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Abstract

Electrical Impedance Tomography (EIT) is an impedance imaging technique which calcu-
lates the internal conductivity distribution of a medium from electrical measurements made
at a series of electrodes on the medium boundary. EIT is hard because the reconstruction
of internal conductivity or conductivity change requires solving a severely ill-conditioned
nonlinear inverse problem from noisy data. To solve this, regularization techniques are
widely used. EIT is limited by insufficient reliability such as poor spatial resolution and
artifacts due to model errors. This is the main obstacle impeding EIT being widely adopted
in medical clinical applications. Current research strives to enhance imaging algorithms,
robustness against disturbances and reliability of data acquisitions.

The aim of this thesis is to enhance EIT reconstruction performance and robustness
using advanced regularization algorithms. This aim is realized through: (1) Determining
temporal correlations between images to establish temporal regularization. (2) Exploring
4D regularization algorithms using both the temporal and a 3D spatial correlations to
improve reconstruction quality. (3) Reconstructing both the conductivity change and the
electrode movements from the temporal sequence of EIT measurements to improve both the
image quality and the robustness against measurement error. (4) Developing an iterative
regularization method in which `1 and `2 norm minimizations can be flexibly chosen on the
data residue and/or image prior parts. This thesis focuses on addressing the four objectives
with results that illustrate enhanced imaging qualities and error/disturbance robustness.
Additionally, one variable step size affine projection algorithm and one bioimpedance spec-
troscopic modeling scheme are developed as related researches of iterative reconstruction
and multifrequency EIT.
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Chapter 1

Introduction

This chapter provides a brief introduction to the field of study with the goal of clarifying
the problems to be addressed, and the contributions of this thesis. The background mate-
rial is reviewed in more detail in chapter 2, where detailed references to the literature are
provided.

Electrical impedance tomography (EIT) is a non-invasive imaging modality that can
be used to image conductive subjects. In EIT the internal conductivity distribution of
the subject is reconstructed based on electrical measurements from electrodes attached
around the boundary. In medical applications, due to the differences in bioelectrical
properties between tissues, the conductivity distribution can show the structural and
functional properties of the subject. For example, different organs of human body show
a contrast in bioimpedance imaging. Further, physiological variations, such as increased
blood volume in lungs, cause bioelectrical property changes which can be imaged as a
varying conductivity distribution.

In EIT, electrodes are attached on the surface of a subject and a certain current pattern
is injected into the subject through stimulation electrodes. Normally alternating current
is used as stimulation whose amplitude is usually several mA with frequency between
1 ∼ 100 kHz. The voltages are measured using voltage measurement electrodes. An image
reconstruction method is then used to calculate the internal conductivity distribution from
the boundary data.

EIT equipment has relatively low cost and good portability and it is easy to be oper-
ated and maintained. The current stimulation is not hazardous to humans in contrast to
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exposure to x-ray or radioisotopes in nuclear medicine. The data acquisition speed is very
high so that it can capture fast-varying physiological activities. EIT shows potential to be
used as a bedside realtime monitoring system which is affordable in clinics.

1.1 Problems

The reconstruction problem of EIT is to recover an unknown impedance distribution from
boundary data. This process is severely ill-conditioned. In order to solve an ill-conditioned
problem, certain special methods are required. A regularization technique is a process
which can stabilize the inversion process by imposing additional constraints from a priori
knowledge of the true solution.

The spatial resolution in EIT is relatively poor compared with other modalities, such
as Magnetic Resonance Imaging (MRI) and Computed Tomography (CT). However, EIT
has very good temporal resolution. The fastest EIT system can provide as many as 1000
images per second. Thus EIT is an excellent imaging modality to perform real-time moni-
toring on fast-varying physiological activities, e.g., cardiopulmonary status. Adjacent EIT
images, as well as data frames, are highly correlated. This temporal correlation provides
additional information content to that from a single frame. This information can be used
to increase the quality of the image reconstruction. Currently most EIT reconstruction al-
gorithms solve data frames independently, although iterative methods, e.g., Kalman filter
based algorithms, reconstruct images based on current and previous frames. This thesis
proposes the first one-step linear reconstruction algorithm that utilizes temporal correla-
tions formulated in terms of the regularization prior.

Besides the ill-conditionness of EIT, reconstruction quality of EIT is highly sensitive
to model errors, e.g., incapability of modeling the real subject perfectly. For example,
the shape of the reconstruction model is more or less different from the real subject being
measured. Another example is the medium deformation involved during in vivo measure-
ment, e.g., thoracic cage movement due to breathing. Electrode uncertainty is another
significant degradation of EIT performance. For example, electrode movement, variable
electrode contact impedance, and drift in the electronics can produce dramatic artefacts
in images. Other than hardware improvements, reconstruction algorithms need to be up-
graded to compensate model errors and be robust against electrode uncertainty. This is
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a prerequisite to bring EIT, a promising medical imaging modality, into routine clinical
applications.

1.2 Objectives

The thesis investigates novel reconstruction algorithms in order to improve EIT imaging
performance in terms of image quality (spatial resolution and noise level) and robustness.
This aim is addressed in terms of:

1. Investigating the inter-frame correlation of adjacent data frames and determining
the inter-image correlation and use it to improve EIT image performance. The temporal
correlation of images is illustrated as Figure 1.1.

Figure 1.1: Image sequence with temporal correlation. One image vector is described as a block
column. The current image is at t = 0. γk is the inter-image correlation between two images with
delay/leading of k, where γ is temporal correlation constant.

2. Developing a general approach to model the 4D (temporal and 3D spatial) correla-
tions in the regularization prior of a single step Gauss-Newton type linearized reconstruc-
tion. The 4D correlation model is illustrated as Figure 1.2.
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Figure 1.2: Three dimensional image sequence with temporal correlations. Three dimensional
image is described as a cylindric subject. The current image is at t = 0. γk is the inter-image
correlation between two images with delay/leading of k. Two arbitrary elements (marked as red
circles) within a 3D image has spatial correlation ηd, where η is spatial correlation constant and
d is distance between any two elements.

3. Investigating the applicability of temporal regularization techniques for enhancing
imaging quality and robustness against model error. It explores the temporal modeling
on both the image elements and electrode movements to reconstruct them within a single
inverse. As the general forward model of EIT is y = Jx, the upgraded forward model is
illustrated as Figure 1.3; the temporal correlation model is described as same as Figure
1.1.

4. Proposing a generalized iterative linearization method for EIT reconstructions which
uses the `1 norm minimization on both the regularization term and the residue error term.

`1 norm calculates the sum of amplitude of a function. Generally, the `1 norm of a
function f on a domain Ω is

‖f‖1 =

∫

Ω

|f | (1.1)

The `1 norm regularization is advantageous over least squares methods by preserving dis-
continuities in the reconstructed profiles. This intrinsic property can be simply illustrated
by a 1D special case in Figure 1.4. Suppose that there are multiple pathes between two
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Figure 1.3: The augmented forward model for the reconstruction of both electrode movements
and conductivity changes within a single inverse (Soleimani et al., 2006a). The electrode move-
ment (EM) Jacobian and EM parameters are augmented to image Jacobian and image elements,
respectively.

points A and B, noted as functions f1(x),f2(x) and f3(x), each of which is monotonically
decreasing. By means of `2 norm, the least squares solution is f3(x) due to the fact that the
euclidean distance is the shortest distance between two points along any path. Thus for `2

norm minimization on image prior term, any sharp edges of the type f1(x) will always be
“smoothed” as f3(x) like transitions with largely decreased contrast. However, the `1 norm
of these pathes are identical:

‖f‖1 =

∫ B

A

|f ′(x)|dx = f(A)− f(B) (1.2)

Therefore, being used as the image prior penalty of the Tikhonov regularization, `1 norm
minimization can preserves edges in original images.

Another promising advantage is that by applying `1 norm minimization on the residue
term, the solution has greater robustness against data outliers. Both advantages are
achieved by applying `1 norm minimization on both residue and regularization terms in a
generalized `1/`2 iterative algorithm.
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Figure 1.4: There are multiple paths between two points, A and B. By means of `2 norm mini-
mization, the straight segment has the minimum value. However, there is no difference between
difference pathes be means of `1 norm solution.

1.3 Contributions

1.3.1 Contributions by Objectives

1. Determine the inter-image correlation and use it to improve EIT image performance

In this thesis, a novel temporal regularization for EIT is proposed. This approach re-
constructs the image at frame t0 from a frame window t−d to td (as illustrated in Figure
1.1). The inversion is formulated as an inverse problem with a regularization prior which
accounts for temporal correlations among images. For low noise solutions (low hyperpa-
rameter) its behaviour approximates that of Gauss-Newton reconstruction, while for cases
of high noise level and high frame rates where large hyperparameters are adopted, it is
advantageous by reconstructing higher resolution images. It improves over Kalman filter
based algorithms by allowing an explicit control over the regularization prior and the data
weighting methods. The temporal algorithm is recommended for cases where data is noisy
and the signal (underlying conductivity changes) is slow with respect to the frame rate.

This work is presented in Chapter 3. Additionally, it is published as “Temporal Image
Reconstruction in Electrical Impedance Tomography”, Andy Adler, Tao Dai, William R.B.
Lionheart, Physiol. Meas., 28:S1-S11, 2007 (Adler et al., 2007). My contribution was to
partly derive the algorithm, write codes and conduct simulations.

As an extension, the temporal solver is also applied to the Magnetic Induction To-
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mography (MIT)(Soleimani et al., 2008). The inverse problem of MIT was treated as a
dynamical problem that images non-static objects. The dynamic magnetic imaging of a
molten metal flow is estimated with the aid of direct temporal imaging method. Through
real data, it is proved that the temporal solver achieves better resolution than the conven-
tional GN method especially for high noise cases.

2. Four dimensional (temporal and 3D spatial) correlations in the regularization prior
of the GN one-step linearized reconstruction.

This algorithm considers the a priori spatial and temporal correlations in EIT imaging.
The subject to be reconstructed is considered in 4D: as illustrated in Figure 1.2, elements
of the 3D subject are correlated by an exponential model; the elements in the time axis
are temporally correlated. For spatial correlations, a novel exponential model is presented
based on: 1) sensitivity weighting, 2) an exponentially weighted model of inter-element
correlations, and 3) a smoothness constraint for poor sensitivity regions. In order to avoid
dependence on mesh element density, a closed form approximation to the integral is de-
veloped. For the temporal correlations, an exponential model is presented of inter-frame
correlations (based on an exponential decay factor γ), and an automatic approach to de-
termine γ from the measurements is developed.

This work is presented in Chapter 4. Additionally, it is accepted as “EIT Image Re-
construction with 4-D Regularization”, Tao Dai, Manuchehr Soleimani and Andy Adler, in
Medical and Biological Engineering and Computing, 2008. (Dai et al., 2008b)

3. Temporal regularization on both the image elements and electrode movements to en-
hance imaging quality and robustness against model error.

This work is an extension and improvement to the temporal regularization and the
electrode movement regularization approaches (proposed by Soleimani et al. 2006a), in
this part, we develop an approach to reconstruct both the conductivity change and the
electrode movements from the temporal sequence of EIT measurements. The electrode
movement reconstruction is a powerful approach to reduce artefcats from boundary defor-
mation. It calculates electrode displacements in addition to conductivity changes and is
demonstrated to have high robustness against electrode mis-position. The reconstruction
of both electrode movements and conductivity changes within a single inverse is illustrated
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in Figure 1.3. The electrode movement (EM) Jacobian and EM parameters are augmented
to image Jacobian and image elements, respectively. The temporal inverse is formulated as
an inverse problem with a regularization prior which accounts for both spatial and temporal
correlations among image elements and electrode movements. The method is verified by a
numerical simulation, saline phantom data and in vivo human measurement. Results show
that this method improves quality of reconstructed images, both on noise performance and
target resolutions.

This work is presented in Chapter 5. Additionally, it is published as “Reconstruction
of Conductivity Changes and Electrode Movements Based on EIT Temporal Sequences”,
Tao Dai, Camille Gómez-Laberge and Andy Adler, Physiol. Meas., 29:S77-S88, 2008.
(Dai et al., 2008a)

4. A generalized iterative linearization method for EIT reconstructions which use the
`1 norm regularization.

It is widely recognized that the `1 norm regularization is good at recovering disconti-
nuities in the true model while the least squares or `2 solution is prone to smooth edges
out. An efficient `1 norm regularization method is of interest. However, the solutions of
the `1 norm regularization normally needed to solve an inverse problem as a minimiza-
tion of a non-differentiable function which is computationally difficult. In this thesis, a
generalized iterative reconstruction method for EIT is proposed. By choosing norm type
values of pn and px, `1 and `2 norm minimization can be flexibly chosen on the data residue
and/or image prior parts. Numerical simulations show the flexibility of this algorithm and
merits of the `1 norm solution on both imaging quality and robustness against sensor error.

This work is presented in Chapter 6. It is accepted as a conference presentation
(Dai and Adler, 2008c), and is in progress to be submitted as a peer reviewed publica-
tion.

1.3.2 Miscellaneous contributions

Beside the primary research contributions described above, several correlated/preliminary
researches are conducted:
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1. In bioimpedance imaging, spectroscopic modeling is a popular tool for bioelectrical
characterization and parametric image establishment. In multifrequency EIT, modeled pa-
rameters can be used in stead of impedance values as elements. This thesis also conducted
research on one implementation of bioimpedance spectroscopy. We develop a novel in vivo
measurement technique to calculate bioelectrical properties of blood while excluding the
contributions from surrounding tissues. This method is based on analysis of the differ-
ence spectroscopy measured from blood pooling. The spectroscopic data are fitted to a
Cole model by Levenberg-Marquardt (LM) nonlinear curve fitting method. This approach
is verified by an equivalent circuit simulation, a phantom experiment and a preliminary
human test.

This work is presented in Chapter 7 and it is accepted to publish by IEEE Transactions
on Instrumentation and Measurement, 2008. Authors are Tao Dai, Andy Adler.

2. As part of iterative system identification research, a temporally weighted and regular-
ized optimal variable step size affine projection algorithm (APA) is proposed. This method
proposes a forgetting weighted scheme on a projection matrix for variable step-size affine
projection algorithms. It uses a forgetting processed input matrix as the projection matrix
to estimate system deviation. This method introduces temporal weights into the projec-
tion matrix for the purpose of tracking the latest behaviour of error signal. This algorithm
shows evident improvements, as tested by independent trials with coloured input signals
and various parameter combinations.

This topic is discussed in Appendix A. This work is submitted to International Journal
of Signal Processing, by Tao Dai, Andy Adler and Behnam Shahrrava, 2008.
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Chapter 2

Background

This chapter presents a review of knowledge pertinent to the thesis. Bioimpedance basics
are discussed in terms of bioelectrical properties of biological tissues and primary appli-
cations of bioelectrical methods. The background of EIT is presented in terms of history,
theory, and applications. Inverse problem basics and regularization techniques for EIT are
discussed at the end of this chapter.

2.1 Bioimpedance Basics

Bioimpedance is a passive electrical property of a biological tissue which describes the
opposition to current flow. For a stimulation current I with a given frequency, the response
voltage measured on the tissue is V . Both of them are complex numbers and can be
expressed by polar forms, I = |I|ej∠I , V = |V |ej∠V . The electrical impedance, Z = R+jX,
is a complex number which is calculated by the Ohm’s law : Z = V/I, where |Z| = |V |/|I|
and ∠Z = ∠V − ∠I. The real part of Z is the resistance R and the imaginary part is the
reactance X. R causes the power attenuation and X causes the phase difference between
voltage and current.

In order to illustrate bioimpedance, consider a piece of cylindric material in which the
impedance is measured through two ideally conductive plate electrodes at opposite sides,
as illustrated in figure (2.1).

Y = G + jB = G + jωC = K (σ + jωε) = K (σ + jωεrε0) (2.1)

where symbols are explained below (units are in the parenthesis):

• Y : the admittance which is the inverse of the impedance Z (S)

10



Figure 2.1: A piece of cylindric material to illustrate the relationship between bioelectrical prop-
erties and system geometry. This is formulated as the equation (2.1)

• G: the conductance (S)

• B: the susceptance (S)

• C: the capacitance (F )

• K: the scaling factor of the material measured(area/lengh= πr2/l) (cm)

• σ: the conductivity of the material (S/cm)

• ε: the permittivity of the material (F/cm)

• εr: the relative permittivity of the material

• ε0: the permittivity of the vacuum as a constant 8.8× 10−14(F/cm)

Many electrical properties of tissue are related to polarization. Polarization is the
electric field-induced disturbance of the charge distribution in a region. In a time varying
electric field, the charge distribution is considered to change in time phase with the applied
field. The time dependence can be characterized by the concept of “relaxation”. Relaxation
is the process of a system to relax to a new equilibrium after excited by a step signal. The
time for the system to reach a new equilibrium is described as a parameter called “relaxation
time”.

The permittivity in biological materials typically diminishes with frequency increasing.
The intrinsic reason is that the capability of charges following the variation of external
electric field gets lower when frequency increases. As a correspondence of relaxation which
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describes biomaterial electrical properties with respect to time, the frequency dependence
is described by “dispersion”. Schawn (1957) introduced the concept of dispersion in the
field of dielectric spectroscopic analysis of bio-materials. Dispersion can be understood as
frequency dependence of permittivity according to certain biophysical mechanisms that are
related to, such as cell membranes, intracellular organelles, bi-layer counterion relaxation,
electrokinetic effects. Based on the observed permittivity dispersions, three dielectric dis-
persion regions (α, β and γ) for the biological material were defined (as illustrated in figure
2.2)

Figure 2.2: dielectric dispersion of biomaterials (from Valentinuzzi 1996). ε′ is the relative per-
mittivity (no unit) and σ′ is the conductivity (unit:mσ/cm).

Dielectric dispersions are generally considered to be related to these biophysical mech-
anisms (Foster and Schawn, 1989; Grimnes and Martinsen, 2000):

• The α dielectric dispersion (ranges from several mHz to tens of kHz) is generally
considered to be associated with counterion effects, active cell membrane effects,
intracellular structures, the diffusion processes of the ionic species.

• The β dispersion (ranges from 0.1 MHz to 100 MHz) is related to the cell membranes,
the extra-cellular and intra-cellular fluids.
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• The γ dispersion (ranges from 0.1 GHz to 100 GHz) region is attributed by the
aqueous content of the biological species and small molecules.

The advantage of dispersion concept is that it is a general, phenomenological concept
which facilitates researchers to focus on specific tissues in specific frequency band without
considering detailed mechanisms (Gabriel et al., 1996a,b,c; Schepps and Foster, 1980).

