transducer is called 

Figure 2.4 Construction of a single-element transducer. Reproduced from (UKessays.com) 
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the pulse repetition period and is shown by  (Prince & Links, 2006). An example of an A-

mode scan and the resulting image is represented below in Figure 2.5.  

 

     

FIGURE 2. 2 AN EXAMPLE OF A-MODE SCAN AND ITS CORRESPONDING IMAGE 

 

 

2.2.3.2 B-Mode  

In B-mode or brightness mode imaging, the two-dimensional spatial information is provided. In 

this mode instead of deflections along the vertical axis, the amplitudes of echoes are plotted as 

pixel intensity (brightness) which is graded by means of a gray-scale. The generated echoes will 

yield a line of pixels the distance of which will represent the transducer distance to the various 

interfaces. The direction of the pulse-echo train is changed mechanically such that it can provide 

a cross-sectional image of a part of body (Mantke & Peitz, 2007). Traditionally, this was 

achieved by stirring or rotating the transducer laterally along the skin surface while A-mode scan 

lines were captured. However, newly designed array ultrasonic probes contain a number of 

transducers which can create multiple A-mode scan lines (Hoskins et al., 2003). On the screen, 

lines of pixels are arranged in parallel producing a two-dimensional image of the viewing plane 

Figure 2.5 An example of A-mode scans (left) and the resulted image (right). Reproduced from (Silver, 2009) 
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(Mantke & Peitz, 2007). More specifically, the resulted image represents both lateral 

(perpendicular to beam direction) and axial (parallel to beam direction) information (Hoskins et 

al., 2003). Figure 2.6 represents this type of scanning.       

 

       

                        FIGURE 2. 3 AN EXAMPLE OF B-MODE SCAN AND ITS CORRESPONDING IMAGE         

 

2.2.3.3 M-Mode  

The M-mode, also known as motion mode, is similar to the A-mode in that it provides one 

dimensional spatial information. In this mode, the direction of pulse-echo train remains fixed 

providing a single straight, line of sight of any motion taking place in a direction towards or 

away from the transducer. Similar to B-mode scanning, the amplitudes of received echoes are 

plotted by pixel brightness. Vertical and horizontal axis of the screen represents the distance of 

the echoes from the transducer and the transient time, respectively. M-mode imaging is 

particularly used when examination of a rapid interface motion such as cardiac valves motion is 

intended (Mantke & Peitz, 2007). 

Figure 2.6 An example of B-mode scans (left) and the resulted image (right). Reproduced from (Hoskins et al., 

2003; Tsui et al., 2007). 
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FIGURE 2. 4 AN EXAMPLE OF M-MODE IMAGE 

 

 

     The basic principles of ultrasound as a medical imaging modality have been explained above. 

As an imaging modality, ultrasound can measure various quantities. It may also be used as 

technique to study muscle. Specifically, it can be used to track muscle motion and to measure 

muscle structure (Hodges et al., 2003; Farron et al., 2009; Larsson et al., 2009; Neves et al., 

2007). Ultrasound techniques are applied to a variety of applications. A relatively new 

application is elastography which is an area where the ultrasound is used for muscle 

strain/structure measurements.   

 

2.3 Elastography: A Technique for muscle strain measurement  

Elastography is a relatively new imaging technique that provides strain images of soft tissues 

under the compression. Strain indicates the relative deformation in such a way that stiff tissue 

shows less strain compare to the softer tissue while they are both under identical force. Strain 

measurement is important since it is related to the stiffness and as discussed earlier, many 

2.7 An example of M-mode image. Reproduced from (Mayo & Doelken, 2009) 



24 
 

muscular disorders are often correlated with changes in tissues’ stiffness. New quantitative 

information about the stiffness of the tissues that would not be achievable with current imaging 

modalities can be provided by elastography (Souchon, 2007; Peng et al., 2006; Bae et al., 2007). 

Elastography can be done by different imaging techniques such as ultrasound, magnetic 

resonance imaging, optical coherence tomography, and X-ray computed tomography (Varghese, 

2009). In this thesis, the focus is on ultrasound-based elastography since it is more commonly 

used for clinical elasticity imaging (Greenleaf, Fatemi, & Insana, 2003). The following 

subsection describes strain and different types of ultrasound elastography. 

 

2.3.1 Strain    

The term strained described in this section is a mechanical property of the tissue and is different 

from muscle strain described as one type of muscle injuries.  

     Strain is defined as the deformation of an object, normalized to its initial shape. The only 

possible deformation for a one-dimensional object (i.e. an infinitesimally thin bar) is lengthening 

or shortening. This is illustrated in Figure (2.8). Strain, for which the symbol  is used, can thus, 

be written as (Ophir, 1997; D’hooge, 2000):              

                                    

  (2.2) 

 

where  is the length of the object after deformation and 
 
is its initial length. It is a 

dimensionless quantity since it is the change in length relative to its initial length. By lengthening 

an object, the strain will become positive whereas shortening causes the object to have a negative 

strain (D’hooge, 2000). 
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FIGURE 2. 5 DEFORMATION OF ONE DIMENTIONAL OBJECT 

  

 

 2.3.2 Ultrasound-based Elastography 

Ultrasound elastography falls into three main groups: compression elastography (strain imaging), 

transient elastography, and vibration sonoelastography (Souchon, 2007). The focus of this 

research is on compression elastography type. This choice was made because in this 

methodology the process of strain measurement involves no external apparatus such as a 

mechanical vibrator to produce shear waves for shear wave elastography (Greenleaf et al, 2003). 

In the following sections, the three different types of ultrasound-based elastography are 

explained.  

 

2.3.2.1 Compression Elastography 

Compression  elastography  is  an  imaging  technique  that  is  based  on  the  static  deformation  

of an elastic material (Gao, Parker, Lerner, & Levinson, 1996). It is based on radio-frequency 

(RF) ultrasonic signals captured by ultrasound scanners.  

     In this technique, the tissue under inspection is compressed as a result of force application 

causing RF signals being compressed and displaced. Each particle in the tissue along the 

Figure 2.8 Deformation of a one-dimentional object which is limited to lenghtening and shortening (D’hooge, 2000). 
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direction of ultrasonic beam propagation is displaced to some extent. The local displacement of 

each particle induces a shift in the time domain of the corresponding echo in the backscattered 

signal as a result of the variation made in the time of flight. The resulted time shift is directly 

proportional to the local displacement and is given by the variation in the round-trip time (RTT) 

of flight of the ultrasonic signal by (D’hooge, 2000; Souchon, 2007).   

                             

  (2.3) 

 

where  is the acoustic velocity, which is assumed to be constant,  is the local displacement 

of the tissue at a depth corresponding to time  along the ultrasound beam direction and  is 

the corresponding time shift induced at time  in the domain of the echo generated at this time. 

This process is described in Figure 2.9.  

 

 

FIGURE 2. 6 PRE- AND POST-COMPRESSION RF SIGNALS AND TIME SHIFT REPRESENTATION 

 

2.1.2.1.1 Time Shift Estimation: 

In order to estimate time shift  pre- and post compression A-line pairs (RF signal pairs) are 

acquired. An  A-line  pair  consists  of  the original  A-line  which  is  acquired  when  the  tissue 

Figure 2.9 Pre- and post-compression RF signals; displacement of the tissue (particles) induces time shifts. Reproduced from 

(Souchon, 2007) 
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is slightly pre compressed by the ultrasound probe to make sure a good contact is established,  

and a  compressed  A-line  which  is  obtained when the tissue is axially compressed an 

additional increment (usually about  1%  of  the  target  length). Compressive stress causes the 

post compression A-line to become shorter than the pre compression one. Therefore, in order to 

have the same length, the post compression A-line is zero-padded (Gao et al., 1996; Hein et al., 

1993). A lines are then, divided into short segments called windows, and the time delay  

between corresponding windows is estimated via cross-correlation process, which is a process 

that quantitatively measures the similarity between two delayed signals. The location where the 

cross-correlation function takes its maximum value is the estimate of the time shift between the 

two windows (Gao et al., 1996; Souchon, 2007). In the following, this process is described 

mathematically  

 

2.3.2.1.1 Cross Correlation Function  

The cross correlation function is defined as (Greenleaf et al., 2003; D’hooge, 2000) 

 

  (2.4) 

                            

where  and  are the pre- and post-compression RF signals (A-line pair), respectively,  is 

an integration variable, and  is the time corresponding to the location of the window. In this 

integration,  is multiplied by a window function  and cross correlated with  which is 

windowed similarly.  

     After estimating the times shifts, local displacements of different particles in the tissue can be 

estimated as follows  
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  (2.5) 

 

where  is the speed of sound and  and  are the estimated time shift and local 

displacement of the tissue at a point corresponding to the time  respectively (Greenleaf et al., 

2003). Symbol  is used to indicate the estimated values. 

     The time scale is presumed to be relative to the face of the transducer. Thus, at the beginning 

of an A-line pair, the relative shift of the signal is very small, while it becomes larger towards the 

end. In general, time shift in the compressed A-line relative to the uncompressed A-line increases 

from  to a . If the elastic modulus differs somewhere along the line and the tissue 

becomes stiffer, the amount of local displacement at that point will become small and thus, little 

or no increase will be observed in the time shift of related windows (Gao et al., 1996;  Ophir et 

al, 1991; Hein et al., 1993). 

     Estimation of time delays  is one approach that is normally used to further estimate the 

local displacements  and strain. Instead of time shift estimation, phase shift measurements 

can also be used to further estimate the local displacement. Induced time shift changes the phase 

information of A-lines causing a phase shift to be created between the pre- and post-compression 

A-lines at different points in tissue. Measurement of this phase shift is of interest in thesis. In 

chapter 4, this approach will be discussed in detail. The following section provides an 

explanation of the strain estimation in this technique.  
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2.3.2.1.2 Strain Estimation 

Axial strain  is given by the gradient of the axial displacement in the axial direction  where

 (Souchon, 2007; Greenleaf et al., 2003).  

                           

  (2.6) 

 

In Eq. (2.6),  is the estimated local displacement at a depth corresponding to time  and  

is the difference between local displacements of any two windows.  is the original difference 

between the corresponding two windows which is equivalent to  in time domain. If the strain is 

aimed to be calculated with respect to the tissue depth then, the first ratio shown in Eq. (2.6) 

should be applied. If, however, it is intended to be estimated with respect to the time domain 

then, the second ratio, where the coefficient  is incorporated, will be used.  

     Particularly, the gradient is obtained using two consecutive windows separated by a window 

shift  as (Greenleaf et al., 2003; Ophir et al, 1991) 

 

  (2.7) 

 

where  is the amount of displacement of the   window and  is the strain 

estimate for segment pair .  is the original difference between the two consecutive windows 

of  and . The strain at first depth increment, when the first two consecutive windows are 

considered, is shown in Figure 2.10. 
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     After processing one A-line pair, assuming that the A-lines are segmented into  windows, a 

number of displacements,  through  corresponding to the  windows will be acquired 

(Greenleaf et al., 2003; Ophir et al, 1991). Then, the related strain profile is represented as a one-

dimensional graph which demonstrates the strain as a function of depth (or corresponding time) 

in the tissue. Similarly, for all A-line pairs the process can be repeated and an array of strain data 

called strain image (or elastogram) can be obtained (Ophir et al, 1991; Ophir et al, 1997; 

Souchon, 2007). 

     The strain needs not necessarily be estimated by the two consecutive windows. It can be 

estimated by any two different points in the depth like  and  in the following way: 

 

  (2.8) 

 

Figure 2.10 Strain is estimated using the local displacements in the first two consecutive windows (Souchon, 2007). 

Post-Compression RF Signal 

Pre-Compression RF Signal 
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where  and  are the local displacements of windows corresponding to time  and   

respectively.  

     In the following, it is tried to show the concept of strain and its relationship to the stiffness of 

a tissue under compression. As explained earlier, time shift of the compressed A-line relative to 

the uncompressed A-line increases from  to . Consequently, the amount of local 

displacement of the particles along the post-compression RF-signal increases linearly from  to 

. A typical plot of local displacements of particles with respect to their position (depth) in 

a normal tissue under compression is shown in Figure 2.11. Corresponding strain curve is 

obtained by taking the gradient of the displacement curve.  

 
   

                                                               
       

          
                                                                                                      

                                                                                                                                 

                                                                                                                  
        

                                                                                                  

                                                                         
    

                                                                                                          
 

 

 

     If however, the tissue becomes stiffer, similar to what happens to an injured muscle, then the 

slope of displacement curve represented in Figure 2.11 will reduced and the strain will become 

Figure 2.11 Curve of the local displacements of the particles with respect to their position (depth) in a compressed normal tissue 

(left ) and corresponding strain curve (right). 

FIGURE 2. 7CURVES OF DISPLACEMENT AND STRAIN VERSUS DEPTH IN A NORMAL COMPRESSED TISSUE 
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smaller (Figure 2.12). Lower strain indicates that the part of body under examination has become 

stiffer.  

 

                                                               
        

     

                                                                                                   

                                                                                                                 

                                                                                                  

                                                                                                                                                                                                                                                           

 

 
 

2.3.2.2 Transient Elastogrsaphy 

For the last 10 years, a number of methods have been proposed to estimate the viscoelastic 

properties of soft tissues by means of low-frequency (LF) shear wave propagation. By using LF 

vibration, quantitative values of shear elasticity and viscosity can be obtained and relative 

stiffness images can be made (Catheline, Wu, & Fink, 1999). Transient elastography is a 

technique which functions in this way. 

     In this technique, a low-frequency transient (pulsed) vibration (~  Hz) is applied to 

produce displacements in tissue, which are then detected by pulse-echo ultrasound. On one side 

of the tissue, a small circular piston is positioned on the surface (on a vibrator) to generate 

vibrations and on the opposite side, the ultrasonic transducer is placed, with a common axis with 

Figure 2.12 Curve of the local displacements of the particles with respect to their position (depth) in a compressed injured muscle 

(left) and corresponding strain curve (right). 
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the vibrator, to receive and represent echoes. In this technique, just tissue motions 

(displacements) caused by the shear wave propagation are selected and the numerical values of 

elasticity and viscosity are inferred from them. These numerical values are in fact, calculated 

based on the phase velocity of the shear waves (~ 5 m/s). At the end, relative stiffness image 

(slowness or inverse velocity image) of a tissue with different elasticities is made. Different 

shear wave velocities in different media result in an image with different slowness lines. In the 

image, the region where the velocity is lower (the soft medium) is bright, while the part where 

the velocity is larger (the hard or stiffer medium) is dark (Catheline, 1999; Taylor, 1999). 

     In the next section vibration sonoelastography, another type of ultrasound-based elastography, 

is explained. Before explaining this technique, it is worth to describe the Doppler Effect.  

