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Abstract

This thesis presents a system for three-dimensional modelling of the face to fit

two-dimensional input images that are not constrained for pose or illumination. The

system consists of a face-fitting algorithm that works in conjunction with a 3D mor-

phable face model to synthesize a face whose projected image resembles as closely as

possible the target image under analysis. The fitting algorithm optimizes across pa-

rameters that define face shape and texture, facial pose, and illumination conditions.

We show that this system is able to generate a face model with sufficient accuracy

that the model is deemed to represent the same identity as the target according to

a measure of face similarity. The face model can also be normalized for pose and

illumination to provide more suitable input for an appearance-based face recognition

algorithm. It was found, however, that lack of extracted skin detail limited success

in this regard.
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Chapter 1

Introduction

Human faces are complex three-dimensional objects characterized by distinguishing

features such as eyes, mouth, and nose and by skin pigmentation. Nonetheless, hu-

mans are generally able to routinely and with minimal effort identify and recog-

nize faces of others [42]. Perhaps inspired by this innate human ability, researchers

from various disciplines have investigated and pursued machine-based automatic face

recognition for over 40 years [73]. And while decades worth of research has afforded

a certain level of maturity to the technology of automatic face recognition — mani-

fested in numerous commercially available systems — there are numerous challenges

that still exist.

1.1 The Biometric Context

The International Biometric Industry Association defines a biometric characteristic as

a “measurable biological (anatomical and physiological) or behavioural characteristic

that can be used for automated recognition” [1]. Similarly, a biometric process is an
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automated method of recognizing individuals based on these measurable biological or

behavioural characteristics.

In comparison with traditional identity management tools such as passwords, per-

sonal identification numbers (PINs), and smart cards, biometric technologies generally

offer both enhanced security and user convenience [39]. As such, these technologies

are increasingly being deployed in secure personal identification and verification sys-

tems at airports and other secure facilities, for computer and/or network access, in

government documentation such as passports and drivers’ licences, and in surveil-

lance applications. Indeed, this increasing demand for reliable automated personal

authentication has driven commercial implementations of physiological biometrics in-

cluding face, fingerprint, iris, and retina and behavioural biometrics such as signature,

keystroke, and gait, and continues to drive research in these areas as well as more

obscure biometrics like body odour and ear shape [69].

The applicability of a particular biometric to a particular application depends on

an evaluation of factors including perceived intrusiveness, distinctiveness (i.e., how

accurately can different individual identities be resolved?), cost of deployment, and

ease-of-use [29]. For instance, in 2001 the International Civil Aviation Organiza-

tion (ICAO) evaluated a number of biometrics for potential use in machine-assisted

identity confirmation upon presentation by aviation passengers of a machine-readable

travel document (MRTD). Based on the evaluation criteria and a comprehensive set

of constraints imposed by the ICAO, face was found to have the highest compatibility

rating with their application [30].
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Table 1.1: Typical applications of biometric face recognition.

Category Application Scenario

Face identification
Drivers’ licences
Passports, immigration, national ID cards
Entitlement program registration

Access control
Facility and vehicle access
Computer and computer network access
Online transaction access

Surveillance and
security

Advanced video surveillance, CCTV control
Secure flight boarding systems

Law enforcement
Suspect tracking and investigation
Criminal face retrieval and recognition

Smart cards
Stored value security
User authentication

Multimedia
management

Face-based indexing and retrieval
Face-based video segmentation and summarization

Human computer
interaction (HCI)

Interactive gaming
Face tracking for video-conferencing

1.2 Face as a Biometric

There are, in fact, many potential applications in which the use of face as a biometric

identifier proves to be suitable. A fairly exhaustive list and description of applications

is given in [28], with a condensed list provided here in table 1.1.

The various application scenarios outlined in table 1.1 can be classified broadly

into the following three tasks [34, 48, 75]:

� Verification. Does the probe face image match the claimed identity? This

involves a one-to-one comparison evaluated against some predetermined simi-

larity score threshold. A typical application might involve the use of the face

biometric in conjunction with or in lieu of a password for access to a secure

facility or computer network.

� Identification. Whom does the probe face image represent? Identification
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involves a one-to-many matching process in which the probe image is compared

with a database of images with known identities, with the assumption that the

query face image does represent a known identity in the database. Generally,

the system will return the top match or the top k most likely matches. This

task is modelled after law enforcement applications in which a suspect’s image

would be compared with a database of mugshots of known criminals [48].

� Watch List. Does the probe face image represent someone of interest? This

involves a one-to-few comparison in which the system determines if the probe

face represents an individual on a stored watch list and, if yes, returns the

identity of that individual. Clearly, a typical application would be surveillance

scanning of a crowd — perhaps at an airport — looking to identify anyone on a

terrorist watch list and subsequently raise an alarm if a match is found. Another

potential application might involve content-based indexing of an image and/or

video database (described in [7]) in which the basis for search and retrieval is

the face of a person of interest.

The verification task is different from the identification or watch list tasks in

that it utilizes a claimed identity. A corollary to this is that in verification it can

be assumed that the individual presenting his or her face to the recognition system

is a cooperative subject, motivated to use the system in the proper manner and to

achieve a successful result. In such cases, conditions can be imposed on image capture

to improve system performance. Specifically, subjects can be required to assume a

frontal face pose with neutral expression under controlled lighting conditions and at

a specific distance to the image capture device. Recent independent evaluations of

face recognition technology — the Face Recognition Grand Challenge (FRGC) [45,46]
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and the Face Recognition Vendor Test (FRVT 2006) [49] — have shown that current

state-of-the-art automated face recognition systems are capable of high performance

under these controlled conditions. These same tests have shown, however, that recog-

nition accuracy suffers significantly when conditions for facial image capture are not

constrained.

1.3 Challenges to Face Recognition

Notwithstanding the expected differences in visual appearance between faces of dif-

ferent individuals, variations between face images can arise due to facial expression

or several extrinsic factors such as pose or viewing angle, illumination, occlusion,

and time delay between acquisition of the probe and gallery images that are being

compared [24]. When a face recognition system is unable to constrain any or all of

these factors, performance can be expected to suffer. Yet most potential surveillance

and screening applications of face recognition technology involve subjects who are

unaware that a biometric system is in place and make no effort to present themselves

to the image capture device. In such situations, the system is unlikely to obtain a

clear, favourably illuminated frontal view of the face with neutral expression.

While many techniques for the face recognition task and/or methods for prepro-

cessing the facial images have been proposed, robust face recognition under uncon-

strained conditions remains difficult and elusive [34, 74, 75]. Among the challenges

an unconstrained situation presents, pose and illumination are perhaps the most sig-

nificant. In fact, one study concluded that variations between images of the same

face due to differences in illumination and viewing angle generally exceed the image

variation due to a change in face identity [4]. These difficulties were underscored
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(a) (b) (c)

Figure 1.1: The pose problem illustrated. Under most measures of image similarity,
images of different individuals at similar poses ((a) and (b)) would be deemed to be more
similar than images of a single individual at different poses ((a) and (c)). [Images generated
by FaceGen modeller, as described in section 2.3.]

in the evaluation report for the Face Recognition Vendor Test (FRVT 2002) [48] in

which pose and illumination were identified as key future directions of research.

1.3.1 The Pose Problem

That unconstrained pose is a hindrance to effective, real-world face recognition is not

unanticipated. After all, even humans show a decline in recognition of unfamiliar

faces with increasing disparity in pose between learning and test faces [54]. Figure

1.1 illustrates the effect of pose on facial image similarity. Although images 1.1a and

1.1c represent the same individual from frontal and oblique viewpoints, respectively,

while image 1.1b represents a different individual, most measures of similarity would

declare images 1.1a and 1.1b to be more similar than 1.1a and 1.1c [62]. For instance,

a straightforward pixel-wise measure of the L2-difference (i.e., the sum of the squared

difference between pixel values over all pixel locations) would imply the two frontal

images of different people are more similar than the images of the same person from

different viewpoints.

Dramatic changes in appearance of a given face upon changes in pose arise quite

6



Figure 1.2: The illumination problem illustrated. Under most measures of image similar-
ity, images of different individuals under fixed illumination conditions (bottom row) would
be deemed to be more similar than images of a single individual under varying illumination
conditions (top row). [Images generated by FaceGen modeller, as described in section 2.3.]

simply from the three-dimensional structure of the face. As pose changes, the ap-

pearance of the face can change due to projective deformation which alters the spatial

configuration of facial features and self-occlusion as parts of the face disappear from

view [24].

1.3.2 The Illumination Problem

Even if the pose of a given face is fixed, illumination variation can significantly change

its appearance. This is evident in figure 1.2 in which the top row contains four images

of an individual with fixed pose but under varying illumination while the bottom row

contains images of four different individuals under fixed pose and illumination. Again,

a measure of the L2-difference would judge any pair of images from the bottom row

to be more similar than any pair of images from the top row [27].

7



Given the three-dimensional shape of the face and depending on the positions,

distribution, and intensity of any light sources, the appearance of a face can change

in terms of overall brightness as well as with the locations of any shadows or specular

reflections. Cast shadows from a direct light source, in particular, can accentuate or

diminish certain facial features [22,24] as is clearly evident in the upper row of figure

1.2.

1.4 Thesis Objective and Outline

The objective of this thesis is to address the following question: Is it possible to

accurately predict the appearance of an individual and subsequently generate a frontal

and uniformly illuminated view of their face from an image that is unconstrained in

pose and illumination?

The approach taken to address this question is an analysis by synthesis framework

whereby a generative three-dimensional (3D) face model is used in conjunction with

a face-fitting algorithm to synthesize a face model whose projected image resembles

as closely as possible the target image being analyzed. This face model can then

be normalized for pose and illumination such that an image of the subject can be

re-rendered under conditions that would make the image more suitable for use in a

face recognition application. While not developed as part of this thesis work, the

3D face model plays a key role and is described in chapter 2 along with some other

pertinent background information. The face-fitting algorithm that was developed as

part of this thesis work is described in chapters 3 and 4 which focus primarily on the

solutions to the pose and illumination problems, respectively. In chapter 5 the system

of face model and analysis algorithm is tested to determine how well it can address
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the thesis objective by comparing novel views of individual faces — synthesized from

images taken under sub-optimal pose and/or illumination conditions — with ground

truth views of those same faces.
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Chapter 2

Background

While face recognition systems are capable of high performance under controlled

imaging conditions, variation in pose and illumination presents a significant challenge

[34, 74, 75]. A number of methods have been proposed in recent years for pose and

illumination invariant face recognition with arguably the most successful of these

being a preprocessing approach based on a 3D morphable model of the face, which is

described in detail in section 2.2. In section 2.3, a commercially available face modeller

that is based on this 3D morphable model approach and which serves as the backbone

for the face analysis conducted as part of this thesis is described. In section 2.4 the

descriptors that will be used throughout this paper for rotation in three-dimensional

space are established. Finally, in section 2.5 some standard face recognition system

performance measures are described, with emphasis on those measures that will be

used in the evaluation of our system which combines a face-fitting algorithm with a

3D face model.
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2.1 Approaches to Face Recognition

Many approaches to face recognition have been proposed in recent years, with most

being optimized to perform on frontal, uniformly illuminated views of the face. The

reader is referred to [74] for a fairly recent critical survey of many of these methods.