2.2 Bioimpedance Applications

2.2.1 Summary

In medical area, bioimpedance method can be applied for many areas such as diag-
nostic and therapeutic applications, laboratory experiments and perception/hazard anal-
ysis. These application have advantages such as low-cost, easy to apply, portability
and capable of on-line monitoring. Some existing applications are illustrated as below
(Grimnes and Martinsen, 2000; Bourne et al., 1996):

• Cellular measurement

This method is to use impedance methods in the cellular field, for counting the
amount of cells in a suspension, or estimating the concentration of dielectric particles
in a conductive solution if the shape and size of the particles is known. For example,
blood analyzers uses this approach to measure hematocrit.

• Body volume change and body composition measurement

As described in Section 2.1, the bioimpedance of a biomaterial is not only related
with its properties but also depends on its geometrical dimensions. Therefore, as
long as the material electrical properties are known in advance, it is possible to mea-
sure and calculate material sizes or volumes based on data. For example, impedance
plethysmography uses bioimpedance data to estimate the blood volume in the extrem-
ities (Nyboer, 1970). In Chapter 7, a blood pooling based bioimpedance method for
estimating blood bioelectrical properties is presented. There are some other similar
examples like impedance cardiography and impedance pneumography.

The total body water can also be estimated by this method which calculates rel-
ative volumes of extra and intracellular spaces from bioimpedance measurement
(Siconolfi et al., 1997; Thomas et al., 1992). The amount of body fat can be com-
puted using the same techniques of the hydration monitoring.
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• Tissue identification and monitoring

Because different tissues exhibit different electrical properties, in addition, tissue
electrical properties change with respect to tissue status evolution. Thus it is easy to
conceive that bioimpedance method can be applied to identify and monitor tissues.
This is discussed in details in Section 2.2.2 and Section 2.2.3.

• Electrical impedance tomography

Electrical Impedance Tomography (EIT) is the expansion of bioimpedance method to
2D/3D/4D applications by adding spatial and/or temporal resolution. EIT provides
a mapping of the impedance distribution in a tissue layer or volume. This is the
main topic of the thesis and detailed introduction is in Section 2.3.

2.2.2 Bioimpedance method for tissue identification

Since different tissues exhibit different bioelectrical characteristics, the bioimpedance method
can be adopted to characterize tissues (as illustrated in figure 2.3 and table 2.1). For
characterizing different tissues, one popular method is to fit data to the Cole-Cole model
(Cole and Cole, 1941). The Cole equation models the behavior of permittivity and con-
ductivity as a function of frequency:

Z(f) = R∞ +
R0 −R∞

1 + j(f/fc)1−α
(2.2)

where R0 and R∞ are the limiting values of resistance at low and high frequencies; fc is
the characteristic frequency of relaxation; and α is the constant that characterizes the Cole
distribution function and ranges from 0 to 1.

Table 2.1: typical Cole-Cole parameters of some tissues. From Rigaud et al. (1995).
Muscle Liver Lung Spleen Intestine (α) Intestine (β)

fc(kHz) 27 72 140 373 520 2700
1− α 0.71 0.54 0.39 0.64 0.50 0.52
R0(Ω) 640 605 390 525 135 110
R∞(Ω) 70 110 65 60 108 45

One of the most attractive applications of bioimpedance characterization is cancer de-
tection (Surowiec et al., 1988; da Silva et al., 2000; Halter et al., 2007). The cancerous
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Figure 2.3: Typical cole-cole curves of some tissues. From Rigaud et al. (1995). Z ′ and Z ′′ are
the real part and the imaginary part of the impedance, respectively.

tissues exhibit sharply different bioelectrical properties compared with the normal or be-
nign tissues. When tumour tissue is in an early stage, abnormalities start to develop in
cellular water/electrolyte content, cell membrane permeability, and orientation/packing
density of cells; these changes introduce evident bioimpedance abnormalities that can be
detected by using bioimpedance (Fricke and Morse, 1926; Scholz and Anderson, 2000). At
this stage, absorbance properties of some high energy particle propagations, e.g., x-ray,
of the cancerous tissue are relatively stable; therefore, this early stage abnormalities of
cancerous tissues are difficult to be detected by this type of detections, e.g., CT.

The pioneer work of cancer detection using BIS is in the breast cancer diagnosis. As
early as 1920’, Fricke and Morse (1926) found significant capacitive difference between
malignant breast tumors and normal tissues. Afterward, the potential usage of elec-
trical characteristics to perform breast cancer detection was investigated both in vitro
and in vivo: The relative permittivity and the conductivity of malignant tumours were
found significantly different from the normal breast tissue (Surowiec et al., 1988; Jossinet,
1996; Jossinet and Schmitt, 1999); moreover, those researchers showed that benign tis-
sues show similar bioelectrical properties to normal breast tissue. Morimoto et al. (1990)
claimed that the malignant tissue has higher extracellular/intracellular resistance and lower
membrane capacitance compared with benign tissue by using a three-electrode method.
Kerner et al. (2002) showed that the BIS is promising for detecting breast malignancies
by comparing BIS and mammogram results on human subjects. Kim et al. (2007) devel-
oped an analysis method to assess breast tissue and found the feasibility of adopting BIS
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on cancer detection by comparing Cole-Cole plots between malignant and healthy tissues.
Based on bioimpedance, imaging modality had been proposed and the first commercialized
bioimpedance imaging device was the TS2000 (Transcan Medical, Ltd., Israel; distributed
by Siemens,Erlangen, Germany) which is used for breast cancer detection.

The bioimpedance cancer detection methodology is also an attractive topic of research
on other tissues. For example, Walker et al. (2000) used a finite element model to simulate
cell arrangement and electrical characteristics of premalignant cervical tissue, and found
significantly different BIS curve compared with that from normal tissue. Halter et al.
(2007, 2008a,b) conducted BIS measurement on different prostate compositions: prostate
cancer, benign prostate hyperplasia, normal glandular tissue and stroma. Results showed
that characteristic parameters mined from BIS data can differentiate cancerous and benign
tissues which can only be fulfilled by sample biopsy currently. Smallwood et al. (2002) and
Keshtkar et al. (2006) investigated the feasibility of applying the bioimpedance characteri-
zation to the bladder tissues to identify malignancies. They claimed that the bioimpedance
technique can be a promising complementary method of current bladder abnormality di-
agnostic modalities.

2.2.3 Bioimpedance method for tissue monitoring

Tissue/organ monitoring is very important during surgery. For example, in some heart
surgeries, the cardiac circulation is artificially bypassed and the heart becomes ischemic
due to lack of oxygen. In order to prevent tissue damage, it is desired to determine how
long this ischemia period can be. This decision can be made by timing, or else depending
on experience of doctors. Some researchers have shown that the degree of heart ischemia
can be evaluated by bioimpedance parameters (Casas et al., 1999; Linhart et al., 1995;
Jenderka and Gersing, 1996), so that it provides an efficient and safe way to indicate the
conditions of the heart.

Cryosurgery uses extreme cold for targeted destruction of undesirable tissues such as
cancer. A cryoprobe is inserted into the malignant tissue and an ice ball grows on the top
of probe to destroy malignant cells. In this procedure, accurate and real time monitoring of
ice front extent is critical on destruction control. EIT is demonstrated a promising method
for this application because frozen tissues show much higher impedivity than unfrozen
tissues (Otten and Rubinsky, 2000, 2005; Edd et al., 2008).

Another example is to use bioimpedance parameters for monitoring organs to be trans-
planted to determine their suitability for transplantation. The idea is to quantify the
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damage caused by ischemia before, during and after the transplantation (Harms et al.,
2001; Sola et al., 2003; Yamada et al., 2002).

2.3 Electrical Impedance Tomography

As discussed in Section 2.1, the difficulties of current propagating through various tissues
within the object are different due to the bioelectrical heterogeneity within the measur-
ing field. This principle makes it possible that a cross sectional (or three dimensional)
impedance image can be reconstructed to provide informative anatomical and functional
information of a medium.

Electrical Impedance Tomography (EIT) is an extension of the bioimpedance method
described in the previous section by mapping bioelectrical properties (conductivity or per-
mittivity) of a subject onto a two dimensional image or a three dimensional volume. It is a
medical imaging medality in which an image of the internal conductivity/permittivity dis-
tribution of the body is reconstructed from boundary electrical measurements. Electrodes
are attached to the surface of the subject and small alternating currents applied to some
of the electrodes. The resulting electrical potentials are measured. This procedure repeats
for different configurations of current stimulation to complete a data frame acquisition.

2.3.1 History

The earliest research on non-invasive imaging of human body in terms of bioelectrical
properties was done by an impedance camera (Henderson and Webster, 1978). One volt-
age source was applied on human chest through a large area plate electrode to establish
an equipotential surface on the chest; a twelve by twelve rectangular electrode array was
attached on the thorax back and current data were measured behind each electrode on
this array; the current data were used for generating thorax impedance images. The low
conductive areas in the resulting images were claimed as lungs. Price (1979) tried to gen-
erate tomographic images by applying current stimulations and measuring voltages. The
internal impedance distribution was solved by using a linear impedance network. The first
two dimensional transverse plane impedance images were obtained by Barber and Brown
(1984) using the first clinical impedance tomography system. Afterward, the Sheffield
Mark 1 system was developed (Brown and Seagar, 1987) and this system was later com-
mercialized. Currently, the Sheffield Mk 3.5 system is under developing and marketing
by Maltron International Ltd., UK. Viasys Health Care (now Cardinal Health, Höchberg,
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Germany) manufactures Goe MF II EIT system for respiratory monitoring. Other EIT
manufacturers include Dräger Medical (Lübeck, Germany) who has EIT system for respi-
ratory monitoring; SIM-Technika (Moscow, Russian) who produces EIT devices for breast
cancer screening.

2.3.2 Principle of EIT

In this section, general technical background knowledge EIT system is presented, such
as signal excitation and data acquisition system, preliminary introduction of forward and
inverse problem in EIT.

Stimulation and Measurement

Typically, during data acquisition of EIT, a set of electrodes are placed on the surface
of the object following certain placement configuration. Current or voltage is applied to
some electrodes and then resulting voltage or current is measured respectively. Mostly
an alternating current is injected through some electrodes and the resulting voltages are
measured at rest electrodes.

The current drive pattern is the way how the system is stimulated to generate re-
sponses. Sheffield protocol uses the adjacent pattern (Brown and Seagar, 1987) which ap-
plies alternating current through a pair of adjacent electrodes and the resulting voltages
are measured at the remaining electrodes in adjacent pairs (as illustrated in figure 2.4 for
respiratory monitoring application). The adjacent stimulation is easy to implement since
only one current source is required and the current pair can be easily switched on other
pairs by the control circuit. The optimal drive pattern was first introduced by Seagar
(1983). Isaacson (1986) and Gisser et al. (1987) proposed to choose the optimal single
current pattern by maximizing the `2 norm of the difference between the measured and
the calculated voltages, under the constraint of the `2 norm of the current.

In single frequency EIT, a current pattern with certain frequency is injected into an
imaging object and the boundary voltages are measured. Single frequency EIT applies a
relatively low frequency, e.g., 50 kHz, at which the current travels mainly in the extracel-
lular space and tissues being measured exhibit similar properties as direct current stim-
ulation. However, at this frequency band, electrode impedance is much lower than that
under direct current, such that the system sensitivity is better. Recently multifrequency
EIT (MFEIT), or frequency difference EIT (fdEIT), has drawn more and more attentions
of researchers. The MFEIT applies multifrequency stimulation thus an impedance spec-
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Figure 2.4: A block diagram of EIT system with 16 electrodes placed in a single plane, equi-
distantly. the adjacent stimulation and measurement pattern is applied: current is applied to an
adjacent pair of electrodes and the responsive voltages are measured on the remaining 13 adjacent
electrode pairs. Voltages are not measured on any stimulation electrodes. This procedure repeats
16 times until all 16 possible pairs of adjacent electrodes have been used to apply the known
current. (Redrawn from Adler 1995)

trum is obtained for each pixel of reconstructed images. Instead of imaging conductivity
changes with respect to time, MFEIT images conductivity changes with respect to fre-
quency. Thus in principle the measurement is much less affected by subject movement
and baseline drifting (Barber, 2005). In addition, images from high frequency are infor-
mative for cell membrane variation because current propagates not only extracellularly,
but also intracellularly. This is promising for early stage cancer detection. The impedance
difference between the cancerous tissue and normal tissue can be detected easier in high
frequency band (low frequency EIT can only detect conductivity change of extracellular
variation). Therefore, investigating MFEIT images within high band is meaningful for
early stage cancer screening.

Using the MFEIT, it is possible to build an absolute image (either in conductivity or
model parameters). For example, by using certain modeling methods, such as the Cole-
Cole model, the bioimpedance parameters (such as the characteristic frequency fc) can be
estimated (Barber, 2005) and this can be used for tissue identification and monitoring (see
Section 2.1).
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Forwad Problem of EIT

Given an object body Ω with a closed and smooth boundary ∂Ω. Assuming the body has
an isotropic conductivity distribution σ(r) and the potential distribution is φ(r), both of
them are functions of spatial locations r = (x, y, z). Assuming there is no internal current
sources, σ(r) and φ(r) are related by an elliptic partial differential equation, also known
as the Laplace’s equation

∇ · σ∇φ = 0 (2.3)

with the boundary condition J0 = − ~J ·~n = σ∇φ ·~n where ~J = −σ∇φ is the current density
and ~n is the outward unit normal to ∂Ω. Using (2.3) with the boundary condition that
is specified by external sources, and the conductivity distribution inside the object, the
potential distribution φ can be calculated on top of certain reference/ground point. This
is the forward problem in EIT which is described as a nonlinear equation

v = F (σ, I) = FI(σ) (2.4)

where σ ∈ RN is the vector of internal conductivity of the medium being measured, if the
conductivity image to be reconstructed has N elements; I is the current pattern injected
into the medium; v is the voltage measured on the medium boundary; F is the forward
conversion.

Provided an EIT system with nE electrodes applied on a body surface in a plane.
Supposing the Sheffield protocol is applied which uses the adjacent current stimulation
and voltage measurement. nE current stimulation patterns are sequentially applied and
each of them takes nE − 3 differential measurements (in this thesis, it is considered that
voltages are not taken on stimulation electrodes). Each data frame measures a vector,
v ∈ RnM , of nM = nE(nE − 3) data points (half of which are redundant if the medium is
not changing).

The difference EIT calculates difference data y ∈ RnM , (y = vt−v0), where t is the time
index. To improve its precision, the reference signal v0 is typically the average over many
data frames that are acquired when the measured object may be assumed to be stable.
Therefore, v0 is assumed to be noise-free. For cases that have no stable reference measuring
condition (such as a patient who cannot hold breath to do the reference measurement), v0

can be estimated as the average of all data sets obtained during the periodic physiological
activity (e.g., the lung ventilation monitoring in Chapter 5). The difference EIT calculates
conductivity difference image x ∈ RnN which is the difference of current conductivity σt

and the reference conductivity σ0. A typical difference EIT image is illustrated as Figure
2.5.
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Figure 2.5: A typical EIT difference image (from online EIDORS tutorial, “Application: EIT
of the thorax–Images of lungs”, http://eidors3d.sourceforge.net/tutorial/tutorial.shtml). Lung
ventilation image sequence (frame rate is 7 fps). Image progression is from left to right, top to
bottom. One breath cycle is shown. The time average of the data set is used as the reference
signal. Thus compared with reference lung volume (represented as blank image), blue regions
represent less conductive (breath-in); red regions represent more conductive (breath-out).

For a small variation around σ0,the relationship between x and y is approximately
linear. Therefore, a linearized forward model can be formulated as

y = Jx + n (2.5)

where n is measurement noise that is assumed to be uncorrelated white Gaussian.
The linear operator J is the sensitivity matrix or the Jacobian matrix. On a model

with nE elements and nM boundary measurements, J ∈ RnM×nE . The Jacobian matrix de-
pends on the FEM, current injection patterns, the reference conductivity and the electrode
models. It is calculated from a forward element model (FEM), which is built to simulate
the medium being measured. This Jacobian is normally computed using perturbation tech-
nique, by introducing small amount of model property change and repeatedly solving the
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forward problem. For example, to calculate conductivity Jacobian near certain reference
conductivity distribution x0, a small conductivity change 4xj on the jth FEM element
is made and this introduces voltage change on the ith measurement by an amount 4yi.
The element on the i, j position of the Jacobian is calculated as below (Adler and Guardo,
1996a)

Jij =
4yi

4xj

|x0 (2.6)

Other than conductivity Jacobian, electrode movement Jacobian can also be calculated us-
ing the perturbation technique by replacing the small conductivity perturbation in (2.6) by a
small electrode position perturbation (Soleimani et al., 2006a). The perturbation technique
is simple but computational expensive and inaccurate under certain circumstances. A di-
rect method to calculate the Jacobian was proposed, based on a formulation of the deriva-
tives of the FEM matrix with respect to geometry changes (Gómez-Laberge and Adler,
2008).

Inverse Problem of EIT

EIT image reconstruction attempts to inverse the problem of (2.5), in which x is estimated
by solving

x̂ = J−1y (2.7)

However, the solution (2.7) is not realizable because J is mostly not invertible. The linear
inverse of (2.5) can be solved by minimizing the error function ‖Jx−y‖ in the least squares
means as the generalized form

x̂ =
(
JTJ

)−1
JTy (2.8)

This is so called naïve least squares solution because JTJ is rank-deficient and ill-conditioned
(the term “ill-conditioned” refers to discrete linear system, while the term “ill-posed” refers
to continuous system (Aster et al., 2005)). The rank-deficiency is caused by the fact that
the number of unknown conductivity elements is mostly much larger than the number of
independent measurements obtained. Thus this is an under-determined system which has
infinite solutions and can not be directly solved by matrix inversion. There are also other
factors which introduce difficulties for EIT reconstruction, such as poor sensitivity at the
medium center, off-plane current propagation. The detailed inverse problem related to EIT
is discussed in Section 2.4.
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2.3.3 Applications

EIT has been applied in many areas which can be classified as three major fields:
1. Biomedical imaging.
EIT has been applied for several medical applications: monitoring of pulmonary func-

tion (Adler, 1995; Frerichs, 2000; Harris et al., 1992; Kunst et al., 1998; Frerichs et al.,
1999); measurement of cardiac function (Eyuboglu et al., 1989; Vonk-Noordegraaf et al.,
2000), brain functions (Holder, 1992), gastric emptying (Smallwood et al., 1994); cancerous
tissue detection and classification (Kerner, 2001; Halter et al., 2004; Zou and Guo, 2003).

2. Geophysical exploration.
EIT technique is used mainly on geological structure receptivity survey (Loke and Barker,

1996; Dines and Lytle, 1981). Electrodes are placed on the surface of the earth or in bore
holes to position resistivity singularities.