     The Doppler Effect is the change in the frequency of sound caused by the relative motion of 

the source (ultrasound transducer) and target (tissue). Due to the relative velocities of the source 

and target, each received pulse is expanded or contracted having a different frequency with 

respect to the transmitted pulse. In medical ultrasound, the Doppler Effect is noticed in pulse-

echo mode where the transducer acts as both the source of the sound and the receiver of the 

Doppler-shifted echoes reflecting back from the tissue. This is normally done by a transducer 

with two separate crystals, each performing one of these functions. Similarly, the target (tissue) 

acts as both a moving receiver and a moving source which generates echoes returning to the 

transducer. Therefore, the echo received by transducer will be shifted as a result of both a 

moving receiver and a moving source. Doppler frequency obtained in this mode is twice the 

Doppler frequency obtained in either case alone and is shown by  

    

  (2.9) 
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where  is the source (transducer) frequency,  is the acoustic velocity,  is the velocity of 

moving object, and  is the angle between direction of target motion and ultrasonic beam 

direction (Prince & Links, 2006). 

 

2.3.2.3 Vibration Sonoelastography 

Sonoelastography is a rapidly developing ultrasound imaging technique that is mostly used for 

visualizing hard tumors in tissues. In this technique, a colour flow Doppler system along with 

external mechanical harmonic excitations (instead of acoustic impulse excitations) is applied to 

represent the elastic properties of tissue (Parker, Gao, Alam, Rubens, & Lerner, 1996). A low-

amplitude, low-frequency vibration (less than 0.1 mm displacement and around 100 Hz) is 

externally applied to excite internal vibrations within the tissue. Then, in order to image the 

resulting vibration pattern, real-time Doppler techniques are utilized. A stiff tissue, such as a 

hard tumor or an injured muscle, beside the softer tissues (e.g., normal tissues) disturbs the 

normal vibration eigenmode (one of the normal vibrational modes of an oscillating system) 

pattern causing its amplitude to be reduced. This forms the basis for stiffness detection using 

sonoelastography (Gao, 1996; Taylor, 1999; Parker, 1996). 

     Normally, an audio speaker or a piston shaker is used as the external source to provide the 

low-frequency vibration. Doppler techniques are applied to estimate the vibration amplitude 

within a tissue under inspection. In gray scale images obtained by this technique, high amplitude 

vibration, corresponding to the softer tissue are bright and lower amplitude vibration, resulting 

from stiffer tissue is dark (Taylor, 1999; Parker, 1996). 

 

 

http://en.wiktionary.org/wiki/vibrational
http://en.wiktionary.org/wiki/oscillating
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2.4 Focus and Summary of the Thesis 

As explained in this chapter, information about stiffness (strain) of a tissue can be obtained with 

elastography using different imaging techniques. In clinical applications, the most commonly 

used imaging technique is an ultrasound. Among ultrasound-based elastography techniques, 

ultrasound compression elastography is chosen in this work. In this technique, a tissue is 

compressed while several RF signals are generated. Each of these RF signals becomes shorter (in 

time or depth) compare to the previously captured one due to time (phase) shifts occurred 

between them. Normally, resulted RF signals are considered as pairs and called RF signal pairs, 

where the first signal in each pair is called pre-compression RF signal and the second one is 

called the post-compression RF signal. This thesis aims to accurately measure the created phase 

shift between ultrasound pre- and post-compression RF signals during the compression process. 

It is this phase shift which is of interest and can be further used to provide displacement and 

strain information of the tissue. In the next chapters, the method by which the phase shift is 

measured will be explained. Then, different conditions and parameters that can affect this 

method causing the phase outcomes to be less accurate will be outlined. At the end, a novel 

approach for ultrasound phase reconstruction will be proposed by which the noise and 

unexpected fluctuations can be removed. It will be shown that this approach can act as a filter. 
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Chapter 3 

Review of Data Acquisition Method 
 

 

The following chapter addresses the ultrasound imaging system used in the research done by 

Jason Silver in Department of Systems and Computer Engineering at Carleton University (Silver, 

2009). It provides a description of the system itself, the ultrasound signals that the system is 

capable of emitting, and the real data measurements used throughout the research. This thesis 

uses measurements made by Jason Silver using his experimental setup. 

 

3.1Ultrasound Imaging System 

In the research run by Silver, a medical ultrasound imaging system (Model: Picus, ESAOTE 

Europe, Maastricht, Netherlands) was used, which was accompanied by an Asus digital signal 

processing computer running Windows XP. The computer ran ART.LAB, the software that was 

used to both view and store data. The Picus machine used is shown in Figure 3.1. 

 

3.1.1 Ultrasound Probe 

The ultrasound probe applied includes a 40  linear array of transducers (Model: L10-5). The 

probe is contains four major layers and includes 127 individual transducers. The first layer 

contains the transducers made-up of piezoelectric crystals. The next two layers are impedance 

matching layers aimed to optimize the ultrasound waves’ transmission into and out of biological 

tissue. The last layer is an acoustic lens utilized to focus ultrasound waves into the medium under 

inspection. 



37 
 

 

  

 

3.2 Ultrasound Signal Specifications and Operation  

The ultrasound system samples the received signal every 0.03 µs. The center frequency of the 

transmitted ultrasound signals varied from 2.7-12.5 . The system comprises of three major 

imaging modalities: M-mode, B-mode and Fast-B mode. The number of scan lines applied 

differs based on the acquisition mode. An M-mode obtains only a single line from a single 

location. Therefore, an M-mode frame has a single scan line. A B-mode frame obtains 127 scan 

lines from all 127 transducers in the linear array probe. Lastly, a Fast-B mode frame obtains 14 

scan lines. 

Figure 3.1 Picus ultrasound hardware. Reproduced from (Silver, 2009) 
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     The pulse repetition frequency (PRF) differs according to the imaging mode and is analogous 

to the frame rate. The frame rate is equal to the repetition rate of a signal from a single specific 

transducer identified as a line of sight. As a result, a frame is defined as follows: M-mode frames 

contain one scan line, Fast-B mode frames contain 14 scan lines and B-mode frames contain 127 

scan lines.  

     The maximum frame rate in M-mode operation is 980 Hz. A frame rate of up to 30 Hz is 

reachable in B-mode and the maximum frame rate of Fast-B mode is 687 Hz. In M-mode, a 

single scan line over time is captured. In B-mode, for every temporal sample 127 scan lines are 

achieved. In B-mode and M-mode, axial signal acquisition is feasible for an overall of about 35 

 in depth while in Fast-B mode 30  in depth is acquired. These values can change based 

on the acoustic velocity in the material(s) being measured. Based on the signal acquisition of the 

system, 5.66 seconds of data can be continuously captured. 

     In this thesis, the focus is on the M-mode imaging and the simulation (explained in chapter 4) 

is done based on this acquisition mode.  

 

3.3 Software and Data Format  

The ultrasound system used permitted to have access to any recorded digitized ultrasound RF 

signal. ART.LAB used to store data in a “.zrf” file format. This format was created by Esaote 

and permitted for signal analysis with Matlab by a function called “readzrf.m” which was 

included with the ultrasound hardware. The ART.LAB software, “.zrf” file format and 

“readZRF.m” function are described in the following. 

 

 



39 
 

3.3.1 Arterial Analyzer (ART.LAB) Software 

All data were stored by ART.LAB system. The ART.LAB (arterial analyzer) offers a real-time 

software based echo system extension and is designed for easy and accurate measurement of 

blood vessel properties by means of ultrasound. Its signal processing is based on RF-signal 

processing algorithms. The basic ART.LAB signal processing object is an RF-matrix which 

consists of several RF-signals. During real-time acquisition, the RF-matrices are stored in a 

circular buffer in the internal memory of the ART.LAB processing unit. In circular buffer the 

data is stored in a file with a “.zrf” extension.  

 

3.3.2 Data File Format with “.zrt” File Extension 

The data file with “.zrf” extension is formatted as follows: File header, Signal processing 

settings, Login information, Z-data matrix, RF-data matrix and Checksum. In file header, data 

about the file type, version, trigger and size are included. The signal processing settings 

encompass data about the way of data collecting. Information about machine software settings, 

ROI and information about a variety of options unique to an ART.LAB application are contained 

in this section. Details of the patient the data were collected on such as name, weight, blood 

pressure, etc are all included in the Login information. The data in the file header, signal 

processing settings, and login information were automatically removed by a supplied Matlab 

function in Silver’s research which is consider as a reference for this research. The Z-data and 

RF-data matrices were the storage areas for the recorded data. The RF-data matrix contained 

1516 sample points indicating the depth sample points. The Z-data matrix contained 758 sample 

points and demonstrates the envelope of the RF ultrasound signal. The total number of points in 

the RF-data matrix is always equal to twice of that found in the Z-data matrix. Finally, the 
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checksum contained error checking that was automatically handled by the supplied Matlab 

function. 

     As it is clear from the name of RF-data matrix, it consists of a number of rows and columns 

corresponding to the depth sample points and scan lines, respectively. While operating in M-

mode, the number of sample points in depth and scan lines are 1516 and 5550, respectively. 

Rows and columns of this matrix are referred to the axial and temporal directions, respectively.  

 

3.3.3 The readZRF.m Matlab Function 

The readZRF.m Matlab function is employed to read the “.zrf” data files. It takes the data file 

name (“.zrf” file name), begin frame number and the number of frames as the input and gives the 

file information, Z-signal and RF-signal as the output.  

 

3.4 Data Processing Implemented by Silver 

After reading the data file by the readZRF function, the data file reprocessed by Silver for the 

purpose of his research. Although it was comfortable to have access to this digital information, 

this data was first preprocessed and then used for velocity and displacement estimations. For the 

preprocessing, he used specific methods to format the raw data properly and in turn, analyze the 

desired signals accurately. These methods are explained briefly in the following. More 

information about these methods is found in his thesis. 

 

3.4.1 Lens Echo Removal 

The existence of several layers between the transducer and the probe surface causes a certain 

time delay. This time delay results from ultrasound propagation inside the acoustic lens and the 



41 
 

two impedance matching layers. By using the thickness of these materials and ultrasound 

propagation velocities in them, the time delay within each of these materials can be measured. 

By some calculation, this time delay (corresponding to 69 axial sample points within the probe) 

was removed from the beginning of every scan line during the preprocessing. Time delay 

removing was made to cancel out the lens echo (echoes generated from within the probe itself) 

and its corresponding time delay. Since lens echo were experienced by all received RF signals, 

the corresponding time delay periods were removed from RF signals before any data processing 

was performed.   

 

3.4.2 Temporal Reorganization  

Temporal reorganization addresses the way a file is stored during data acquisition. At any given 

time, the circular buffer contains about 6 seconds of data. As the storage option on the machine 

is selected and data are stored, the circular buffer is dumped precisely as it is into a file. This 

often results in a signal that is out of order with respect to time. It was therefore essential to 

correct this order during data preprocessing. This problem was fixed by locating the transition in 

the frame counter during the preprocessing. Consequently, the first scan line after the transition, 

represented the first recorded scan line at a reference time of . All data were then reorganized 

in time using the determined  as the reference starting time.  

     An example of the received RF- and Z-signal, obtained from one of the “.zrf” files via 

readZRF.m Matlab function and data reprocessing done by Silver, is shown in Figure 3.2 and 

Figure 3.3, respectively . 
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3.5 Data Files (“.zrf” files) and Experimental Testing 

In this research, some of the measured data stored in the “.zrf” files are used for the purpose of 

experimental testing. These data (RF- and Z-signals) were obtained in previous works where the 

Figure 3.2 An example of a measured received RF signal with respect to the depth (sample number). M-mode is the acquisition mode; 

RF signal in the first frame is plotted in this figure. 

Figure 3.2 Corresponding measured Z-signal with respect to the depth sample number. M-mode is the acquisition mode; the figure 

shows the Z-signal obtained in the first frame. 
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ultrasound probe was used as a tool to compress (or expand) particular ultrasound phantoms 

simulating the skeletal muscles. In the experiment, it was tried to simulate muscle contraction. 

During phantom compression (or expansion), while the ultrasound system was in M-mode 

operation, several RF-signals (5550) were captured and stored. Since these RF signals were 

captured during the force application (probe motion), they are called pre- and post-compression 

(or expansion) RF signals. In this way, 5549 RF signal pairs were created, each of which was 

made up of a pre- and post-compression (or expansion) RF signals. More explanation about 

measured data will be provided in chapter 7 where these data measurements are used for 

experimental testing. 

     In the next chapter, in a model-based computer simulation, pre- and post-compression RF 

signals will be simulated and a full discussion will be provided about the phase shift occurred 

between them. 
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Chapter 4 

Simulation of Ultrasound Speckle echoes 
 

 

This chapter outlines the imaging environment, fast and slow time conventions, and computer 

simulation. It provides a description of the pulse-echo model and details the quadrature phase 

detection technique and its contribution to displacement estimation. At the end, the chapter 

defines the phasor method which will be used as a reference method to test the quadrature phase 

detection technique in different conditions.  

 

4.1 Imaging Environment  

Usually, a part of body which is being imaged made up of different types of tissues. It is 

presumed that this part of body contains a layer of soft material like fat. This layer is followed by 

one or more deeper layers of stiffer material such as muscle. The stiffer material is then followed 

by a layer of uncompressible material such as bone. A typical area which is under examination is 

shown in the Figure 4.1.  

 

 

 
Figure 4.1 A typical part of body under examination; as it is shown, the order of different tissue 

layers are from the softer to the harder. 
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     The simulation used throughout this thesis relate to a specific imaging environment described 

in terms of a coordinate system. The coordinate system defines all amounts of 

compression/expansion measured with the ultrasound system to be relative to the ultrasonic 

probe surface. The frame of reference is then referred to as the ultrasonic probe reference frame 

and the amount of compression/expansion observed according to this coordinate system differs 

from what an experimenter would observe with a global frame of reference. Figure 4.2 and 

Figure 4.3 below represents the differences between identical probe motion while observed with 

respect to the two differing global and ultrasound probe frames of reference (Silver, 2007).   

 

 

 

 

 

 

Figure 4.2 Probe motion as observed with respect to the ultrasound probe reference frame. The 

arrows show the amount of displacement due to the probe motion (Silver, 2009). 
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     The observed displacement will increase with respect to depth when the reference frame is 

being at the probe surface. Specifically, it was assumed that for any constant force applied 

externally to the probe surface, the magnitude of the displacement observed would increase with 

respect to the depth. The result of this definition is that, by compressing a part of body, the 

muscle tissue is displaced more than the fat layer since it is located at a deeper position. The 

bone, however, is not compressed at all although it is located at the deepest position. This is due 

to the huge stiffness of the bone which may be considered as an uncompressible material.    

     Positive and negative displacements are defined as expansion and compression of the tissue, 

respectively.  

     In this thesis, it is assumed that the motion occurs in a direction parallel to the ultrasonic 

beam in the axial direction. Generally, the sample volume under examination can be compressed 

– or elongated, depending on whether the force (stress) is compressive or tensile. In this thesis, 

the stress is assumed to be compressive and by applying the force, the downward compression is 

meant. Figure 4.2 properly addresses all the assumptions made in this thesis.  

Figure 4.3 Probe motion as observed with respect to the global reference frame (Silver, 2009). 
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4.2 Fast and Slow Time Conventions 

After defining the frame of reference, some variables and conventions related to the reference 

frame were defined. In the beginning, a distinction should be made between the fast and slow 

time conventions. When examining the ultrasonic signals, all information is related to time. 