There have been relatively few suggestions, meanwhile, of techniques to handle

the joint problem of pose and illumination variation. In general, the goal is to make

face recognition independent of the imaging conditions by distinguishing the sub-

ject’s identity from the extrinsic imaging parameters. Ideally, it is desirable that any

approach be able to generalize in all three factors involved, namely, subject identity,

pose, and illumination [75]. That is, in considering the problem of unconstrained pose

and illumination, the ideal face recognition system would be capable of identifying

any person under any pose and any illumination conditions.

The 3D morphable model approach introduced by Blanz and Vetter [11] is con-

sidered the state-of-the-art approach for pose and illumination invariant face recog-

nition [75], and tends to be the benchmark against which other proposed solutions

measure themselves. In comparison with this model-based approach, appearance-

based approaches extended to contend with variable pose and illumination tend not

to perform as well. Certainly this is the case with two such techniques described

in [21], namely, Fisher Light-Fields [23] and Bayesian Face Subregions coupled with

an illumination preprocessing algorithm [22]. Somewhat more favourable results are

reported for Illuminating Light Fields, another appearance-based light-field approach

described in [75], but performance with this approach still falls short of that achieved

with 3D morphable models. And, while the morphable model can generalize in pose,

these appearance-based approaches consider only discrete sets of poses.
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Were it possible, perhaps the most straightforward way to generalize across pose

would be to have an image database of each subject at each possible pose position and

to constrain the face recognition task to the detected pose position [9, 44]. A similar

approach could be taken for illumination. The Tensorface approach [65, 66] builds

on this idea with multi-linear image analysis whereby multiple images of the subject

are used to build a statistical model to interpolate to novel poses and illumination

conditions. It is argued in [75], however, that while identity and illumination are

suitable for linear analysis, pose is not.

More recently, some researchers have proposed techniques for which they report

performance in unconstrained face recognition that exceeds that of the morphable

model approach. Two of these techniques are summarized as follows:

Tied factor analysis. Recently introduced as an approach for face recognition

under variable pose but extensible to variable illumination, tied factor analysis

is based on a generative model that creates a probabilistic mapping from an ide-

alized “identity space” to models of individual facial features that change with

pose [53]. This is purely a machine learning approach and does not generalize

in pose but rather learns system parameters only for discrete poses.

Video-based modelling. In [70], the authors present a framework for inte-

grating joint models for shape, illumination, and motion from video sequences.

Given a probe sequence that is unconstrained in pose and illumination, the

probe face is tracked to estimate its 3D motion (i.e., pose over time) while simul-

taneously an illumination model recovers illumination parameters as a function

of time. The learned motion and illumination parameters are used to synthesize

video sequences for each candidate in a gallery of 3D face models with the same

12



motion and illumination conditions as the probe. Gallery and probe similari-

ties are evaluated, according to some distance measure, via comparison of the

synthesized sequences and the probe sequence.

2.2 3D Morphable Models

Blanz and Vetter [11] introduced the 3D Morphable Model (3DMM) nearly a decade

ago, building on the concept that faces form a linear object class and therefore,

given a set of representative basis faces that span “face space”, a new face image can

be approximated as a linear combination of those representative faces set in shape

correspondence with one another [8, 32, 67]. The morphable face model exploits the

statistics of a large dataset of 3D face scans to encode shape and texture in terms of

model parameters.

These model parameters describe the statistical variation in shape and texture

that occurs with changes in identity. Other sources of variation that occur in facial

images, meanwhile, can also be modelled but with independent sets of parameters

[55]. Changes in facial pose, considered separately from shape, are rendered using

a computer graphics simulation of perspective projection techniques [11]. And since

the model is three-dimensional, surface normals can be directly computed and the

interaction with light can be simulated using an illumination model [56].

2.2.1 Model Construction

A detailed description of the construction of a 3D morphable model from a dataset

of 3D face scans can be found in [13]. Although no model was constructed for this

thesis, the model generation process is briefly summarized here to lend insight to the
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derivation and function of shape and texture model parameters.

To construct the model, a set of M 3D face scans are put into dense point-to-point

correspondence with some reference face scan. This correspondence yields consistent

labelling of all n vertices in each of the scans. (For the model described in [13],

M = 200 and n = 75, 972.) Shape and texture vectors for each subject i ∈ 1, . . . ,M

are then defined by

Si = (x1, y1, z1, . . . , xn, yn, zn)
T, (2.1)

Ti = (R1, G1, B1, . . . , Rn, Gn, Bn)
T, (2.2)

where (xk, yk, zk) represents the position of the k-th vertex and (Rk, Gk, Bk) gives its

colour.

Since the faces are in full correspondence, novel face shapes and textures can be

created as convex linear combinations [11] of the M shape and M texture vectors as

follows:

S =
M∑
i=1

aiSi, T =
M∑
i=1

biTi,
M∑
i=1

ai =
M∑
i=1

bi = 1, (2.3)

or more conveniently, novel shape and textures can be described as a linear combina-

tion of NS shape and NT principal components,

S = S̄ +

NS∑
i=1

αisi, T = T̄ +

NT∑
i=1

βiti. (2.4)

S̄ and T̄ represent the average face shape and texture, respectively, and the principal

components si and ti are derived from the set of shapes and textures using Principal

Component Analysis (see [31]).

The coefficients αi and βi are the shape and texture model parameters, respec-

tively, and are theoretically capable of describing any face or, at least, any face that
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falls within the “face space” implied by the range of face shapes and textures in the

dataset of 3D scans. Images of the face model described by the parameters can subse-

quently be rendered according to any modelled pose and illumination parameters [55].

2.2.2 Fitting the 3D morphable model to 2D image

Image analysis by model fitting is essentially an inversion of the modelling process.

Given a target image, the goal is to find the shape and texture coefficients αi and

βi, along with parameters describing the face position, orientation, and illumination,

such that an image of the model rendered according to these parameters matches as

closely as possible the target image [12]. This process is illustrated in figure 2.1.

This is an ill-posed, non-linear problem that requires some optimization strategy

[56] to solve. The particular strategy implemented for the purposes of this thesis will

be described in section 3.5.

2.3 The FaceGen Face Modeller

The FaceGen Face Modeller is a standalone Windows-based parametric face mod-

elling application produced by Singular Inversions Inc. Based on the morphable

model framework, this product is targeted primarily to computer game developers

and graphic artists for character creation. FaceGen enables 3D face creation from

a frontal photograph, random face creation, and manipulation of face characteristics

via shape and texture controls. A screen capture of the user interface is given in

figure 2.2.

Shape and texture parameters are controlled by sliders whose range of appropriate

values are governed by the distribution of underlying statistical appearance models.
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Model ImageTarget Image

Figure 2.1: Fitting the 3D morphable model to a 2D image. The goal of the fitting process
is to derive the shape and texture coefficients αi and βi that define a 3D face model that,
when rendered according to the model imaging parameters, produces an image as similar
as possible to the target. [Images generated by FaceGen modeller, as described in section
2.3.]

16



Figure 2.2: Screen capture of the FaceGen Face Modeller user interface.
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In addition to shape and texture manipulation, the FaceGen Modeller allows head

rotation, translation, and scaling through user mouse control with the mouse posi-

tioned over the face viewing window. The apparent brightness of ambient light and

the position and brightness of up to three direct light sources can be manipulated.

The modeller also allows morphing of the face shape consistent with various expres-

sions and phonemes (i.e., distinct speech sounds), yet these controls were created by

an animation specialist [61] and are not based on any statistical analysis of face shape

deformation with facial expression.

Faces in the FaceGen environment are represented by a parameter vector of 130

signed floating point numbers [60]. The first 50 of these numbers describe the sym-

metric shape of the face, the next 30 the asymmetry in the shape, and the final

50 describe the texture (or colouring) [60]. One of these parameter vectors can be

considered to be equivalent to the set of αi, βi shape and texture coefficients in the

morphable model framework.

Singular Inversions offers a freely downloadable evaluation version of the FaceGen

Modeller. This free version served as the morphable face model for the purposes of the

research described in this thesis document, with the manipulation of shape, texture,

and image rendering parameters being automated as described in the following. Usage

of this software for evaluation purposes as part of this thesis research was verified to

be compatible with the software license agreement.

2.3.1 Automation of Modeller Parameter Manipulation

Rather than using the slider controls in the FaceGen GUI to manipulate face shape

and texture, these characteristics can be altered by direct manipulation of the 130

component parameter vector. Parameter vectors are stored in unique face coordinate
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files whose contents can be read and the 130 floating point numbers that comprise

the parameters extracted. Similarly, face coordinate files can be created by writing

a 130 component parameter vector, with a previously extracted file header, to a file

with the appropriate file extension.

Interaction with the GUI itself can be automated using the “Win32::GuiTest”

Perl module [2]. This module provides a set of methods for manipulating window

handles and controls and to simulate user input such as mouse clicks and movements,

keyboard input, and window selection. A number of Perl scripts created for the

automation of face model manipulation are included in appendix A.

2.3.2 The PhotoFit Utility

Within the FaceGen modeller is a utility called PhotoFit that creates 3D face models

by model fitting to a frontal photograph, with the optional use of one or two asso-

ciated profile photographs to improve the results. There are specific guidelines that

photographs should meet in order to achieve good results [61]. These include (a)

neutral facial expression, (b) mouth closed, (c) flash lighting used, and (d) the face

region should be at least 512 x 512 pixels in size. PhotoFit requires that 11 facial

feature points be manually located using an interactive tool on the frontal view and

9 points be located on the profile view(s) [60].

Thus PhotoFit does perform the model fitting that is the goal of this thesis work,

but for constrained conditions only. This provides a convenient way of evaluating

the performance of model fitting to unconstrained images when a well-constrained

image of the same subject is also available. Considering the PhotoFit result from the

constrained image to be a valid representation of the subject’s 3D face shape and

texture, direct comparison of this parameter file with the parameter file derived from
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Figure 2.3: Classification of facial orientation in space by the rotational descriptors pitch,
roll, and yaw.

model fitting to the unconstrained image provides a direct measure of the quality of

the fit to the unconstrained image. This represents one of the modes of algorithm

evaluation to be discussed in section 5.3.

2.4 Rotational Descriptors

To classify facial orientation in space, the three aeronautical rotational descriptors —

pitch, roll, and yaw — are adopted. This is consistent with the emerging trend for

describing dentofacial traits and orthodontic problems, as described in [3]. As shown

in figure 2.3, pitch describes rotation in the anteroposterior plane (about the Y axis),

roll describes rotation in the transverse plane (about the X axis), and yaw describes

rotation about the vertical (Z) axis. In the sections to follow in this thesis, pitch, roll,

and yaw will be respectively designated by the symbols θ, φ, and ψ.
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2.5 Face Recognition Metrics

As introduced in section 1.2, face recognition applications can be classified in one of

the following three representative tasks: verification, identification, and watch list.

While all three are closely related, each of these tasks has its own performance metrics

against which the performance of face recognition systems can be evaluated [47].

Generally, face recognition systems performing the verification task are evaluated

based on the frequency with which two types of errors occur. Type I errors occur

when a true match is incorrectly rejected. Conversely, type II errors occur when

a non-match is incorrectly accepted [69]. A system’s probability of type I error is

commonly referred to as its False Reject Rate (FRR) while probability of type II

error is known as False Accept Rate (FAR). The FAR and FRR are inversely related

and depend on the system match threshold.