3. Industrial process tomography.
Applications in industry include the imaging of conductive fluid flows in vessels and

pipes (Beck et al., 1998; Ma et al., 2003; Hunt et al., 2003), crack detection (Williams and Beck,
1995; Dickin and Wang, 1996; Alessandrini and Rondi, 1998).

2.4 Inverse Problem Theory

An inverse problem is the task that often occurs in many scientific branches. Regarding
a forward problem which is simply described as “model parameter”⇒ “data”, an inverse
problem can be described as “data”⇒“model parameter”. Inverse problems are typically
ill-posed. This makes the solutions be sensitive to data and stabilization methods are
required. This section introduces basic theory and solutions of the inverse problem related
to EIT.

2.4.1 Inverse Problem

For one physical system with a parameter vector x, observations y can be made through
certain relationship f . The model is described as:

y = f (x) (2.9)
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which is termed as forward problem. As long as we have the observations y and want to
calculate the system parameters x through a inverse relations f−1, this is so called inverse
problem and described as:

x = f−1 (y) (2.10)

Unfortunately, for most of real world systems, the inverse solution may not be obtained as
easy as the equation above because of ill-conditionness.

Regarding to the concept of a “well-conditioned” system, according to Jacques Hadamard
(Hadamard, 1902; Tikhonov and Arsenin, 1977), a physical system is well-conditioned if
all of the following conditions are satisfied:

• solution existence. For data obtained, there is a solution exists.

• solution uniqueness. The solution is unique.

• solution stability. The solution is continuous if data is continuous.

A system is realized ill-conditioned as long as it is not well-conditioned. There are
several reasons for one real system to be ill-conditioned, e.g., the first condition may not
be satisfied due to noise in data and/or modeling error; the second condition is not true
for rank-deficient system because non-uniqueness of solutions is a characteristic of rank-
deficient system; the process to calculate an inverse solution often extremely unstable which
means even a little amount change in data will introduce extremely large amount of change
in the model estimation–this fails the third condition.

To solve ill-conditioned problems numerically, a priori information about the solution,
such as an assumption on the smoothness or a bound on the norm, is needed. This tech-
nique is the regularization. Regularization can avoid the unexpected situation of data
over-fitting. Regularization applies a priori constraints to calculate “reasonable” solutions.
The a priori constraints is so called “prior”, such as statistical distribution of model pa-
rameters, global or local correlations of model parameters.

There are different regularization techniques, such as Tikhonov Regularization, trun-
cated Singular Value Decomposition (SVD), Maximum Entropy Regularization (MER) and
Total Variation (TV) regularization.

Tikhonov Regularization

The most widely applied regularization technique is the Tikhonov (or Tikhonov-Phillips)
regularization. For the purpose of dealing with data “over-fitting” which introduce insta-
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bility of solutions, Tikhonov regularization uses additional information about the solution,
commonly referred to as a prior. The prior is incorporated into the solution as an addi-
tional term in the least squares minimization. Instead of minimizing only the data fidelity
term ‖Jx− y‖, one regularization term is added in the form as below:

x̂ = arg min
x

[‖Jx− y‖2 + λ2‖x− x0‖2
]

(2.11)

where λ = σn

σx
is a hyperparameter (or regularization parameter) that controls error weight

between two terms. σx and σn are standard deviation of the unknowns x and standard
deviation of the noise, respectively. x0 is the “reasonable” image known a priori. When λ

is close to zero, x̂ tends to the general least squares solution as (2.8). By taking derivative
of the above equation and let it to zero, the solution is as:

x̂ =
(
JTJ + λ2I

)−1
JTy (2.12)

Which is the solution of Tikhonov regularization.

Bayesian Interpretation of Tikhonov Regularization

By defining the data y and image x as random variables, Bayes’ theorem describes the
following conditional probability relation between them

P (x|y) =
P (y|x)P (x)

P (y)
(2.13)

It is the posterior P(x|y) (the possibility of x, given y) that is what we want to maximize
for a “most likely” solution x̂ based on measured data y.

Suppose x is independent with noise and assume that x is multivariate Gaussian with
covariance matrix Σx and mean x0;the noise n has covariance matrix Σn and zero mean,
then

P (x|y) =
1

P (y)
exp(−1

2
‖Jx− y‖2

Σ−1

n

)exp(−1

2
‖x− x0‖2

Σ−1

x

) (2.14)

This is so called maximum a posteriori (MAP) estimate. Where the subscript of the
norm represents the weighting process as ‖a‖2

B = aTBa. To maximize (2.14) is equivalently
to minimize

‖Jx− y‖2

Σ−1

n

+ ‖x− x0‖2

Σ−1

x

(2.15)

Suppose n is uncorrelated white noise, Σn is a diagonal matrix with [Σn]i,i = σ2
n, where

σn is standard deviation of noise. Similarly, if x is self-independent then Σx is a diagonal
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matrix with [Σx]i,i = σ2
x, where σx is standard deviation of image elements magnitude.

Then the solution of (2.15) can be calculated as

x̂ =

(
JTJ +

(
σn

σx

)2

I

)−1

JTy (2.16)

Here (2.16) is the same as (2.12).

2.4.2 Inverse Problem on EIT

EIT is a severly ill-conditioned system. The direct inverse solution can often be extremely
unstable in that even a small amount of data noise can be largely amplified and ruin the
entire estimation results.

Theoretically the solution existence is not suspectable because there must be a con-
ductivity distribution which creates voltage measurement on boundary. The solution exis-
tence is also demonstrated in the general form as non-scattering objects and non-radiating
sources, by Hoenders (1978, 1997). However, noise in data violates this consistency. In ad-
dition, there are some other errors may break this consistency such as electrode movement,
the true model of EIT may not be correctly established. This violation can be partially
solved by searching for the best solution to minimize the distance between data and system
forward solution. This provides an approximately accurate solution that is close to the true
parameter set.

Due to the limitation of electrode size and placement restrictions, practically, the num-
ber of independent measurements made is always much less than the number of image
elements to be estimated. Therefore EIT is rank-deficient. A rank-deficient system can
have either no solution or infinite solutions. For EIT, because the solution existence has
been guaranteed, it can then have infinite solutions. Thus the solution uniqueness does
not hold for EIT. Other than the true solution, there are infinite “fake” solutions. One or
some of these solutions can match the data even better than the true one. This case is
so called “overfitting” in which a false model may fit perfectly to the data in that noises
actually determined the main feature of system parameters.

The solution stability is not satisfied in EIT. Due to the limited measurement precision,
even the most advanced measuring system may generate noise that causes arbitrarily large
variation in the reconstructed conductivity distribution. For most cases in EIT, the solution
instability is the hardest to deal with compared with the solution existence and the solution
uniqueness (Lionheart et al., 2005).
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The approaches of calculating the proper inverse mapping and unique solution is gener-
ally termed as image reconstruction. The regularization is needed for image reconstruction
of ill-conditioned system. This is the primary topic of this thesis.

2.4.3 Regularization of EIT

The regularization technique is widely used in EIT image reconstruction to deal with
ill-conditionness of EIT. There are some recently developed nonlinear methods such as
layer-stripping reconstruction (Somersalo et al., 1991; Cheney et al., 1992), monotonicity
method (Tamburrino and Rubinacci, 2002), D-bar method (Siltanen et al., 2000; Isaacson et al.,
2004, 2006). As the most popular image reconstruction methods in EIT, the regularization
method is generally classified into three types: back-projection method, iterative method
and one-step linearized method.

back-projection

Many early reconstructions were based on the back-projection method, such as the Sheffield
Mark I (Brown and Seagar, 1987). The principle is similar to the back-projection recon-
struction used in CT (Figure 2.6).

For EIT, each measured voltage is assumed to be proportional to the impedance be-
tween the driven and the measuring electrode pairs. Equipotential back-projection method
(Barber and Brown, 1986) back-projects the impedance change recorded between two elec-
trodes onto the reconstruction model (normally a 2D circular image), along the region
defined by the equipotential lines ending on those electrodes. A full set of resulting
back-projected regions are obtained from the procedure previously described and then
overlapped to establish a reconstructed image (Figure 2.7). The back-projection method
intrinsically introduces blur effect so that normally a filtering process is applied to com-
pensate high frequency information afterward.

Iterative method

This method seeks a full reconstruction of the conductivity distribution using iterative
approach which considers intrinsic nonlinearity. The linearization of EIT forward model
(2.5) is valid only under the condition that the conductivity changes are of low ampli-
tudes. This condition holds for small changes below ±20% of the reference value (Holder,
2005). However, for some physiological activities such as pulmonary ventilation during
deep breathing, this condition is not valid any more. The nonlinear method is applicable
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(a) (b)

Figure 2.6: Principle of CT image reconstruction by back-projection. (a) Forward projection of
CT. The target has higher x-ray absorbance coefficient than surroundings. Projection profiles are
signal strength collected at the projection ends (profiles are inverted); (b) back-projection of CT.
The target is reconstructed by back-projecting profiles onto an image plane, with lower contrast
though.

Figure 2.7: Principle of EIT image reconstruction by back-projection that is based on equipotential
region (from Holder 2005). (a) Forward projection of EIT. (b) back-projection of EIT. The target is
reconstructed by back-projecting multiple measurements onto an image plane along equipotential
regions.
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for these cases (with certain conditions apply).

It works as follows (as illustrated in Figure 2.8): first an estimation of the conductivity
distribution is made; then calculate the estimated voltage values through forward solution;
compare the estimated values with the original recorded voltage data and the error is
used to calculate the deviation between the real and the estimated conductivities; the
conductivity vector estimated is then be adjusted. This procedure is repeated until the
error between the estimated and recorded voltages is minimized to an acceptable level.
This method provides more accurate but slower solution compared with the one step linear
reconstruction, so that it is suitable for anatomical imaging. However, iterative method is
argued to be sensitive to errors, e.g., mismatch between true anatomy of subject and the
reconstruction mesh, electrode movement and contact impedance drift (Lionheart, 2004;
Morucci and Marsili, 1996). These errors accumulate through iterations and this may
introduce instabilities. Therefore, a recommendation is that iterative methods are good for
cases where subjects have well-known anatomic structures and in relatively stable status,
such as tank measurement, and one-step reconstruction is better for in vivo, dynamic
system measurements.

One-step linear reconstruction

This approach simplifies the solution as

x̂ = By (2.17)

It addresses the inverse solution as a linear reconstruction matrix B and allows use of
advanced regularization methods to solve the inverse problem.

The Gauss-Newton (GN) method in EIT (Yorkey et al., 1987; Cheney et al., 1990;
Adler and Guardo, 1996a) estimates a solution x̂ by minimizing

‖y − Jx‖2
Σ−1

n
+ ‖x− x0‖2

Σ−1
x

(2.18)

where Σn ∈ RnM×nM is the covariance matrix of the measurement noise n. Since noise
channels are independent, Σn is a diagonal matrix with [Σn]i,i = σ2

i , where σ2
i is the noise

variance at channel i. Here Σx ∈ RnN×nN is the covariance matrix of the desired image
and x0 represents the expected value of image (for difference EIT, x0 = 0).

Σn and Σx are heuristically modelled a priori. Let W = σ2
nΣ

−1
n and R = σ2

xΣ
−1
x . Here

σn is the mean of noise amplitude and σx is the a priori amplitude of image element values.
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Figure 2.8: Iterative reconstruction of EIT. (Redrawn from Adler (1995)). Real measured data are
compared with simulated data from FEM. The error signal is quantified and used to calculate a
conductivity adjustment that is used to update conductivity distribution of FEM. This procedure
repeats until the error signal is small enough.

The measurement accuracy is modelled by W. For uncorrelated noise, each diagonal
element of W is proportional to the corresponding channel signal-to-noise-ratio (SNR).
For difference EIT with identical channels, W is an identity matrix; or else, it may be
obtained during the system calibration test, e.g., by measuring on a subject with stable
conductivity and recording noise variances of all channels. The matrix R statistically
models the amplitudes and interactions of image elements. Simply, R may consider all
elements have identical mean amplitude and independent with each other (or only locally
dependent). More sophisticated models (Dai et al., 2008a) (Chapter 4) also consider global
spatial dependency and temporal correlation between adjacent images.

From (2.18), a linearized one-step inverse solution is obtained as

x̂ =
(
JTWJ + λ2R

)−1
JTWy = By (2.19)

where λ = σn/σx is the regularization parameter, or hyperparameter, which controls the
trade-off between resolution and noise attenuation in the reconstructed image. Here B =(
JTWJ + λ2R

)−1
JTW.
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Assuming that image elements are independent and have an identical expected magni-
tude, R becomes an identity matrix I and (2.19) uses zeroth order Tikhonov regularization
(2.12). For EIT, such solutions tend to push reconstructed noise toward boundary, because
data are much more sensitive to boundary elements than internal elements. One compen-
sation scheme of this sensitivity discrepancy is to scale R by the sensitivity of elements,
such as the method of NOSER prior (Cheney et al., 1990).

Because the reconstruction matrix B can be precalculated off-line, this one-step lin-
earized reconstruction results in a fast solution which is applicable for real time functional
imaging. However, the disadvantage is that it is less accurate than iterative method.
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Chapter 3

Temporal Image Reconstruction in Electrical
Impedance Tomography

3.1 Summary

This chapter is based on the paper – Temporal Image Reconstruction in Elec-
trical Impedance Tomography, published in Physiol. Meas. by Andy Adler,
Tao Dai and William R.B. Lionheart (Adler et al., 2007).

Electrical Impedance Tomography (EIT) calculates images of the body from body
impedance measurements. While the spatial resolution of these images is relatively low,
the temporal resolution of EIT data can be high. Most EIT reconstruction algorithms
solve each data frame independently, although Kalman filter algorithms track the image
changes across frames. This chapter proposes a new approach which directly accounts for
correlations between images in successive data frames. Image reconstruction is posed in
terms of an augmented image x̃ and measurement vector ỹ, which concatenate the val-
ues from the d previous and future frames. Image reconstruction is then based on an
augmented regularization matrix R̃, which accounts for a model of both the spatial and
temporal correlations between image elements. Results are compared for reconstruction
algorithms based on independent frames, Kalman filters, and the proposed approach. For
low values of the regularization hyperparameter, the proposed approach performs similarly
to independent frames, but for higher hyperparameter values, it uses adjacent frame data
to reduce reconstructed image noise.
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3.2 Introduction

Electrical Impedance Tomography (EIT) calculates an estimate of the conductivity dis-
tribution within a body based on current stimulations and voltage measurements on the
body surface. EIT has fairly low spatial resolution, limited by the low sensitivity of surface
measurements to conductivity changes deep within the body. On the other hand, EIT has
excellent temporal resolution, with some recent systems having frame rates up to 1000/s
(Wilkinson et al., 2005). Such high temporal resolution makes EIT a promising technol-
ogy to monitor fast physiological events which affect the conductivity distribution. For
cardiac activity, the frequency content of the QRS complex is mainly between 10–25 Hz
(Kohler et al., 2002). Another example is high frequency ventilation in which air is pumped
into the lungs at rates of 5–25 Hz (with smaller tidal volumes). High frequency ventilation
is indicated for many patients with respiratory distress syndrome since it is understood to
place less stress on injured lung tissue (Eichenwald and Stark, 1999). EIT can potentially
be of great benefit to these patients, since the distribution of ventilation in their lungs is
highly non-uniform and cannot be otherwise monitored (Wolf and Arnold, 2005).

Like many biomedical instrumentation techniques, the ability of EIT to see small phys-
iological changes is limited by the signal to noise ratio (SNR). A widely used technique
to improve SNR is ensemble averaging, which reduces random noise by the square root of
the number of averaged frames. If EIT data acquisition is sufficiently rapid compared to
the underlying physiological processes to be imaged, then ensemble averaging may be used
on multiple frames of EIT. However, in EIT applications where conductivity changes are
very fast with respect to the EIT frame rate, ensemble averaging is not appropriate, since
it will effectively reduce the temporal resolution. In these cases, each frame of EIT data is
typically reconstructed independently of the others.

In this chapter, we are interested in approaches to image a body which is undergoing
fast changes with respect to the EIT frame rate. In these cases, ensemble averaging is not
appropriate; however, it is clear that individual data frames are not completely indepen-
dent, but do contain useful correlations, which could be exploited to improve EIT image
noise performance. We call an approach which uses the time sequence of EIT frame data
temporal image reconstruction.

Temporal image reconstruction can be represented as a linear tracking problem, and
formulated as an extended Kalman filter, in which the image at each instant is estimated
from the current data and the previous image estimate. Vauhkonen et al. (1998a) proposed
the first Kalman filter based algorithm for difference EIT; we describe this approach using
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the notation of this chapter in section 3.3.3. More recently, this approach has been ex-
tended by Kim et al. (2004) to reconstruct the resistivity of a contrast of known shape and
location. Kim et al. (2006) also proposed a computationally efficient algorithm based on
pre-computing the Kalman gain and state estimation matrices. An algorithm for absolute
EIT has also been shown for simulation data (Trigo et al., 2004).

In this chapter, we propose a new approach for temporal EIT image reconstruction,
which directly estimates the image at frame t0 from the set of data in a window of frames
from t−d to td. Using these data, the temporal inverse is formulated as an inverse prob-
lem with a regularization prior which accounts for both spatial and temporal correlations
between image elements.

3.3 Methods

We consider an EIT system with nE electrodes applied to a body using sequential current
stimulation with parallel voltage measurement. Using these electrodes, nE current stim-
ulation patterns are sequentially applied and nV differential measurements are made for
each stimulation. For an adjacent drive EIT system, voltages are typically not measured
at driven electrodes, and nV = nE − 3. The delay between each successive stimulation
pattern is tS; thus, a complete set (frame) of EIT measurements takes time tF = nEtS.
Each data frame measures a vector, v ∈ RnM , of nM = nEnV data points (some of which
are redundant if the medium is not changing). Difference EIT calculates difference data
y, ([y]i = [v2]i − [v1]i); or the normalized difference data [y]i = ([v2]i − [v1]i)/[v1]i. To
improve its precision, v1 is typically averaged over many data frames, at a time when the
conductivity distribution may be assumed to be stable; we thus assume that v1 is noise
free.