Time, however, is used to denote two different quantities regarding to the axial (depth) and 

temporal directions often referred to as fast and slow time, respectively. In this thesis, the fast 

time is shown by  and the slow time is represented by  (Yu, 2006; De Ana, 2005). Fast and 

slow time along with different sampling conventions of M-mode and B-mode, are shown in 

Figure 4.4 and Figure 4.5. Variables  and  shown in these Figures represent temporal, axial 

and lateral samples, respectively. Fast time relates to the depth or axial samples of a received 

ultrasound signal while slow time refers to the time between transmitted pulses from a 

transducer. The latter is analogous to the pulse repetition frequency, frame rate or temporal 

sampling rate of the ultrasonic system based on the acquisition modes (Silver, 2007). 

 

 

 

Figure 4.4 M-mode sampling structure. During M-mode, temporal samples, m, are equivalent to scan lines and 

represent the pulse repetition frequency. Axial samples, n, represent depth. Reproduced from (Silver, 2007) 
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4.3 Scatterers Contribution to Ultrasound Received RF Signal 

Different tissues of the body contain thousands of small particles and irregularities with different 

acoustic impedances. When an ultrasound beam is transmitted through the body, it encounters 

these particles locating in the beam propagation path, causing several echoes to be created at 

their position. As mentioned in chapter 2, these particles are referred to as scatterers and echoes 

resulting from them are often referred to as speckle echoes. The incident which strikes a single 

scatterer will be scattered many times due to collision with other scatterers in the way back 

toward the transducer. Among all scatterings, only those that travel in a similar path but in the 

opposite direction of the incident wave are detected by the ultrasound transducer.  

Figure 4.5 B-mode sampling structure; during B-mode, temporal samples, m, are equivalent to image frame 

number. Scan line number, i, corresponds to samples in the lateral direction. Axial samples, n, represent depth. 

Reproduced from (Silver, 2007) 
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     Speckle echoes contribute to creation of the received RF signals which are further used for 

doing measurements. In general, when a part of body with different constitutive layers is imaged, 

the received RF signal will be the superposition of all created speckle echoes plus the echoes 

created at the large boundaries where the type of tissue is changed. However, when just a certain 

layer such as the fat layer is examined, the RF signal will become the superposition of just 

speckle echoes. In this work, just one specific layer of a part of body is considered and thus, the 

RF signal is defined as the summation of speckle echoes. Figure 4.6. represents the contribution 

of scatteres to ultrasound received RF signal when just one layer is examined. In the computer 

simulation section, this contribution is shown mathematically.  

 

 

  

     

 

 

RF Signal Amplitude 

Figure 4.6 A microscopic version of a fat layer of a part of body with a number of scatterers distributed in it (left). These 

scatterers cause the echoes to be created at their positions. In the right plot, the received RF signal which is the sum of the 

created echoes is shown. It takes greater amplitude at the maximum depth (sample number) since at this depth the ultrasound 

signal encounters the bottom edge of the sample volume, which acts as a large and flat boundary. 
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4.4 Scatterers Contribution in a Deformed Medium 

Applying an external force causes the particles in a sample volume to be displaced toward or 

away from the probe. Based on our assumption, the particles are being compressed since the 

stress (force) is assumed to be compressive. Displacement of targets causes consecutive received 

echoes to experience a time delay with respect to the time of transmission. This time shift 

changes the phase relationship between pre- and post-compression received RF signals causing a 

phase shift to be created between them. It is this shift in phase that is of interest for our research. 

Since the phase shift of concern to our research is caused by the displacement of particles, 

measurements of phase shift can be obtained and converted to represent the amount of 

displacement and in return, the strain of the tissue under examination.  

     To create pre- and post- compression RF signals, an ultrasound probe is coupled to an object 

while transmitting an ultrasound signal through it. The received signal is called the pre-

compression RF-signal which is shown by . Then, the object is uniformly compressed (the 

probe is gradually pushed down toward the object) and another ultrasound signal is transmitted 

through it, resulting in the creation of second signal called the post-compression RF-signal, 

which is shown by . In M-mode imaging done by the ultrasound system described in chapter 

3, around 5550 RF-signals (5549 RF signal pairs) can be captured over 5.66 seconds. Each of 

these signals can be considered as a post-compression RF signal with respect to just previously 

captured one. That is, 5549 pairs of pre- and post-compression RF signals can be created in this 

mode. 

     Mathematical representation of ultrasound received RF signal and its constitutive echoes are 

described in the computer simulation section which is outlined next.  
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FIGURE 4. 1 PRE- AND POST-COMPRESSION RF SIGNALS' REPRESENTATION. 

 

4.5 Computer Simulation 

Computer simulation done in this research is written in Matlab programming. In this simulation, 

two general states of before and after compressing the sample volume (corresponding to the first 

Figure 4.7 The sample volume before and after compression (top) and resulted pre- and post-compression RF signals (bottom). As it is shown, 

the post-compression RF signal is shorter than the pre-compression RF signal due to compression. 

Pre-Compression RF Signal Post-Compression RF Signal 
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two created RF-signals) are considered. The following section describes the pulse-echo model 

used in the simulation.  

 

4.5.1 Pre-Compression State  

4.5.1.1 Gaussian Pulse-echo Model 

To simulate pulse and echo signals, the Gaussian pulse-echo model was used. Based on this 

model, the transmitted pulse is represented by  

 

  (4.1) 

 

where  is the fast time or the time after pulse transmission,  is the pulse bandwidth and  is 

the ultrasonic center frequency. The transmitted signal encounters scatterers in its path causing 

echoes to be created at their positions. A single backscattered echo is represented by (Demirli, 

2001; Qi, 2009). 

 

                                                    

                                                   (4.2)
  

                                                

where the notation  represents the   echo signal created.  is the fast time and  is the 

amount of change in the arrival time of the transmitted pulse which is determined based on the 

position of the scatterers.  is the cross section of the corresponding scatterer,  is the 

bandwidth of echo, and the index    refers to the   echo.  is the number of distributed 

scatterers in the sample volume, which is equal to 111 and 1055 for the two cases of having 

small and large amount of particles. These values were determined as small and large based on 
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(Narayanan, Shankar, & Reid, 1994). In this model, each echo is in fact, defined as the scaled 

and time delayed version of the transmitted pulse. Because of its Gaussian-shaped envelope, it is 

referred to as a Gaussian pulse-echo model (Demirli & Saniie, 2001).
 

     
The echo model represented above has four parameters:    and . Although the 

values of these parameters can vary from one echo to another, in this work it is assumed that  

and 
 
are variables and other two parameters are constants. This assumption is made based on 

the degree of correlation between these parameters and the phase information of echoes.  is 

one of the two parameters constituting the phase of echoes ( ). It is translated to the phase 

and thus needed to be considered as a variable. Since it is directly related to the position of 

particles, which can be anywhere in the tissue range with the equal probability, it is assumed to 

be a uniform random variable.  however, is assumed to be fixed to lessen the error in the phase 

estimation. This concept is further explained in the quadrature phase detection technique section 

in this chapter. Studying the effect of parameter  on the phase of echoes is out of this work so it 

is also considered as a fixed value. In this work the bandwidth of all echoes are assumed to be 

the same, however, to test the functionality of the quadrature method in different conditions it is 

considered as a variable parameter changing from one RF signal to another. 
 
is assumed to be 

a gamma-distributed  random variable based on (Narayanan, Shankar, & Reid, 1994). Its 

variability will not affect the phase and thus will not be considered as a source of error. From Eq. 

(4.2), time delay  results in a change in the phase relationship between echo and transmitted 

pulse. The echo signal can be represented by 

 

  (4.3) 
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with  and . Here,  and  are the amplitude and phase 

information of the  echo, respectively. The time delay  is related to the position of the  

scatterer by Eq. (4.4) as (Hein & O’Brien, 1993). 

 
 

  (4.4) 

 

where  is the position of the  scatterer in the -direction (depth of the tissue) and  is the 

acoustic velocity in soft tissues (~ 1540 m/s).  

 

4.5.1.2 Received RF Signal Representation 

The received RF signal is defined as the superposition of all backscattered echo signals. Based 

on equations (4.1), (4.2), (4.3), and (4.4) it can be represented by (Molthen, 1998) 

 

  (4.5) 

 

where  is the transmitted signal,  is the  echo signal , and  is the 

pre-compression received RF-signal. The block diagram of the creation of received RF-signal 

from the backscattered echoes is represented in Figure 4.8. 

  

http://www.umbjournal.org/article/S0301-5629(97)00205-6/abstract
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     The received signal can also be represented by the amplitude and phase information of the 

echoes as (Shankar, 2000; Kolář et al., 2005; Molthen, 1998) 

 

  (4.6) 

 

     In Eq. (4.6), the received RF signal is represented by sum of some sinusoids. The phase 

information of this RF signal is aimed to be calculated. In order to extract the phase information, 

one technique that can be applied is “quadrature phase detection” (Feng, 2006; Chang, 1993; 

Guirong, 1998; Molthen, 1998). In following sections, received RF signals and their constitutive 

echoes are represented in discrete forms which are the forms used in the simulation environment.   

 

 

Figure 4.8 The block diagram of RF signal creation from the backscattered echoes. The transmitted signal is delayed 

and scaled at the position of each scatterer causing the corresponding echo to be created. Then, the sum of all these 

echoes will give the received RF signal. 

http://www.umbjournal.org/article/S0301-5629(97)00205-6/abstract


56 
 

4.5.1.3 Quadrature Phase Detection Technique 

In practice, phase information of the received RF signal can be recovered by the quadrature 

phase detection technique. Since accurately recovering the phase information is the goal of this 

research, the quadrature technique is tested in different conditions throughout this research. Later 

on, certain parameters that affect this technique will be outlined. The following section details 

the quadrature detection method (Feng, 2006; Chang, 1993; Guirong, 1998; Molthen, 1998) 

which is applied to the discrete received RF signal represented by 

 

  (4.7) 

 

Here,  and  denote the axial depth sample number and axial sampling period, respectively.  

     During quadrature detection (also known as quadrature demodulation), received RF signal is 

multiplied by a reference sinusoid represented by  

 

   (4.8) 

 

where  is the demodulation frequency. The quadrature detection process can then, be 

described by   

 

    

            

 

             

 

             

                                                                       

  (4.9) 
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 (4.10) 

 

where  and  respectively, represent the in-phase and quadrature signals, LPF stands for 

low pass filtering and  is the down shift of the received ultrasound frequency. 

The filter used in this process is a lowpass prototype butterworth filter with the cutoff frequency 

of 1 MHz. Pre-compression complex baseband signal is represented by  

 

  (4.11) 

 

and the message or phase information of this baseband signal is obtained by  

 

     
 

                                                                             (4.12)  

 

where  denotes phase angle. It can be seen from equation (4.12) that  is a source of error in 

the phase estimation. Specifically, accurate phase estimation requires an accurate  

estimation such that it is as close to  as possible. In this research it is assumed that  is 

equal to the . As mentioned earlier,  is assumed to be a constant parameter. If this 
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assumption was not made the difference between   and  (down shift frequency of received 

RF signal) would become the source of error in the phase measurement process. By setting  

equal to the  and canceling the coefficient of ½ from the numerator and the denominator of Eq. 

(4.12), the phase of received RF signal will be simplified to 

 

     

 

                                                                                                                                     (4.13)                                                             

 

where  is the phase information of pre-compression received RF signal. 

  

4.5.2 Post-Compression State  

After compressing the sample volume, each particle is displaced to some extent, based on its 

position. Those particles located at deeper positions are displaced more than those in the 

shallower depths in the tissue. Subsequently, echoes will be created in the new positions and the 

superposition of these new echoes will give the post-compression received RF signal which can 

be represented by 

 

  (4.14) 

 

where  and  are the amplitude and phase information of the  echo after compressing 

the volume. The procedure defined above will be repeated for post-compression RF signal 

resulting in the post-compression complex baseband signal which is shown by . Similarly, 
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by taking the angle of this baseband signal, the phase information of post-compression RF signal 

will be obtained  

 

       

                                                                                                                                     (4.15) 

 

where  is the phase information of the post-compression RF signal.  

     It should be noted that even though the amount of displacement of the particles in the post-

compression state is determined based on their positions and thus, will increase with respect to 

the depth, defining an increasing relationship between the time (phase) shift of the echoes and 

depth is not completely right. Each echo is generated when corresponding scattering is detected 

by the ultrasound. The scattering might however, hit many particles in its way back and not reach 

to the transducer quickly. Nevertheless, since the probability of occurrence of this phenomenon 

for all the particles before and after compression is the same, in this research this consideration is 

not taken into account. It is assumed that scatterings in pre- and post-compression states are 

taken place similarly (due to the same probability) and does not cause time delays in echo 

detection. Therefore, the time (phase) shifts created between the echoes after compression will 

be considered as the result of compression and thus, can be modeled to increases with respect to 

the depth. 

 

4.6 Phase Shift 

The phase shift of interest in this research is defined as the difference between the phase 

information of pre- and post-compression RF signals as 
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  (4.16) 

 

     Eq. (4.16) shows the phase shift between the first two consecutive RF signals corresponding 

to the first two scan lines or frames. To obtain the phase shift between the first RF signal (first 

scan line) and the last RF signal (e.g. the  scan line in M-mode imaging), all phase shifts 

occurred between consecutive RF signals should be accumulated.  

 

4.7 Displacement Estimation  

Once the pre- and post-compression complex baseband signals have been obtained, an estimation 

of displacement of the particles in the tissue can be made. Normally, the autocorrelation method 

(Loupas et al., 1995; Torp, 1994; Shamdasani, 2004; Pinton, 2006;   Hasegawa, 2008; Tatar, 

2003) is used to estimate the amount of displacement. However, in this research the phase shift 

resulted from subtraction is used. In the following subsections, it will be shown that these two 

ways give rise to the same results.  

     In order to exactly explain the procedure of displacement estimation, derivations are extended 

to include both the axial and temporal directions. In this way, ultrasound received RF signal can 

be represented by  where  is the ultrasonic beam direction,  is the axial or depth 

sample number and  is the pulse number of a transducer, scan line or frame number depending 

on the imaging mode. The complex baseband signal is represented by  and is 

summarized by  

 

  (4.17) 

 

where .  
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4.7.1 Autocorrelation-based Quadrature Detection Technique  

As explained in chapter 2, time shifts occurred in RF signals as a result of compression can be 

estimated by cross correlation technique to be further used for local displacement estimation. 

Since the induced time shift results in the phase shift to be created between the RF signals, phase 

shift estimation can be done instead. A two-dimensional correlation function can be defined and 

the phase shift between RF signals can be calculated from it. The phase shift is then can be used 

for displacement estimation. The two-dimensional correlation function is defined as (Loupas et 

al., 1995; Torp, 1994; Shamdasani, 2004; Contreras, 2009; Hasegawa, 2008)   

 

  (4.18) 

 

where  represents the complex conjugate and  defines the complex autocorrelation 

function with lags  and  in the axial and temporal directions, respectively. Displacement in 

the direction of ultrasound propagation can then, be calculated in the conventional phase-

sensitive method (Shamdasani & Kim, 2004) using the estimated phase shift between two 

consecutive frames represented by 

 

  (4.19) 

 

     The phase shift shown in Eq. (4.19) is next used to estimate the displacement between two 

consecutive frames (RF signals) (Shamdasani et al., 2004; Hasegawa, 2008) 

 

  (4.20) 
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     Estimation of phase shift between two consecutive frames by Eq. (4.19) is called 

“autocorrelation based quadrature detection technique”. 