The identification task differs somewhat in that the face recognition system gen-

erally does not seek to determine whether the top match is correct, but rather if

the correct identity falls within the top k matches [47]. This involves a ranking of

the similarity scores between the face being tested and all the faces in the database

against which it is being compared. The “rank-k” identification rate, PI(k), is defined

as follows:

PI(k) =
C(k)

N
, (2.5)

where C(k) is the cumulative count of the number of test images that are correctly

identified within the top k or fewer most likely matches on the ranked list and N

denotes the total number of test images considered in the evaluation.

Identification performance is often reported on a cumulative match characteris-

tic (CMC) curve. A CMC plots the identification rate, PI(k), as a function of rank
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Figure 2.4: Example of a cumulative match characteristic (CMC) curve used to report
identification performance.

k [47]. Figure 2.4 shows an artificially created CMC curve to illustrate two keys fea-

tures. First, PI(k) is necessarily a non-decreasing function, and second, all algorithms

achieve an identification rate of 1.0 as rank approaches M , where M represents the

size of the gallery.

The system that was developed for this thesis and which will be described in the

forthcoming chapters is evaluated in chapter 5 in terms of its identification perfor-

mance.
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Chapter 3

Image Analysis for Fitting 3D Face

Model

The following two chapters describe an algorithm that was developed by the author

for the generation of a controlled pose (i.e., frontal) view of a face under controlled

illumination (i.e., frontal and of reasonable brightness) from an image that is uncon-

strained for pose and/or illumination. (In fact, any novel view can be generated.)

This chapter considers the pose problem alone, and presents the face fitting algo-

rithm and associated image processing operations. In this algorithm, the FaceGen

3D face model — described in chapter 2.3 — serves as the underlying model whose

parameters are manipulated in order to improve its resemblance to the target face.

Parameter manipulation, it will be shown, depends on the rules outlined in section

3.5 for estimating both the shape and texture (colour characteristics) of the target

face. Successful shape and texture estimation in this scheme requires an appropriate

pose estimation, presented in section 3.4, and operates on facial images that are pro-

cessed as outlined in section 3.3. The required input to the algorithm is introduced
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in section 3.1 and the initial pose estimation on the target image, including a pose

correction step, is described in section 3.2.

3.1 Target Facial Feature Selection

The face fitting algorithm accepts as input a target facial image, which need not be

controlled for pose, and the coordinates of three manually located facial features. The

facial features selected depend on the pose of the target face. The preferred set of

facial features are the outside corners of the eyes and the tip of the nose, as shown in

figure 3.1b. Upon more extreme rotations in yaw, however, the outside corner of one

of the eyes may become hidden. In these cases, the three facial features selected are

the inside and outside corners of the visible eye and the tip of the nose, as shown in

figures 3.1a and 3.1c. With pose estimation and alignment in three-dimensions based

on these three feature points (as will be described in forthcoming sections), tests were

conducted to determine the maximum range of yaw and pitch variation that would

be acceptable as input. It was found that this scheme allows faces ranging in yaw

between �79� and in pitch between �43� to be practically considered. Beyond this

range, it becomes difficult or even impossible to reliably locate the required facial

features.

3.2 Initial Pose Estimation

3.2.1 Correction for Roll

Manipulation of face pose in the FaceGen modeller comes via click and drag mouse

movements with the mouse positioned over the face in the viewing window. While the
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(a) (b) (c)

Figure 3.1: Target facial features used at different poses. [Original image source = IMM
Face Database [40].]

modeller does allow for face rotation along three degrees of freedom (corresponding

to rotations in yaw, pitch, and roll as previously defined in section 2.4), rotation in

roll requires circular mouse movements [61] which could not be reliably automated.

The preferred setting which offers improved reproducibility of face rotations limits

face rotation to “pan” and “tilt” only, corresponding to rotations in yaw and pitch,

respectively.

For this reason, it was decided to consider face roll — or, at least, the apparent

effect of rotation in roll — to be a characteristic of the target image for which correc-

tion is required as a preprocessing step, with the extent of roll being calculated from

the feature points. By rotating the target image such that the relative orientation of

the facial feature points are consistent with that of the projected image of a FaceGen

model in the absence of roll, the apparent effect of rotation in roll can be negated.

While rotation in image space to correct for roll may also correspond to slight rota-

tions in yaw and pitch (in three-dimensions) in addition to roll, we strive to correct

for the apparent effect of roll in order to allow for the system to converge to a viable

solution that is free from rotation in roll.
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In the case where the feature points include the nose tip and outside corners of

each eye (as in figure 3.1b), this correction is simply a matter of rotating the image to

align the outside eye corners in terms of height in image space. (The assumption of

facial symmetry with respect to the eyes which underlies this solution is, in general,

a valid assumption based on anthropometric measurements of the face [17].)

Correcting for roll is those instances where the target face is rotated to a degree

such that only the corners of a single eye along with the nose tip are selected as feature

points, as in figures 3.1a and 3.1c, is more difficult. Upon locating and measuring the

relative positions of the eye corners and nose tip across many different poses but in

the absence of roll, though, it was found that the angle formed by the vector joining

the nose tip to the outside eye corner could be expressed as a function of the relative

locations of the feature points.

The average FaceGen face (that is, the face defined by average shape S̄ and average

texture T̄) was rotated across the entire range of yaw and pitch values with each

quantized into 1.8� increments. Upon imposing coloured markers at the locations of

the nose tip and eye corners in the mean texture map underlying the FaceGen model,

feature point locations could be reliably measured at each pose position. Defining Eo

as the vector from the position of the nose tip to the outside eye corner and Ei as the

vector joining the nose tip to the inside eye corner, a curve was fit via least squares

regression to express the angle formed by the vector joining the nose tip to the outside

eye corner ∠Eo as a function of ε, the angle between the eye vectors, where

cos ε =
〈Eo,Ei〉

‖Eo‖ · ‖Ei‖ (3.1)
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(with 〈Eo,Ei〉 designating the dot product), and the ratio of the vector norms,

r =
‖Ei‖
‖Eo‖ . (3.2)

Specifically, following the procedure for curve fitting via least squares regression

outlined in [16], the residual error e was minimized for the equation

y = Zc + e (3.3)

where the column vector y contained the measured values of the angle formed by the

vector joining the nose tip to the outside eye corner ∠Eo at all poses, designated by

indices 1 through n,

y = [∠Eo1 ∠Eo2 . . . ∠Eon]
T, (3.4)

where Z was a matrix containing the calculated values of the basis functions in ε and

r that were heuristically determined to provide a good fit, columnized by function,

Z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 cos ε1 sin ε1 r1 r2
1

1 cos ε2 sin ε2 r2 r2
2

...
...

...
...

...

1 cos εn sin εn rn r2
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (3.5)

and c was a column vector containing the unknown coefficients of the best-fit curve.

Best-fit curves were derived independently for cases where the left eye corners

would be identified as feature points (as in figure 3.1a) and for cases where the right

eye corners woul be used (as in figure 3.1c). For the left eye, feature point positions

were recorded at 1.8� increments in yaw between -79.2� and 0� and in pitch between
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-43.2� and +43.2� for 2205 (45 x 49) sets of data points. Similarly for the right eye,

2205 sets of data points were used with yaw ranging between 0� and +79.2� and pitch

between -43.2� and +43.2� . Plots of the calculated angle between the nose tip and the

outside corner of the eye in question for recorded feature point positions are shown in

figures 3.2a and 3.2b for the left eye and right eye, respectively. These plotted values

are those forming the vector y defined in equation 3.4 for derivation of the best-fit

curves.

The selection of basis functions to be used for curve fitting involved evaluation of

10 unique combinations of different functions in ε, r, and some other measurements

derived from the feature point positions. The basis functions specified in equation 3.5

were deemed most suitable in terms of the combination of accuracy and simplicity.

These functions yield best-fit curves of the form

∠̂Eo = c1 + c2 cos ε+ c3 sin ε+ c4r + c5r
2 (3.6)

which were found independently for the left eye and the right eye. For the average

FaceGen face that was used in the analysis, the modelled data predicted by the best-

fit curves exhibited strong correlation with the observed data, with coefficients of

determination R2 equal to 0.980 for both cases, left eye and right eye.

So, for a given target face image, the angle between the vectors joining the nose

tip to the eye corners ε and the ratio of these vector norms r are calculated based

on the positions of the manually located feature points. These values are used in

equation 3.6 to yield an estimate of what would be the angle of the vector joining the

nose tip to the outside eye corner for an average face in the absence of any roll with

the same characteristic ε and r. This estimate for the average face is subsequently
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Figure 3.2: Measured angle between nose tip and outside eye corner of the average FaceGen
face as a function of yaw and pitch for left eye (a) for right eye (b).
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used for the target face. In order to correct for roll, the target image is rotated in

image space by the difference between the measured outside eye angle ∠Eo and the

modelled outside eye angle ∠̂Eo. (Feature point positions are transformed into polar

coordinates with the origin at the image centre, which is invariant under rotation,

and the angular displacement is modified in accordance with the image rotation.) It

is this pose corrected target image that is processed for comparison with the face

model. Figure 3.3 shows a target image that exhibited a fairly substantial rotation

in roll along with its roll-corrected equivalent. While in this instance roll correction

was effective, it generally proved to be inconsistent as a preprocessing operation, as

will be discussed in more detail in section 5.1.1.

3.2.2 Pose Estimation

Initial estimation of the pose (in yaw and pitch) of the roll-corrected target face image

is likewise based on analysis of an average face. Using the feature point locations on

the average face over the entire range of yaw (ψ) and pitch (θ), quantized into 1.8�

increments, the (ψ,θ) pose estimate for a face in which both outside eye corners are

used as feature points (as in figure 3.1b) is that which minimizes the cost function

min
ψ,θ

[|∠ER,mod

∣∣
ψ,θ

− ∠ER,tgt| + |∠EL,mod

∣∣
ψ,θ

− ∠EL,tgt|] (3.7)

where the subscripts R and L designate right and left eyes, respectively, and mod

and tgt designate the model and target face images, respectively. Similarly, the (ψ,θ)

pose estimate for a face in which only one eye is used to specify feature points (as in
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(a)

(b)

Figure 3.3: Example target image (a) and its roll-corrected equivalent (b). [Original image
source = IMM Face Database [40].]
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figures 3.1a and 3.1c) is that which minimizes the following cost function:

min
ψ,θ

[|∠Eo,mod

∣∣
ψ,θ

− ∠Eo,tgt| + |rmod
∣∣
ψ,θ

− rtgt|]. (3.8)

Although subject to pose refinement as will be discussed in section 3.4, the FaceGen

face model is rotated to this initial pose estimate for preliminary comparison with

the target image.

3.3 Facial Image Processing

3.3.1 Pose Dependent Face Segmentation

The presence of outlying pixels in a facial image is a major source of fitting inaccu-

racies [56]. Outlying pixels are pixels inside the face area of an image whose value

cannot be predicted by the face model without having a substantially negative impact

on the model fitting to the rest of the face. Such pixels may result from the presence

of glasses, facial hair, or some other occluding feature not normally modelled by the

face model.