The body under investigation is modelled using a finite element model (FEM) which
discretizes the conductivity onto nN piecewise smooth elements, represented by a vector
σ ∈ RnN (In this paragraph, σ represents conductivity; elsewhere in this chapter, σ is
the standard deviation). Again, difference EIT calculates a vector of conductivity change,
x = σ2 − σ1 between the present conductivity distribution, σ2, and that at the reference
measurement, σ1. For small variations around the reference conductivity σ1, the relation-
ship between x and y can be linearized (giving the difference EIT forward model):

y = Jx + n (3.1)

where J ∈ RnM×nN is the Jacobian or sensitivity matrix and n ∈ RnM is the measure-
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ment noise which is assumed to be uncorrelated white Gaussian. J is calculated from the
FEM as Jij =

∂yi

∂xj

∣∣∣
σ1

, and depends on the FEM, current injection patterns, the reference
conductivity, and the electrode models. This system is underdetermined since nN > nM .
This problem is commonly solved using regularization techniques (Cheney et al., 1990;
Adler and Lionheart, 2006) in order to calculate a conductivity change estimate, x̂, which
is both faithful to the measurements, y, and to a priori constraints on a “reasonable” image.

Over time steps, k, a sequence of difference vectors, yk = Jxk, are measured (assuming
the body and electrode geometry, and thus J, stay fixed). If the conductivity of the body
under investigation doesn’t change too rapidly, then it is reasonable to expect that a certain
number of measurements, d, into the past and future provide useful information about the
current image. Labelling the current instant as t, we therefore seek to estimate x̂t from
data [yt−d; . . . ;yt−1;yt;yt+1; . . . ;yt+d].

In the subsequent sections we consider three traditional approaches and the proposed
temporal inverse; each estimates x̂t at frame t from a sequence of data starting at frame 0,
using the indicated data: 5.3.1) Gauss-Newton (GN) inverse, using yt only; 3.3.2) GN with
weighted data, using a weighted average of yt−d . . .yt+d; 3.3.3) Kalman filter inverse, using
all previous and current data, y0 . . .yt; and 3.3.4) Temporal inverse, using yt−d . . .yt+d

based on a temporal prior model.

3.3.1 One-step linear GN(Gauss-Newton) solver

One-step Gauss-Newton (GN) EIT reconstruction approaches have been widely used in
EIT, e.g., Cheney et al. (1990); Adler and Guardo (1996a). They allow use of sophisticated
regularized models of the EIT inverse problem, are able to represent this solution as a
linear reconstruction matrix, which can then allow rapid, real-time imaging. The GN
inverse problem seeks to calculate a solution, x̂, to the EIT inverse problem expressed as
the minimum of a sum of quadratic norms

‖y − Jx‖2
Σ−1

n
+ ‖x− x◦‖2

Σ−1
x

(3.2)

where x◦ represents the expected value of element conductivity changes, which is zero for
difference EIT. Σn ∈ RnM×nM is the covariance matrix of the measurement noise n. Since
n is uncorrelated, Σn is a diagonal matrix with [Σn]i,i = σ2

i , where σ2
i is the noise variance

at measurement i. Σx ∈ RnN×nN is the expected image covariance.
Typically, Σn and Σx are not calculated directly. Instead, their inverses, W = σ2

nΣ
−1
n

and R = σ2
xΣ

−1
x , are heuristically determined from a priori considerations. Here σn is
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the average measurement noise amplitude and σx is the a priori amplitude of conductivity
change. W models the measurement accuracy. For uncorrelated noise, each diagonal ele-
ment is proportional to the signal to noise ratio. For difference EIT with identical channels,
W = I. The regularization matrix R may be understood to model the “unlikelihood" of
image elements.

By solving (3.2), a linearized, one-step inverse solution is obtained as

x̂ =

(
JT 1

σ2
n

WJ +
1

σ2
x

R

)−1

JT 1

σ2
n

Wy (3.3)

We define the hyperparameter λ = σn/σx, and rewrite (3.3) as

x̂ =
(
JTWJ + λ2R

)−1
JTWy = By (3.4)

where B =
(
JTWJ + λ2R

)−1
JTW is the linear, one-step inverse. The regularization

hyperparameter λ controls the trade-off between resolution and noise attenuation in the
reconstructed image.

If image elements are assumed to be independent with identical expected magnitude, R
becomes an identity matrix I and (3.4) uses zeroth-order Tikhonov regularization. For EIT,
such solutions tend to push reconstructed noise toward the boundary, since the measured
data are much more sensitive to boundary image elements. Instead, R may be scaled with
the sensitivity of each element, so that each diagonal element i of R is [R]i,i =

[
JTJ

]p

i,i
.

This is the NOSER prior of Cheney et al. (1990) for an exponent p = 1. Many other prior
matrices have been proposed: to model image smoothness as a penalty for non-smooth
image regions, R may be set to the discrete Laplacian filter (Vauhkonen et al., 1998b) or
a discrete high pass Gaussian filter (Adler and Guardo, 1996a).

In this chapter, the NOSER prior is used for calculating the matrix R with p = 0.5

in all tested algorithms, except for the Kalman filtering. Because it is diagonal, R can be
inverted without numerical difficulties. The choice of exponent is a heuristic compromise
between the pushing noise to the boundary (p = 0) or to the centre (p = 1).

In (3.4), the term in the inverse is of size nN × nN . To save computational time, and
improve inverse accuracy and stability, we want to decrease the size of the matrix to be
inverted. Thus, we rewrite the matrix B using the data form as:

=
(
JTWJ + λ2R

)−1
JTW

[(
J

1

λ2
PJT + V

)(
J

1

λ2
PJT + V

)−1
]

=
(
JTWJ + λ2R

)−1 (
JTWJ + λ2R

) (
1

λ2
PJT

)(
J

1

λ2
PJT + V

)−1

= PJT
(
JPJT + λ2V

)−1 (3.5)
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where P = R−1 = 1
σ2

x
Σx and V = W−1 = 1

σ2
n
Σn. In practice, P and V are modelled

directly from the system covariances, rather than the inverse of R and W. Using (3.5),
the size of the term in the inverse is reduced to nM × nM . This is especially significant for
3D EIT models and for the temporal inverse which we introduce below.

Note that the GN solver does not consider the time sequence of EIT data. Each frame
is solved individually, and inter-frame correlations are ignored.

3.3.2 One-step linear GN solver with weighted data

The one-step linear GN solver may be applied to weighted average data in order to imple-
ment ensemble averaging. Given a temporal window with a half width d, we model the
time constant, τ , to represent the rate at which the most rapid changes of interest occur
in the body. That means that a feature of interest in a frame will dissipate by a factor
of γ = exp(−tF /τ) in the next frame, and by γd in the dth subsequent frame. Using this
factor, we calculate a weighted ensemble average EIT measurement, ȳ

ȳ =
1

wγ

d∑

i=−d

γ|i|yi (3.6)

where wγ =
∑d

i=−d γ|i|. When 0 < γ < 1, this is a forgetting process, and when γ = 1, an
averaging process. Noise amplitude will decrease by a factor of √wγ due to this ensemble
averaging. The GN solver with weighted data reconstructs images as

x̂ = Bȳ (3.7)

where B is calculated using (3.4).

3.3.3 Kalman solver

The Kalman filter is a widely used approach for many tracking and data prediction tasks.
The EIT image reconstruction algorithm of Vauhkonen et al. (1998a) is formulated as an
iterative state estimation problem. The system discrete time prediction model is given by
(using the notation introduced above)

xk = Axk−1 + v (3.8)

for a discrete time sequence k. A ∈ RnN×nN is the state transition matrix, and v ∈ RnN is
the state noise (assumed to be zero mean white Gaussian). One traditional difficulty with
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Kalman filters is finding values for state space parameters. If the underlying processes in
the body were well known, then A could be derived; for example, in a stirred mixing tank,
the process would rotate image elements in each frame. We follow the traditional heuristic
approach of assigning A = I (representing a random walk process) and setting the state
noise covariance to the image element covariance P. The discrete time observation model
at time step k is:

yk = Jkxk + n (3.9)

which is equivalent to (3.1) if J is constant. Kalman image reconstruction iteratively
estimates xk based on the previous image xk−1 and measurements yk.

x−k = Ax̂k−1 state estimation (3.10)

x̂k = x−k + Kk(yk − Jkx
−
k ) state correction (3.11)

where Kk is the Kalman gain, which is calculated from the error covariance estimate Ck

as:

C−
k = AĈk−1A

T + P error covariance estimation (3.12)

Kk = C−
k JT

k

(
JkC

−
k JT

k + V
)−1 Kalman gain (3.13)

Ĉk = (I−KkJk)C
−
k error covariance correction (3.14)

Iterative calculation of K is computationally expensive. If J is constant, K will eventually
stabilize, and may be precomputed (Kim et al., 2006) in order to dramatically speed up
the calculation. We do not take this approach here.

3.3.4 Temporal one-step solver

Instead of calculating an image based on the sequence of past frames, we propose a temporal
image reconstruction algorithm which uses a set of data frames nearby in time. The
data frame sequence is treated as a single inverse problem, with a regularization prior
to account for both spatial and temporal correlations between image elements. Given a
vertically concatenated sequence of measurements frames ỹt = [yt−d; . . . ;yt; . . . ;yt+d] and
the corresponding concatenated images x̃t = [xt−d; . . . ;xt; . . . ;xt+d], the direct temporal
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forward model (3.1) is rewritten as



yt−d
...
yt
...

yt+d




=




J · · · 0
. . .

... J
...

. . .
0 . . . J







xt−d

...
xt

...
xt+d




+




nt−d

...
nt

...
nt+d




(3.15)

and also as
ỹt = J̃x̃t + ñt (3.16)

where ñt = [nt−d; . . . ;nt; . . . ;nt+d]. We assume J to be constant, although this formulation
could be modified to account for a time varying J. Based on this approximation J̃ = I⊗J,
where the identity matrix I has size 2d + 1, and ⊗ is the Kronecker product.

The correlation of corresponding elements between adjacent frames (delay δ = 1) can
be represented by an inter-frame correlation γ which has value between 0 (independent)
and 1 (fully dependent). As frames become separated in time, the inter-frame correlation
decreases; for an inter-frame separation δ, the inter-frame correlation is γδ. γ could also
possibly be negative if subsequent frames have inverse correlation, although this scenario
is physiologically unrealistic. Frames with large inter-frame delay, |δ| > d, are considered
independent. Image reconstruction is then defined in terms of minimizing the augmented
expression:

∥∥∥∥∥∥∥∥∥∥∥∥∥




yt−d
...
yt
...

yt+d



−




J · · · 0
. . .

... J
...

. . .
0 . . . J







xt−d

...
xt

...
xt+d




∥∥∥∥∥∥∥∥∥∥∥∥∥

2

˜W

+ λ2

∥∥∥∥∥∥∥∥∥∥∥∥∥




xt−d

...
xt

...
xt+d




∥∥∥∥∥∥∥∥∥∥∥∥∥

2

˜R

(3.17)

and (3.5) becomes

B̃ = R̃
−1

J̃
T

(
J̃R̃

−1
J̃

T
+ λ2W̃

−1
)−1

(3.18)

where W̃ = I⊗W. W̃ is diagonal since measurement noise is uncorrelated between frames.
R̃ = Γ−1⊗R where Γ is the temporal weight matrix of an image sequence x̃ and is defined
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to have the form as

Γ =




1 γ . . . γ2d−1 γ2d

γ 1 . . . γ2d−2 γ2d−1

...
... . . . ...

...
γ2d−1 γ2d−2 . . . 1 γ

γ2d γ2d−1 . . . γ 1




(3.19)

From (3.18) and (3.19),

B̃ =
[
Γ⊗ (

PJT
)] [

Γ⊗ (
JPJT

)
+ λ2 (I⊗V)

]−1 (3.20)

Thus, (3.4) is rewritten as 


x̂t−d

...
x̂t

...
x̂t+d




= B̃ỹt (3.21)

Although this estimate is an augmented image sequence, we are typically only interested
in the current image x̂t. which is calculated from x̂t = B̃dỹt where B̃d is the rows nMd +

1 . . . nM(d + 1) of B̃.

3.3.5 Noise figure

In order to compare the different image reconstruction algorithms, it is important to choose
corresponding values of the hyperparameter for each algorithm. For a review of hyperpa-
rameter selection methods for EIT, refer to Graham and Adler (2006). For our application,
we wish to compare the resolution and noise performance across algorithms; however, since
the regularization hyperparameter implicitly controls the compromise between resolution
and noise performance, we choose to control for noise performance across algorithms, and
then compare the resolution. Image reconstruction noise performance may be measured
with the noise figure (NF) parameter of Adler and Guardo (1996a). Here we generalize
the NF calculation to apply to any difference EIT formulation, not simply one-step Gauss
Newton type algorithms.

An EIT difference measurement vector is y = y0 + ny, where y0 is the deterministic
underlying signal, and ny is stochastic, zero mean, measurement noise. Typically, com-
ponents of ny are independent, but this formulation does not make this assumption. For
difference EIT, [y]i = [v2]i − [v1]i, and components of ny are often assumed to be equal,
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but this may potentially vary if the gain varies between channels. For normalized difference
EIT, [y]i = ([v2]i − [v1]i)/[v1]i, and components of ny are scaled by diag(v1)

−1. Both y0

and ny may be complex valued.
The signal to noise ratio (SNR) of the difference measurement is defined as:

SNRy =
E[|y|]√
var(y)

(3.22)

where we approximate E[|y|] = 1
nM

∑ |y0| and calculate var(y) = 1
nM

traceΣn where Σn

is the measurement noise covariance. nM is the number of measured values in the EIT
data frame; we divide by nM rather than nM − 1 to calculate the variance, since the noise
is known to be zero mean.

This covariance may be modelled by a noise basis, Ny such that NyN
T
y = Σn. For

difference EIT with independent noise on each channel, this is a diagonal matrix with [Ny]i,i
equal to the noise amplitude on channel i. Using this noise basis, var(y) = 1

nM
‖Ny‖2

F ,
where ‖ · ‖2

F is the sum of each matrix element squared (Frobenius norm squared).
A general EIT reconstruction algorithm, EIT , reconstructs an image estimate, x̂ from

measurements as x̂ = EIT (y). This notation is also extended to reconstruct a matrix of
column concatenated images independently from a matrix of measurements. The signal to
noise ratio (SNR) of the difference image is:

SNRx =
E[|x|]√
var(x)

(3.23)

where we approximate E[|x|] =
∑

A |x0| where x0 = EIT (y0) and A is a diagonal ma-
trix of the volume (or area in 2D) of each reconstructed image element. We calculate
var(x) = traceA2Σx where Σx is the image noise covariance. For difference EIT, image
reconstruction is linear for small y, Using noise basis, Nx, we calculate Σx = NxN

T
x where

Nx = EIT (Ny) for small Ny, and var(x) = ‖ANx‖2
F .

The NF is the ratio of output to input SNR, where the input signal y0 is chosen to be
a small change in a central inner circular disk covering 10% of the medium diameter, and
Nn is scaled to be within the linear range of the algorithm.

NF =
SNRx

SNRz

=

∑
A |EIT (y0)|∑ |y0|

√
‖nMNy‖2

F

‖AEIT (Ny)‖2
F

(3.24)

While the SNR is normally defined in terms of the signal power, here we define it in
terms of absolute amplitude. This is necessary because it is the signal amplitude, and
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not the power, that is spread across image elements with changes in hyperparameter; our
experiments with the signal power definition do not show stable or useful results. Finally,
in distinction to the definition in Adler and Guardo (1996a), we calculate the absolute
amplitude of the signal, allowing this definition to be appropriate to EIT systems which
measure complex signals.

3.4 Results

Numerical simulations were conducted using a planar 2D FEM model with 5184 elements
using the EIDORS software (Adler and Lionheart, 2006). A unit radius circular medium
with 16 electrodes using adjacent stimulation and measurement pattern is simulated, in
which a non-conductive spherical object with 0.05 unit radius rotates clockwise along a
trajectory that has a radius of 2/3 unit, moving at a speed of one rotation per 40 frames.
The noise performance of the algorithms was tested by adding pseudo random, zero mean
Gaussian noise. All reconstructed images in figure 3.1 and 3.2 used the same random seed;
tests with different seed values did not vary significantly. Images were reconstructed on a
576 element mesh, which differs from the simulation model to avoid the inverse crime.

Reconstructed images were calculated for four image algorithms and are shown in cor-
responding columns in Figures 3.1 and 3.2: 1) Gauss-Newton, 2) GN with weighted data,
3) temporal solver and 4) Kalman filter. In each image, the position of the target at all data
frames used in the algorithms are shown. In all cases, the target was at (x, y) = (−2

3
, 0)

in the image shown. We explored the behaviour of these algorithms as a function of
regularization hyperparameter for both noise free and noisy data. In order to choose a hy-
perparameter to allow comparison across algorithms, we select its value for each algorithm
in order to give a fixed NF value (section 3.3.5). Figure 3.2 shows reconstructed images
for a low hyperparameter value (giving NF = 2.0), while figure 3.1 shows images for a
higher value (giving NF = 0.1). Noise levels were chosen heuristically in order to illustrate
the algorithm noise performance.

3.5 Discussion

Traditionally, EIT reconstruction algorithms assume each data frame to be independent.
However, since EIT is able to make measurements at high frame rates, we know a priori
that image frames are correlated. This chapter addresses reconstruction of EIT data for
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−1

0

1

Figure 3.1: Reconstructed images of a target at (−2
3 , 0) for high hyperparameter (parameters

NF = 0.1, γ = 0.8 and d = 3). Top row: No noise; Bottom row: SNR = 0.25 Each column uses
a different reconstruction algorithm: A: Gauss-Newton B: Gauss-Newton with weighted data C:
Temporal Solver D: Kalman Filter. The black circles in the images indicate the position of the
simulated target in each data frame used for in the image reconstruction. The colourbar (with
normalized units) is shown at right.
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−1

0

1

Figure 3.2: Reconstructed images of a target at (−2
3 , 0) for low hyperparameter (chosen for

NF = 2.0, γ = 0.8 and d = 3). Top row: No noise; Bottom row: SNR = 4.0 Each column uses
a different reconstruction algorithm: A: Gauss-Newton B: Gauss-Newton with weighted data C:
Temporal Solver D: Kalman Filter. The black circles in the images indicate the position of the
simulated target in each data frame used for in the image reconstruction. The colourbar (with
normalized units) is shown at right.
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temporal reconstructions, in which we use temporal correlations to improve reconstructed
image SNR. A new temporal reconstruction algorithm is introduced, which directly formu-
lates the temporal inverse in terms of a single regularized expression. We compare four
different algorithms: one-step GN (with no temporal behaviour), GN with weighted data,
Kalman filter reconstruction, and the proposed temporal reconstruction.