 

4.7.2 Phase Subtraction-based Quadrature Detection Technique 

In this thesis, instead of calculating the phase shift by autocorrelation 

 the phase shift between two consecutive frames is simply calculated 

by subtracting the phase of pre- and post-compression RF signals, as described in Eq. (4.16). In 

this way, the phase shift between two consecutive frames is represented by 

 

  (4.21) 

 

     Displacement in the direction of ultrasound propagation is then, calculated in the same 

manner as follows 

 

 
 
 (4.22) 

 

where  is the instantaneous displacement between two consecutive frames. Estimation 

of phase shift between two consecutive frames by Eq. (4.21) is called “phase subtraction based 

quadrature detection technique”. 

     In Eq. (4.20) or (4.22), the center frequency varies with respect to depth (Loupas, Powers, & 

Gill, 1995) and the knowledge of it is needed in order to obtain an accurate instantaneous 

displacement estimate. However, in this thesis, it is assumed that the center frequency is constant 

although ideally, it should be the actual center frequency  that is used.  
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     Afterwards, the accumulated displacement  is obtained by accumulating the estimated 

instantaneous displacement  between two consecutive frames (Hasegawa & Kanai, 

2008) as  

 

                                             (4.23) 

 

     The two ways of measuring phase shift, represented in Eq. (4.19) and (4.21), are similar in 

practice. This similarity is proved in the following section.  

 

4.7.3 Proof of the Equivalence 

In this section, autocorrelation based and phase subtraction based quadrature detection 

techniques are shown to be equivalent. As explained earlier, the in-phase and quadrature parts of 

the complex baseband signal are  

 

   (4.24) 

 

and 

 

    (4.25) 

 

which constitute the complex baseband signal as follows 

 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kanai%20H%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kanai%20H%22%5BAuthor%5D
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  (4.26) 

  

     For simplicity, we assume that the received signal is made up of only one echo. The proof can 

then, be generalized for the case of having several echoes. With this assumption, the complex 

baseband signal will become 

 

     
 

                                                                                                                           (4.27) 

 

     The two-dimensional correlation function with lag 0 and 1 in the axial and temporal 

directions, respectively, is defined as 

 

     

                      

                              

                                                                                                                       (4.28) 

 

where  and  are the amplitude of the echo in pre- and post-compression states, 

respectively. Similarly,  and  are the phase of echo in pre- and post-compression states.  
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     Now, by taking the angle from both sides of Eq. (4.28), the following equivalence will be 

obtained. 

 

  (4.29) 

 

     Eq. (4.29) shows that the angle of the two-dimensional cross correlation function is equal to 

the phase subtraction. Since both ways of phase shift measurement lead to the same results, the 

phase subtraction method is chosen and used for the rest of this thesis.  

     As stated earlier, accurately recovering the phase information of received RF signals and in 

turn, accurately obtaining the phase shift created between them is the goal of this research. To do 

so, the quadrature detection technique is required to be tested in different conditions. In the 

following section, another approach, which we called it the “phasor method of phase 

measurement”, is defined. This method is considered as a reference by which the quadrature 

detection technique is compared. Based on the amount of similarity between the results obtained 

from these two methods, the fidelity of the quadrature technique will be determined. Phase plots 

obtained by these two methods will be represented in chapter 5. 

 

4.8 Phasor Method 

Based on pulse-echo model, the echo signal is defined as a sinusoid with the representation of  

 

                      (4.30) 

 

     The echo signals can also be represented by complex sinusoid as follows (from this onwards, 

the echo signal is represented by  
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  (4.31) 

 

     Based on the Euler’s formula of  the complex sinusoid in Eq. (4.31) 

is equal to 

 

  (4.32) 

 

     Comparing the two equations of (4.32) and (4.7), it can be seen that the real part in Eq. (4.32) 

is equal to the cosine term shown in Eq. (4.7).  

     In the complex sinusoid representation, if the phase portion is combined with the amplitude, 

the complex amplitude  will be obtained. That is,  

 

      

                                                                                                                    (4.33) 

 

 is the complex amplitude which is also known as phasor (Dansereau, 

2009). As mentioned earlier, the received RF signal can be represented by the sum of some 

sinusoids as  

 

  (4.34) 

 

     Based on the above explanation, the received RF signal can also be represented by the 

complex sinusoids as  
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  (4.35) 

 

This representation is used in the following theorem. 

 

Phasor Addition Theorem  

 sinusoids with the same frequency  can be summed up by adding their phasor parts 

(Dansereau, 2009): 

 

     

 

                                                   

                                                   

                                                  

 

                                                  
                                                            (4.36) 

 

where  and  are the amplitude and phase of the signal resulted from adding the  sinusoids. 

This summation can be shown by graphical vector addition. In Figure 4.9, it is shown for two 

complex sinusoids. 
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     Since the received RF signal is the sum of echoes (sinusoids) with the same frequency of  

but different amplitude and phase information, phasor addition theorem can be applied to it. In 

the complex sinusoid representation of RF signal, the phase information can be obtained by 

taking the angle of the phasor part of the signal. Based on phasor addition theorem, RF signal’s 

phasor part is resulted by adding up the phasor portions of constitutive echoes. Measuring the 

phase information of RF signal in this way is defined as phasor method. Although available in 

the simulation, the phasor approach cannot be applied to real ultrasound data (RF signals). 

Throughout this research, it is only used as a reference approach for testing the quadrature phase 

detection technique. As described, it can only be applied when the amplitude and phase 

information of echoes are known. This happens in the simulation where the values of these 

parameters are determined based on the relationships we defined. In reality, however, the only 

thing that can be measured is the received RF signal and the whole representation of it. 

Figure 4.9 Summation of phasor parts of two complex sinusoids by graphical vector addition. The result of this 

summation is a vector with a new amplitude and phase information. 
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Therefore, having access to the echoes’ information is not possible and in turn, the phasor 

approach cannot be applied to measure the phase information. 

     As mentioned in the beginning of this chapter, local displacements of the sample volume 

under the compression increase with respect to the depth when the reference frame is being at the 

probe surface. These local displacements are directly related to the time (phase) shift created 

between received RF signals. One can say that a straight line which increases with respect to the 

depth can be considered as a reference model to which the quadrature phase shift results can be 

compared. This model however, was not considered as a reference in this thesis since the 

increasing trend of the resulted phase shift plots are not completely linear and slight fluctuations 

are appeared in them due to the particles’ distribution. By the phasor method, it was possible to 

simulate those fluctuations. Therefore, the phasor method was considered as a reference method 

by which the quadrature technique can be compared. In chapter 5 it will be shown that the phasor 

method, like all other phase measurement methods, can cause  phase jumps to be created in 

the phase shift results. Since these jumps can be fixed by unwrapping processes, this limitation 

of the phasor method was not taken into account. 

     This chapter closes with the explanation of value settings in the computer simulation. In the 

next section, details of the values used in simulation are outlined. 

 

4.9 Setting Values in Computer Simulation   

As explained in chapter 3, certain data were measured during ultrasound phantom examinations 

in previous works and given as a source in this research. These measured data were stored in the 

files with .zrf file extension. In an experiment, the ultrasound phantom was compressed due to 

the probe motion and certain data such as RF-data matrix, complex baseband signal, and the 
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extracted phase information were measured. The measured RF-data matrix consists of a number 

of rows and columns which corresponds to the depth sample number and temporal sample 

number (scan lines), respectively. In M-mode operation, the depth sample number and scan lines 

were 1516 and 5550, respectively. The axial signal acquisition was feasible for 35  in depth. 

The center frequency  and sampling period  were set equal to 5 MHz and 0.03  

respectively. These values were defined based on the machine (system) properties and operation.  

     In order to have a realistic simulation, parameters defined in the simulation were set close to 

those of the measured data. Details of value setting are explained in the following.  

As it is stated earlier, the received RF signal has the continuous form of 

 

   (4.37) 

 

and the discrete form of 

 

     (4.38) 

 

where  and  are respectively, sampling period, depth sample number, and the amount of 

shift in the sample number corresponding to the time shift of  in the discrete form 

representation of the RF signal. In the simulation, different parameters of the waveform 

represented in Eq. (4.38) were set as follows 

- The center frequency  of transmitted signal, was set to be 5 MHz.  
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- Sampling period  was assumed to be equal to 0.03  (samples were taken every 0.03

. 

- The cross section of the   scattrere  was defined as a gamma-distributed random 

variable with scale 1 and shape 2: 

 

  (4.39) 

                                                       

- Bandwidth of the measured RF signal was calculated based on 3 dB criterion (the 

distance between two points in the frequency domain where the signal is 
2

1  of the 

maximum signal amplitude (half power)). It was found to be 0.8 MHz . As a result, the 

bandwidth of the model echo signals  in the simulation was assumed to be equal to 

this value. In Figure 4.10, the amplitude spectrum of the measured RF signal is shown. 

- Position of particles was defined as a uniform random variable between 0 and 33 .   

- Maximum depth and initial depth sample number  were set to 35  and 1516, 

respectively. Each time by obtaining a new post-compression RF signal,  was reduced.         

In order to have the same-size vectors for pre- and post-compression RF signals 

(redundant), the post-compression RF signals were zero-padded.  

- The number of scatterers  was set to 117 and 1055 for the two cases of having few and 

large amount of particles based on (Narayanan, Shankar, & Reid, 1994). In the referred 

article, for the range cell of 1.26   equal to 4 and 38 was considered as the small 

and large amount, respectively. Thus, for the tissue range of 35  (in this research), 

111 and 1055 were used to represent the small and large values, respectively.  
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Figure 4.10 Amplitude spectrum of the measured data around a center frequency of 5 MHz. The signal from which 

the fft is taken is the RF signal stored in one of the files with .zrf extension. 
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Chapter 5 

Numerical Simulation Results 

 

This chapter outlines several phase shift plots obtained from the simulated RF signal pairs. It 

describes the relationship between instantaneous displacements of the sample volume and the 

phase shifts created between consecutive received RF signals. It provides a discussion about 

phase jumps appeared in the phase shift plots. At the end, it closes with the examination of 

quadrature phase detection technique in different conditions.  

      

5.1 Instantaneous Displacement Effect on Consecutive Phase Shift 

As stated before, in M-mode operation only one RF signal is created in each frame. To create 

certain number of RF signals, the same number of frames is required. The simulation of the first 

two consecutive RF signals (frames) and the way of calculating the phase shift occurred between 

them was explained in chapter 4. In this chapter, generation of more RF signals, corresponding to 

the number of required frames, is considered. 

     In chapter 4, it was briefly explained that the phase shift occurred between consecutive frames 

and instantaneous displacement of the sample volume have the following relationship 

(Shamdasani, 2004; Hasegawa, 2008) 

 

                                  
 (5.1) 
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where  is the instantaneous displacement of the volume at sample number  and frame 

number , and  is the phase shift occurred between consecutive frames of  and 

, at sample number .  

     It is also explained that, the accumulated displacement of the volume can be calculated by 

accumulating the estimated instantaneous displacements as (Hasegawa, 2008) 

  

                        (5.2) 

 

where  is the accumulated displacement of the volume at sample number  while  

number of frames are generated.  

     In simulation,  was set to different values to see if it has any effects on the 

 or not. This examination was done to find the optimal value(s) of instantaneous 

displacement(s) that would result in the expected consecutive phase shift result. The expected 

consecutive phase shift plot should increase with respect to the depth. Resulted optimal value(s) 

of  determines how slow ultrasound probe should be pushed down on the volume 

during the compression. In the following section, the effect of different values of  on 

the resulted  is studied. 

 

5.1.1 Simulation Results 

It was assumed that the accumulated displacement at maximum depth sample number  after 

creation of  frames ( ) is about  and the amount of displacement occurring 

between two consecutive frames of  and  at the maximum depth sample number 
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 is .  is in fact the instantaneous displacement of the entire 

volume since the maximum depth sample number represents the whole depth or equivalently the 

entire volume. Once  and  were determined, the number of required frames 

was calculated by 

 

  (5.3) 

 

     Figures 5.1 and 5.2 represent the first (pre-compression) and second (post-compression) 

simulated RF signals along with their phase information. Figure 5.3 shows the amount of phase 

shift occurred between these two consecutive RF signals. In Figure 5.3, the top plot is obtained 

via quadrature technique while the bottom plot is obtained by the phasor method. In all phase 

shift plots in this chapter, the top plot corresponds to the quadrature technique, while the bottom 

plot corresponds to the phasor (reference) method. 
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Figure 5.1 Pre-compression RF signal (top) and its phase information (bottom). In the bottom plot, the phase obtained by 

the quadrature method is shown in blue colour and the one obtained via phasor method is in green. Two plots are almost 

matched at this step. 

 

Figure 5.2 Post-compression RF signal (top) and its phase information (bottom). Two phase plots that are obtained by the 

quadrature and phasor methods are represented in blue and green colours, respectively. 
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     In Figures 5.1 and 5.2, phase plots obtained via quadrature technique match the results 

obtained by phasor method. This means that the quadrature technique is functioning well at this 

step. Later on in this chapter, different conditions causing two methods result in different 

outcomes will be explored. 

     In Figure 5.3, the magnitude of the phase shift observed increases with depth, as expected. A 

negative phase shift denotes a displacement in a direction towards the probe. The maximum 

phase shift is occurred at the maximum depth sample number of 1515. At this sample number, 

the magnitude of the phase shift is about 2.0 rad which is equivalent to the maximum 

displacement of , based on Eq. (5.1).  

Figure 5.3 Created phase shift between pre- and post-compression RF signals. The resulted phase shift is equivalent to 50 

 displacement of the total sample volume after compression. The top plot is obtained via the quadrature method 

while the bottom one is obtained by the phasor (reference) method. 
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     However, in this figure at certain depth sample numbers such as 200, 680, and 900, phase 

shifts of about  are created causing the plot not to be completely linear. To see if phase jump 

creation is related to the instantaneous displacement of the sample volume or not, different 

values of  were examined.  

     The examination was done for  equal to 0.1, 1, 5, 10, 20, 50, 100, and 150 . 

Based on the assumption that the accumulated displacement of the entire volume  is  

1  for each of these values the frame numbers was found to be 10001, 1001, 201, 101, 51, 

21, 11, and 8, respectively. As an example, the resulted phase shift plots for  equal to 

0.1  is shown in the following figures. In Figures 5.4 and 5.5, the consecutive phase shift 

 between the first two RF signals and corresponding accumulated phase shift after 

501 frames is shown, respectively. 

