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Abstract: In this paper we propose a novel formulation for the distinguishability
of conductivity targets in electrical impedance tomography (EIT). It is formulated
in terms of a classic hypothesis test to make it directly applicable to experimen-
tal configurations. We test to distinguish conductivity distributions σ2 from σ1,
from which EIT measurements are obtained with added white Gaussian noise with
covariance Σn. In order to distinguish the distributions, we must reject the null
hypothesis H0: x̂ = 0, which has a probability based on the z-score: z = x̄

σx
. This

result shows that distinguishability is a product of the impedance change amplitude,
the measurement strategy and the inverse of the noise amplitude. This approach is
used to explore different current stimulation strategies.

1 Introduction

Electrical impedance tomography (EIT) attempts to reconstruct the impedance distribution
within a body from electrical stimulation and measurement at a series of electrodes attached
to body surface. One key figure of merit for a given EIT system is its distinguishability, which
measures an index of the feasibility with which two different impedance distributions (σ1 and
σ2) may be distinguished. This measure incorporates several factors: the size, impedance
difference between σ1 and σ2, and the characteristics of the EIT systems such as signal to
noise ratio (SNR), the position, number of electrodes, and stimulation and measurement
patterns on the electrodes.

In this paper we propose a novel formulation for the distinguishability of conductivity
targets in EIT. This work compliments the classic formulation of the problem by Isaacson[1],
which calculated the measurement precision needed to distinguish between two different
conductivity distributions. A similar formulation was proposed by Lionheart et al to find
optimal current patterns considering electrical safety [2]. In this work, we propose the
formulation of distinguishability in terms of a classic hypothesis test, which makes it easier to
apply to experimental configurations. We develop the formulation for the distinguishability
and demonstrate its applicability to a simulated EIT system.

2 Image Reconstruction

An EIT system, characterized by F (·), is used to make a set of measurements represented
by an M × 1 vector

v = F (σ) + n (1)

from an impedance distribution characterized by an N × 1 parameter vector σ, where F (·)
describes the EIT measurement process. In all measurement systems there is a contribution
of random noise n, which we characterize as zero-mean, independent and Gaussian. This
characterization is justified as follows: the noise has zero-mean because any average bias can
theoretically be measured and incorporated into the EIT model F (·); the independent noise
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means that there is no correlation between the noise and the two samples we wish to distin-
guish. This is a reasonable assumption in the most EIT hardware designs if measurements
are separated in time by several frames. Correlations between individual measurements with
the measurement vector v may exist and be modelled with this approach. The assumption
of Gaussian noise is designed to make the statistical computations easier; however, there is
some evidence to indicate that EIT noise is not Gaussian[3]. Specifically, large errors occur
far more often than would be predicted by a Gaussian with a time-invariant covariance Σn.

Problem Formulation: we wish to distinguish conductivity distributions σ2 from σ1

through which EIT measurements v1 = F (σ1) + n1, and v2 = F (σ2) + n2 are performed,
where n1 and n2 represent the instantiations of zero-mean white Gaussian noise with covari-
ance Σn. Since we generally want to distinguish small changes in conductivity, we linearize
around σ1 to obtain a conductivity change x = σ − σ2 which is a linear function of mea-
surements

y = v − v1 = Jx + n, (2)

where J is the Jacobian (sensitivity) defined as

[J]i,j =
∂Fi(σ)

∂σj

∣∣∣∣
σ=σ1

. (3)

This linearization assumes that reasonably small impedance changes x occur, which is gen-
erally a reasonable assumption if we are investigating the distinguishability limits for most
EIT systems.

From measurements y, an impedance change image estimate x̂ is reconstructed, from a
linearized difference EIT reconstruction algorithm as x̂ = Ry, defined from the norm

x̂ = arg min
x

‖y − Jx‖Σ−1
n

+ P (x), (4)

where P (·) represents a penalty or regularization term. Such a linear reconstruction matrix
can describe the majority of difference EIT reconstruction algorithms, such as the Sheffield
Backprojection and many regularization based schemes.