Results show that the GN algorithm is able to accurately reconstruct the position and
shape of the target, but shows poorer noise performance than the other algorithms. As the
hyperparameter increases (figure 3.1), GN images tend to image targets closer toward the
centre of the body. This effect is well understood for EIT (Adler and Guardo, 1996a), and
is probably a consequence of the prior weighting of central image elements. The GN with
averaged data blurs the reconstructed image across all the averaged data frames, but is
able to show improved noise performance, as is expected from ensemble averaging. Thus,
GN algorithms are recommended when noise levels are low, and GN with weighted data is
a good solution when the conductivity is changing slowly with respect to the frame rate.

At low hyperparameter, the Kalman filter tends to reconstruct images with the target
“pushed” outward toward the boundary, and create image artifacts and image noise on the
boundary. We hypothesize that this effect is due to the iterative calculation of the error
covariance term (in (3.12)), which results in a C− which tends toward the identity matrix.
In the Kalman formulation, this term takes the place of R in the GN inverse, making
the Kalman filter images resemble GN images with zero-order Tikhonov regularization.
For larger hyperparameter values (figure 3.1), Kalman filter images tend to show a “trail”
as a larger weighting is given to previous frame data in the current image calculation.
The temporal regularization method can in some circumstances introduce a “trail” which
enlarges the reconstructed image to include recent future and past target positions. This
can occur when the inter-frame correlation value, γ, is chosen unreasonably high. In this
case, the current image is made wrongly dependent on adjacent images.

At high hyperparameter values, the temporal reconstruction shows improved resolu-
tion (illustrated as figure 3.1). While at low hyperparameter, it gives similar images to
that of GN (illustrated as figure 3.2). This behaviour may be understood, since at low
hyperparameter (λ ≈ 0), (3.20) approximates

B̃ ≈ [
Γ⊗ (

PJT
)] [

Γ⊗ (
JPJT

)]−1
= I⊗

[
PJT

(
JPJT

)−1
]

(3.25)

which will reconstruct each data frame independently. On the other hand, at high hy-
perparameter, the reconstructed image will weigh data frames together, as per GN with
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weighted data,

B̃ ≈ [
Γ⊗ (

PJT
)] [

λ2 (I⊗V)
]−1

= Γ⊗
[
PJT

(
λ2V

)−1
]

(3.26)

In this chapter, the temporal weight γ is chosen heuristically; however, objective selection
of γ is possible; its value could be estimated from the covariance of data frames measured.

In summary, this chapter proposes a temporal EIT reconstruction algorithm. For low
noise solutions (low hyperparameter) its behaviour is approximates that of Gauss-Newton
reconstruction, while for high noise level and high frame rates cases where large hyper-
parameters are adopted, it is advantageous by reconstructing higher resolution images.
It improves over Kalman filter based algorithms by allowing an explicit control over the
regularization prior and the weighting of measured data. We recommend the temporal al-
gorithm for cases in which the data noise is high and the underlying conductivity changes
are slow with respect to the frame rate.
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Chapter 4

EIT Image Reconstruction with Four
Dimensional Regularization

4.1 Summary

This chapter is based on the paper –EIT Image Reconstruction with Four Di-
mensional Regularization, Medical and Biological Engineering and Computing,
In press, by Tao Dai, Manuchehr Soleimani and Andy Adler, 2008.

Electrical impedance tomography (EIT) reconstructs internal impedance images of the
body from electrical measurements on body surface. The temporal resolution of EIT data
can be very high, although the spatial resolution of the images is relatively low. Most EIT
reconstruction algorithms calculate images from data frames independently, although data
are actually highly correlated especially in high speed EIT systems. This chapter proposes a
4-D EIT image reconstruction for functional EIT. The new approach is developed to directly
use prior models of the temporal correlations among images and 3-D spatial correlations
among image elements. A fast algorithm is also developed to reconstruct the regularized
images. Image reconstruction is posed in terms of an augmented image and measurement
vector which are concatenated from a specific number of previous and future frames. The
reconstruction is then based on an augmented regularization matrix which reflects the a
priori constraints on temporal and 3-D spatial correlations of image elements. A temporal
factor reflecting the relative strength of the image correlation is objectively calculated
from measurement data. Results show that image reconstruction models which account
for inter-element correlations, in both space and time, show improved resolution and noise
performance, in comparison to simpler image models.
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4.2 Introduction

This chapter develops a regularized image reconstruction formulation which directly ac-
counts for temporal and spatial correlations between image elements in Electrical Impedance
Tomography (EIT). EIT reconstructs images of the impedance distribution within the body
from electrical measurement on the body surface. Because electrical current propagates
diffusely in the body, EIT is a soft field tomography modality; moreover, EIT is ill-posed
according to conditions of well-posed problems suggested by Hadamard. Thus, EIT recon-
struction has poor spatial resolution and is very sensitive to data errors (Lionheart et al.,
2005). However, EIT can have excellent temporal resolution (frame rates as high as
1000 frames/s have been achieved (Wilkinson et al., 2005)) which makes EIT an attrac-
tive modality to monitor fast physiological activities which produce conductivity dis-
tribution changes. This is valuable for monitoring of cardiac (Eyuboglu et al., 1989;
Vonk-Noordegraaf et al., 2000), pulmonary (Adler et al., 1996b; Frerichs, 2000; Harris et al.,
1992) and brain (Holder, 1992) activities. The normal heart rate is physiologically limited
to about 4 Hz, while a fibrillating heart rate can beat at up to 8 Hz (Bollmann et al., 1998).
The frequency content of images can be much higher than the heart rate as shown by the
frequency content of the QRS complex which is mainly between 10–25 Hz (Kohler et al.,
2002). For lung monitoring, high frequency ventilation (at frequencies of 5–25 Hz) is un-
derstood to be helpful to patients with respiratory distress; these patients have highly
a non-uniform distribution of ventilation in the lung (van Genderingen et al., 2004) and
monitoring with EIT has been shown to provide clinically useful information for control
of ventilator settings (Wolf and Arnold, 2005). Finally, EIT is potentially useful for mon-
itoring brain activity. Tests such as visually evoked responses or monitoring for epilepsy
result in rapid conductivity variations (Tidswell et al., 2001).

EIT uses single or multi-plane electrode arrangements to inject stimulation currents and
measure the voltage response (Dehgani et al., 2005; Metherall et al., 1996; Graham and Adler,
2007). It is limited by the relatively small number of attached electrodes, and the severe
ill-conditioning of the inverse problem due to the surface measurements and diffuse nature
of electrical stimulation. In order to calculate a “reasonable” image, regularization tech-
niques are required. Such regularized image reconstruction can be statistically formulated,
in terms of a priori information, as a prior matrix describing image element values and the
correlation between them. In many EIT algorithms, the zeroth order Tikhonov priors are
commonly used (Cheney et al., 1990; Vauhkonen et al., 1999). While such priors are easy
to compute, they assume that elements of the conductivity distributions are statistically
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independent – which is clearly not true for most EIT applications. Previously, shape-based
inverse solutions were investigated in EIT applications. These methods modelled spatial
priors according to geometrical knowledge of the target surface. e.g., boundary element
method (BEM) based 3-D solution (Babaeizadeh and Brooks, 2007), and spline-based 2-D
solution (Tossavainen et al., 2004).

Another limitation to the quality of EIT images is signal noise. In cases where the
physiological changes are slow with respect to the frame rate, time averaging of frames
may be used to reduce noise by the square root of the number of averaged frames, given
uncorrelated noise. However, if EIT data acquisition rate is comparable to the rate of
change in the imaged processes, time averaging sacrifices the temporal resolution. Some
other signal uncertainties also introduce image degradations, e.g., electrode-skin contact
impedance drift which causes image distortion over time (Boone and Holder, 1996). In
these cases, each frame of EIT data is typically reconstructed independently of the others.
However, it is clear that individual data frames are not completely independent, but do
contain useful temporal correlations which could be exploited to improve EIT image noise
performance and resolution.

Temporal image reconstruction can be represented as a linear tracking problem. In
(Schmitt and Louis, 2002; Schmitt et al., 2002), a priori information about “temporal
smoothness” was considered by adding one term which measures the variation between
adjacent images, into the Tikhonov-Phillips minimization task. Another temporal recon-
struction method in EIT is the Kalman filter (Vauhkonen et al., 1998a; Seppanen et al.,
2001), in which the image at each instant is estimated from the current data and the
previous image estimate.

In this chapter, we make the novel contribution of a general approach to model the
4-D (temporal and 3-D spatial) correlations in the regularization prior. As image elements
move further apart in space and time, the correlation between them is modelled to decrease
exponentially, with exponential constants η and γ in space and time, respectively. This
approach reconstructs each 3-D image at frame t using the set of data in frames t − d to
t + d, where d is the frame window width. Next, in order to reduce the computational
burden of such large models, we develop an efficient formulation of the inverse matrices.
This chapter is an extension of our conference publication (Dai et al., 2007), where we
considered only the vertical inter-slice correlation. In the results section, we show that
such 4-D prior modelling gives improvements in both resolution and noise performance in
the reconstructed images.
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4.3 Methods

We consider an EIT system with nE electrodes placed in 2 rings on body surface using
planar placement (Graham and Adler, 2007) and adjacent current stimulation with parallel
voltage measurement. nE current stimulation patterns are sequentially applied and nV

differential measurements are made for each stimulation. We do not measure the voltages
on the stimulation electrodes (however, given the proper hardware, such measurements are
recommended (Babaeizadeh and Brooks, 2006)), thus nV = nE − 3 and the total number
of measurements within one data frame is nM = nE × (nE − 3). Difference EIT calculates
difference signal y ∈ RnM , yi = vi − [v0]i, or normalized as yi = (vi − [v0]i)/[v0]i, where
the subscript i represents the measurement sequence. [v0]i is the reference measurement,
obtained at a time when conductivity is more stable (such as diastole during a breath hold).
In real applications, v0 can be obtained by averaging over several cycles of ventilation.

The body under investigation is modelled as a cylindrical Finite Element Model (FEM)
with nN piecewise smooth tetrahedral elements, represented by a vector σ ∈ RnN (σ rep-
resents conductivity in this paragraph, elsewhere in this chapter, σ is the standard devia-
tion). Difference EIT calculates a vector of conductivity change, xi = σi − [σ0]i between
the present conductivity distribution, σ, and the reference conductivity distribution, σ0,
which is typically assumed to be homogenous (in this chapter, σ0 = 1S/m). For small vari-
ations around σ0, the relationship between the conductivity change image xt and difference
measurements yt at time t can be linearized (giving the difference EIT forward model):

yt = Jxt + n (4.1)

where J ∈ RnM×nN is the Jacobian or sensitivity matrix; n ∈ RnM is the measurement
noise which is assumed to be uncorrelated white Gaussian. J is calculated from the FEM
as Jij =

∂yi

∂xj

∣∣∣
σ0

. The goal of regularized image reconstruction (such as Cheney et al. 1990;

Adler and Lionheart 2006) is to calculate a conductivity change estimate, x̂t, which is both
faithful to the measurements, yt, and to a priori constraints on a “reasonable” image.

In subsequent sections we develop a formulation for the spatial and temporal a priori
image element correlations, and use these to consider the following reconstruction ap-
proaches: 1) Gauss-Newton (GN) inverse, using the current measurement frame yt only;
2) Temporal inverse, using measurement frames yt−d . . . yt+d based on a temporal prior
model; 3) 3-D spatial inverse, using measurement yt based on a 3-D spatial prior model
with spatial correlations among elements; and 4) 4-D prior inverse, using measurement
yt−d . . . yt+d and a temporal and and 3-D spatial model.
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4.3.1 One-step linear Gauss-Newton solver

Regularized image reconstruction for EIT based on the one-step linearized Gauss-Newton
(GN) solver was first introduced into EIT by (Yorkey et al., 1987), and has been widely
used. It calculates a linear reconstruction matrix which may subsequently be used for rapid
imaging, and allows taking advantage of sophisticated regularization modalities to solve
the inverse problem. This method seeks a solution, x̂, which minimizes the error in the
form

‖y − Jx̂‖2

Σ−1

n

+ ‖x̂− x◦‖2

Σ−1

x

(4.2)

here x◦ is the expected value of element conductivity changes, which is zero for difference
EIT since it assumes that the conductivity changes may be equally positive or negative.
Σn ∈ RnM×nM is the covariance matrix of the measurement noise n. Since n is uncorrelated,
Σn is a diagonal matrix with [Σn]i,i = σ2

i , where σ2
i is the noise variance at measurement i.

Σx ∈ RnN×nN is the covariance matrix of the expected image, which we consider in detail
subsequently.

Instead of calculating Σn and Σx directly, most proposed approaches have developed
models of the inverse of these matrices heuristically. We use the following terminology:
W = σ2

nΣ
−1
n and R = σ2

xΣ
−1
x , where σn is the average measurement noise amplitude and

σx is the a priori amplitude of conductivity changes. W models the relative measurement
accuracy across channels. For uncorrelated noise, each diagonal element is proportional
to the signal-to-noise-ratio (SNR). For difference EIT with identical channels, W is an
identity matrix; in this chapter W = I. The regularization matrix R may be understood
to model the “unlikelihood" of image element configurations. A simple model for R may
consider all configurations equally likely, while more sophisticated models, such as the ones
we develop, may consider smooth distributions more likely than rapidly changing ones.

By solving (4.2) and defining the hyperparameter λ = σn/σx, a linearized, one-step
inverse solution is obtained

x̂ =
(
JTWJ + λ2R

)−1
JTWy = By (4.3)

where B =
(
JTWJ + λ2R

)−1
JTW is the linear, one-step reconstruction matrix. λ controls

the trade-off between resolution and noise attenuation in the reconstructed image.
By assuming that image elements are independent to each other and have identical

expected magnitude, R becomes an identity matrix I and (4.3) uses zeroth-order Tikhonov
regularization. For EIT, since the measured data is much more sensitive to boundary
elements than elements deep inside, such solutions tend to push reconstructed noise toward
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the boundary. In order to compensate the sensitivity discrepancy, R may be scaled with the
sensitivity of each element, so that R is a diagonal matrix with elements [R]i,i =

[
JTJ

]p

i,i
.

This is the NOSER prior of (Cheney et al., 1990) for an exponent p. One similar variance
compensation strategy was proposed as variance uniformization in (Bacrie et al., 1997).

In (4.3), the term to be inverted is of size nN × nN . This is especially cumbersome in
3D (and 4D) reconstruction models, where nN may be on the order of ten or a hundred
thousand. This calculation is then very demanding on computer time and memory. We
address this issue by rewriting the matrix B using the data form (also referred to as the
Wiener filter form) (Adler et al., 2007) as:

B = PJT
(
JPJT + λ2V

)−1 (4.4)

where P = R−1 = Σx/σ
2
x and V = W−1 = Σn/σ

2
n; Using (4.4), the size of the inverted

matrix is significantly reduced to nM×nM . This is especially helpful for large scale models,
such as 3-D EIT models and the temporal inverse be introduced below.

4.3.2 Temporal solver

In this section, we develop a temporal image reconstruction algorithm which calculates the
image at a current frame using a set of data frames nearby in time. This approach differs
from Kalman filter based algorithms (Vauhkonen et al., 1998a) which estimate image xt

based on measurements yt and the previous image estimate xt−1. The temporal solver treats
the estimate of the image frame sequence as a single inverse problem, with a regularization
prior which accounts for both spatial and temporal correlations between image elements.

Temporal reconstruction

The temporal solver considers a sequence of 2d+1 measurements frames from t−d to t+d

around the current frame, t. Given a vertically concatenated sequence of measurements
frames ỹt and the corresponding concatenated images x̃t,

ỹt = [yT
t−d . . . yT

t . . . yT
t+d]

T (4.5)

x̃t = [xT
t−d . . . xT

t . . . xT
t+d]

T

the direct temporal forward model (4.1) is rewritten as

ỹt = J̃x̃t + ñ (4.6)
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where ñ = [nT
t−d . . . nT

t . . . nT
d ]T . We consider that the model structure is constant, and

thus J does not vary with time, giving J̃ = I ⊗ J, where the identity matrix I has size
2d + 1, and ⊗ is the Kronecker product.

The relationship between corresponding image elements between adjacent frames can
be represented by an inter-frame correlation which has a value between 0 (independent) and
1 (fully dependent). The correlation could possibly be negative if subsequent frames have
inverse correlation, although this scenario is physiologically unrealistic. As frames become
separated in time, the inter-frame correlation decreases; for a frame separation of δ, the
inter-frame correlation is exp(−|δ|/γ), where γ is the temporal exponential decay factor
in units of frames. Frames with large time difference, |δ| > d, are considered independent.
The one-step inverse (4.4) for image reconstruction then becomes

B̃ = P̃J̃
T

(
J̃P̃J̃

T
+ λ2Ṽ

)−1

(4.7)

where Ṽ = I⊗V. Ṽ is diagonal since measurement noise is uncorrelated between frames.
P̃ = Γ⊗P, where Γ is the temporal weight matrix of an image sequence x̃ and is defined
to have the form as

[Γ]i,j = exp(−|i− j|
γ

) i, j = −d . . . d. (4.8)

From (4.7) and (4.8),

B̃ =
[
Γ⊗ (

PJT
)] [

Γ⊗ (
JPJT

)
+ λ2 (I⊗V)

]−1 (4.9)

Given B̃, the one step solution for the current image (x̂t) is rewritten as

x̂t = B̃0ỹt (4.10)

where B̃0 is the rows nM × d + 1 . . . nM × (d + 1) of B̃.

Parameter selection

The γ is a hyperparameter of the system; it depends on the data acquisition frame rate,
the speed of underlying conductivity changes and the system noise level. This section
develops an approach to estimate the value of γ from the measurement sequence. By
taking covariance on both sides of (4.6), we have the estimated covariance matrix of the
data as

Σỹ = J̃Σx̃J̃
t
+ Σñ (4.11)
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the optimal γ is chosen so that the error between the true data covariance matrix Σỹ and
the estimated one Σ̂ỹ is minimized as

γ = arg min
γ

∥∥∥Σỹ −Σñ − J̃Σx̃J̃
t
∥∥∥

2

F
(4.12)

where the subscript F is the Frobenius norm. Since Σx̃ = Γ ⊗Σx and J̃ = I ⊗ J, (4.12)
becomes

γ = arg min
γ

∥∥∥Σỹ −Σñ − Γ⊗ (
JΣxJt

)∥∥∥
2

F
(4.13)

By taking covariance on both sides of (4.1), we have

Σy = JΣxJt + Σn (4.14)

so that JΣxJt = Σy − Σn; we also have Σñ = I ⊗ Σn and Σỹ = Γy ⊗ Σy, where
Γy ∈ R(2d+1)×(2d+1) is the correlation matrix of ỹ. Thus the optimal γ is calculated by

γ = arg min
γ

∥∥Γy ⊗Σy − I⊗Σn − Γ⊗ (
Σy −Σn

)∥∥2

F
(4.15)

Γy and Σy can be calculated directly from the data. Σn can be measured by calibration
of EIT system. For computational efficiency, (4.15) can be simplified as

γ = arg min
γ

∥∥∥Γy
∥∥Σy

∥∥2

F
− I ‖Σn‖2

F − Γ
∥∥Σy −Σn

∥∥2

F

∥∥∥
2

F
(4.16)

where Γy,
∥∥Σy

∥∥2

F
, ‖Σn‖2

F and
∥∥Σy −Σn

∥∥2

F
may be precalculated. Since Γ is relatively

small (R(2d+1)×(2d+1)) this optimization is performed directly by bisection search between
limits.