In order to mitigate the impact of any outlying pixels in the target image, and

specifically the impact of hair which is not modelled by the FaceGen face modeller,

automatic segmentation of the face area from the target image was incorporated into

the algorithm. Pose dependent segmentation or crop parameters were found such

that for any (ψ,θ) pose estimate, the target facial image would be cropped from

just above the eyebrows to just below the chin in height and just bounding the face

region in width. Once again, suitable crop parameters — upper-left corner set as

a pose-dependent offset from the nose tip position along with rectangle width and
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height — were found through analysis of the average FaceGen face under rotation. In

consideration of the target face image, it was necessary to scale these crop parameters

by an appropriate factor. This scale factor, s, is derived from the feature points as

described in [68] for the least-squared fit of three pairs of corresponding points. This

difference here is that rather than scaling the distance between all three points and

the centroid of the triangle formed by these points, the nose tip is fixed as a point

of reference for cropping and for image registration. So, the scale factor is calculated

only from the vectors joining this fixed nose tip to the eye corners,

s =

⎧⎪⎪⎨
⎪⎪⎩

〈ER,mod,ER,tgt〉+〈EL,mod,EL,tgt〉
‖ER,mod‖2+‖EL,mod‖2 for frontal view,

〈Eo,mod,Eo,tgt〉+〈Ei,mod,Ei,tgt〉
‖Eo,mod‖2+‖Ei,mod‖2 for side view.

(3.9)

The use of this scale factor in cropping of the face region from the target image

is illustrated in figure 3.4. A roll-corrected (and partially cropped for convenience

of viewing) target image is presented in figure 3.4a along with the vectors that join

the nose tip to the inside and outside eye corners, Ei,tgt and Eo,tgt, respectively.

The corresponding nose tip to eye corner vectors for the average FaceGen model

face, Ei,mod and Eo,mod, at the specific pose parameters estimated as outlined in

section 3.2.2, are shown in figure 3.4b on the rotated FaceGen model image. The

crop parameters (x- and y-offsets from the nose tip to the upper-left corner of a

rectangle of width and height) have been predetermined for the average face at the

estimated pose as shown in figure 3.4c. These crop parameters are scaled by the scale

factor s as calculated in equation 3.9 to yield the cropped target image of figure 3.4d.
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Eo (tgt)
Ei (tgt)

(a)

Eo (mod)
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Figure 3.4: Use of scale factor for pose dependent face segmentation of target image. Nose
tip to eye corner vectors Ei,tgt and Eo,tgt in target image (a) are used along with those for
the average FaceGen face at the estimated pose (b) to calculate scale factor s. This value
scales the predefined crop parameters for the average face, as shown in (c), to yield the crop
parameters for the target face, as shown in (d).
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3.3.2 Background Equalization

While consisting primarily of the face only, the segmented image does contain some

background regions. In order to minimize the contribution of these background re-

gions to any image comparisons, and thus minimize any errors the background contri-

bution might introduce, it was decided to remove the background entirely by equal-

izing background pixel values in the target image with the (fixed value) background

pixel values in the images from the FaceGen modeller. This requires effective seg-

mentation of the face region from non-face regions in the target image. The approach

taken to achieve this was colour-based skin segmentation.

The fact that it is possible to fairly robustly segment skin from its surroundings

in an image is not entirely intuitive. After all, we often describe people’s appearance

based on their skin “colour”. It would follow, then, that a colour corresponding to

a given skin tone characteristic of a particular race would be unlikely to correspond

to a skin tone characteristic of some other race. But this is not necessarily the case.

Indeed, as noted in [63], effective object (in this case, skin) segmentation by colour

is possible provided that consideration is given to selection of a suitable colour space

exhibiting a reasonable object colour distribution across the selected colour space.

Skin Detection in YCbCr Colour Space

In order to test different colour spaces with respect to their suitability for colour-based

skin segmentation, colour histograms of skin pixels were analyzed. Starting from a

number of images taken under similar camera and lighting conditions, 20 by 30 pixel

image swatches were taken from the skin regions of 19 different people. These 19

people provided a small representative sample of different skin tones characteristic

of different races. The swatches were combined and the distribution of the resulting
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Figure 3.5: Distribution of skin pixels in RGB colour space.

11,400 pixels across various colour components were compared with a goal of iden-

tifying a colour space that would exhibit strong clustering of skin colours and thus

enable segmentation based on application of simple thresholds.

For instance, figure 3.5 shows the distribution of skin pixels across the R, G, and

B primaries of the RGB colour space that was the starting point for this analysis.

Clearly, skin colour is fairly broadly distributed across each component making it

difficult to characterize skin colour in this space. The problem is that each of R, G,

and B represent not only colour but also brightness, and skin colour, as it turns out,

can be effectively characterized by chromatic colours in the absence of any brightness

component [71].

A number of other papers such as [71], [18], and [6] describe a normalization

process applied to an RGB image representation in order to separate the chromatic

components from a brightness component. Similar results are achieved upon con-

version to a colour space described in [19] — the YCbCr colour space. YCbCr is a

36



0 50 100 150 200 250
0

200

400

600
YCbYr Histogram − Skin Samples

Luminance (Y)

P
ix

el
 C

o
u

n
ts

0 50 100 150 200 250
0

1000

2000

3000

Chrominance (Cb)

P
ix

el
 C

o
u

n
ts

0 50 100 150 200 250
0

1000

2000

Chrominance (Cr)

P
ix

el
 C

o
u

n
ts

Figure 3.6: Distribution of skin pixels in YCbCr colour space.

luma-colour-difference space in which Y represents the luminance or brightness com-

ponent and Cb and Cr represent two chrominance components. (Cb is the difference

between blue and some reference value. Cr is the difference between red and some

reference value [51].) Histograms of the pixel values of the skin samples in the YCbCr

space are given in figure 3.6. Given the strong clustering of skin pixel values in the Cb

and Cr components, this colour space was selected for the segmentation operation.

Skin Segmentation

With the segmented target image converted from its RGB representation to a YCbCr

representation, any pixels having Cb and Cr chrominance values between the mini-

mum and maximum thresholds implied by the histograms shown in figure 3.6 were

considered likely to represent skin and were assigned a value of 1. Conversely, any

pixels with chrominance values lying outside these limits were assigned a value of 0.

The result, shown in figure 3.7b for the sample target image under consideration, is a
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(a) (b) (c) (d)

Figure 3.7: Pose-corrected and cropped target image (a); with detected skin regions (b);
used for background equalization (c). The intensity image is contrast-stretched (d).

binary image in which the white regions correspond, at least roughly, to skin regions

in the original image. Upon accepting as face only the connected white region that

is largest in area — a valid assumption given that the target image has already been

cropped to include predominately the target face — and filling all holes within this

face region, all pixels not contained within this region were set to black, as shown in

figure 3.7c, matching the background in the FaceGen images with which the target

image is to be compared.

It should be noted that, to be thorough, the distribution of background pixels in

the YCbCr colour space should also be analyzed. Since we are generalizing across all

potential backgrounds, though, this has not been presented. In the event that the

target image appears in front of a flesh-coloured background, this skin segmentation

step and thus the background equalization operation will fail.

3.3.3 Contrast Enhancement

Figure 3.7d shows the results of the final target image processing operation. Contrast

in the background equalized intensity image is enhanced via an intensity transfor-

mation function. The lower intensity bound is mapped to black (0) while the upper
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bound is mapped to white (1) and intermediate values are mapped linearly in be-

tween. So, for an intensity image I having a minimum intensity level LOW and

maximum intensity level HIGH , pixel intensity values at each pixel location (x, y)

are transformed as follows:

T [I(x, y)] =
I(x, y) − LOW

HIGH − LOW
. (3.10)

This contrast-stretching operation serves to enhance any differences between target

and model images, thus giving greater resolution to the model parameter fitting pro-

cedure, to be discussed in section 3.5. The key benefit is that, given that the back-

grounds in both target and model images are equalized (as per the operation described

in 3.3.2) and are darker than any face, contrast-stretching necessarily “brightens” the

face. This serves to increase pixel value differences between face and background pix-

els such that non-matching pixels in the target-to-model comparison are even further

penalized in the model parameter fitting procedure. It was also found that contrast

enhancement as a preprocessing step played a beneficial role upon introduction of un-

constrained illumination conditions, to be discussed in chapter 4, by providing some

normalization across variation in ambient lighting.

3.4 Pose Refinement

The (ψ,θ) pose estimate is based on the characteristic feature point locations of an

average face. This provides a good initial estimate given our lack of knowledge of

the 3D structure of the target face, but it is desirable to search in the vicinity of

this initial estimate for an improved pose match. Prior to any estimation of shape
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and texture parameters, then, the pose is refined using an approach similar to that

described in [59].

Edges are extracted in both the target image and the image of the FaceGen model,

rotated to the initial pose estimate. Several different edge detection approaches [38]

were attempted with varying success. For the FaceGen model image, the Canny edge

detector [15] was found to work particularly well. For target images, the success

of any edge detection scheme depends largely on the imaging conditions and image

characteristics. As such, when encountered with a target image from a new source,

some experimentation will be required to identify an appropriate edge detection ap-

proach and appropriate associated parameters, if applicable. Typical detected edges

for target and FaceGen model images are shown in figures 3.8a and 3.8b, respectively.

For each pixel in both the target and model binary edge maps (EM), a distance

transform (DT ) — which assigns to each pixel the Euclidean distance to the nearest

non-zero pixel (i.e., a detected edge) in the edge map — is computed. A cost function,

Dscore, which measures the disparity between the two edge maps over all pixels (i, j)

is computed as follows [38]:

Dscore =

∑
(i,j)∈AEM,mod

DTtgt(i, j)

Nmod

+

∑
(i,j)∈AEM,tgt

DTmod(i, j)

Ntgt

(3.11)

where AEM � {(i, j) : EM(i, j) = 1} and N is the cardinality of set AEM , that is,

the total number of non-zero pixels in the edge map EM .

Dscore is computed at the initial pose estimate and at slight increases and de-

creases in both yaw and pitch. If a pose is found which provides a lower Dscore, it is

set as the new pose estimate and a search for improvement in the new local vicinity

is repeated. This continues until no improvement is found. The effectiveness of this
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(a) (b)

Figure 3.8: Binary edge maps for target (a) and pose estimated average FaceGen model
(b) images.

pose refinement operation is discussed in section 5.1.2.

3.5 Face Image Fitting

Having an image of the FaceGen model that is at least close in pose to the target

image, the problem to be addressed is as follows: what combination of FaceGen model

parameters is best able to describe the target image? As outlined in section 2.2, the

3D morphable model allows any face to be generated as a linear combination of NS

shape and NT texture principal components added to the average face shape S̄ and

texture T̄ as per equation 2.4 which is reproduced here for convenience,

S = S̄ +

NS∑
i=1

αisi, T = T̄ +

NT∑
i=1

βiti. (3.12)

The face-fitting algorithm that was developed for the purposes of this thesis follows

the framework first introduced by Blanz and Vetter in [11]. The morphable model

shape coefficients αi and the texture coefficients βi are optimized simultaneously with

several rendering parameters — the pose parameters ψ and θ as well as illumination
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parameters which are discussed in more detail in chapter 4 — so as to synthetically

reconstruct the target image.

Fundamentally, the goal of the face-fitting algorithm is to minimize the sum of

square differences over all colour channels and all pixels between the input image and

the image rendered by the model [11–13]. A cost function for image differencing is

defined as follows:

CI =
∑
x,y

‖Itgt(x, y) − Imod(x, y)‖2, (3.13)

where Itgt(x, y) and Imod(x, y) represent the pixel values over all colour channels for

the target and model images, respectively, concatenated into a column vector. Rather

than the using the RGB colour channels as described in [11,12] or a transformed RGB

colour space as described in [13], here we make use of the YCbCr colour space since

the conversion to this space was already carried out for skin segmentation in the

background equalization step described in section 3.3.2, and this enabled use of the

contrast enhanced Y or intensity component as per the operation described in section

3.3.3. Stretching the limits of the intensity component was found to provide greater

resolution to the model fitting procedure, particularly under low ambient lighting

conditions as will be addressed in the chapter that follows. A given target image

would thus be expressed as

Itgt(x, y) = [IY (x, y), ICb(x, y), ICr(x, y)]
T, (3.14)

over all pixel locations (x, y) and with the IY (x, y) component being contrast en-

hanced.