 

 
Figure 5.4 Phase shift between pre- and post-compression RF signals, equivalent to 0.1  displacement of the total sample 

volume after compression. The top plot is obtained via the quadrature method while the bottom one is obtained by the phasor 

(reference) method.  
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     Figure 5.4 shows an increaing trend with no  phase jumps. However,  phase jumps are 

appeared in the corresponding accumulated phase shift plot where the number of frames is 

increased. Setting  to a greater value such as 50  causes both the consecutive 

phase shift and the accumulated phase shift plots to show unexpected  phase jumps at certain 

sample numbers.  

     Based on the observations, it is better to set  to 0.1  or a smaller value even 

though jumps will be observed in the corresponding accumulated phase shift result. However, by 

setting  to a very small value such as 0.1 , several frames will be needed in order 

to simulate the accumulated phase shift results. Therefore, in the simulation done in this work, 

Figure 5.5 The accumulated phase shift after 501 frames, equivalent to 50  displacement of the total sample volume in 

depth after compression. The top plot is obtained via the quadrature method while the bottom one is obtained by the phasor 

(reference) method. The phase shift increases with depth but jumps are appeared in this plot. 
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 is assumed to be 50 . In the following section, the reason behind  phase jump 

creation will be explained. 

 

5.2 Cause(s) of  Phase Jump Creation 

 phase jump creation in the phase or phase shift plots stems from the limitation of phase 

measurement methods. The angle (phase)  and its -complements  show the same 

points in the unit circle and thus, trigonometric functions of the angle  and  will give the 

same results. In phase measurement methods, the following equivalence is considered 

 

  (5.4) 

 

and only phase principal values, only those values that lie between  radians, will be extracted. 

The phase principal values are called “wrapped” phase values because the absolute phase 

(whatever it happens to be) is wrapped into the interval . The word “wrap” is referred to 

cycle discontinuities. The wrapped phase values at different points in depth (sample number) 

corresponding to time  are obtained through a mathematical operation (wrapping process) on the 

actual phase of the signal as (Ghiglia & Pritt, 1998). 

 

  (5.5) 

 

     In this process, the actual phase  is wrapped into the interval  by  which is an 

integer function that forces . Accordingly,  will become a 

nonlinear function of . The process shown is Eq. (5.5) is the basis of all phase measurement 

methods.  
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     Wrapping process or simply the phase measurement method, causes a number of  phase 

jumps to be observed in the measured phase information ( ). These jumps could happen 

when the phase changes from a value around   to a value close to  and instead of 

  the  complement (which is equal to  is measured. This happens when in z-

plane noise causes movement between a complex number with small negative imaginary part 

and large negative real part to another complex number with small positive imaginary part and 

large negative real part (see Figure 5.6). Consequently, the phase which is measured by the 

 is changed from a value greater than  to a value less than  and a  phase 

jump will be created at these sample numbers. 

     In Matlab programming, the “angle” command is used for phase measurement with the same 

basis of operation mentioned above. 

 

 

 

 

 

Figure 5.6 By moving from quadrant 3 to quadrant 2 (or vice versa) in the regions close to the unit circle, 

the magnitude of phase is changed from a value less than  to a value greater than  (or vice versa) 

causing a  phase jump to be created. 
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5.2.1   Boundary to Avoid Phase Jumps 

Since this limitation is existed in phase measurement methods, in the quadrature technique 

application a restriction is made to avoid phase jumping. In this technique,  is 

restricted to be less than  which in turn, causes a boundary for instantaneous displacements of 

the entire volume .  

     Another representation of Eq. (5.1), that demonstrates the relationship between phase shift 

and instantaneous displacement, is 

 

                              (5.6) 

 

where  is the wavelength of the ultrasound transmitted signal. According to the Eq. (5.6), if we 

restrict  to be less than   will also be limited to be less than the half of 

wavelength. In quadrature detection technique application, this restriction is made and the 

instantaneous displacement of the entire volume is assumed to be less than the half of 

wavelength.  

The wavelength is calculated by (Prince & Links, 2006) 

 

  (5.7) 

 

where  and  are the acoustic velocity and ultrasound center frequency, respectively. In the 

simulation, the acoustic velocity and ultrasound center frequency were assumed to be 1540 m/s 

and 5 MHz, respectively. Therefore, the instantaneous displacement of the entire volume 

 is restricted to be less than 154  based on Eq. (5.7). 
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     This boundary was considered in section 5.1.1, when different values of  were 

examined. However, even by this consideration, with  is equal to 50   phase 

jumps were observed in the resulted phase shift plots. It is due to the fact that each echo initially 

has a random phase which is shifted as a result of compression. At the position where the phase 

of a particular echo is close to  or , a small amount of displacement can cause the phase to 

 jump, even though the compression is applied in a way that the maximum phase shift between 

RF signals be less than .  

 

5.2.2 Phase Unwrapping 

Unwrapping process corrects phase angles to produce smoother phase plots. In this process, it is 

aimed to obtain an estimate of the actual phase  from the unwrapped version of . 

In other words, the measured wrapped values  must be unwrapped somehow to 

estimate  (actual phase). In unwrapping process, the  jumps that are created in the 

measured phase results are fixed by adding the appropriate multiple of  at the position of 

jumps (Ghiglia & Pritt, 1998). This function is availabe in Matlab as the “unwrap” command. In 

Figure 5.9, the phase shift between the first two (pre- and post-compression) RF signals along 

with the unwrapped version of it is represented.  
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     As it can be seen, the phase jumps of  are fixed in the unwrapped phase shift results. 

However, unwrapping is not fully reliable and does not always give a good result such as the one 

represented in Figure 5.7.  

 

5.2.2.1 Failure of the Unwrapping Process 

     Phase unwrapping implementation is in fact, problematic for several reasons. To work with 

actual signals in computer, they are required to be sampled and converted to digital signals. 

Thus, continuous functions become a sequence of samples. According to the sampling theory, 

the sampled data constitute an imperfect representation of the continuous signal since the 

sampled data measure the continuous signal at discrete points in time, and they may span a 

Figure 5.7 Phase shift between the first and second (pre- and post-compression)  RF signals (left); quadrature method (top left); 

phasor (reference) method (bottom left); corresponding unwrapped phase shift between these RF signals (right)  
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limited extent of the total signal duration. Therefore, an inadequate sampling rate or duration can 

prevent reconstruction of the continuous signal to a satisfactory level of reliability. Most phase 

unwrapping problems happen when one moves from the continuous to the discrete domain. In 

continuous domain, there is only on way to unwrap phase, and the unwrapped result is unique. In 

discrete domain, however, certain assumption must be made (e.g., the assumption of 

nonaliasing). In some way, phase unwrapping is equivalent to recovering the underlying 

continuous wrapped phase from the discrete wrapped phase that has been sampled (Ghiglia & 

Pritt, 1998).  

     It can be observed that the unwrapping process fails to fix the less than  phase jumps. This 

happens when the slope of the phase shift plot becomes relatively steeper between certain 

consecutive samples and the sampling rate is not enough to cover more samples. An example of 

a less than  phase jump is shown in Figure 5.8. In this figure, the phase shift between the 5
th

 

RF signal pairs along with its unwrapped version is plotted. As it is shown in this figure, unwrap 

fails to fix the created jump. 
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     In the z-plane this happens when noise causes movement between a complex number with 

small positive imaginary part and small negative real part to another complex number with small 

negative imaginary part and small positive real part. Consequently, the phase which is measured 

by the  is changed between values in quadrant 2 and 4 and thus, a phase jump of   

(less than ) will be created at these sample numbers (see Figure 5.9). The real and imaginary 

parts of the 5
th

 and 6
th

 RF signals are shown in Figures 5.10, and 5.11. At the position where a  

phase jump is created, the value of the 5
th

 RF signal is ( ) while it is equal to 

 in the 6
th

 RF signal. This causes a phase shift of about  to be observed in the 

phase shift plot. 

Figure 5.8 The phase shift between the 5th RF signal pairs resulted by the quadrature method (top) and the unwrapped 

version of it (bottom). At the sample number of 558, a  phase jump is created. This jump is not fixed in the 

unwrapped phase shift plot. 
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Figure 5.9 By moving from quadrant 2 to 4 (or vice versa) in the regions close to the 

center of the unit circle, a  phase jump will be created. 

 

Figure 5.10 Real (red) and imaginary (blue) parts of the 5th simulated RF signal. At the sample number of 558, the value 

of the RF signal is , which is a complex number close to the center of the unit circle, in the quadrant 2 of 

the z-plane (small real and imaginary parts). 
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5.3 Extension of the Phase Shift Simulation  

The simulation with  equal to  was repeated to create other pairs of RF signals. 

The resulted phase shift plots were similar except that in each plot, the spikes (  phase jumps) 

were slightly shifted to the left compare to that of the previously captured RF signal pairs. This 

happened because the signals were compressed and became shorter during the force application 

causing the positions of scatterers to be changed.  

     By continuing the simulation and creating several consecutive phase shift plots, it was then 

possible to plot the accumulative phase shift results. As an example, the accumulated phase shift 

after 5 frames (corresponding to the  displacement of the volume) along with the first 4 

Figure 5.11 Real (red) and imaginary (blue) parts of the 6th simulated RF signal. At the sample number of 558, the value 

of the RF signal is , which is a complex number close to the center of the unit circle, in the quadrant 4 of 

the z-plane (small real and imaginary parts). 
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consecutive phase shift plots are shown in Figure 5.12. Since the results of both the quadrature 

and reference methods were similar, in this figure only the quadrature method’s outcomes are 

shown.  

 

 

 

  

 

    In Figure 5.12, the magnitude of the accumulated phase shift increases with depth. However, it 

has wider jumps compare to the consecutive phase shift plots. Indeed, all spikes in consecutive 

phase shift plots will be added up resulting in wider jumps in the corresponding accumulated 

phase shift plots.  

 

 

 

 

Figure 5.12 The accumulated phase shift after 5 frames, equivalent to the total displacement of 200  (black). The 

resulted consecutive phase shift plots corresponding to the first, second, third, and forth RF signal pairs are shown in 

blue, red, green, and purple, respectively.  Certain spikes that are created in each of these plots are shifted to some extend 

as the number of frames goes up.  
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5.3.1 Accumulated Phase Shift Equivalent to 1  Displacement of the Volume 

As mentioned earlier, the total accumulated displacement of the sample volume after 

compression is assumed to be 1 . Corresponding accumulated phase shift is resulted after 

generation of 21 frames. In Figure 5.13, this accumulated phase shift is represented.  

 

 

 

 

 

     Figure 5.13 no longer shows the increasing trend of the phase shift plot. The number of jumps 

created in it is also increases, significantly. As the number of frames increase, the magnitude of 

the accumulated phase shift increases, spikes (  phase jumps) are added up, and the jumps 

become wider. By further increasing the number of frames, spikes will be continually created 

over the wider jumps and so on. Repeatedly generating the spikes will end with an unexpected 

result shown in Figure 5.13. Unwrapping process can not entirely improve the accumulated 

Figure 5.13 The accumulated phase shift after 21 frames, equivalent to  displacement of the sample volume after 

compression. This accumulated phase shift plot is resulted by the quadrature method. As it is shown in this figure, the 

linearly increasing trend is not observable any longer due to appearance of more jumps. 
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phase shift plot shown in Figure 5.13 due to the same reasons explained earlier. The unwrapped 

version of this plot is represented in Figure 5.14.  

 

 

 

 

 

 

5.4 Quadrature Technique Performance in Different Conditions 

So far, it has been observed that the quadrature phase detection technique functions in 

accordance with the phasor (reference) method. The next step is to see how reliable the 

quadrature technique is and in what circumstances it will function less accurate. To see this, 

certain parameters such as the signal to noise ratio (SNR) of the RF signals, number of scatterers 

 in the sample volume, and the bandwidth  of echoes were varied. In the following, the 

effect of these variations on the quadrature resulted phase shift plots are outlined. 

Figure 5.14 The unwrapped version of the accumulated phase shift equivalent to  displacement of the total 

sample volume after compression. Again this plot is resulted by quadrature method application. 
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5.4.1 SNR Parameter Effect 

To examine the effect of the SNR parameter on the quadrature phase estimations, noise needed 

to be incorporated in the simulation. This was done by adding white Gaussian noise to the 

received RF signals. This choice was made based on the nature of noises that are involved with 

the ultrasound signals.  

     Different types of noise can be considered when dealing with ultrasound signals. Thermal and 

quantization noise are the two examples. The former is the electronic noise generated by the 

thermal agitation of the charge carriers (electrons) inside an electrical conductor, which can 

come from the ultrasound machine. Thermal noise is approximately white, and thus it can be 

simulated as the white Gaussian noise. Quantization noise is another type that can be introduced 

by quantization in the signal processing. The difference between the actual analog value and 

quantized digital value due is called quantization error. This error is due either to rounding or 

truncation. The error is sometimes considered as an additional random signal called quantization 

noise. This type of noise is also can be simulated by white Gaussian noise due to its random 

nature.  

     In so far represented figures, white Gaussian noise was added to the simulated received RF 

signals such that the signal to noise ratio (SNR) becomes 40 dB. The resulted consecutive phase 

shift between the first two RF signals when the SNR is 40 dB is represented in Figure 5.3. In the 

next two figures, this phase shift is shown when the SNR level is reduced to 10 dB and 3 dB, 

respectively. 

 

http://en.wikipedia.org/wiki/Electron
http://en.wikipedia.org/wiki/Electrical_conductor
http://en.wikipedia.org/wiki/White_noise
http://en.wikipedia.org/wiki/Quantization_(signal_processing)
http://en.wikipedia.org/wiki/Digital_signal_processing
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Figure 5.15 Phase shift between the first two (pre- and post-compression) RF signals with the SNR of 10 dB. The top 

and bottom plots are the phase shift plots obtained by the quadrature and phasor methods, respectively. 

 

Figure 5.16 Phase shift between the first two (pre- and post-compression) RF signals with the SNR of 3 dB. The top 

and bottom plots are the phase shift results obtained by the quadrature and phasor methods, respectively.  
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     In Figures 5.15 and 5.16, the phase shift plots obtained by the quadrature and phasor methods 

are no longer matched. This deviation is due to the fact that, the quadrature technique represents 

a noisy phase shift and its accuracy is reduced to some extent. Therefore, the SNR is a parameter 

that can affect the quadrature technique performance and its phase results. 

     In the simulation, white Gaussian noise was added to the received RF signals such that the 

signal to noise ratio (SNR) varied from 0 dB to 40 dB. Then, the phase shift error (misfit 

between the phase shift plots resulted from the qudrature technique and phasor method) was 

calculated (Figure 5.17). Throughout this thesis, this error is called as the quadrature phase shift 

error and is shown by . Symbol  is used to show the quadrature phase error.  

     The range of 0 to 40 dB for the SNR level was chosen based on considering the amplitude 

spectrum of a particular real (measured) received RF signal. The amplitude of the measured RF 

signal around its center frequency  was found to be 250 while the amplitude of speckle 

echoes, which are sometimes considered as noise, was found to be around 10. Normally, the 

amplitude of noise is less than that of speckle echoes. Therefore, it was assumed that the 

amplitude of noise is a value between 1 and 10. The SNR of measured RF signal around its 

center frequency and at other frequencies (corresponding to the speckle echoes) was then 

calculated by  

 

                                                                                                             (5.8) 

 

where  and  are the signal and noise amplitudes and SNR is in measured in dB. 