4.3.3 3-D spatial prior with full model correlation

The most common assumption for image prior models is to consider independent image
elements; examples are the zeroth order Tikhonov prior (Yorkey et al., 1987), and the
NOSER prior (Cheney et al., 1990). When elements are independent, the inter-element
correlation is zero, meaning Σx is diagonal. Another common assumption is to consider
that elements are locally correlated (Vauhkonen et al., 1999). In this case Σx has a sparse
non-diagonal structure since only adjacent elements are considered correlated. We consider
that these approaches have two important limitations. First, they do not reflect adequately
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the scale of the correlations in the images; image elements are correlated globally. Secondly,
the spatial frequency behaviour will depend on the size of the image elements, with a larger
spatial correlation being imposed for larger elements. Thus, a fine and coarse model with
the same spatial prior do not really implement the same prior model, and the prior model
will be spatially non-uniform for a model with localized mesh refinement.

In this section, we develop a 3-D spatial prior model which accounts for the full corre-
lation model. It is more computationally expensive to compute than simpler prior models,
but this is only performed as a precalculation, not during image reconstruction. This model
is based on three factors: 1) a sensitivity weighting, where elements are weighted by the
norm of the measurement sensitivity, 2) exponentially decreasing spatial correlation with
inter-element distance, and 3) an additional smoothness constraint for elements in regions
with poor sensitivity, such as above and below the electrode planes.

Sensitivity weighting

The sensitivity of measurements to a change in element i is the norm of the ith column of
the Jacobian, ‖J:,i‖ = [JTJ]i,i. As mentioned, we consider this weighting to be too strong
for high sensitivity elements, and tends to push image artefacts toward the center where
the sensitivity is much lower. Instead, we use a sensitivity weighting of p = 0.5. The choice
of p is a heuristic compromise between the pushing noise to the boundary (p = 0) or to
the centre (p = 1).

The inter-element sensitivity is based on the product of the square root of the sensitivity
to each element. Thus, we define the sensitivity weighting part of the prior matrix P

1
2
N as

[
P

1
2
N

]
i,i

=
[
JTJ

]− p
2

i,i
(4.17)

Based on (4.17) the 3-D spatial prior is defined as

P = P
1
2
NPCP

1
2
N (4.18)

where PC is the spatial correlation matrix

Exponential spatial correlations

Given two small image elements i, j, centred at ri = (xi, yi, zi) and rj = (xj, yj, zj), the
spatial correlation is defined in terms of a spatial exponential constant η in units of distance.
Elements closer together than η are highly correlated, and those further apart have low
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correlation. Thus
[PC ]i,j = exp(−‖ri − rj‖

η
) (4.19)

However, for larger finite elements, (4.19) has to be modified because not all parts of
each image element are at distance ‖ri − rj‖ from each other. Instead we replace it with

[PC ]i,j =
1

ViVj

∫

Ei

∫

Ej

exp(−‖ri − rj‖
η

)drjdri (4.20)

where the integrals are over the volume of finite elements Ei and Ej. Vi and Vj are the
volumes of each element, where Vi =

∫
Ei

dri. We derive a closed form estimate for the
integrals in (4.20) below.

Low sensitivity constraint

The EIT sensitivity is extremely low for regions above and below the electrode bands. This
has important consequences for image reconstruction because it further increases the ill-
conditioning of the EIT inverse. The consequence is that the algorithm may “push” image
artefacts to these regions; since the measurement norm from these regions is so small, large
artefacts have only a small effect on the data fit. To avoid this effect, it is possible to tightly
crop the 3D FEM model near the electrode planes, but this also introduces artefacts, since
it prevents the model current from flowing into these areas.

Using the exponential spatial correlations, it is possible to naturally account for low
sensitivity regions by imposing a strong smoothness constraint. By dramatically increasing
η for image elements in these regions, we force the algorithm to consider elements to
be highly correlated, and reduce the effective degrees of freedom (or number of fitted
parameters) allocated to this region. This has the advantage that it will reduce high
spatial frequency artefacts, but does not arbitrarily and unnaturally impose a penalty on
reconstructed image amplitude in these regions. Thus we modify (4.20),

[PC ]i,j =
1

ViVj

∫

Ei

∫

Ej

exp(−‖ri − rj‖
η(ri, rj)

)drjdri (4.21)

where η(ri, rj) =

{
η0 if zp1 ≤ zi ≤ zp2 or zp1 ≤ zj ≤ zp2

K(zi, zj)η0 otherwise.

where η0 is the value used in the central regional, zp1 and zp2 are the vertical positions of
the electrode planes, and K(zi, zj) is a penalty term which may depend on the distance
from the zp1 and zp2. For simplicity, we use a constant value of K = 5 in this chapter. Note
that the low sensitivity penalty is only imposed if both zi and zj are outside the electrode
plane.
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Integral of exponential correlations

The integrals in (4.20) are over the coordinates of each finite element simplex. In order
to develop a closed form integral we model each element instead as a sphere of the same
volume and centre coordinates as the original finite element simplex. For a simplex of
coordinates (xk, yk, zk), k = 1 . . . 4, we have volume V = 1

3!
detD, where the kth row of

Dk,: = [1, xk, yk, zk]. From this volume, the sphere radius is r = 3

√
3V
4π
. With this model,

the integral may be approximated as a 1-D integral over the line from ri to rj. Based on
element centres, (ri, rj) and radii (ri, rj), we calculate the (i, j) element of the 3-D spatial
prior PC as follows:

[PC ]i,j =
1

ViVj

∫ ri

−ri

∫ rj

−rj

exp(−|∆ij + x + y|
η

)dydx (4.22)

where Vi = 2ri, Vj = 2rj and ∆ij = ‖ri − rj‖.
Because of the absolute value, the inner integral has two cases:

∫ rj

−rj

e−
1
η
|∆ij+x+y|dy = ηe

∆ij+x

η [e
y
η ]y

′
−rj

− ηe−
∆ij+x

η [e−
y
η ]

rj

y′ (4.23)

where y′ = −(∆ij + x) if −rj ≤ ∆ij + x ≤ rj and is otherwise limited to the range
y′ = ±rj. Based on these cases, the outer integral is split into three portions −ri ≤ x ≤ x′,
x′ < x < x′′, and x′′ < x < ri, where x′ = min(ri,−∆ij − rj) and x′′ = min(ri,−∆ij + rj).
Thus

[PC ]i,j =
η

4rirj

(∫ x′

−ri

e
∆ij+x

η [e
y
η ]

rj

−rj
dx +

∫ ri

−x′′
e−

∆ij+x

η [e
y
η ]

rj

−rj
dx (4.24)

+

∫ x′′

−x′
e

∆ij+x

η [e
y
η ]
−(∆i,j+x)
−rj

+ e−
∆ij+x

η [e
y
η ]

(∆i,j+x)
−rj

dx

)

=
η2

4rirj

(
e−

∆ij
η

[
e

x
η

]+ri+x′

−ri−x′′

[
e

y
η

]+rj

−rj

+

[
2

η
x− e−

∆i,j+rj−x

η + e−
∆i,j−rj+x

η

]x′′

x′

)

4.3.4 Methods: Simulations

Numerical simulations were designed to model the movement of blood through the mitral
valve during systolic ejection. We use the following average values for healthy humans:
Mitral valve area is 7.1 ± 1.3 cm2 (Ormiston et al., 1981) and the rate of change of left
ventricular volume is 473 ml/s (Hammermeister et al., 1974). These values correspond to a
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mitral radius of 1.5 cm; we thus simulate the ventricular ejection blood flow as conductive
sphere of 1.5 cm radius moving at 97.8 cm/s.

Numerical simulations were conducted using a 3-D cylindrical FEM model with 77999
elements using the Netgen 4.4 software. Illustrated as Fig. (4.1), the model height is 30 cm
(z : 0 ∼ 30); two electrode rings (8 electrodes each) were attached at heights z = 10, 20 cm
using adjacent stimulation and measurement pattern. The systolic ejection is upwards and
lateral which can be roughly simulated as a helical pattern movement in blood vessel.
Illustrated as Fig. (4.2), inside the model, a conductive sphere with radius 1.5 cm rotates
and rises in a the helical pattern at a uniform speed from z = 7.5 cm to z = 22.5 cm,
moving clockwise (bird’s eye view) along a trajectory with radius 10 cm. The background
material was set to a homogeneous conductivity, σ0 = 1.0 S/m, and the spherical target to
be more conductive: σ = 1.2 S/m. The projection of the movement trajectory on the x−y

plane is a full circle, and corresponds to a movement of 64.5 cm. Thus, to model systolic
ejection, one cycle of conductive sphere movement is set to be 0.66 seconds. In model an
EIT system with a frame rate ≈ 40 frames/s, and thus simulate a movement rate of the
conductive sphere of 26 frames/cycle.

The noise performance of the algorithms was tested by adding pseudo random, zero
mean Gaussian noise to each image reconstruction (with the same random seed). Images
were reconstructed on a 3-D model generated by using the EIDORS software (Adler and Lionheart,
2006) with 10 vertical slices and 256 elements on each slice; this inverse model differs from
the simulation model to avoid the inverse crime(D. Colton, 1998).

4.4 Results

Reconstructed targets were calculated using EIDORS to evaluate four algorithms with
different regularization priors: 1) GN solver, with no spatial or temporal prior model; 2)
temporal solver, with a temporal but no spatial prior model; 3) 3-D prior solver, with
a spatial but no temporal prior model; and 4) 4-D prior solver, with both a spatial and
temporal prior model. The measurement to be reconstructed was chosen for the conductive
sphere in a left anterior position, and slightly closer to the bottom than the top electrode
plane. Fig 4.2 shows the conductive sphere location (x, y, z) = (3.1,−9.5, 14.25) and that of
the position of the sphere during the d = 3 frames before and after the centre measurement
used in the image reconstruction. The reconstructions were plotted as nine vertical slices
chosen from z = 9 cm to z = 21 cm. Figures 4.3 and 4.4 show images with Noise to Signal
Ratios (NSR) of 0 and 2, respectively. NSR was defined as σn/ȳ, where ȳ is the mean
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Figure 4.1: The forward model: 3-D cylindrical finite element model generated from netgen. The
tank of height 30 cm and diameter 30 cm is meshed with 77999 tetrahedral elements. Sixteen
circular electrodes (diameter 1.0 cm) are placed in two planes (8 electrodes each) located at
z = 10 cm and 20 cm, respectively. Mesh refinement is applied around electrodes. (a) 3-D
forward model; (b) side view, (c) one of electrodes with mesh refined around it.

value of the difference signal. The optimal value of γ was calculated based on Section 4.3.2
as 0.97 and 0.89 frames, for NSR=0 and NSR= 2, respectively. Different random seeds
were used without evidently different results observed. The value of η was chosen to be
3 cm or 0.1 of the medium diameter. This value will tend to penalize spatial frequency
content in images that is less than 10% of the diameter, or 1% of the area. This value
(1%) corresponds approximately the number of independent measurements available from
this EIT system (104).

In order to allow comparison across algorithms, we select identical hyperparameter for
all algorithms tested. When λ is low, there is no significant difference between the GN
method and temporal/3-D/4-D priors methods. We empirically choose a relatively large
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Figure 4.2: The trajectory of a spherical conductive target of radius 1.5 cm, representing the bolus
left ventricular ejection. To clarify the target movement, the tank model is cropped by the plane
defined by y + 15 < z. The target ((x, y, z) = (3.1,−9.5, 14.25)) is black in the position at which
the frame is taken for image reconstruction. Targets in dark blue are positions on from which data
frames are measured and used in the calculation by the temporal solver (d = 3 as illustrated).

value of λ = 0.5 to illustrate the effect in higher noise conditions. Figures 4.3 and 4.4 show
reconstructed images for each algorithm with no noise and with a fairly large (NSR=2)
level of noise. All images show reconstructions in arbitrary units and are scaled equally.

In order to evaluate the quality of reconstructed images, the following figures of merit
are used: 1) target resolution: the point spread function (PSF) of the target is small
in the horizontal plane, and the off plane ghosts (which illustrated as virtual targets in
the planes other than the target plane z = 14.25) are small; 2) reconstruction position
error : the planar position of the reconstructed target is correct. The planar position of the
reconstructed target is calculated from the slice at z = 14.25 using the position definition
described in (Adler and Guardo, 1996a): the centre of gravity is computed on a zone
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Figure 4.3: Comparison of algorithms with no noise. From right to left, algorithms are: con-
ventional GN solver, temporal solver, 3-D prior solver, and 4-D prior solver. The image to be
reconstructed was at t = 0.3 sec. Electrode planes were at z = 10 and 20 cm. Parameters are
NSR=0, λ = 0.5, η = 0.1, γ = 32.8.

defined by half magnitude of image; and 3) noise performance: the reconstructed images
should be robust to measurement noise. Based on these criteria and Figs. 4.3, 4.4 and
Table 4.1, we observe that: 1) target resolution: 4-D prior solver is ranked as the highest
resolution; 2) reconstruction position error : The position error (distance to the optimal
position (3.1,−9.5)) is listed as Table 4.1. 4-D prior solver achieves best planar position
accuracy for both the noisy and noise-free situations; 3) noise performance: temporal prior
solver has the best noise robustness. However, 3-D prior solver introduces more artefacts
when noise is added.

Figure (4.5) shows the relationship of the hyperparameter γ to the noise and speed of
conductivity change. γ is a measure of the exponential rate of loss of coherence between
images elements across frames. The figure shows, as expected, that γ decreases as the
conductivity change rate increases (or, equivalently, as the data frame rate decreases) or
as the noise level increases. At very low system speed and/or very high NSR, γ reaches
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Figure 4.4: Comparison of algorithms with noise. From right to left, algorithms are: conventional
GN solver, temporal solver, 3-D prior solver, and 4-D prior solver. The image to be reconstructed
was at t = 0.3 sec. Electrode planes were at z = 10 and 20 cm. Algorithm parameters are NSR=2,
λ = 0.5, η = 0.1, γ = 8.6.

zero, indicating that adjacent frames are independent, and the temporal prior provides no
advantage.

4.5 Discussion

Traditionally, EIT reconstruction algorithms assume each data frame to be independent.
However, since EIT is able to make measurements at high frame rates, we know a priori
that image frames are correlated. Intuitively, it makes sense that a sophisticated image
reconstruction algorithm should be able to take advantage of known correlations in the
input data to benefit the reconstructed images.

Kalman filter techniques in EIT (such as Vauhkonen et al. 1998a) provide a tempo-
ral image reconstruction based on iterative tracking. The estimated image is calculated
from the current data and the previous image estimate. This differs from our proposed
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Table 4.1: The list of planar positions of reconstructed target at the level z = 14.25, and the
distances to the optimal position (3.1,−9.5).

NSR = 0 NSR = 2

solvers (x,y) (cm) distance (cm) (x,y) (cm) distance (cm)

Conventional GN (4.15,-9.93) 1.14 (3.93,-9.83) 0.89
Temporal prior solver (3.93,-9.97) 0.95 (3.84,-9.98) 0.88

3-D prior solver (3.91,-9.51) 0.81 (3.95,-9.05) 0.96
4-D prior solver (3.76 -9.04) 0.80 (3.63,-8.84) 0.85

method which calculates a single step solution using a "frame window" with d frames before
and after the current frame. It improves over Kalman filter based algorithms by allow-
ing an explicit control over the regularization prior and the weighting of measured data.
The one-step temporal reconstruction method was applied to experimental data from the
Magnetic Inductance Tomography (MIT) which is a similar inverse problem case to EIT
(Soleimani et al., 2008). The improved reconstruction performance was also demonstrated
compared to an absolute reconstruction method.

In this chapter, we carefully consider the a priori spatial and temporal correlations in
EIT images. For spatial correlations, a novel exponential model is presented based on:
1) sensitivity weighting, 2) an exponentially model of inter-element correlations, and 3) a
smoothness constraint for poor sensitivity regions. In order to avoid dependence on mesh
element density, a closed form approximation to the integral is developed. The spatial
prior model developed in this chapter models the spatial variation in conductivity as a
random walk process. It has the advantage over simpler prior models (such as the discrete
Laplacian and NOSER priors) of accounting for the spatial interactions in a way that is
independent of element size. However, linear prior models cannot account for sharp edges
and piece-wise constant conductivity regions; it is possible to use total variation priors for
this case (Lionheart et al., 2005), at the expense of significantly longer iterative solutions.
For the temporal correlations, an exponential model is presented of inter-frame correlations
(based on an exponential constraints γ), and an automatic approach to determine γ from
the measurements is developed. The choice of temporal window d depends on several con-
siderations; large d may decrease artefacts and reconstruction noise; however, it increases
the size of the matrix inverse, and increases the condition number of the matrix to be
inverted. In order to implement a temporal solver in an EIT system for real-time imaging,
a delay must be introduced between the measurements and reconstruction to allow acqui-
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Figure 4.5: The inter-frame correlation γ as a function of target speed and noise level. vertical axis
temporal exponential decay parameter γ (units frames) calculated from measurements. horizontal
axis target frame period relative to the frame rate of 40 frame/s. Image reconstruction used
d = 3,λ = 0.5.

sition of d “future frames”. This corresponds to the linear phase filters used in digital signal
processing applications. For fast EIT systems, with frame rates above 15 frames/sec, a
choice of d = 3 introduces a delay of 200 ms. One core assumption of linearized time dif-
ference imaging is that conductivity variation is small. This allows the solution to assume
that J does not vary during the 2d+1 frames considered in the reconstruction formulation.
In the (relatively unlikely) case that J could not be assumed constant, the choice of d would
need to be limited by the rate of change of background conductivity.

Comparisons of reconstructed images with these algorithms show that increasing con-
sideration of prior correlations does improve the reconstructed image quality. In figures.
4.3, 4.4, we compare four approaches: traditional one-step GN, GN with temporal prior,
GN with 3-D spatial prior and GN with 4-D prior. These results indicate that the temporal
prior provides better image SNR and resolution compared with the tradition GN method.
The 3-D spatial prior shows still better resolution; however, the 3-D spatial prior is more
sensitive to noise than temporal prior. The 4-D prior shows a combined advantage with less
noise sensitivity. Some interesting effects are that the GN and temporal reconstructions
show more disjoint image elements, which would appear to be due to a lack of smoothness
constraint. Another effect is a circumferential elongation of the reconstructed object in the
direction of movement in the temporal and 4-D reconstructions. This is a consequence of
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the temporal model accounting for additional data from times before and after the current
instant.