It has been shown that using only facial colour information (i.e. pixel values) to

recover shape correspondence between target and model is not optimal as the cost
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function to be minimized is highly non-convex and exhibits many local minima [55].

It has been demonstrated that using only the target image itself — and not any

features thereof — to recover optimal shape and texture will result, in many cases,

in convergence at a local minimum far from the global one, yielding an unrealistic

face [58]. At the same time, image features have been shown to contribute to optimal

parameter estimation. Most notably, the use of edges facilitates the finding of a more

accurate estimate of the 3D shape [55, 58]. With target and model image edge maps

already used for pose refinement prior to parameter estimation (section 3.4), here we

define an edge cost function which is similar to equation 3.11 but considers only the

distance from points in the target edge map to detected edges in the model image

and not the converse,

CE =
∑

(i,j)∈AEM,tgt

DTmod(i, j). (3.15)

Since the number of pixel locations representing detected edges in the model image,

EMmod, can be variable while the number of pixel locations representing detected

edges in the target image, EMtgt, is fixed, limiting the analysis to consider target-to-

model edge distance (and not model-to-target) fixes the length of the vector formed

by DTmod(i, j) where (i, j) are all pixels in AEM,tgt. Image edges provide information

about the 2D shape independent of the image texture, and hence the cost function

used to fit the edge features provides a more direct constraint on shape and pose

parameters [55].

A cost function incorporating prior probabilities for the shape and texture pa-

rameters is also used to penalize statistically unlikely face shape and texture pa-

rameters. According to the FaceGen Modeller documentation [60] the shape and

texture coefficients (which correspond to αi and βi, respectively, in the morphable
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model framework) are — to borrow the FaceGen terminology — principal component

modes representing differences from the mean for that particular shape or texture

parameter. These modes are considered to be statistically independent and normally

distributed [60]. The model prior cost function, then, is defined as

CP =

NS∑
i=1

α2
i

σ2
S,i

+

NT∑
i=1

β2
i

σ2
T,i

, (3.16)

where σS,i gives the standard deviation for the normally distributed shape parameter

i and σT,i gives the standard deviation for the normally distributed texture param-

eter i. While not explicitly available in the model, these standard deviation values

were estimated through analysis of the individual shape and texture coefficient dis-

tributions over 99 generated random faces, under the assumption that random face

generation in the FaceGen modeller is based on the statistical distribution of faces

over “face space”, as per the documentation [60]. (Random face generation — based

on selecting random coefficients for each mode according to a standard normal dis-

tribution [60] — is a function available in the FaceGen modeller.) Alternatively,

parameter perturbation vectors can be derived for each of the unique face shape and

texture slider controls in the modeller. Each slider control allows face characteristics

to be varied between plus and minus 10 standard deviations of the distribution for

that characteristic [61]. So by calculating a face parameter vector by multiplying a

matrix containing the parameter perturbation vectors by a vector of slider control

coefficients, the coefficient values can be used as σS,i and σT,i in the model prior cost

function calculation. The difficulty with this approach is that the controls are not

completely independent of each other, but rather adjusting one slider usually affects

several others [61].
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It is demonstrated in [58] that if the image features under comparison are inde-

pendent and extracted by a deterministic algorithm, then the overall cost function is

a linear combination of the cost functions of each feature taken separately. Our cost

function, to be minimized over the shape parameters αi, the texture parameters βi,

and the model image rendering parameters, is thus given by

C = wICI + wECE + wPCP (3.17)

with the w’s being weighting factors. Appropriate weights were heuristically de-

termined through experimentation to provide satisfactory results. In particular, it

should be noted that an excessively high weight on the model prior (wP ) will overly

constrain the result to resemble the average face. At the same time, if wP is too low,

the face-fitting algorithm is more likely to produce a result that — although fitting

the 2D target image — bears some statistically unlikely 3D shape characteristics.

The core of the face-fitting procedure for shape and texture parameter estima-

tion is minimization of the cost function 3.17. Researchers have suggested the use

of a number of different optimization algorithms for the solution of this problem, in-

cluding stochastic gradient descent [11], stochastic Newton optimization [10, 13], and

the inverse compositional image alignment algorithm [57]. Here, the more recently

implemented approach of Romdhani et al. [55, 58] is adopted with the use of the

Levenberg-Marquardt optimization algorithm.

3.5.1 Levenberg-Marquardt Method

Based on previous work by Levenberg [33], Marquardt [37] proposed an optimization

approach that can be considered a hybrid between steepest descent and the Gauss-
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Newton method [35]. This Levenberg-Marquardt Method works very well in practice

and is popular for use in nonlinear least-squares routines given its ability to converge

promptly from a wide range of initial guesses [52].

Pseudocode for the Levenberg-Marquardt algorithm is given in figure 3.9. The

code describes a vector function f which maps a parameter vector p ∈ R
m to an

estimated measurement vector x̂ = f(p), x̂ ∈ R
n where n ≥ m [35]. Starting with a

measurement vector x ∈ R
n and an initial parameter estimate p0, the algorithm yields

an output parameter vector p∗ that is the solution to the minimization of ‖x−f(p)‖2.

In our context, the vector x contains the target image pixel values concatenated with

zeros of length Ntgt (the cardinality of set AEM,tgt containing all edge pixels in the

target edge map) and zeros of length NS + NT . Meanwhile, parameter vectors p

contain the NS shape coefficients αi, the NT texture coefficients βi, and the model

image rendering parameter values. So, the vector f(p) contains the image pixel

values, minimum distances from target image edge pixels to model image edges, and

model prior penalties for all shape and texture parameters for the given parameter

set p, as per all the elements of the cost function of equation 3.17.

In the code outlined in figure 3.9, J denotes the Jacobian matrix containing the

first partial derivatives of the function components, where J ∈ R
n×m and

Jij =
∂fi(p)

∂pj
≈ Δfi(p)

Δpj
. (3.18)

That is, the Jacobian is populated with partial derivatives which are numerically

calculated using small perturbations under the simplifying assumption that f is linear

in the region of p for small changes in p.

The distinguishing feature of the Levenberg-Marquardt algorithm is the damping
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Set: k := 0, ν := 2,p := p0

Given: tol1, tol2 (tolerances); kmax (maximum iterations); τ
Algorithm:
A := JTJ; εp := x − f(p); g := JTεp;
μ := τ ∗ maxi=1,...,m(Aii);
while (‖g‖∞ ≥ tol1 & (k < kmax)

k := k + 1;

Solve (A + μI)δp = g;

if (‖δp‖ ≤ tol2‖p‖)
break

else
pnew := p + δp;

ρ := ‖εp‖2−‖x−f(pnew)‖2

δp
T(μδp+g)

;

if ρ > 0 [step improves solution]
p = pnew;
A := JTJ;
εp := x − f(p);
g := JTεp;
μ := μ ∗ max(1

3
, 1 − (2ρ− 1)3); ν = 2;

else
μ := μ ∗ ν; ν := 2 ∗ ν;

endif
endif

endwhile
p∗ := p ;

Figure 3.9: Levenberg-Marquardt algorithm pseudocode, adapted from [36] and [35].
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term denoted by μ in figure 3.9. If μ is large, the algorithm behaves like the method of

steepest descent, updating with relatively small steps in the steepest descent direction.

Conversely, as μ becomes smaller, the algorithm performs more like the Gauss-Newton

method and exhibits fast convergence [35]. At each iteration, if the updated parameter

vector results in a reduction in error and thus the gain ratio (ρ in figure 3.9) is positive,

the update is accepted and the process repeats with a decreased damping term μ.

Otherwise, the damping term is increased with the aim of both getting closer to

the descent direction and reducing the step size [36]. The equations are subsequently

resolved and the process iterates until an updated parameter vector that does decrease

the error is found or any of the stopping conditions are met [35].
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Chapter 4

Handling Unconstrained

Illumination

Given the innate ability of humans to recognize faces and the importance of this task

in our daily lives, it is perhaps not surprising that the neural processing of faces has

been widely studied in recent years [41, 42]. Various studies have shown that, when

confronted with unfamiliar faces, even humans find the task of recognizing faces over

changes in illumination to be difficult [14, 26]. Computer-based face recognition sys-

tems struggle similarly with the task of recognizing faces when illumination conditions

are not controlled. Although, when it comes to matching pairs of face images taken

under different illumination conditions, state-of-the-art face recognition algorithms

compete favourably with humans and the best of these even surpass human matching

performance [43], illumination variation continues to evoke a significant deterioration

in algorithm performance. Even with improvements over recent years, this fact was

made clear in the recent Face Recognition Grand Challenge (FRGC) [46] upon com-

parison of matching performance for illumination-controlled and -uncontrolled face
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image pairs. FRGC results, reported in [45] (and summarized in [43]), show that

algorithms participating in the experiment testing recognition from a single frontal

image taken under controlled illumination (experiment 1 described in [46]) achieved a

median verification rate of 0.91 at a false acceptance rate of 0.001. In contrast, those

algorithms participating in the experiment testing recognition from a single frontal

image taken under uncontrolled illumination (experiment 4 in [46]) achieved a median

verification rate of only 0.42 at the same false acceptance rate.

This chapter builds on the algorithm for 3D modelling of a face under uncon-

strained pose that was described in chapter 3 by introducing unconstrained illumina-

tion as another variable to be considered. In section 4.1 the 3D morphable model ap-

proach to modelling illumination, and specifically the approach taken by the FaceGen

face modeller, is briefly described. The illumination parameters that were introduced

to the algorithm as variables in the optimization problem are described in section 4.2,

while the scheme developed for initial estimation of these parameters is described in

section 4.3. Finally, in section 4.4, the face modelling system developed for this thesis

is considered in its entirety as a tool for synthesizing a novel view of a face — most

usefully a frontally illuminated frontal pose — from an image that is unconstrained

for both pose and illumination.

4.1 3DMM Approach to Modelling Illumination

The 3D morphable model underlies the face-fitting algorithm, so while a model was

not developed for this thesis, it is worthwhile mentioning how it accounts for variation

in illumination. The elegance of the 3D model is that, like the parameters governing

the orientation of the face, parameters governing illumination conditions are free
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variables subject to optimization [11]. The first implementations of the morphable

model approach [11, 12] included only the intensities and colours of ambient and

parallel light as optimization variables while other illumination parameters such as

the direction of that parallel light remained fixed to values estimated by the user.

More recent publications [10, 13, 55] describe implementations in which the direction

of the parallel light (i.e., the position of a single directed light source relative to the

face) is also included as an optimization variable.

In the morphable model framework, illumination is not restricted to Lambertian

reflection, but also takes into account specular reflections and cast shadows, which

strongly influence the apparent texture of the face [13]. In fact, most implemen-

tations describe the use of the Phong illumination model [50] to approximate the

diffuse and specular reflection of the face surface. It has also been proposed that

more photo-realistic images could be achieved over a wider range of illumination con-

ditions, including multiple sources of illumination, by integrating spherical harmonics

into the morphable model framework [72], thus introducing spherical harmonic basis

parameters as another set of optimization variables.