Based on the measured RF signal’s amplitude at different frequencies, the range of SNR found to 

be between 0 and 34 dB which was rounded to 0 to 40 dB in our simulation. 
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     It can be seen from the results that the quadrature detection technique used could be accurate 

if reasonable level of SNR is obtained. However, if this level is not achieved then the resulted 

phase shift outcomes will become less accurate. 

 

5.4.2 Number of Scatterers  Parameter Effect 

Second parameter which seemed to affect the quadrature method was the number of scatterers. In 

so far represented figures, the number of scatterers has been assumed to be small . 

Figure 5.18 is resulted when  is increased to 1055 which is a large number according to 

(Narayanan, Shankar, & Reid, 1994). 

Figure 5.17 Quadrature phase shift error  of the first RF signal pairs vs. the signal to noise ratio (SNR). 
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     In Figure 5.18, the phase shift plots obtained by both methods are almost similar. This shows 

that the number of scatterers is not a dominant parameter affecting the quadrature method 

performance or its outcomes.  

     In the simulation, the number of scatterers  in the sample volume varied from 117 to 1055. 

Then, the phase shift error  was calculated (Figure 5.19). Although by changing the number 

of scatterers the phase shift error varied, this variation was not huge and remained roughly 

between 0 to 15 rad. Therefore, the number of scatterers is considered as a parameter that affects 

the quadrature technique, insignificantly. 

 

 

Figure 5.18 Phase shift between the first two consecutive (pre- and post-compression) RF signals when the number of 

scatteres in the sample volume is large (1055). The top and bottom plots are the phase shift results obtained by the 

quadrature and phasor methods, respectively.  
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5.4.3 Bandwidth Effect  

Another parameter seemed to affect the results of the quadrature method was the bandwidth of 

echoes. In so far represented figures, the bandwidth of echoes has been assumed to be 0.8 MHz   

( 16). With this bandwidth, the quadrature and phasor methods resulted in the same phase and 

phase shift plots. In the following figures, the value of bandwidth is changed and the quadrature 

phase shift results are outlined. 

 

 

Figure 5.19 Quadrature phase shift error  of the first RF signal pairs vs. the number of scatterers in the 

sample volume. 
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     By increasing the bandwidth of signal, the phase shift plots obtained by the quadrature and 

phasor methods will no longer be similar. In the next figure, the bandwidth is reduced to 4.2 

MHz ( 75).  

 

Figure 5.20 Phase shift between the first two consecutive (pre- and post-compression) RF signals when the 

bandwidth of echoes is 2.25 MHz. The top and bottom plots are the phase shift results obtained by the quadrature 

and phasor methods, respectively.  
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     By increasing the bandwidth of echoes, more jumps will be appeared in the quadrature 

outcomes and the phase shift plots deviate more from those obtained from the reference method. 

Therefore, bandwidth of the received RF signal (or its constitutive echoes) is considered as a 

parameter that affects the quadrature method and its outcome, significantly. 

     In contrast with the signals in communication systems, increasing the bandwidth of the 

ultrasound received signals will not give more information about them. In communication 

systems, signals are wideband and thus, by increasing the bandwidth more information will be 

obtained. However, ultrasound received RF signals are more narrowband and more concentrated 

around their center frequencies , which is varied with depth and attenuation. The amplitude of 

the signal at other frequencies will give information about noise and speckle echoes which are 

also considered as noise. In our simulation, the center frequency of the received RF signals was 

Figure 5.21 Phase shift between the first two consecutive (pre- and post-compression) RF signals when the bandwidth 

of echoes is 4.2 MHz. The top and bottom plots are the phase shift results obtained by the quadrature and phasor 

methods, respectively. The resulted phase shift plots are deviates more when the bandwidth is changed to 4.2 MHz. 
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considered as a constant value (5 MHz). Therefore, by increasing the bandwidth of the simulated 

RF signal, more noise will be considered and the phase outcomes will become poorer.   

     Bandwidth of the simulated received RF signal was varied from 0.8 MHz to 5 MHz and the 

quadrature phase shift error  was calculated (Figure 5.22). The quadrature technique could 

be accurate if reasonable value for the RF signals’ bandwidth is selected. However, the range of 

this selection is limit. With bandwidth equal to 0.8 MHz, the phase shift error  is not large 

(10.89 rad); however, it increases considerably with increases in the bandwidth value.   

 

 

 

 

 

 

     In the next chapter, certain algorithm will be explained which is able to reconstruct the phase 

(phase shift) results obtained via the quadrature method. Among different parameters affecting 

the quadrature technique, SNR is chosen for the further examinations. Studying of other 

parameters is left as a future work. 

Figure 5.22 Quadrature phase shift error  of the first RF signal pairs vs. the bandwidth of the received RF signal. 
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Chapter 6 

Inverse Problem Techniques 
 

 

This chapter provides a general description of inverse problems with the emphasis on nonlinear 

category and associated solving techniques. It describes a novel approach for ultrasound phase 

reconstruction by means of an algorithm known as Gauss-Newton (GN). In addition, it 

represents some phase plots reconstructed by GN algorithm. This chapter closes with the effect 

of regularization parameter on the phase reconstruction algorithm. 

     As explained in chapter 4, the quadrature phase detection technique is normally used to 

extract the phase information of ultrasound received RF signals. It was observed that in certain 

situations, such as when the SNR is low, the results of this technique will become less accurate. 

It was also observed that phase jumps of less than  appeared in the quadarture phase shift 

outcomes cannot be fixed by unwrapping process. Therefore, it is desired to find an algorithm or 

technique to reconstruct the less accurate phase outcomes resulted by the quadrature method. 

Inverse problem solving techniques seems to be able to solve these problems. In the following 

section, general inverse problem will be explained.  

     A small modification has been made in the notations used before. Here, symbol  is the 

vector of observed data and  is the  element of it. It doesn’t represent the local displacement 

discussed in chapter 2.   
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6.1 Inverse Problems  

Scientifically, it is desired to relate physical parameters characterizing a model  to collected 

observations or data . The fundamental physics are usually understood, so a function, G relating 

 and  is specified as 

 

  (6.1) 

 

     Data  may be a function of time or space, or may be a set of discrete observations. There is 

however, an issue that the actual observations always contain some amount of noise. Thus, data 

is imagined as noiseless observations from a “perfect” experiment,  plus a noise constituent 

 

 

      

                                                                                                                                (6.2) 

 

where  exactly satisfies the Eq. (6.1) for  equal to the true model represented by . It 

is often the case that a solution for  that is affected by a little noise amplitude  can have little 

or no similarity to  (Aster, Thurber, & Borchers, 2005). 

 

6.1.1 Terminology 

In modeling terminology, there is a disagreement between mathematicians and other scientists. 

Applied mathematicians generally refer to  as the “mathematical model” and to  as 

the “parameters” while scientists usually refer to  as the “forward operator” and to  as the 
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“model.” In this thesis,  is referred as the “model” while the equations of  are 

considered as the “mathematical model” (Aster et al., 2005). 

 

6.1.2 Inverse Problem Definition 

By defining the relation in (6.1), the inverse problem is to find  given  while the forward 

problem is to find  given  (Tarantola, 2005). In many cases, a finite number of parameters,  

is determined in order to define a model. In this case, the model parameters can be represented as 

an -element vector . Likewise, if there are a finite number of data points then the data can be 

expressed as an -element vector  (note that the use of the integer  for temporal sample 

number is distinguishable from the model  by its context). Such problems are called discrete 

inverse problems or parameter estimation problems. A general parameter estimation problem can 

be written as Eq. (6.1) (Aster et al., 2005). 

     The task of estimating  from  is called a continuous inverse problem when the model and 

data are functions of time and space. Normally, problems with small numbers of parameters are 

referred to as “parameter estimation problems” and problems with a larger number of parameters 

will be known as “inverse problems” (Aster et al., 2005). 

 

6.1.3 Function (Operator) G 

When  and  are functions,  is typically referred to an operator. However,  will be called a 

function when  and  are vectors. The operator  can take on many forms such as, an ordinary 

differential equation (ODE) or partial differential equation (PDE). In other cases,  is a linear or 

nonlinear system of algebraic equations.  
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6.1.4 Linear versus Non-linear Systems 

Mathematical model of  could be either linear or non-linear system of equations. 

Linear systems are those which obey superposition as follows (Proakis & Manolakis, 2007) 

 

  (6.3) 

  

     If does not obey the superposition property, the system of equations will be considered non-

linear. Nonlinear mathematical models are defined when desired parameters have an underlying 

nonlinear relationship to the observable data. The primary nonlinear in this thesis is the phase. 

 

6.1.5 Overdetermined and Underdetermined Systems of Equations 

If there are more data points than model parameters in the mathematical model  we will 

have an over-determined system while if the number of model parameters is greater than data 

points  the system will become underdetermined. In each of these two cases, finding a 

model  that satisfies every equation exactly will be impossible (Lionheart, 2011). Approximate 

solutions to such systems are obtainable by solving for model parameters that satisfy the data in a 

“best fit” sense. In order to find the “best” approximate solution to an inconsistent system of 

equations, it is tried to find an  that results in a minimum misfit, or residual, between the data 

and the forward problem. A usual strategy is to find the model that minimizes the 2–norm (or 

Euclidean length) of the residual (Aster et al., 2005) 

 

  (6.4) 

 

http://www.amazon.com/John-G.-Proakis/e/B001I9TU3K/ref=ntt_athr_dp_pel_1
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Dimitris%20K%20Manolakis
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     The model that minimizes the 2-norm is called 2-norm solution or least square solution since 

it minimizes the sum of the squares of the residuals. The least squares or 2–norm solution is of 

special interest because it is statistically the most likely solution if data errors are normally 

distributed (Huffel & Vandewalle, 1991). 

 

6.1.5.1 Statistical Aspects of Least Squares Solution 

If imperfect data points including random errors are given, then a solution aimed to be estimated 

should be best from statistical point of view. Maximum likelihood (ML) estimation approach 

seeks a mathematical model  that would most likely arise from the observations  which 

have know statistical characteristics. ML method is a general method that can be applied to the 

estimation problem where a joint probability density function can be assigned to the 

observations. The observations are assumed to be independent so that the product form of the 

joint probability density function can be used. Thus, given a model  the probability density 

function for each of the  observations will be . In general, these probability density 

functions will vary depending on  causing the probability densities to be conditional on . 

The joint probability density for a vector of independent observations  will be  

 

  (6.5) 

 

The likelihood function is defined as 

 

     

                                                                                        (6.6) 
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     According to the maximum likelihood principle, model  that maximizes the likelihood 

function (Eq. (6.6)) is sought. It is interesting that when the data errors are independent and 

normally distributed, then the maximum likelihood solution is the least squares solution (Aster et 

al., 2005). In the following this equivalence is shown. 

     Assume that the data have independent random errors that are normally distributed with 

expected value zero, and where the standard deviation of the  observation,  is . The 

probability density for  then takes the form of 

 

  (6.7) 

 

The likelihood function for the complete data set is the product of the individual likelihoods 

 

 

  (6.8) 

 

By doing some calculations, it will be found out that the maximum of Eq. (6.8) is equivalent to 

 

  (6.9) 

 

Or equivalently 

 

  (6.10) 
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     It can be seen from equations (6.10) and (6.4) that the maximum likelihood solution is the 

same as the least square solution. The only change is that the standard deviation of noise is also 

considered in this last equation (Aster et al., 2005). 

 

6.1.6 Ill-conditioning 

One characteristic of many (discrete) inverse problems is that they are ill–conditioned. That is, 

the process of finding an inverse solution is highly unstable in that a small change in 

measurement, e.g., a small noise in Eq. (6.2), can result in a vast change in the estimated model. 

Continuous and discrete inverse problems where this situation happens are referred to as ill–

posed and ill–conditioned, respectively (Aster et al., 2005).  

     It is possible to stabilize the inversion process by regularization techniques. In these 

techniques, additional constraints that bias the solution are imposed in a way that a usable 

solution can be obtained (Aster et al., 2005). 

 

6.1.6.1 Selecting a Good Solution by Regularization 

For a general least squares problem there may be infinitely many least squares solutions. If noise 

is included in the data, and that there is no point in fitting such noise exactly, apparently there 

might be many solutions sufficiently fit the data in the way that  is small 

enough. Normally, all solutions with  are considered and among these solutions 

the one which minimizes the norm of  as follows is selected (Aster et al., 2005). 

 

   

                                                     (6.11) 
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     In order to fit the data, nonzero features are required to appear in the solution. Each nonzero 

feature will increase the norm of . Therefore, minimization of  will ensure that unneeded 

features will not appear in the regularized solution. As  increases, the set of possible models 

enlarged while the minimum value of  decreased. Thus, it is possible to trace out a curve of 

minimum values of  versus  (Figure 6.1).  

 

 

 

 

 

 

     An alternative option is to consider the damped least squares problems using Tikhonov 

regularization (Engl et al., 2005; Aster et al., 2005) as follows 

 

  (6.12) 

 

which is resulted when the method of Lagrange multipliers is applied to (6.11). The parameter  

represented in Eq. (6.12) is known as the regularization parameter. For proper choices of  and 

 the two problems of (6.11) and (6.12) return the same solution. In this work, the focus is on 

Figure 6.1 Curve of the misfit norms and associated model norms 
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solving the damped least squares form of the problem shown in Eq. (6.12). In these problems, it 

is desired to find  that leads to the best solution. Later on in this chapter, it will be explained 

how  can be selected. 

 

6.1.6.1.1 Higher–Order Tikhonov Regularization 

In Tikhonov regularization explained above, an objective function involving  was intended 

to be minimized. Most of the time, it is preferred to find a solution that minimizes some other 

measure of  such as the norm of the first or second derivative (Aster et al., 2005). The discrete 

first derivative of the model can be calculated by  where 

 

  (6.13) 

 

     Matrices that are used to differentiate  for the purpose of regularization are referred to as 

roughening matrices. In (6.13),  is a finite-difference approximation that is proportional to 

the first derivative of . By minimizing  relatively flat solutions are desired (Engl & 

Kügler, 2005). In first-order Tikhonov regularization, we solve the damped least squares 

problem of  

                    

  (6.14) 

 

where  is the matrix represented in (6.13).  
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In second-order Tikhonov regularization, 

  

  (6.15) 

 

is used. Here,  is a finite–difference approximation proportional to the second derivative of 

. By minimizing  those solutions that are not smooth in a second derivative sense are 

penalized (Engl et al., 2005; Aster et al., 2005). 

     So far explanations about inverse problems are general and can be applied to both linear and 

nonlinear inverse problems. The inverse problem defined in this research has a nonlinear 

representation. Therefore, details of linear inverse problems and associated techniques for 

solving them are left here.  

     Common approaches to solving nonlinear inverse problems are introduced in the next section. 