In this chapter, the ventricular ejection blood flow is simulated as a conductive sphere
which moves laterally and upward in a helical pattern. This is a simplification which
matches the velocity, direction and ejection volume during systolic ejection; however, the
physiological blood transport is much more complicated, which we do not simulate.

In summary, this chapter proposes a four dimensional regularization for EIT recon-
struction algorithms. We demonstrate that it is advantageous to take into account any
spatial and temporal correlations which exist in the underlying images. We recommend
the temporal method for cases in which the data noise is high and the underlying conduc-
tivity changes are rapid with respect to the frame rate. If the frame rate is much larger
than the conductivity changes, then time averaging of measurements will provide the same
effect with a simpler algorithm. Similarly, if data noise is very low, it does not help to
consider measurements from data frames at different times. However, we propose that the
consideration of temporal and spatial correlations will generally be advantageous for EIT
image reconstruction, and, most likely, for other imaging modalities as well.
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Chapter 5

Reconstruction of Conductivity Changes and
Electrode Movements Based on EIT Temporal
Sequences

5.1 Summary

This chapter is based on the paper – Reconstruction of Conductivity Changes
and Electrode Movements Based on EIT Temporal Sequences, Physiological
Measurement, 29:S77-S88, 2008, by Tao Dai, Camille Gómez-Laberge and Andy
Adler

Electrical impedance tomography (EIT) reconstructs a conductivity change image within
a body from electrical measurements on body surface; while it has relatively low spatial
resolution, it has a high temporal resolution. One key difficulty with EIT measurements is
due to the movement and position uncertainty of the electrodes, especially due to breath-
ing and posture change. In this chapter, we develop an approach to reconstruct both the
conductivity change image and the electrode movements from the temporal sequence of
EIT measurements. Since both the conductivity change and electrode movement are slow
with respect to the data frame rate, there are significant temporal correlations which we
formulate as priors for the regularized image reconstruction model. Image reconstruction
is posed in terms of a regularization matrix and Jacobian matrix which are augmented for
the conductivity change and electrode movement, and then further augmented to concate-
nate the d previous and future frames. Results are shown for simulation, phantom and
human data, and show that the proposed algorithm yields improved resolution and noise
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performance in comparison to a conventional one-step reconstruction method.

5.2 Introduction

Electrical Impedance Tomography (EIT) calculates an estimate of the conductivity distri-
bution within a body based on current stimulations and voltage measurements on the body
surface. EIT imaging has low spatial resolution, however, EIT can have excellent tempo-
ral resolution. Some recent systems have frame rates up to 1000 fps (Wilkinson et al.,
2005). Such high temporal resolution makes EIT a promising technology to monitor fast
physiological events which affect the conductivity distribution.

For cardiac activities, EIT can locally determine impedance variations in ventricular
or atrial regions during the cardiac cycle (Eyuboglu et al., 1989) and calculate cardiac pa-
rameters such as stroke volume (Vonk-Noordegraaf et al., 2000). For pulmonary function
monitoring, EIT has been demonstrated as an effective tool due to the conductivity vari-
ation of lungs is highly related to the air ventilation (Dijkstra et al., 1993), blood infusion
(McArdle et al., 1988), and intrathoracic fluid volumes (Campbell et al., 1994). EIT is
helpful for imaging rapid conductivity changes due to brain neuronal activity, which oc-
cur within a timescale of milliseconds, such as acute blood infusion/exfusion from visually
evoked responses (Holder, 1987; Tidswell et al., 2001).

Due to the diffusive propagation of electrical current in the human body, EIT is a
soft field tomography modality. Compared with the number of pixels/voxels to be recon-
structed, the amount of electrodes that can be applied on body surface is relatively small.
Thus, the reconstruction of an unknown internal conductivity distribution from boundary
data is severely ill-conditioned (Lionheart et al., 2005). In order to calculate a “reasonable”
image, regularization techniques are required. Such regularized image reconstructions can
be statistically formulated in terms of a priori information about image element values
and the correlations among them. In many EIT algorithms, the zeroth order Tikhonov
(Vauhkonen et al., 1998b), discrete Laplacian filter (Polydorides and Lionheart, 2002) and
the NOSER priors (Cheney et al., 1990; Graham and Adler, 2007) are commonly used.
Those regularization priors treat all images independently from each other. However, it is
clear that images within a certain temporal distance are not independent but do contain
useful temporal correlations, especially for high speed EIT. This type of temporal corre-
lation was exploited by Adler et al. (2007) to improve EIT image noise performance and
resolution.

The position uncertainty of electrodes is a principle source of artefacts and reconstruc-
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tion errors. Difference EIT is less sensitive to electrode position uncertainty assuming the
electrodes do not move during measurement (Barber and Brown, 1988). However, this as-
sumption is not valid in medical applications, such as cardiopulmonary imaging, in which
the chest moves during breathing and/or posture change. Harris et al. (1988), Adler et al.
(1996b) and Zhang and Patterson (2005) showed the electrode movement introduced by
thoracic variation had a significant effect on EIT imaging.

In this chapter, we address two issues in EIT, the electrode position uncertainty and
data noise, by taking advantage of the high frame rate of modern EIT systems. Previously,
we developed an approach to reconstruct conductivity change and electrode movement from
a single frame of EIT data using an augmented Jacobian and prior matrix (Soleimani et al.,
2006a) . One limitation of this approach is that reconstructed electrode movements can
often be noisy. This chapter develops an algorithm to improve reconstructions of both
electrode movements and conductivity changes by considering correlations between recon-
structions in successive data frames. We take advantage of the fact that with fast EIT
systems, the boundary shape and internal conductivities change relatively slowly, and may
be formulated as a priori constraints in the image reconstruction model. This chapter
proposes to reconstruct EIT images via an inverse problem with a regularization prior that
accounts for both spatial and temporal correlations among image elements and electrode
movements. This algorithm is verified by numerical simulation, saline phantom data and
in vivo human measurement.

5.3 Methods

An EIT system has nE electrodes applied on a body surface in a plane using the adjacent
current stimulation and voltage measurement. Also nE current stimulation patterns are
sequentially applied and each of them takes nE − 3 differential measurements. Each data
frame measures a vector, v ∈ RnM , of nM = nE(nE − 3) data points (some of which are
redundant if the medium is not changing). Difference EIT calculates difference data y,
yi = vi−v0, where i is the time index. To improve its precision, the reference signal v0 is
typically the average over many data frames that are acquired when the measured object
may be assumed to be stable. Therefore, v0 is assumed noise free.

The body investigated is modelled using a finite element model (FEM) that discretizes
the body conductivity into nN piecewise smooth elements, represented by a vector σ ∈ RnN .
Difference EIT calculates a vector of conductivity changes, xi = σi − σ0 between the
present conductivity distribution, σi, and that at the reference measurement σ0. For small
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variations around the reference conductivity σ0, the relationship between x and y can be
linearized so that the difference EIT forward model is:

y = Jx + n (5.1)

where J ∈ RnM×nN is the Jacobian or sensitivity matrix and n ∈ RnM is the vector
of measurement noise, which is assumed to be uncorrelated white Gaussian. The Jaco-
bian is calculated from the FEM as Jij =

∂yi

∂xj

∣∣∣
σ0

, and depends on the FEM, current
injection patterns, the reference conductivity and the electrode models. This system is
under-determined since nN > nM . This problem is commonly solved using regularization
techniques in order to calculate an estimated conductivity change x̂, which is both faithful
to the measurements y and to a priori constraints on a “reasonable” image.

Under the condition that the system is relatively stable (J is constant), a sequence
of difference data yi are obtained. As long as the conductivity of the body measured
doesn’t change too rapidly, it is reasonable to expect that a certain number d of ad-
jacent frames in the past and from the future provide useful hints about the current
image. Labelling the current instant as t, we then seek to estimate x̂t from the data
[yt−d; . . . ;yt−1;yt;yt+1; . . . ;yt+d].

In the subsequent sections we consider the following methods: 5.3.1) Traditional GN
inverse, using yt only, to reconstruct conductivity change. 5.3.2) GN inverse calculating
both conductivity change and electrode movement, using yt only, to reconstruct both con-
ductivity change and electrode movement. 5.3.3) Temporal GN inverse, using yt−d . . .yt+d,
to reconstruct conductivity change only based on a temporal prior model. 5.3.4) Tempo-
ral inverse on both conductivity change and electrode movement, using yt−d . . .yt+d, to
reconstruct both conductivity change and electrode movement based on a temporal prior
model.

5.3.1 One-step linear Gauss-Newton (GN) solver

The regularized image reconstruction based on the one-step linearized GN method was first
introduced into EIT by Yorkey et al. (1987) and has been widely used (e.g., Cheney et al.
(1990);Adler and Guardo (1996a)). It addresses the inverse solution as a linear recon-
struction matrix and allows use of advanced regularization methods to solve the inverse
problem. By using a precalculated reconstruction matrix, it can realize rapid, real-time
imaging. The GN inverse problem estimates a solution x̂ by minimizing

‖y − Jx̂‖2
Σ−1

n
+ ‖x− x◦‖2

Σ−1
x

(5.2)
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where Σn ∈ RnM×nM is the covariance matrix of the measurement noise n. Since noise
channels are independent, Σn is a diagonal matrix with [Σn]i,i = σ2

i , where σ2
i is the noise

variance at channel i. Here Σx ∈ RnN×nN is the covariance matrix of the desired image
and x◦ represents the expected value of image, which is zero for difference EIT.

Instead of calculating Σn and Σx, we heuristically model them from a priori consider-
ations by introducing W = σ2

nΣ
−1
n and R = σ2

xΣ
−1
x . Here σn is the average measurement

noise amplitude and σx is the a priori amplitude of conductivity changes. The measurement
accuracy is modelled by W. For uncorrelated noise, each diagonal element of W is propor-
tional to the corresponding channel signal-to-noise-ratio (SNR). For difference EIT with
identical channels, W is an identity matrix; or else, it may be measured during the system
calibration test (the identity matrix is used in this chapter for simplicity). The regulariza-
tion matrix R may be understood to statistically model the amplitudes and interactions
of image elements. Simply, R may consider all elements equally alike and independent (or
only locally dependent). More sophisticated models (e.g., Dai et al. (2007)) may consider
smooth distributions more likely than rapidly changing ones and using temporal/spatial
correlations.

From (5.2), a linearized one-step inverse solution is obtained as

x̂ =
(
JTWJ + λ2R

)−1
JTWy = By (5.3)

where λ = σn/σx is the regularization parameter, or hyperparameter, which controls the
trade-off between resolution and noise attenuation in the reconstructed image. Here B =(
JTWJ + λ2R

)−1
JTW is the linear, one-step reconstruction matrix.

Assuming that image elements are independent and have an identical expected magni-
tude, R becomes an identity matrix I and (5.3) uses zeroth order Tikhonov regularization.
For EIT, such solutions tend to push reconstructed noise toward the boundary, since the
measured data are much more sensitive to boundary elements than deep elements. In order
to compensate the sensitivity discrepancy, R may be scaled by the sensitivity of elements,
so that R is a diagonal matrix with elements [R]i,i =

[
JTJ

]p

i,i
. This is the NOSER prior

(Cheney et al., 1990) with an exponent p. In this chapter, the NOSER prior is used in
all tested algorithms. The exponent is chosen as p = 0.5 heuristically, as a compromise
between the pushing noise to the boundary (p = 0) or to the centre (p = 1).

The term inverted in (5.3) is of size nN × nN . The matrix B can be rewritten using
the data form (Adler et al., 2007):

B = PJT
(
JPJT + λ2V

)−1 (5.4)
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where P = R−1 = Σx/σ
2
x and V = W−1 = Σn/σ

2
n. In (5.4), the size of the inverted matrix

is reduced to nM × nM . This is important for large scale models, such as 3D EIT models
and the temporal inverse, which is introduced below.

5.3.2 Reconstruction of conductivity change and electrode move-
ment

One of the primary difficulties interpreting EIT images in clinics is the movement of elec-
trodes from breathing or posture changes. The inaccurately modelled electrode placement
introduces severe artefacts in reconstructed images. In order to solve this modelling er-
ror, Soleimani et al. (2006a) developed an algorithm to reconstruct both the conductivity
change and the electrode movement simultaneously by combining conductivity changes
and electrode movement reconstructions into a single inversion process. An electrode dis-
placement vector ∆r ∈ RnDnE , where nD is the model dimension (2 or 3 for 2D or 3D,
respectively), is concatenated to the difference conductivity vector xc. Thus the augmented
vector to be reconstructed is x =

[
xT

c ∆rT
]T ∈ RnN+nDnE . The augmented Jacobian be-

comes J = [Jc Jm] ∈ RnM×(nN+nDnE), where Jc ∈ RnM×nN and Jm ∈ RnM×nDnE are the
conductivity and electrode movement Jacobians, respectively. The overall prior matrix is
R = diag(Rc,Rm) ∈ R(nN+nDnE)×(nN+nDnE), where Rc ∈ RnN×nN and Rm ∈ RnDnE×nDnE

are conductivity and electrode movement prior matrices, respectively. Finally, the one-step
reconstruction is the same as (5.3) with rebuilt J, x and R.

The electrode movement Jacobian (Jm) is calculated using the rank one perturba-
tion technique (Olsen and Gopinath, 2004), as implemented by Gómez-Laberge and Adler
(2007).

The prior matrix statistically describes the “desired” values of conductivity changes and
electrode movements. The upper nN×nN part of Σ−1

x in (5.2) represents covariance of finite
element conductivity changes, while the lower nDnE×nDnE part represents the covariance
of electrode movements. By carefully establishing prior matrices for specific applications,
different reconstruction performances can be obtained (Adler and Lionheart, 2006). With
a similar purpose to that described in Section 5.3.1, concerning the sensitivity discrepancy,
we need compensations on “overweighted” elements which have high sensitivities. The
NOSER prior is used in this chapter. Suppose the calculated augmented Jacobian is
J = [Jc Jm], then the R is built so that [R]i,i =

[
JTJ

]1/2

i,i
.
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5.3.3 Temporal one-step solver

Adler et al. (2007) proposed a temporal image reconstruction algorithm that calculates the
image at a current frame considering data from adjacent frames. This approach differs from
the Kalman filter based algorithms (Vauhkonen et al., 1998a), which estimate image xt

based on measurements yt and the previous image estimate xt−1. The temporal solver treats
the estimate of the image frame sequence as a single inverse problem with a regularization
prior that accounts for both spatial and temporal correlations between image elements.

Temporal reconstruction

The temporal solver considers a sequence of 2d + 1 data frames from t− d to t + d around
the current frame t. Given a vertically concatenated data frame sequence
ỹt = [yT

t−d . . . yT
t . . . yT

t+d]
T and the corresponding concatenated image sequence x̃t =

[xT
t−d . . . xT

t . . . xT
t+d]

T , the direct temporal forward model is rewritten from (5.1) as

ỹt = J̃x̃t + ñ, (5.5)

where ñ = [nT
t−d . . . nT

t . . . nT
t+d]

T . We consider that J is time invariant. Thus, J̃ = I⊗J,
where the identity matrix I is of size 2d + 1, and ⊗ is the Kronecker product.

There exists an inter-frame correlation between two images temporally close to each
other. As images become further separated in time, the correlation decreases; for a separa-
tion of δ, the correlation is exp(−|δ|/γ), where γ is the temporal exponential decay factor
in units of frames. Frames with a large time difference |δ| > d, are considered independent.
The one-step inverse (5.4) then becomes

B̃ = P̃J̃
T

(
J̃P̃J̃

T
+ λ2Ṽ

)−1

, (5.6)

where Ṽ = I ⊗V. Also P̃ = Γ ⊗ P, where Γ is the temporal weight matrix of an image
sequence x̃ and is defined to have the form

[Γ]i,j = exp(−|i− j|
γ

) i, j = −d, . . . , d. (5.7)

From (5.6) and (5.7),

B̃ =
[
Γ⊗ (

PJT
)] [

Γ⊗ (
JPJT

)
+ λ2 (I⊗V)

]−1
. (5.8)

Given B̃, the one-step solution x̂t for the current image is rewritten as

x̂t = B̃0ỹt, (5.9)

where B̃0 occupies the rows nM × d + 1, . . . , nM × (d + 1) of B̃.
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Parameter selection

The γ may be considered a hyperparameter of the system: it depends on the data acquisi-
tion frame rate, the speed of underlying conductivity changes and the system noise level.
The estimation of γ can be addressed as a method of “kernel smoothing” (Fahrmeir and Tutz,
1994). The object function to be minimized can be averaged squared error, mean average
squared error, or average predictive squared error, etc.

For details of calculating γ, please refer to Chapter 4.3.2 “Parameter selection”.

5.3.4 Temporal reconstruction of conductivity change and elec-
trode movement

The temporal solver for reconstruction of both conductivity change and electrode movement
is formulated in terms of a regularized one-step inverse (5.8), in which the Jacobian J is
rebuilt as [Jc Jm] and

J̃ = I⊗ [Jc Jm] . (5.10)

The augmented prior matrix is computed as NOSER prior from the precalculated Jacobian
and

P̃ = Γ⊗ [
JTJ

]−1/2

i,i
. (5.11)

The inverse is further processed in terms of an augmented image x̃ and measurement vector
ỹ (5.9), which concatenate the values from d previous and d future frames.

5.3.5 Method: experiments

Data from numerical simulations, a saline phantom measurement and in vivo human mea-
surement were used to test these algorithms proposed.

Numerical simulation

Numerical simulation data were obtained from a 2D FEM model with 5184 elements, with
homogeneous conductivity σh = 1. As illustrated in Figure 5.1(a), A unit radius circular
model with 16 electrodes was built and an adjacent stimulation and measurement pattern
was applied. In this model a conductive (1.2 × σh) spherical object with 0.05 unit radius
rotated clockwise along a trajectory that had a radius of 2/3 unit, Two hundred frames were
taken per movement cycle. A distortion (horizontal compression and vertical elongation)
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was applied with distortion amplitudes gradually increased from 0 at the first frame to 1%

of the model diameter at the end (200th frame).