4.1.1 Specifics of the FaceGen Modeller Approach

The FaceGen modeller similarly accounts for specular reflections and cast shadows.

Diffuse shading can be applied in one of three modes: Phong, Gouraud, or Flat

based on the respective illumination models. The default setting, and the one used

in image rendering for this thesis, is the Gouraud illumination model [20]. In the

FaceGen environment, Gouraud shading gives the face a sufficiently smoothly curved

appearance while allowing the model to render faces faster and with fewer artefacts

than the Phong shading mode [61].
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Settings in the modeller control various illumination options, which are described

in [61]. The ambient brightness component illuminates all surfaces equally, regardless

of the orientation of the face. Up to three directed light sources can also be enabled,

with each having adjustable brightness and incoming direction. These light sources

can be considered to be capable of rotation about the face, and the light direction is

thus specified by the position of the light in azimuth and elevation. And unlike the

generic morphable model approach, these lights are strictly white.

4.2 Illumination Parameters

The face image fitting algorithm described in section 3.5 optimizes the face model

shape coefficients (αi) and texture coefficients (βi) along with several model image

rendering parameters. So far, only the rendering parameters for pose in yaw (ψ) and

pitch (θ) have been described. We now introduce a set of illumination parameters

that are also subject to optimization.

The algorithm also accounts for the brightness of ambient light, Lamb, and the

brightness of a single directed light, Ldir. This directed light can rotate freely about

the face with its angular position relative to the origin (i.e., directly in front of what

would be a frontal face view) being specified in azimuth, λaz, and elevation, λel. These

illumination components are represented in figure 4.1 in images of a non-frontal face

from the front, top, and side vantage points.

While these illumination parameters are subject to optimization in the face-fitting

algorithm, such that the illumination conditions of the target image are estimated

along with the orientation and the 3D shape and texture coefficients of the target face,

initial estimates of these illumination conditions are required as a starting point [11].
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(a) (b) (c)

Figure 4.1: Front view of a face at a non-frontal pose (a) along with top (b) and side (c)
projections showing the illumination parameters Lamb, Ldir, λaz, and λel.

4.3 Illumination Parameter Estimation

It was found that for all images tested (as per the results to be given in chapter 5), the

algorithm was able to converge to an illumination solution starting from “average”

initial estimate values for both the ambient and directed light brightness settings, Lamb

and Ldir. This average setting was represented by the FaceGen modeller default with

60% of overall brightness coming from the single directed light and 40% coming from

ambient illumination [61]. Even for target images exhibiting rather poor illumination,

the search area for illumination brightness was sufficiently small that the algorithm

was able to reach a good estimate starting from these average initial values.

Even so, the contrast-stretching operation described in section 3.3.3 was found to

mitigate to an extent the effect of any poor estimate in the ambient brightness Lamb.

The top row of figure 4.2 shows a series of intensity images of faces at a fixed pose

and with fixed direct lighting under variable ambient light brightness. The bottom

row of this figure gives the contrast-stretched versions of these same faces. Visibly,

the faces in the bottom row appear to be more similar than those in the top row,
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Figure 4.2: Illustration of the reduction in image differences resulting from variation in
ambient brightness by the contrast enhancement operation of section 3.3.3. The top row
contains images of faces at a fixed pose and with fixed direct lighting under variable ambient
light brightness. The bottom row contains the contrast-stretched equivalents. [Images
generated by FaceGen modeller, as described in section 2.3.]

and indeed, the mean L1 pixel difference between the rightmost and leftmost images

of each row dropped from 67.1 to 30.6 (with pixel values in the range [0, 255]) upon

contrast enhancement. This operation therefore gave improved robustness to the

initial estimation of the position of the directed light source, λaz and λel, in that

an invalid initial estimation of ambient brightness would introduce less error to the

estimation of light source position than it otherwise would.

To estimate the unknown position of the directed light source for a given face im-

age, a set of training images representing a range of illumination conditions over the

range of poses considered by the algorithm was created using the FaceGen modeller.

The approach here is similar to one described in [25] in which the authors sought to

construct a lighting model (for a face at a fixed frontal pose) to express any arbitrary

lighting conditions as a sum of point light sources. Here though, we attempt to esti-
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Figure 4.3: Set of intensity images for average face oriented at 0� in yaw and 4.8� in pitch
showing variation in light source position in 15� increments from -90� to +90� in azimuth
and -60� to +60� in elevation. [Images generated by FaceGen modeller, as described in
section 2.3.]

mate the position of a single light source illuminating a face at a known pose based on

characteristic images of an average face at that pose under a range of illumination di-

rections. Once again making use of the morphable model framework and its ability to

synthesize different imaging conditions, the average FaceGen face was rotated across

the entire range of yaw and pitch values with each quantized into 1.8� increments. At

each pose position, a set of images of the face under varying directional illumination

was created. Light source position in this set ranged in 15� increments from -90� to

+90� in azimuth and -60� to +60� in elevation. A grid of these training images for a

characteristic pose (yaw = 0�; pitch = 4.8�) is given in figure 4.3.
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For a given target image, the image processing operations of sections 3.2 and 3.3

yield a contrast enhanced intensity image that has been rotated to correct for rotation

in roll and cropped to the face region based on an initial pose estimate in yaw and

pitch. This processed target image is then compared with the subset of illumination

training images representing the conditions for a face at that pose estimate in the

following manner to derive the estimated position of a direct light source: Considering

only those pixels at locations identified as representing skin according to the colour-

based segmentation operation described in section 3.3.2, the mean intensity value over

all skin pixels is calculated. At the same time, mean intensity values are calculated

in 16 subregions of the skin area defined by a 4x4 grid centred at the nose tip and

bounded by the limits of the detected skin region. This grid has two columns of equal

width to the left of the nose tip to the left-most boundary of the skin region and

two columns of equal width to the right of the nose tip to the right-most boundary.

Similarly, the grid has two equally spaced rows above the nose tip to the upper

boundary of the skin region and two equally spaced rows below the nose tip to the

lower boundary. These 16 mean intensity values are normalized by the overall mean

intensity value to give a 4x4 array of relative mean subregion intensities. Figure 4.4b

shows a typical processed target image and figure 4.4c shows the corresponding mean

intensity values for each subregion imposed on the face area for visualization.

The same relative mean intensity calculations were carried out for the illumination

training images described previously. In order to derive an estimate of light source

position, the 4x4 array of relative mean subregion intensity values for the target image

is compared with the set of arrays representing the range of illumination conditions

at the estimated target face pose, with the light source position estimate being the

(λaz, λel) combination at which the target and training arrays most closely match
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(a)

(b) (c) (d)

Figure 4.4: Original target image of a face under directed illumination (a); and roll-
corrected, cropped, contrast-enhanced intensity version (b); with the corresponding mean
intensity values over a 4x4 grid of skin subregions (c); and the average FaceGen face illu-
minated according to the estimated light source position (d). [Source of image (a) = IMM
Face Database [40].]
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each other. With the 4x4 arrays columnized into 16x1 vectors, the distance measure

is defined as the norm of the difference between the two vectors. That is,

Dλ = ‖Gtgt −Gmod‖, (4.1)

where Gtgt and Gmod represent the length 16 vector of relative mean subregion in-

tensity values for the target and model images, respectively. The (λaz, λel) position

estimate is that at which Dλ is a minimum over the quantized values of λaz (-90� to

+90� in 15� increments) and λel (-60� to +60� in 15� increments) for which training

images were generated at the estimated pose of the target face. In order to verify

whether the estimate was sensitive to the choice of distance measure, other distance

measures — namely, the sum of absolute values of the difference vector and the cosine

of the angle between the vectors — were tested on 5 faces and yielded the very same

light source position estimates as Dλ in each case.

For instance, the target face of figure 4.4b has an estimated pose of 0� yaw and

4.8� pitch. (The illumination training images for this pose estimate are those shown in

figure 4.3.) The Dλ distance measure values across the range of azimuth and elevation

estimates at the pose estimate (ψ,θ) = (0�, 4.8�) are plotted in figure 4.5. The

minimum Dλ value in figure 4.5 specifies the light source position estimate (λaz,λel)

= (60�, -15�). The average FaceGen face illuminated according to this initial light

source position estimate is shown in figure 4.4d.

Unfortunately, the precise position of the light source illuminating figure 4.4b

is unknown, so the quality of this initial light source position estimate cannot be

definitively confirmed. However, the original image is described as having “a spot

light added at the person’s left side” [40], and judging from the shadow pattern in
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the background behind the subject in figure 4.4a, one could infer that this light is

positioned at somewhat less than 90� in azimuth to the subject. Further, the original

target image was rotated to correct for roll (as per section 3.2.1) to the order of -5.5�.

This image rotation has the effect of shifting the apparent elevation of the light source

by the same amount. So, our estimate of (λaz,λel) = (60�, -15�) is reasonable and

is certainly sufficient as a starting point for the face-fitting optimization algorithm.

The optimization algorithm, as it turns out, converged on a light source position of

(λaz,λel) = (68.1�, -4.0�) in this case.

4.3.1 Illumination Refinement

Following the pattern of the pose refinement step of section 3.4, we search in the local

area of the initial illumination condition estimation for improvements to the esti-

mate. Illumination estimates are compared based on the L2 image difference between

sub-sampled target and model images. More accurately estimating the illumination

parameters prior to attempting full-scale optimization contributes to greater overall

algorithm efficiency. Otherwise, since illumination effects can cause such significant

image differences, if the initial illumination parameter estimate is weak the first few

iterations of the optimization algorithm — each of which requires population of the

Jacobian of equation 3.18 with partial derivatives of the cost function with respect to

each model parameter — are dominated by changes in illumination conditions only.

However, for a target face exhibiting a darker skin tone, considering illumination

parameters exclusively at this stage could lead to an estimation skew in the direction

of a darker light source and darker ambient brightness. As such, we also incorporate

the first texture principal component as a parameter subject to optimization for

illumination refinement. This principal component governs skin shade. It should be
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noted that the presence of facial hair also has the tendency to introduce a similar skew,

but since modelling the darker texture associated with facial hair is more complicated

than modelling shade alone, this is left as a confounding factor at this stage.

4.4 Using the Model to Synthesize Novel Views

The algorithm developed for this thesis can be summarized as follows: Given a target

facial image, shape and texture parameters of an underlying 3D morphable face model

(in this case, the FaceGen face modeller) are optimized along with a set of image

rendering parameters such that they produce an image that resembles as closely as

possible the target image. The image rendering parameters describe the pose of the

model face and the conditions under which it is illuminated. Starting with an average

model face, the algorithm first estimates the pose and illumination conditions of the

target image and applies the corresponding rendering parameters to the model. At

each iteration of the optimization process, the algorithm generates a 3D face model

based on the current model parameters, renders an image of that model, compares

the rendered image with the target, and updates the model parameters according to

a cost function that takes into account the residual pixel difference, goodness-of-fit

between detected edges, and the likelihood of the modelled face based on a statistical

prior.

Once the algorithm has derived the best-fit face model under the best-fit rendering

parameters, synthesizing novel views is straightforward. The 3D face model defined by

the optimal set of shape and texture parameters can simply be re-rendered according

to any pose and illumination parameters. Perhaps most usefully, and as will be done

for evaluating algorithm results in the chapter that follows, the face model can be
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rotated to a frontal pose and illuminated from the front. The re-rendered image, it

is hoped, should be more suitable for use in face recognition applications.