First, Newton’s method will be described as a general framework for solving nonlinear systems 

of equations. Then, a discussion will be provided about the Gauss-Newton (GN) method which is 

a version of Newton’s method designed for nonlinear inverse problems.  

 

6.2 Nonlinear Regression 

A nonlinear system of equations is defined as  
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  (6.16) 

 

where  refers to  variables, and  are nonlinear functions 

(equations). Finding a solution for a nonlinear system of equations  involves finding a 

solution which satisfies every equation of the system (Grosan & Abraham, 2008).  

     In general, the problem of finding a parameterized curve (or a solution for the system) that 

approximately fits a set of data is referred to as regression. When the regression model is 

nonlinear in the fitted parameters, the problem will become a nonlinear regression. 

 

6.2.1 Newton’s Method 

6.2.1.1 Finding the Root of a Nonlinear System  

Consider a nonlinear system of  equations in  unknowns 

 

  (6.17) 

 

     In order to obtain a solution for Eq. (6.17), a sequence of vectors, which will 

converge to a solution  will be constructed. Then, if  is continuously differentiable, a first 

order Taylor expansion about  is constructed (Grosan et al., 2008; Aster et al., 2005) as                                          

   

  (6.18) 

 

where  is the Jacobean defined as  
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                                                                  (6.19) 

 

     Using Eq. (6.18), an approximate equation for the difference between  and the unknown  

can be obtained. Setting the right side of the Eq. (6.18) to zero leads to  

 

  (6.20) 

 

By solving Eq. (6.20) for the difference between  and    

 

   (6.21) 

 

will be resulted which leads to Newton’s method algorithm summarized as follows  

 

Algorithm for Newton’s Method  

Given a system of equations , set k=0 and guess an initial solution , then 

Repeat 

1. Compute  and   

2. Use Gaussian elimination to solve         (6.22) 

3. Let  

4. Let  

Until the sequence converges to a solution with  sufficiently close to 0 (Grosan & Abraham, 

2008). 
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     If  is sufficiently close to   will be continuously differentiable in a neighborhood of 

 and Newton’s method will converge to . Otherwise, the Newton’s method will either 

converge slowly or fail (Aster et al., 2005).  

 

6.2.1.2 Finding the Minimum of a Nonlinear System 

Now, if it is desired to find the minimum of a function  which is assumed to be twice 

continuously differentiable, then the Newton’s method can be used in a similar way to find the 

local minimum of function  (Aster et al., 2005). The Taylor series expansion of  about 

 can be written as  

 

  (6.23) 

 

where  is the gradient 

 

  (6.24) 

 

and  is the Hessian 

 

                                                 (6.25) 
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 is used to denote the Hessian. A necessary condition for  to be a minimum of  is that

.  The gradient can be approximated in the vicinity of  by (simply from Eq. (6.18))  

 

                                                                            (6.26) 

 

Setting the approximate gradient of Eq. (6.26) equal to zero gives 

 

        (6.27) 

 

     Solving Eq. (6.27) for successive solution steps leads to Newton’s method algorithm for 

minimizing . Newton’s method used to minimize the function  is equivalent to the 

Newton’s method applied to a nonlinear system of equations of .  

 

6.2.2 Gauss–Newton Method  

Newton’s method for systems of equations is not directly applicable to most nonlinear inverse 

problems. As mentioned before, this is because the number of data points and model parameters 

may not be equal and thus, an exact solution to  may not be existed. In these 

conditions, the Newton’s method will be applied to minimize a nonlinear least squares problem. 

Specifically, the problem of fitting a vector of  parameters to a data vector  will be considered. 

The parameters and data are related by a mathematical model of . A vector of 

standard deviations  for the data measurements is also determined. The goal is to find values of 

the parameters that best fit the data in the sense of minimizing the 2–norm of the residuals. If we 

assume that the measurement errors are normally distributed, then the maximum likelihood 
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principle leads us to minimizing the sum of squared errors normalized by their respective 

standard deviations (Aster et al., 2005). We seek to minimize 

 

  (6.28) 

 

For convenience, we will let 

 

                         (6.29) 

 

and 

 

                                                             

                                       (6.30) 

 

Thus, 

  

    (6.31) 

 

The gradient of  can be written in matrix notation as 

 

    (6.32) 
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where  is the Jacobean.  

 

   (6.33) 

 

Similarly, we can express the Hessian of  as  

 

  (6.34) 

 

     In the Gauss-Newton (GN) method, the second added term is ignored and the Hessian is 

approximated by the first term of Eq. (6.34) as  

 

  (6.35) 

 

     Using Eq. (6.32) and (6.35) and dividing both sides by 2, the equations for successive 

iteration in the GN method become 

 

  (6.36) 

 

     To regularize the solution obtained by GN method and find a solution with smallest 

Tikhonov regularization is used. Therefore, the nonlinear least squares problem is reformulated 

as a damped least squares problem as follow (Aster et al., 2005) 
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  (6.37) 

 

     As explained before, the regularization is done to avoid ill-conditioning. The regularized least 

squares problem can be solved by applying the GN method to it. To apply the GN method to Eq. 

(6.37), it is rewritten as (Aster et al., 2005) 

 

  (6.38) 

 

The Jacobean for this damped least squares problem for the  iteration is 

 

  (6.39) 

 

where  is the Jacobean of . A GN method step is obtained by solving  

 

  (6.40) 

 

It can be simplified using Eq. (6.39) to (Jin, 2008; Aster et al., 2005) 

 

  (6.41) 

 

 

     The GN algorithm will find a minimum of the function at which the solution gradient is zero. 

Unfortunately, the minimum value found by the GN algorithm may not be the global minimum, 
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but simply a local minimum need the iteration starting point. This problem becomes more severe 

as the objective function is more non-linear. 

 

6.3 Defined Inverse Problem for this Research 

6.3.1 Inverse Problem Determination 

As explained in the beginning of this chapter, it is desired to improve the phase (phase shift) 

information obtained by the quadrature method making them closer to the real phase (phase 

shift) information resulted from the reference (phasor) method. It is also desired to fix phase 

jumps appeared in the phase (phase shift) results, especially those which are less than  since 

these phase jumps cannot be fixed by unwrap process. Inverse problem techniques seem to be 

able to solve these problems to some extent.  

     If the real phase information is considered as a model and the results obtained via quadrature 

method are considered as observable data, then we can define a specific inverse problem in 

which the model can be estimated.   

     In chapter 5, the phase shift occurred between the first two RF signals was examined in 

different conditions. Similarly, in this chapter the inverse problem is defined for the first two RF 

signals. The procedure however, can be generalized for other RF signals with some 

modifications. Note that, at this step the noise removal is aimed. Later on when the phase jump 

reconstruction is pursued, another RF signal pairs will be used. 

     For the first RF signal, two forward models were defined separately as  

 

  (6.42) 
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     The observable data  and  were defined as the in-phase and quadrature parts of the 

complex baseband signal obtained via the quadrature method, respectively. As mentioned in 

chapter 4, the complex baseband signal has the representation of 

 

  (6.43) 

 

where  and  are the in-phase and quadrature parts with representations of  

 

            (6.44) 

            (6.45) 

 

Here  and  are depth sample number and the number of scatterers, respectively, and  is the 

maximum depth sample number. Data  and   were defined as -element vectors of 

 

  (6.46) 

 

and 

 

  (6.47) 
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with  and  defined as 

 

  (6.48) 

  (6.49) 

 

where  is depth sample number which starts from 1 to  and  which represents the number of 

data points is equal to . The model (parameters) to be estimated was defined as an -element 

vector  as 

 

  (6.50) 

 

Here,  the number of parameters in vector  is equal to  and  and  are the phase 

and amplitudes of the received RF signal at different depth sample numbers, respectively. The 

first  elements of the model vector are the phase parameters which are desired to be estimated 

in this research.  

     With data and model definitions, systems of  and  were defined as 

  



121 
 

  (6.51) 

 

and 

 

  (6.52) 

 

 

6.3.2 GN Algorithm Application 

Since  and  are collections of discrete observations and  is a collection of finite number of 

parameters, the problem of finding  given  in this research is a discrete inverse problem. 

Besides, defined mathematical models of  and  are nonlinear systems 

of equations due to the fact that the parameters of interest have a nonlinear relationship to the 

observables. The number of model parameters in defined inverse problems is greater than data 

points, and therefore, the systems of equations are underdetermined. As explained before, in the 

case of having underdetermined system of equations,  should be estimated by minimizing the 

2-norm of misfit between the data and forward model. In other words, defined inverse problems 

are nonlinear least squares problems which needed to be solved by iterative Gauss-Newton 

method. In order to apply Gauss-Newton method, the matrix of residuals for the systems was 

defined as  
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                              (6.55)

          

 

 

and 

 

                                (6.56) 

 

 

Similarly, the corresponding Jacobean matrices are defined as 

 

     

  

     

 (6.57) 

 

and 
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 (6.58) 

 

respectively. The  parameter represented in above matrices, is the standard deviation of the 

noise which can be added to the data. In order to generate noisy data, white Gaussian noise with 

mean zero and standard deviation of  was added to the observable data   and .  

     Based on Eq. (6.41), the equations for successive iteration in the GN method becomes equal 

to  

 

     

                                                                            

 (6.59) 

 

     The presence of regularization parameter  and roughening matrix  in Eq. (6.59) is to 

avoid ill-conditioning and to obtain a regularized solution.  

 

6.3.3 Reconstructed Phase (Phase Shift) Results via the GN Algorithm  

With different SNRs, different phase and phase shift plots obtained via the quadrature technique 

were reconstructed by defined GN algorithms. As an example, phase information of the second 

RF signal with the SNR of 10 dB  is shown in Figure 6.2. The phase shift between the first two 
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(pre- and post-compression) RF signals is represented in Figure 6.3. These plots are resulted 

from three different methods of phasor (reference), quadrature, and GN algorithm and 

represented in three different colours.  

 

 

 

 

 

Figure 6.2 Phase of the second (post-compression) RF signal (SNR = 10 dB). Phase obtained via the reference method 

(top), phase resulted from the quadrature method (middle), the reconstructed phase obtained by the GN algorithm 

(bottom). 
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     In application of the GN algorithm and based on Eq. (6.57), regularization parameter  and 

roughening matrix  should be determined. In this research, second-order Tikhonov 

regularization was used since it resulted in better outcomes compare to other types of Tikhonov 

regularization.  

     During the simulation, the optimal regularization parameter  and the number of iterations 

were varied based on the amount of noise added. For the second RF signal with the SNR of 10 

dB, the optimal regularization parameter and the number of iterations were found to be 14 and 7, 

respectively. These optimal values were obtained in this way: the reconstructed phase error 

(misfit between the reconstructed phase and the real phase), shown by  was plotted with 

respect to different regularization parameters and iterations number. Then, by tracing out the 

resulted plots (Figure 6.4), those regularization parameters and numbers of iteration which 

Figure 6.3 Phase shift between the first two (pre- and post-compression) RF signal (SNR = 10 dB).  Phase shift obtained 

via the reference method (top), phase shift resulted from the quadrature method (middle), the reconstructed phase 

shift obtained by the GN algorithm application (bottom). Regularization parameters of the applied GN algorithms  are 

optimal. 
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resulted in the minimum  were selected. In Figure 6.4, reconstructed phase errors  versus 

regularization parameter  are shown. Different colors show different number of iterations 

used. The dashed line in this figure is the quadrature phase error (misfit between noisy phase 

measured by the quadrature method and the real phase) which is shown by . If the 

regularization parameter is selected from the regions where  is under the dashed line, then it 

means that the employed GN algorithm can improve the noisy phase making it closer to the real 

phase. Thses regions are considered as the accepted regions from which the regularization 

parameter(s) can be chosen.    

     To measure the norm of errors  and , the following approach was taken: the sample 

numbers spanning the time interval of the phase signals were divided in a number of intervals 

with the end points at samples that  jumps occure. The norm of errors was calculated at each 

interval and then averaged. The averaged error norm was then plotted (Figure 6.4).  

     Sample divisions were made to cancel the effect of jumps in calculating the error norms. If 

samples were not divided into sub intervals, the GN reconstructive algorithm, which smoothen 

the curve around the spikes (jumps), would result in a larger . It is due to the fact that the  

is calculated with respect to the phase resulted from the reference method and not with the actual 

phase which is not wrapped and doesn’t have jumps at all. That is, if the  is found to be 

large (with respect to the reference phase), it can in fact be small if compared with the actual 

phase.   
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     In the next two figures, the SNR level of the received RF signals is reduced to 3 dB. This 

time, phase information of the first (pre-compression) RF signal and the phase shift occurred 

between the first two (pre- and post-compression) RF signals are represented in Figures 6.5 and 

6.6, respectively. Again, the phase and phase shift plots are obtained by different methods of 

reference, quadrature and GN algorithm and shown in three different colors.  

 

Figure 6.4 Reconstructed phase error  of the second (post-compression) RF signal (SNR = 10 dB) with respect to 

different regularization parameters. Different colors demonstrate different number of iterations. Dashed line is the 

quadrature phase error  which determines the accepted regions for selecting the regularization parameters.  



128 
 

 

 

 

 

 

Figure 6.5 Phase of the fist (pre-compression) RF signal (SNR = 3 dB). Phase information resulted via the reference 

method (top), phase resulted from the quadrature method (middle), and the reconstructed phase obtained by GN 

algorithm (bottom). 

Figure 6.6 Phase shift between the first two (pre- and post-compression) RF signal (SNR = 3 dB). Phase shift obtained by the 

reference method (top), phase shift resulted from the quadrature method (middle), the reconstructed phase shift obtained by 

the GN algorithm application (bottom). Regularization parameters of the GN algorithms applied on each of the two RF signals 

are optimal. 
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     For the first RF signal with the SNR of 3 dB (Figure 6.5), the optimal regularization 

parameter and the numeber of iterations were found to be 19 and 1, respectively. Again, these 

selections were made based on the reconstructed phase error  which was plotted with respect 

to different regularization parameters and iterations number (Figure 6.7).  

 

 

 

 

     In tabels 6.1 and 6.2, different regularization parameters, number of iterations, quadrature 

(observed) phase error , and reconstructed phase error  are represented for both the first 

and second RF signals with different SNR values. 