In general, we are interested in investigating the image output within a specific region of
interest (ROI), defined by IR, where IR is a vector of the size of the image parameter space
N × 1 in which each element [IR]i is zero, if i represents a region outside of the ROI, and the
area of the parameter region i, if i is in the ROI. If a fraction of region i is in the ROI, [IR]i
is weighted by the fraction of membership. Based on the ROI, we define a scalar impedance
change xR in the ROI as the weighted average of the impedance change x in the ROI, or
xR = IRx. The best estimate of parameter x based on measurements y is defined as x̂.

x̂ = IRx̂ = IRRy = RRy, (5)

where RR = IRR is defined to be the reconstruction matrix of the ROI of size 1×M . Since
x̂ is a single parameter, no regularization term P (·) is required, and the maximum likelihood
solution matrix, RR, is given by:

RR =
(
Jt

RΣ−1
n JR

)−1
Jt

RΣ−1
n , (6)

where JR = JIt
R.
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3 Formulation of Distinguishability

In order to distinguish σ1 from σ2 we must reject the null hypothesis H0: x̂ = 0. The
probability of H0 is based on the z-score:

z =
x̄

σx

, (7)

where

x̄ = E[x̂] = E[RR(y + n)] = RRy = RRJx = IRx,

and

Var (x) = σ2
x = E[‖x̂− x̄‖2] = E[‖RRn‖2]

= E[RRnntRt
R] = RRE[nnt]Rt

R = RRΣnR
t
R.

Given the maximum likelihood solution for x̂, we further simplify σ2
x as

σ2
x = RRΣnR

t
R

=
(
Jt

RΣ−1
n JR

)−1
Jt

RΣ−1
n ΣnΣ

−1
n JR

(
Jt

RΣ−1
n JR

)−1

=
(
Jt

RΣ−1
n JR

)−1 (
Jt

RΣ−1
n JR

) (
Jt

RΣ−1
n JR

)−1
= (JtΣ−1

n J)−1. (8)

The z score may be calculated as

z =
x̄

σx

=
x̂(

Jt
RΣ−1

n JR

)− 1
2

= x̂

√
Jt

RΣ−1
n JR. (9)

This result shows that the distinguishability is a product of the target (x), the measurement
strategy (J) and the inverse of the noise amplitude (Σn).

For a practical algorithm, we need to define the ROI of the reconstruction algorithm.
This area should be large enough to include the most of the amplitude of the reconstructed
response, but to avoid areas which show large reconstruction artefacts.

4 Distinguishability of Current Patterns

In order to illustrate use of this approach, we perform a test to determine the stimulation
protocol with the largest distinguishability. Given a 16 electrode Sheffield-type pair drive
EIT system, it is traditional to stimulate across adjacent pairs of electrodes (which we label
[0-1]), opposite pairs (labelled [0-8]) or any other offset. Using a 2D circular Finite Element
Model (FEM), we simulate each scenario for target positions from the medium centre to
boundary. Results (Fig. 1) suggest that distinguishability varies with the target position,
but a stimulation offset between 3 and 5 is a good compromise.

This formulation may be extended to separate the choice of simulation patterns, the
medium geometry and current propagation. Most EIT systems apply a set of current patterns
represented as the columns of C to make a set of p voltage measurements V = T(σ)C,
where T(σ) is the transfer impedance matrix of the medium with impedance distribution σ
(in units of Ω). For the small change x = xRIR, we can define a transfer impedance change
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Figure 1: Left: FEM of a small conductive target in a 2D circular medium with 16 electrodes
(green). The target moves from centre to edge (shown). Right: Normalized distinguishability
z as a function of target position for pair drive stimulations with electrode offsets (X axis).
Thus, [0− 1] indicates adjacent stimulation, while [0− 8] indicates opposite stimulation.

T∆ = T(σ +x)−T(σ). From T∆, the elements of the Jacobian JR may be calculated from
MT∆C, where M represents the measurement scheme (which is typically the difference
between adjacent electrodes). In this case, JR is a vector M × 1 while MT∆C is N

S
× S.

If the noise covariance can be assumed to be the same for each current pattern (which we
represent as Sn), then

Σn = Sn ⊗ IS, (10)

where S is the number of stimulation patterns, IS is the identity matrix. In this case

JtΣ−1
n J = tr (CtT∆

tMtS−1
n MT∆C), (11)

where ⊗ represents the Kronecker product. Note that T∆
t = T∆ due to reciprocity. Thus,

each diagonal element [W]ii = [CtT∆MtS−1
n MT∆C]ii represents the contribution from the

ith current stimulation, and

z = x̂
√

W2
11 + W2

22 + · · ·W2
pp, (12)

This approach may then be extended to calculate the optimal current patterns C for a
particular target position.

In summary, we propose a formulation for the distinguishability in EIT in terms of
a hypothesis test, and show that distinguishability is a product of the impedance change
amplitude, the measurement strategy and the inverse of the noise amplitude.
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