The entire algorithm is broken down by operation in the block diagram given in

figure 4.6.
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Figure 4.6: Block diagram of the 3D model to face image fitting algorithm.
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Figure 4.6: Block diagram of the 3D model to face image fitting algorithm (continued).
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Chapter 5

Experiments and Discussion

The face-fitting algorithm was tested using images from the IMM face database [40,

64]. This database contains images of 40 subjects, but only those with colour images

were tested, leaving 37 subjects. All of the subjects are Caucasian with 7 being female

and 30 male. There are six images of each subject in the IMM database, the following

four of which were used in our evaluation:

� Full frontal view with neutral expression and diffuse lighting.

� Left oblique view with neutral expression and diffuse lighting.

� Right oblique view with neutral expression and diffuse lighting.

� Full frontal view with neutral expression and side spot light added.

The full frontal view with neutral expression and diffuse lighting was considered

to represent ground truth and served as the baseline for comparison with the images

exhibiting non-frontal pose or illumination. The remaining three images of each

subject were processed by the face-fitting algorithm to recover the 3D shape and
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texture of the subject’s face while subsequently recovering the pose and illumination

conditions.

The 3D face models produced by the face-fitting algorithm were evaluated accord-

ing to the identification task. That is, we assume that a probe image of an unknown

person is presented to the system for comparison with a gallery of people of known

identity, under the assumption that the probe image represents an individual who is

in the gallery. In section 5.3, identification rates are presented both for identifica-

tion directly from model parameters and for identification from pose and illumination

normalized images using an appearance-based face recognition algorithm. Before pre-

senting these results, we discuss in section 5.1 the effectiveness of certain previously

described image preprocessing operations as contributors to algorithm performance.

5.1 Effectiveness of Preprocessing Operations

Before presenting the results of the face-fitting algorithm in terms of its ability to pos-

itively affect face recognition performance, the performance of certain preprocessing

operations that were introduced in chapters 3 and 4 will be assessed.

5.1.1 Correction for Roll

For near-frontal target face images, the roll correction step described in section 3.2.1

worked flawlessly, as might be expected since two symmetric face features (outside

eye corners) could be selected as feature points. For target faces at an oblique angle,

on the other hand, the roll correction operation was inadequate.

Out of the 74 oblique angle faces from the IMM database [40,64] that were tested,

between 15 and 20 of the roll-corrected target images did not properly account for roll
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and were thus unsuitable as input to the face-fitting algorithm. Cases of over-rotation

and under-rotation were approximately balanced. For the other target images, auto-

matic roll correction provided good but not exact results. Since rotation in roll could

not be reliably automated in the FaceGen environment and consequently roll angle φ

could not be considered as a variable subject to optimization, it was decided to allow

for additional roll correction measures.

Inaccuracy in roll correction and, indeed, in estimation of the face’s orientation in

yaw and pitch as well, stems from the use of only three feature points. The choice to

use only three manually located feature points to the algorithm developed here was

driven by a desire to minimize the amount of user input and effort required, and three

points was considered to be the minimum required to bring target and model faces

into reasonable correspondence. (By fixing the nose tip in image space and scaling

according to the nose tip to eye vectors, as in equation 3.9, the use of only three feature

points worked sufficiently well, at least, to allow the algorithm to proceed and fit the

model to the image.) In contrast, the original morphable model system described

in [13] required up to seven facial feature points in front and oblique views and up to

eight in profile views to be manually identified using an interactive tool. The greater

the number of facial feature points used, of course, the greater the expected quality

of the fitting results [10]. Since, as testing progressed, it became clear that the roll

correction calculation described in section 3.2.1 did work well in some instances, it was

decided not to manually select additional feature points for all. Rather an interactive

step was introduced whereby an image showing the proposed roll-corrected target was

generated and the user could choose to scale the roll-correction angle, if necessary,

to produce a more suitable result. All results presented here can be assumed to have

been processed as necessary with this additional consideration.

67



5.1.2 Initial Pose & Illumination Estimation

Both the pose estimation scheme described in section 3.2.2 and the illumination es-

timation scheme of section 4.3 generally worked sufficiently well to provide good

starting points. In about 4 out of every 5 non-frontal target faces tested, the initial

pose estimate was likely good enough to act as a starting point to the optimization

algorithm even without pose refinement as described in section 3.4. Pose refinement

proved to be worthwhile, however, in the other cases for which the generalization

to average face characteristics was unsuitable and thus the initial pose estimate was

poor. Still, in 100% of the test images considered, the system converged to a rea-

sonable pose solution. (Again, pose is unknown in the test images so the quality of

the pose fit cannot be quantified.) Thus, the combination of initial pose estimation

and pose refinement provided to the optimization algorithm a starting pose condition

that robustly allowed for convergence to a reasonable solution.

Likewise, initial estimation of the illumination conditions was generally satisfac-

tory. Since the illumination estimate was based on the pose estimate, illumination

estimation suffered in those cases where the initial pose estimate was poor. Refine-

ment of the illumination estimate prior to optimization (section 4.3.1) proved to be

particularly worthwhile in such instances. Again, in all cases, the combination of

initial illumination parameter estimation and illumination parameter refinement pro-

vided to the optimization algorithm starting illumination conditions from which the

algorithm could converge to a reasonable solution.
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5.2 Sample Results

Figure 5.1 contains examples of face reconstructions that were deemed to be ‘good’

in that the fitted model was a rank-1 match to the target image according to the face

recognition measurement to be introduced in section 5.3.1. The left-most column of

this figure contains the roll-corrected, cropped target images and the next column

shows the image rendered by the fitted face model. This face model was used to

generate a novel view which can be compared with the ground truth image from the

right-most column.

Figure 5.2, meanwhile, provides examples of poor face-fitting results. In the first

row, the original target image shows a subject with eyes partially closed. As the

FaceGen face modeller was not configured to account for this, the algorithm converged

on a solution in which the model exhibited very pale eyes. The second row was also

a poor fit due to characteristics of the target image. In this case, the target image is

rotated slightly in roll (in spite of the additional roll correction measure just discussed

in section 5.1.1) which seems to have prevented convergence to a better solution. Also,

the subject was not looking straight ahead, resulting again in a solution with pale

eyes as the irises were fit partially to eye whites. The presence of facial hair seems

to have negatively affected the fitting result of the third row. The mouth is shifted

downwards into the beard area — perhaps impelled by edge matching to detected

edges in the hair — and, since the subject’s beard is fair in colour, the lips in the

model became very pale.
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Figure 5.1: Examples where the face-fitting algorithm generated a good fit to the target
image, based on face recognition score. The target image is shown with the associated
model image that resulted from the face-fitting process. The fitted model was re-rendered
with normalized pose and illumination to create a novel view which can be compared with
the ground truth image of the subject.
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Figure 5.2: Examples where the face-fitting algorithm generated a poor fit to the target
image, based on face recognition score. The target image is shown with the associated
model image that resulted from the face-fitting process. The fitted model was re-rendered
with normalized pose and illumination to create a novel view which can be compared with
the ground truth image of the subject.
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5.3 Evaluation of Identification Performance

In the 3DMM framework, face recognition can be performed in two distinct ways. The

first method involves direct comparison of the parameters that define the shape and

texture of the face model [12]. (The gallery in this case could even be parameters sets

derived straight from 3D face scans. Alternatively, parameters sets could be entirely

derived from model fitting to 2D images.) In the second approach, the modelled face

can be re-rendered at a frontal pose and under favourable illumination such that any

appearance-based recognition system can be used [10].

Both methods were used to evaluate the performance of our system and its ability

to improve face recognition from unconstrained images. In both cases, the gallery set

contained all 40 subjects of the IMM database [40]. As previously mentioned, images

from only 37 subjects were tested. Images of the other 3 were grayscale only and thus

unsuitable as input to our algorithm.

5.3.1 Identification using Model Parameters

The fitted face model is defined by a set of shape and texture coefficients, αi and

βi, that remain constant over any changes in pose or illumination. In theory, model

fitting to any two images of the same subject — regardless of pose or illumination —

should yield the same parameter set. For identification from model parameters, we

define a parameter vector,

p = [α1, . . . , αNS
, . . . , β1, . . . , βNT

]. (5.1)

Our probe, then, is the vector pp resulting from the face-fitting algorithm.
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To derive a gallery vector, pg, we make use of the FaceGen PhotoFit utility (sec-

tion 2.3.2). Running PhotoFit on each of the full frontal ground truth images, we

assume that the output shape and texture coefficients represent each subject’s ‘true’

face. The gallery vectors can then be compared with any given probe vector and

rank identification determined. We adopt as match score MS a distance measure

equivalent to the cosine of the angle between probe and gallery vectors:

MS =
〈pg,pp〉

‖pg‖ · ‖pp‖ . (5.2)

The higher the match score, the more similar the parameter vectors, and the more

likely it is that the vectors represent the same individual.

As outlined in section 2.5 for the identification task, match score values for each

gallery image are ranked relative to a given probe image. Ideally, the gallery image

representing the same subject identity as the probe should appear first in this ranked

list. Practically, we consider the rate of identification against rank in the ordered list

as a measure of algorithm performance.

Cumulative match characteristic (CMC) curves illustrating algorithm performance

are given in figure 5.3. Probe images in which pose was the primary source of variation

(74 images total) are considered separately from those in which illumination was the

primary source of variation (37 images total), to facilitate comparison with the output

from a commercial appearance-based face recognition algorithm. This commercial

algorithm, which is about 5 years old, was tested using unprocessed gallery and probe

images.

Figure 5.3a shows that our algorithm slightly outperforms the commercial algo-

rithm in the task of identifying people from images that are unconstrained in pose.
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Figure 5.3: Cumulative match characteristic curves showing identification performance
(with match score from model parameters) of the face model fitting algorithm in comparison
with a commercial face recognition algorithm. In (a), results are given for 74 probe images
varying from the gallery image conditions primarily in pose, while (b) gives results for
37 probe images varying primarily in illumination. In both cases, probes were compared
against a gallery of 40 individuals.
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On the other hand, the commercial algorithm outperforms our morphable model ap-

proach in recognizing faces under varying illumination, as is evident from figure 5.3b.

5.3.2 Identification using Normalized Images

Having derived a face model whose shape and texture is invariant under changing pose

and illumination, we can normalize to a frontal pose and to illumination conditions

that are conducive to successful face recognition (as outlined in section 4.4) and use

the newly rendered face image as input to a face recognition algorithm rather than

using the original unconstrained target face image.

Upon initial face recognition testing using this approach with normalized images

of whole head FaceGen models, an interesting result was noticed. For nearly every

probe image, the same gallery subject ranked as the most likely identity according

to the commercial face recognition algorithm used for testing. In a previous study

that involved this particular algorithm [5], Adler surmised that hair style bore some

significance in the algorithm’s fundamental similarity measure. This does indeed seem

to be the case since, as shown in figure 5.4, the subject most highly identified with

many normalized model images bore a strikingly similar hair style — or lack thereof.

To correct for this, all FaceGen images to be tested in the face recognition al-

gorithm were cropped to remove the top of the head. Recognition results with this

modified set of pose and illumination normalized images were poor to say the least.

Over the whole set of test images (pose and illumination variation), the mean iden-

tification rank was 18.5 — only slightly better than what one could expect by using

random face images as probes. Again, there were 3 or 4 gallery subjects who ranked

highly in identification score for many different model images. Visual analysis showed

these subjects to be those with ‘smoother’ than average skin texture, that is, those
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Figure 5.4: Hair style influences the similarity measure of the commercial face recognition
algorithm used in testing. Most full head FaceGen model images ranked as highly probable
identity matches with the gallery subject in the centre above.

with fewer wrinkles, freckles, and the like.