 

 

 

Figure 6.7 Reconstructed phase error  of the first RF signal (SNR = 3 dB) with respect to different regularization 

parameters. Different colors demonstrate different number of iterations. Dashed line is the quadrature phase error .  
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  TABLE 6.1 

 

 Phase of the First RF signal 

 

SNR 

(dB) 

 

Regularization 

Parameter  

 

Iteration 

Number 

 

Quadrature Phase Error 

(rad) 

 

 

 

Reconstructed Phase Error 

(rad) 

 

 

 

 

20 

 

1 

 

1 

 

2.17 

 

2.16 

 

10 

 

15 

 

1 

 

7.64 

 

6.81 

 

3 

 

24 

 

1 

 

13.10 

 

11.99 

 

0 

 

28 

 

1 

 

15.17 

 

14.03 

 

 

  TABLE 6.2 

 

 Phase of the Second RF signal 

 

SNR 

(dB) 

 

Regularization 

Parameter  

 

Iteration 

Number 

 

Quadrature Phase Error 

(rad) 

 

 

 

Reconstructed Phase Error 

(rad) 

 

 

 

20 

 

7 

 

2 

 

  4.55 

 

4.47 

 

10 

 

14 

 

9 

 

9.93 

 

8.56 

 

3 

 

25 

 

8 

 

16.53 

 

12 

 

0 

 

30 

 

6 

 

20.21 

 

12.11 
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     White Gaussian noise was added to the received RF signals such that the signal to noise ratio 

(SNR) varied from 0 to 40 dB. Then, the quadrature phase shift error  and reconstructed 

phase shift error  were calculated (Figure 6.8). Note that in Figure 6.8 the norm of sub 

intervals were calculated and averaged to give the reconstructed or quadrature phase errors. The 

approach of error norm measurement (explained earlier in this chapter) is different from the one 

used in chapter 5. 

 

 

 

 

     It can be seen that defined GN algorithm can reconstruct the noisy phase results obtained via 

the quadrature technique making them closer to the real phase information. The effectiveness of 

the algorithm can be observed when the level of noise is increased.   

 

Figure 6.8 Reconstructed phase shift error (blue) and quadrature  phase shift error (red) with respect to signal to noise ratio 

(SNR) of the RF signal. 
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6.3.4 Regularization Parameter Effect  

To investigate the effect of regularization parameter on the reconstruction process (algorithm), 

two extreme values of regularization parameters (very small and very large) were considered.  

     In Figure 6.9, the phase shift between the first two (pre- and post-compression) RF signals 

with the SNR of 3 dB is shown when large but still accepted regularization parameters were 

chosen for the GN algorithms. By accepted regularization parameter it means that the 

reconstructed phase shift error  is still less than the quadrature phase shift error  

although the value of regularization parameter is increased, significantly. 

     

 

 

Figure 6.9 Phase shift between the first two (pre- and post-compression) RF signal (SNR = 3 dB). Phase shift obtained via the 

reference method (top), phase shift resulted from the quadrature method (middle), the reconstructed phase shift obtained by the 

GN algorithm (large  regularization parameters ( = 166, = 165)) (bottom). 
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     As it can be seen, small regularization parameter has almost no effect on the noisy phase 

(phase shift) plots obtained by the quadrature technique. By small regularization parameter, the 

GN algorithm cannot be considered as a phase reconstructive approach. However, when the 

regularization parameter is increased, the phase (phase shift) results become smoother, some of 

the  jumps will be disappeared, and noise fluctuations will no longer be observed. For this 

reason, regularization parameter is often referred to the filter coefficient which can filter out the 

noise giving more accurate results.  

     It should be noted that extremely large regularization parameter will smooth the phase results 

enormously causing some phase information to be missed. In this way, the GN algorithm will no 

longer be effective due to the huge loss of information.  

Figure 6.10 Phase shift between the first two (pre- and post-compression) RF signal (SNR = 3 dB). Phase shift obtained 

via the reference method (top), phase shift resulted from the quadrature method (middle), the reconstructed phase shift 

obtained by the GN algorithm (small regularization parameters ( = 1, = 1)) (bottom). 
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     Small and large regularization parameters used in the phase reconstruction algorithms along 

with the resulted errors  and  when different SNR levels are considered are represented 

in tables 6.3 and 6.4. 

 

 

  TABLE 6.3 

 

 Phase of the First RF signal 

 

SNR 

(dB) 

 

Regularization 

Parameter  

 

Iteration 

Number 

 

Quadrature Phase Error 

(rad) 

 

 

 

Reconstructed Phase Error 

(rad) 

 

 

 

 

10 

 

78 

 

2 

 

  7.64 

 

7.63 

 

10 

 

1 

 

9 

 

7.64 

 

7.37 

 

3 

 

166 

 

8 

 

13.10 

 

13.09 

 

3 

 

1 

 

6 

 

13.10 

 

12.75 
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 TABLE 6.4 

 

 Phase of the Second RF signal 

 

SNR 

(dB) 

 

Regularization 

Parameter  

 

Iteration 

Number 

 

Quadrature Phase Error 

(rad) 

 

 

 

Reconstructed Phase Error 

(rad) 

 

 

 

10 

 

95 

 

2 

 

  9.93 

 

9.87 

 

10 

 

1 

 

9 

 

9.93 

 

9.56 

 

3 

 

165 

 

8 

 

16.53 

 

16.47 

 

3 

 

1 

 

6 

 

16.53 

 

15.31 

 

 

6.4 Phase Jump Fixing 

In chapter 5 it was explained that certain phase jumps (  and less than ) might be created in 

the phase or phase shift plots obtained by the quadrature method. It was explained that the 

creation of these jumps stems from a limitation that is existed in all phase measurement methods. 

Unwrapping is able to fix  phase jumps while it fails when applies on the less than  jumps. 

In Figure 6.11, phase shift between the 5
th

 simulated RF signal pairs is measured by the reference 

and quadrate method (top and bottom plots). In this figure, around the sample number of 558 a 

less than  phase jump is created. To see if the GN algorithm can fix these types of jumps or 

not, a GN algorithm with the same description defined in this chapter but different regularization 
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and iteration numbers was applied. The reconstructed phase shift plot by GN algorithm is shown 

at the bottom plot of the Figure 6.11. 

 

 

 

 

     It can be seen that the GN algorithm not only is able to remove the noise and act like a filter, 

but also it can fix phase jumps, especially those that cannot be fixed by unwrapping (less than  

jumps).  

 

6.5 Comparison with the Linear Lowpass Filter 

Instead of nonlinear GN algorithm, a linear lowpass filter could be applied on the phase shift 

results to remove the effect of noise. However, due to nonlinear nature of the phase, the GN 

algorithm was expected to function better. To compare the functionality of linear filter (LPF) 

Figure 6.11 Phase shift between the 5th RF signal pairs. Phase shift obtained via the reference method (top), phase 

shift resulted from the quadrature method (middle), the reconstructed phase shift obtained by the GN algorithm 

(bottom). In this figure the  phase jump at sample number 558 is fixed by the GN algorithm 
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with nonlinear filter (GN algorithm), a lowpass Butterworth filter was defined and applied on the 

noisy phase shift results obtained by the quadrature method. Throughout the examination, the 

cutoff frequency of the lowpass filter was varied. With cutoff frequencies less than 0.3 MHz and 

greater than 1 MHz, huge loss of phase information and noisy phase outcomes were observed, 

respectively. Between these values, the cutoff frequency of 0.7 MHz was resulted in the phase 

shift outcome much closer to that of the GN algorithm, compare to other cutoff frequency values 

(Figure 6.12).  

     By comparing the results of filters, it was observed that the lowpass filter causes the  phase 

jumps to become broader while their amplitudes are reduced, whereas the GN algorithm reduces 

the amplitude of the spikes without making them wider. Moreover, as the cutoff frequency of the 

lowpass filter decreases and in turn, the phase shift plots become smoother, increasing trend of 

the phase shift plots cannot be observed. Instead, a smooth line with rises and falls will be 

observed. This causes the lowpass filtered phase shift result to deviate from that of the reference 

method even though the phase shift plot is smoothened by lowpass filtering.       
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Figure 6.12 Phase shift between the first two RF signals. Phase shift obtained via the reference method (blue), phase shift 

resulted from the quadrature method (red), the lowpass filtered phase shift (green), and the reconstructed phase shift by 

the GN algorithm (purple). The lowpass filter has the cutoff frequency of 0.7 MHz. the regularization parameter of GN 

algorithm is optimal. 
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Chapter 7 

Phantoms and Results 
 

 

The eventual goal of this research involves application in ultrasound real data measurements. 

Although the majority of work was done by computer simulation to develop and verify the GN 

algorithm and its functionality, some preliminary work was done on the real data measurements. 

This step demonstrates the effectiveness of the defined GN algorithm on the data obtained from 

compressed (expanded) ultrasound experimental phantoms that simulate muscle contraction 

state. The following chapter outlines the generalization of GN algorithm to the data 

measurements and illustrates samples of reconstructed phase corresponding to the measured RF 

signals. 

 

7.1 Measured RF Signals 

In this research, some of the measured data stored in “.zrf” files were used for the purpose of 

experimental testing. As mentioned in chapter 3, these data (RF-signals) were obtained in 

previous works where an ultrasound probe was used to compress (or expand) particular 

ultrasound phantoms simulating the skeletal muscles. By pushing down the probe on the 

phantom, muscle contraction was simulated.  

     During phantom compression (expansion), when the ultrasound system was in M-mode 

operation, 5550 RF-signals or equivalently, 5549 RF signal pairs were created and stored. RF 

signals included in each pair are called as pre- and post-compression (expansion) RF signals. 

Compressing the phantom causes the post-compression RF signals to become shorter (in time or 
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depth) than the pre-compression RF signals. In contrast, phantom expansion results in a longer 

post-expansion RF signals relative to the pre-expansion ones. 

 

7.2 Phase Reconstruction Process 

Figures 7.1 and 7.2 represent the first two measured RF signals (corresponding to the first and 

second scan lines) along with their phase information. 

 

    

 
 

 

 

Figure 7.1 First (pre-compression) measured RF signal (top), corresponding to the first scan line (or frame). 

Phase information of the first measured RF signal (bottom) by the quadrature method. 
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     As it can be seen from the results, the phase information of the first two RF signals (pre- and 

post-compression RF signals) are quite similar. It demonstrates that during 

compression/expansion of the sample phantom, the probe moved very slowly. Therefore, the 

amount of displacement of the post-compression RF signal will be very small relative to the pre-

compression RF signal. Similarly, the consecutive phase shift between these two signals is 

expected to be very small (Figure 7.3). 

 

 

Figure 7.2 Second (post-compression) measured RF signal (top), corresponding to the second scan line (or 

frame). Phase information of the second measured RF signal (bottom) by the quadrature method. 
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     Again, since the consecutive phase shift shown in Figure 7.3 does not change significantly at 

different depth sample numbers, it becomes apparent that the phantom was expanded gradually 

during RF signal generation. Consecutive phase shift at the maximum depth sample number is a 

small positive value which demonstrates that the experimental phantom was expanded.   

     Since the probe was gradually applied on the phantom, it is expected that the phase 

information of other RF signals to be very similar (with small changes) to their prior pair. 

Therefore, for reconstructing the phase information of the measured data, one single GN 

algorithm can be defined and applied to all generated 5550 RF signals. In Figures 7.4 and 7.5, 

reconstructed consecutive phase shift between the first two generated RF signals is shown when 

regularization parameter in the GN algorithm is equal to 1 and 50, respectively.      

 

 

Figure 7.3 Consecutive phase shift between pre- and post-compression RF signals, measured by the quadrature 

phase detection technique. 
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Figure 7.4 Reconstructed consecutive phase shift between the first two (pre- and post-compression) RF signals 

(frames), resulted from applying the GN algorithm with regularization parameter of 1. 

Figure 7.5 Reconstructed consecutive phase shift between the first two (pre- and post-compression) RF signals 

(frames), resulted from applying the GN algorithm with regularization parameter of 50. 
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     By comparing Figures 7.3 and 7.4, it becomes evident that even a small regularization 

parameter, such a 1, can affect the measured consecutive phase shift fixing its phase jumps, 

significantly. Then, the regularization parameter increased to a greater value (50) (Figure 7.5). 

As explained in chapter 6, regularization parameter in defined GN algorithm can be considered 

as a filter coefficient. Large value regularization parameters will therefore, have greater influence 

on the noisy phase information which are aimed to be reconstructed. It can be observed that the 

GN algorithm with large regularization parameter removes almost all phase jumps observed in 

Figure 7.3.  

     Similarly, defined GN algorithm was applied to all 5550 measured RF signals. In the 

following figures, the accumulated phase shift after 5550 frames is represented before and after 

applying the GN algorithm. 

 

 
 

 

Figure 7.6 Accumulated phase shift after 5550 frames, measured by the quadrature detection method. 
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     The accumulated phase shift plot is the result of adding all 5549 consecutive phase shift plots 

corresponding to 5549 RF signal pairs. Even though the slope in each of these consecutive phase 

shift plots was not considerable, it becomes noticeable if these are all added up. Therefore, the 

slope of accumulative phase shift shown in Figure 7.6 will become noticeable. 

 

 

 

 

 

 

 

Figure 7.7 Accumulated phase shift after 5550 frames, resulted from the GN algorithm with regularization 

parameter of 100. 
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    An appropriately defined GN algorithm is able to remove noise and fix phase jumps, 

considerably. However, it should be noted that although the incorporated regularization 

parameter can filter out the noise, it can also remove some phase information. Therefore, there 

has to be a tradeoff between high and low value regularization parameter if we want to have an 

optimal reconstructive GN algorithm.  

 

 

 

 

 

 

Figure 7.8 Accumulated phase shift after 5550 frames, resulted from applying the GN algorithm with high 

regularization parameter equal to 1000. 
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Chapter 8 

Conclusions and Future Works 
 

 

8.1 Conclusion 

In this research, it was tried to measure the phase information of ultrasonic received RF signals 

accurately. Quadrature phase detection technique, which is a method commonly used to measure 

the phase information, was tested in different conditions. Parameters that affect its functionality 

causing its outcomes to become less accurate were explored. Among the explored affecting 

parameters, signal to noise ratio of the received RF signal was considered for further 

examination. It was observed that by increasing the level of noise, the phase results obtained by 

the quadrature technique would become less accurate and deviate from the real phase which is 

aimed to be obtained. To resolve this problem, a novel phase reconstructive approach was 

defined based on the Gauss-Newton algorithm. In this algorithm, certain parameter, known as 

regularization parameter, were varied to study its effect on the process of reconstruction. It 

becomes evident that the regularization parameter can act as a filter coefficient able to remove a 

part of noise appeared in the phase results. Extremely low value of it had no impact on the phase 

information. i.e., didn’t change noisy phase representation, considerably. E \xtremely large value 

of it however, can result in the loss of phase information. Indeed, it can remove a portion of 

phase information while tries to cut out the noise. Therefore, it is always desired to find an 

approach by which the optimal value of regularization parameter can be selected. There are 

several approaches that can search for the optimal regularization parameter. However, not all of 
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them can work for all problems. For instance, in this research it was not possible to apply L-

curve criterion (one of the different approaches of finding optimal regularization parameter) 

since the conditions of this criterion were not provided in this work.  

 

8.2 Future Works 

- Studying on different approaches of regularization parameter selection and finding the 

one that can be applied on ultrasound phase reconstruction process is remained as a future 

work. 

- In this research, just a few number of iterations were examined due to the computer speed 

problem. Improving the designed algorithm in a way that greater number of iterations can 

be studied is another work that can be done in future.  

- Examination of other parameters that affect the quadrature method, such as the 

bandwidth of the signal is another step that is aimed to be taken in the future.  

- This research simulates speckle echoes generated as the ultrasound beam is transmitted 

through a single layer of a part of body. In future, this simulation can be extended to 

cover different tissue layers of the body, such as muscle and bone layers.   
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