This would seem to indicate a strong contribution from skin detail to the commer-

cial algorithm’s similarity metric since the FaceGen model faces being presented as

probe images were all devoid of the fine skin detail that cannot be directly simulated

by the statistical appearance models that govern the βi texture coefficients [61]. To

test this, some of the poorer performing model face images were re-rendered with skin

detail texture overlaid on the texture map. (Adding and customizing detail texture

to the model is a feature of the FaceGen modeller.) Also, given the apparent con-

tribution of hair to the face recognition algorithm’s similarity scores, hair was added

using standard hair models available in FaceGen. The new face images with detailed

texture and with hair were retested to investigate if an improvement in recognition

would be realized.

Example cases showing the original model image and the corresponding modified

version are given in figure 5.5. Testing on the image pair to the left showed an

improvement in identification from rank-34 to rank-3 while the pair on the right

76



Figure 5.5: Adding hair and skin detail texture to the model image resulted in a significant
improvement in face recognition for the face pair on the left but marginal improvement only
for the pair on the right.

showed only marginal improvement from rank-39 to rank-35. Clearly, skin detail is

an important factor to the particular face recognition algorithm used in testing. For

a given probe image, even adding skin detail and hair that is not derived from the

original target image can lend to an improvement in matching performance, but this

is not necessarily the case. So, for identification using normalized images processed by

an appearance-based face recognition algorithm — at least, for the algorithm on which

testing was performed — we need some way to extract the fine detail of the probe

subject’s skin and impose this detail on the recovered face model. Our algorithm is

not currently capable of this function, and is thus unsuitable as a preprocessing step

for face recognition by the commercial algorithm.
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Chapter 6

Conclusion

The ability of face recognition systems to accurately recognize faces is degraded when

images are not constrained for factors such as facial pose, illumination, facial expres-

sion, and occlusions. In this thesis the problem of unconstrained pose and illumi-

nation was considered with the objective being to address the following question: Is

it possible to accurately predict the appearance of an individual and subsequently

generate a frontal and uniformly illuminated view of their face from an image that is

unconstrained in pose and illumination?

6.1 Summary

The approach chosen to try to answer this question was that of a generative 3D

morphable face model used in conjunction with a face-fitting algorithm, following

the technique introduced by Blanz and Vetter [11, 12]. This system synthesizes a

face model whose projected image resembles as closely as possible a given target im-

age under analysis. We have shown that, in comparison with a commercial facial
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recognition algorithm, this system increases the likelihood of accurately predicting

an individual’s identity from an image that is unconstrained primarily in pose, but

offers no such improvement for images exhibiting frontal pose but unconstrained il-

lumination. While our system does allow for the generation of frontal and uniformly

illuminated views of a subject’s face from an image that is unconstrained in pose

and illumination, the accuracy of these reconstructions was not confirmed. Using a

commercial face recognition algorithm, identification performance from normalized

images was not good and is suspected to have been limited by lack of extracted skin

detail.

6.2 Key Contributions

The key contributions of this thesis made during the investigation and implementation

of the 3D morphable model approach as a solution to the problem of unconstrained

target image pose and illumination are as follows:

� An algorithm for face modelling to match images of faces under variable pose

and illumination has been developed. This algorithm manipulates the param-

eters of a commercial 3D face modeller known as FaceGen. The ability of this

algorithm to successfully generate a face model whose identity matches that of

the target face image has been demonstrated. The efficacy of the FaceGen face

modeller as the underlying model in the 3D morphable model approach has

thus been proven.

� It has been shown that the morphable model approach can work when initiated

with as few as three facial feature points located. Improved results would be
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expected, though, with the use of more feature points as is the case in other

implementations.

� In comparison with a commercial face recognition algorithm — albeit one that

is approximately five years old — our algorithm showed slight improvement

for face identification under variable pose, but performed more poorly when

testing frontal face views under variable illumination. These results came when

using a similarity score based on model parameters rather than using pose and

illumination normalized images as input to the same face recognition algorithm.

� Skin detail texture was found to factor significantly in similarity score measure-

ment for the particular commercial face recognition algorithm under compari-

son.

� Exploiting the characteristics of the “average” face under rotation, schemes for

estimating pose from the relative position of three facial feature points and for

estimating the position of a direct light source illuminating a face at a given pose

have been developed. Although based on characteristics of an average face only,

these estimates were found to be reasonable across a range of different faces. It

was also also found that the angle between the nose tip and outside eye corner

of the average face across rotations in yaw and pitch could be expressed as a

function of the relative position of the nose tip and both corners of the same

eye, yet this relationship did not hold well across non-average faces.

� Using the “Win32::GuiTest” Perl module [2], scripts were created for the au-

tomation of FaceGen face model manipulation, simulating user input such as

mouse clicks and movements, keyboard input, and window selection. This work
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is potentially transferable in that similar scripts could be developed to automate

interaction with other GUI applications.

6.3 Directions for Future Work

Some suggestions for future work to build on this thesis research are as follows:

� Automatic facial feature detection. Implementation of an automatic facial

feature detection algorithm would enable the use of more feature points with

less user input. Improved fitting results would be expected with the locating of

more feature points.

� Skin detail texture extraction. Statistical texture models are unable to

account for the detail in skin texture. Once the face model has been fit to the

target image, some mechanism is needed to extract the detail texture from the

skin surface. This detail texture could then be mapped to the entire face surface

(using assumptions of texture symmetry, if necessary) to render an improved

likeness of the target which would be suitable as input to any appearance-based

face recognition algorithm.

� Modelling from multiple images. The algorithm could be extended to

optimize shape and texture parameters under simultaneous fitting to multiple

images of the same target.
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Appendix A

GuiTest Perl Scripts

Listed in this appendix are various Perl scripts that enabled automation of face model
manipulation in the FaceGen environment.

A.1 Face Rotation

Rotates the face by xmove in the horizontal (rotation in yaw) and ymove pixels in the
vertical (rotation in pitch) from the default face pose.

use Win32 : : GuiTest qw( FindWindowLike SetFocus MouseMoveAbsPix

SetForegroundWindow SendLButtonDown SendLButtonUp

TabCtrl SetCurSel TabCtrl SetCurFocus PushChildButton

GetChildWindows GetWindowRect SetActiveWindow );

my $xmove = $ARGV[0];
my $ymove = $ARGV[1];

my @whnds = FindWindowLike( 0, "FaceGen Modeller 3.2 Free" );

die "Could not find FaceGen\n" if not @whnds;

my @chnds = GetChildWindows($whnds[0]);

SetForegroundWindow($whnds[0]);

TabCtrl SetCurFocus($chnds[18], 2 );

TabCtrl SetCurSel($chnds[18], 2 ); # Selects "Camera" tab.

PushChildButton($whnds[0],1384);
#Pushes "Reset Camera" button under "Camera" tab.

## PushChildById($whnds[0],1384,4); # Also works.

sleep 1;

my @fgwin = FindWindowLike( $whnds[0], undef, "FanWin3dClass" );
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( $lx, $ty, $rx, $by ) = GetWindowRect( $fgwin[0] );

$xoff = -0.5*$xmove + 202;

$yoff = -0.5*$ymove + 202;

my $xctr = $lx + $xoff;
my $yctr = $ty + $yoff;

SetActiveWindow( $fgwin[0] );

SetFocus( $fgwin[0] );

MouseMoveAbsPix($xctr,$yctr);
SendLButtonDown;

MouseMoveAbsPix($xctr+$xmove,$yctr+$ymove);
SendLButtonUp;

A.2 Set Direct Light Source Parameters

Sets the light source to a position of azimval in azimuth and elevval in elevation
and to a brightness of brigval.

use Win32 : : GuiTest qw( FindWindowLike SendKeys MouseClick

SetForegroundWindow WMSetText TabCtrl SetCurSel

TabCtrl SetCurFocus GetChildWindows GetTabItems );

my $azimval = $ARGV[0];
my $elevval = $ARGV[1];
my $brigval = $ARGV[2];

my @whnds = FindWindowLike( 0, "FaceGen" );

die "Could not find FaceGen\n" if not @whnds;

my @chnds = GetChildWindows($whnds[0]);
my @labels = GetTabItems( $chnds[18] );

SetForegroundWindow($whnds[0]);

TabCtrl SetCurFocus($chnds[18], 1 );

TabCtrl SetCurSel($chnds[18], 1 ); # Selects "View" tab.

my $azim ctrl id = 1343; # Azimuth edit window, 53F Hex

my $elev ctrl id = 1345; # Elevation edit window, 541 Hex

my $brig ctrl id = 1350; # Brightness edit window, 546 Hex

my @azim = FindWindowLike($whnds[0],undef,"∧Edit",$azim ctrl id);

my @elev = FindWindowLike($whnds[0],undef,"∧Edit",$elev ctrl id);

my @brig = FindWindowLike($whnds[0],undef,"∧Edit",$brig ctrl id);
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MouseClick(’Enable’);

MouseClick(’Enable’);

SendKeys("TAB");

WMSetText($azim[0], $azimval);
SendKeys("TAB");

WMSetText($elev[0], $elevval);
SendKeys("TAB TAB");

WMSetText($brig[0], $brigval);
MouseClick(’Enable’);

MouseClick(’Enable’);

A.3 Set Ambient Light Brightness

Sets the ambient light brightness to a value of ambival.

use Win32 : : GuiTest qw( FindWindowLike SendKeys MouseClick

SetForegroundWindow WMSetText TabCtrl SetCurSel

TabCtrl SetCurFocus GetChildWindows GetTabItems );

my $ambival = $ARGV[0];

my @whnds = FindWindowLike( 0, "FaceGen" );

die "Could not find FaceGen\n" if not @whnds;

my @chnds = GetChildWindows($whnds[0]);
my @labels = GetTabItems( $chnds[18] );

SetForegroundWindow($whnds[0]);

TabCtrl SetCurFocus($chnds[18], 1 );

TabCtrl SetCurSel($chnds[18], 1 ); # Selects "View" tab.

my $ambi ctrl id = 1329; # Ambient Brightness edit window, 531 Hex

my @ambi = FindWindowLike($whnds[0],undef,"∧Edit",$ambi ctrl id);

MouseClick(’Enable’);

MouseClick(’Enable’);

sleep 1;

SendKeys("+TAB +TAB");

WMSetText($ambi[0], $ambival);
MouseClick(’Enable’);

MouseClick(’Enable’);
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A.4 Save Face Image

Saves an image of current face model with the filename name. (Similar scripts are
used to open and save face models, as noted in the script comments.)

use Win32 : : GuiTest qw(FindWindowLike SetForegroundWindow SendKeys

GetMenu GetSubMenu MenuSelect);

my $name = $ARGV[0];

my @windows = FindWindowLike(0, "FaceGen Modeller 3.2 Free");

die "Could not find FaceGen\n" if not @windows;

SetForegroundWindow($windows[0]);

$menu id = GetMenu($windows[0]);
$submenu id = GetSubMenu($menu id,0); # Pulls "File" sub-menu.

MenuSelect("Save &Image", $windows[0], $submenu id);

# Similarly to open and save a face model -

# MenuSelect("&Open", $windows[0], $submenu id);

# MenuSelect("&Save", $windows[0], $submenu id);

SendKeys("$name�"); # In format and to location of previous save.
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