Phantom measurement

The saline phantom is a plastic cylindrical tank with 30 cm diameter and 30 cm height,
being filled with 0.9% saline solution to the 20 cm height. Sixteen stainless steel elec-
trodes were equidistantly placed around the circumference at a vertical position of 10 cm.
EIT data were acquired using the Goe-MF II EIT system (Viasys Healthcare, Höchberg,
Germany) using an adjacent stimulation and measurement pattern. First, data of a homo-
geneous background yh were acquired and processed by ensemble averaging; then two small
non-conductive spherical objects of 2 cm radius were statically suspended at the same level
of the electrode plane at positions (0,7 cm) and (7 cm, 0) as illustrated in Figure 5.1(b).
A compression was applied on the top of the phantom along the x-axis so that the cross
section of the tank became an ellipse with a minor axis of 25 cm. Since the electrode plane
was at 1/3 of the tank height, the maximum movement of electrodes was about 1.7 cm.
This phantom was gradually compressed during the first 6 seconds and held with elliptical
shape afterwards.

In vivo human measurement

EIT data were acquired from a healthy adult using the Goe-MF II EIT system (Viasys
Healthcare, Höchberg, Germany). Adjacent stimulation and measurement patterns were
applied. The data acquisition speed was 13 fps. Sixteen 3MTM Red-Dot Ag/AgCl elec-
trodes were equidistantly attached around the thoracic circumference at a horizontal plane
that was 1 cm under the nipple line. The 1st Electrode was in the centre of the ster-
num. Other electrodes were subsequently placed towards the subject’s right side so that
the 5th electrode was under the right armpit, the 9th electrode on the spine and the 13th

electrode under the left armpit. A 17th electrode was attached at lower right waist as refer-
ence/ground. All measurements were taken while the subject was standing and conducting
deep breaths to total lung capacity.

5.4 Results

The forward and inverse calculations used the EIDORS software (Adler and Lionheart,
2006). The numerical and phantom data were reconstructed on a circular 576 element
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Figure 5.1: Illustration of 2D numerical model simulation and saline phantom measurement.
Green arrows indicate directions of boundary distortion. (a) one conductive target rotates clock-
wise (trajectory as dashed circle). Distortion amplitude increases linearly from 0 to 1% of model
diameter. Background conductivity σh = 1 and the target conductivity is 1.2×σh. The illustrated
target position is the start/final position of one full cycle. (b) two non-conductive targets stati-
cally suspended in a saline phantom at the level of the electrode plane. The phantom diameter is
30 cm, the maximum distortion of the boundary is 5/3 cm.

model and the in vivo data was on a 2D thoracic 576 element model. For the numerical
simulation, the choice of 576 elements for the inverse mesh was to differ from the simulation
model to avoid the inverse crime. Gaussian white noise was added to numerical simulated
data with noise level SNR, defined as ȳ/σn, where σn was the standard deviation of the
added noise and ȳ was the mean value of the difference signal. Different random seeds
were tested and showed similar results. Four algorithms were evaluated with different
regularization methods: 1) GN solver (Sec.5.3.1); 2) temporal solver (Sec.5.3.3); 3) electrode
movement solver (Sec.5.3.2); and 4) temporal and electrode movement solver (Sec.5.3.4).

To better understand the effect of the model distortion on reconstructed image, we used
the traditional GN solver to calculate images of a distorted homogeneous medium (Fig-
ure 5.2, left). The 2D model is divided into four regions, regions 1 and 3 are compressed
horizontally and elongated vertically. This distortion can be understood as a conductor
with shorter length and larger cross section; therefore, the conductance is increased. This
is equivalent to the situation of increased conductivity with unchanged geometry (Figure
5.2, middle). Without considering any model geometry variations, the reconstructed image
shows regions 1 and 3 as positive conductivity changes (red) (Figure 5.2, right). Inversely,
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regions 2 and 4 are represented as negative conductivity changes (blue). These effects are
named “deformation artefacts”. As illustrated in Figure 5.3: at the 11th frame (fn=11,

 

 

1

2

4

3

Figure 5.2: Effect of boundary distortion on EIT reconstruction.
left : a homogeneous medium with a distorted boundary. Four regions are defined to identify
different effects.
middle: the simplified circuit model of the medium. R1,...,4 represent resistances of regions 1, . . . , 4,
respectively. Ri are intermediate resistances between two regions. In regions 1 and 3, the boundary
distortion can be regarded as shortened and widened resistors (dashed blocks), and in regions 2
and 4 as elongated and thinned resistors.
right : image reconstructed using GN method with an assumed static boundary (λ = 0.4, noise-
free).

distortion amplitude is 0.05% of the model diameter), although temporal solvers show
better target resolution, all methods identify target successfully due to the small model
deformation. With increasing model deformation (fn=61, 0.3% distortion; fn=111, 0.55%
distortion), the GN and temporal solvers failed to identify the target due to severe distor-
tion artefacts. The electrode movement solver still shows the target, although artefacts
emerge. Further deformation (fn=161, 0.8% distortion) makes the electrode movement
solver incapable of recognizing target due to severe artefacts. Compared with other solvers,
the temporal and electrode movement solver is much more robust against the “deforma-
tion artefacts”. Illustrated in Figure 5.4, a similar conclusion can be drawn from phantom
data reconstructions. With gradually increased deformation (0 ∼ 1.7 cm, approximately
from fn=1 to fn=75), the temporal and electrode movement solver shows the best artefact
robustness. The gradual disappearance of the target at the position (7, 0) illustrates the
“deformation artefacts”: the target is gradually obscured by the positive artefacts intro-
duced by boundary deformation. In order to test the applicability to in vivo measurements,
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Figure 5.3: Images reconstructed from simulated data (using λ = 0.4, SNR = 10). (a) GN solver;
(b) Temporal solver; (c) Electrode movement solver; (d) Temporal and Electrode movement solver.
From left to right, the target rotated clockwise (simulated target positions were shown by black
circles); the boundary was increasingly distorted and arrows indicate amplitudes and directions
of reconstructed electrode movements. Arrow amplitudes are scaled by 20.

a thirty-second frame sequence was acquired (the frame rate was 13 fps, thus 390 frames
in total) for a deep-breathing human subject. Data were reconstructed by the temporal
and electrode movement solver (Figure 5.5). The reconstructed image sequence was chosen
from the end inspiration to the end expiration. The reference data (v0) were chosen as the
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Figure 5.4: Images reconstructed from different solvers using measured data from a saline phantom
(using λ = 0.4). (a) GN solver; (b) Temporal solver; (c) Electrode movement solver; (d) Temporal
and Electrode movement solver. From left to right, frames were taken at 21, 31, 41 and 51,
corresponding to increasing boundary distortion. Arrows indicate amplitudes and directions of
boundary distortion. Arrow amplitudes are scaled by 10.

average of the whole data set. At the end inspiration when t = 17.8 sec, the lungs showed
conductivity decrease in blue (compared with the reference); during expiration, conduc-
tivity gradually increased and, after crossing the reference (x0), the lungs regions showed
increased conductivity (in red); they finally reached the end of expiration at t = 22.8 sec
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when lungs remained the residue volume and the image showed the highest conductivity.

t=17.8sec t=18.8sec t=19.8sec

t=20.8sec t=21.8sec t=22.8sec

Figure 5.5: Pulmonary monitoring of a human subject (maximum expiration) using λ = 2. Ante-
rior is at image top; left is at image left. Arrows show movement directions and amplitudes that
are exaggerated by 30. The reference signal was calculated as the average over whole data set.

5.5 Discussion

In this chapter, we propose an image processing algorithm to help address two issues in
EIT: uncertainty in boundary movement and noise in reconstructed images. Images of
the conductivity change and electrode movement are calculated from sequences of EIT
data around the current frame. The temporal reconstruction proposed directly formulates
both the reconstructed conductivity change and electrode movement in terms of a single
regularized inverse, based on a priori models that adjacent images and boundary shapes
from a fast measurement system are highly correlated. This method takes advantage of
correlations that occur because the conductivity changes and boundary movements happen
more slowly than the data acquisition.

In this chapter, one important assumption is that the Jacobian is time-invariant. This
is a core assumption in time-difference EIT. The model is linearized by taking a derivative
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at a reference point. Simulations suggest that the changes in the Jacobian are much less
significant than any general inaccuracies in the Jacobian used due to inadequate knowledge
of the initial geometry and conductivity distribution.

This result is based on our previous work (Adler et al., 2007; Soleimani et al., 2006a);
the combined solver of temporal inverse and electrode movement reconstruction uses tem-
poral reconstruction method to calculate both the conductivity change and electrode move-
ment from difference EIT data. The novel results demonstrated in this chapter are to show
significant improvements in noise performance and artefact resistance. The algorithm per-
formed well in simulated and phantom in comparison to reconstructions which consider only
the conductivity change, and in comparison to our previous results for electrode movement.
Considering the reconstructed images and electrode movement from in vivo human data,
this method shows potential to be used in real time monitoring of lung ventilation.
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Chapter 6

Electrical Impedance Tomography
Reconstruction Using `1 Norm on Data and
Image Terms

6.1 Summary

This chapter is based on the paper–Electrical Impedance Tomography Recon-
struction Using `1 Norm on Data and Image Terms,30th Annual International
Conference of the IEEE EMBC, Vancouver, Canada, August, 2008. Authors
are Tao Dai and Andy Adler. This work is in progress and will be submitted
as a peer-reviewed publication.

Electrical Impedance Tomography (EIT) calculates the internal conductivity distribu-
tion within a body from current simulation and voltage measurements on the body surface.
Two main technical difficulties of EIT are its low spatial resolution and sensitivity to mea-
surement errors. Image reconstruction using `1 norms allows addressing both difficulties,
in comparison to traditional reconstruction using `2 norms. An `1 norm on the data residue
term reduces the sensitivity to measurement errors, while the `1 norm on the image prior
reduces edge blurring. This chapter proposes and tests a general lagged diffusivity type
iterative method for EIT reconstructions. `1 and `2 minimizations can be flexibly chosen
on the data residue and/or image prior parts. Results show the flexibility of the algorithm
and the merits of the `1 solution.
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6.2 Introduction

Electrical Impedance Tomography (EIT) images the impedance distribution within a body
from electrical stimulation and measurements on the body surface. One of key limita-
tions of EIT is its relatively poor image resolution, which, for 16 electrodes is less than
10% of the body diameter. EIT is a soft field tomography modality, due to the diffusive
propagation of electrical current. Thus, the reconstruction of an internal conductivity dis-
tribution from boundary data is severely ill-conditioned (Lionheart et al., 2005). In order
to calculate a “reasonable” image, regularization techniques are required. Such regular-
ized image reconstructions can be statistically formulated in terms of a priori informa-
tion about image element values and the correlations among them. These correlations
are often expressed as generalized Tikhonov regularization; the zeroth order Tikhonov
(Vauhkonen et al., 1998b), discrete Laplacian filter (Polydorides and Lionheart, 2002) and
weighted diagonal (NOSER) priors (Cheney et al., 1990; Graham and Adler, 2007), etc.
Another limitation to the quality of EIT images is measurement errors, which arise from
multiple sources, such as RF coupling onto signal wires, electrode malfunction, and subject
movement. While it is common to model such measurement noise as Gaussian, such noise
sources introduce many more outliers than the the Gaussian model would predict. Most
image reconstruction algorithms for EIT search for an image solution, x̂, which minimizes
an error expression based on the `2 norm, e.g., one-step GN method. However, these
algorithms are known to blur image regions and be sensitive to data outliers.

It is widely recognized that the Total Variation (TV) (`1 norm of image spatial gradient)
regularization is good at recovering discontinuities in the image while the Least Squares
(LS, or `2 norm) solution is prone to smooth out edges. This is because penalty terms using
`2 norm penalize smooth transitions less than sharp transitions, while `1 norms penalize
only the transition amplitude, and not its slope. Similarly, the `2 penalty for a data
outlier is larger (the difference is squared) than for the `1. This means the `1 solution is
less perturbed by outliers. However, the `1 solution involves the minimization of a non-
differentiable objective function, and thus cannot be efficiently solved by the traditional
optimization methods that minimize a differentiable objective function such as the Steepest
Decent and GN method.

In this chapter we propose an image reconstruction algorithm based on the lagged-
diffusivity method in which the `1 norm is applied to both the image prior and data
fidelity term. This preserves image edges and provides enhanced resistance against data
errors. This algorithm has a general iterative structure which enables flexibly choosing
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different norm strategies, and termination criteria.

6.3 Methods

An EIT system with nE electrodes is considered. Electrodes are applied to a body in a
single plane and adjacent current stimulation and voltage measurement are performed. nE

current stimulation patterns are sequentially applied and nV differential measurements are
made for each stimulation. Difference EIT calculates difference data y = v2 − v1, where
y,v ∈ RnM , nM = nE × nV , and v1 and v2 are the vectors or measurements before and
after a conductivity change of interest. To improve precision, v1 is typically averaged over
many data frames, at a time when the conductivity distribution may be assumed to be
stable; thus. v1 is assumed noise free.

The model under investigation is a circular finite element model (FEM) which has nN

piecewise elements represented by a vector σ ∈ RnN . Difference EIT calculates a vector of
conductivity change, x = σ2 − σ1 between the present conductivity distribution, σ2, and
the reference measurement, σ1. In this paragraph, σ represents conductivity; elsewhere in
this chapter, σ is the standard deviation. For small variations around σ1, the relationship
between x and y can be linearized as:

y = Jx + n (6.1)

where J ∈ RnM×nN is the Jacobian or sensitivity matrix; n ∈ RnM is the measurement
noise which is assumed to be uncorrelated white Gaussian. J is calculated from the FEM
as Jij =

∂yi

∂xj

∣∣∣
σ1

. This system is underdetermined since nN > nM , and regularization
techniques are needed to calculate a conductivity change estimate, x̂, which is faithful to
both the measurements, y, and to a priori constraints on a “reasonable” image.

6.3.1 Least Squares (`2 norm) solution

The LS solution of (6.1) can be obtained using GN method which seeks a solution x̂ by
minimizing

‖y − Jx‖2
Σ−1

n
+ ‖x− x0‖2

Σ−1
x

(6.2)

where ‖ · ‖2 is the `2 norm, and the norm subscript is the weight matrix, such that ‖x‖2
W =∑

i

∑
j xiWijxj. x0 is the a priori mean conductivity change. Σn ∈ RnM×nM is the

covariance matrix of the measurement noise n. Since n is uncorrelated, Σn is a diagonal
matrix with [Σn]i,i = σ2

i , where σ2
i is the noise variance at measurement i. Σx ∈ RnN×nN
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is the expected image covariance. Let W = σ2
nΣ

−1
n and R = σ2

xΣ
−1
x . W and R are

heuristically determined a priori. Here σn is the average measurement noise amplitude
and σx is the a priori amplitude of conductivity change.

By solving (6.2) and defining a hyperparameter λ = σn/σx, a linearized, one-step inverse
solution is obtained Adler et al. (2007)

x̂ =
(
JTWJ + λ2R

)−1
JTWy = By (6.3)

where B =
(
JTWJ + λ2R

)−1
JTW is the linear, one-step inverse. λ controls the trade-off

between resolution and noise attenuation in the reconstructed image.
If image elements are assumed to be independent with identical expected magnitude,

R becomes an identity matrix, I, and (6.3) uses zeroth-order Tikhonov regularization.
For EIT, such solutions tend to push reconstructed noise toward the boundary, since the
measured data is much more sensitive to boundary image elements. Instead, R may be
scaled with the sensitivity of each element, so that R is a diagonal matrix with elements
[R]i,i =

[
JTJ

]p

i,i
. This is the NOSER prior (Cheney et al., 1990) for an exponent p, where

p ∈ [0, 1]. The TV prior is the discretization of the gradient operator. the TV of a 2D
image is the sum of the variation across each mesh edges, with each edge weighted by its
length (Borsic et al., 2007). In this chapter, the TV prior is used to calculate the matrix
R.

6.3.2 `1 norm solution

When applied to the image prior ‖x − x0‖, `2 norm solutions tend to give “smoothed”
images, because the prior applies strong penalties to edges. However, strong edges are
physiologically realistic, and are desired in the images. Although edge blur can be decreased
using a small hyperparameter, λ, this dramatically decreases noise performance. Another
method is to carefully define a prior with a priori knowledge of edge locations (Kaipio et al.,
1999). However, this approach can result in image artefacts that appear plausible, and thus
hard to detect (e.g., Adler and Lionheart (2006)), if the prior information is too detailed,
but does not describe the actual image.

The Total Variation (TV) of the `1 norm is known to work well to preserve intrinsic edges
in original images. However, `1 norm solutions are difficult because the objective function is
non-differentiable and cannot be efficiently solved with traditional linearization techniques.
Minimization of functions of TV norms normally uses iterative methods. The primal
dual interior point method (PD-IPM) was proposed (Chan et al., 1999) to solve the TV
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minimization problem by removing the singularity points which caused non-differentiability
before applying the linearization method. A mixed norm TV solution (Borsic et al., 2007)
for EIT was formulated as:

x̂ = argmin
x

‖y − Jx‖2
2 + ‖x− x0‖1 (6.4)

where ‖ · ‖2 is the `2 norm and ‖ · ‖1 is the `1 norm weighted by the TV prior.
Another attractive property of `1 solution is its resistance to data outliers. For the data

residue term, y−Jx, the `2 norm is highly sensitive to data outliers, because it assumes a
Gaussian distribution, which over weights the significance of large outliers. The `1 solution
is inherently more robust against outliers in measurements because it does not square each
measurement misfit. This property of `1 regularization is promising, especially for EIT,
because measurement errors constitute one of primary technical obstacles of clinical EIT,
where erroneous electrodes introduce severe artefacts (Asfaw and Adler, 2005).

We propose applying `1 regularization to both the data residual and the image prior;
the optimization problem becomes

x̂ = argmin
x

‖y − Jx‖1 + ‖x− x0‖1 (6.5)

A well known algorithm to the sum of `1 norms is Iteratively Reweighted Least Squares
(IRLS) (Scales et al., 1988). The IRLS method iteratively solves a weighted least squares
problem which begins as an `2 norm, and converges to the `1 norm solution.

6.3.3 Generalized `1 and `2 regularization with iterative method

A weighted and regularized inverse may be generally formulated as

x̂ = argmin
x

‖y − Jx‖pn

Σ−1

n

+ ‖x− x0‖px

Σ−1

x

(6.6)

where pn and px are the data and image norms and must be ≥ 1 for stability. The norm
subscript is the weight matrix, such that ‖x‖p

W =
∑

i

∑
j x

p/2
i Wijx

p/2
j . A weighted p

norm With pn = px = 2, both term use `2 norms, equivalent to (6.2), and denoted `2-`2.
With pn = 2, px = 1 it models the implementation of (6.4), and is denoted `2-`1. In this
chapter, a general iterative algorithm for (6.6) is developed, which allows flexible choice of
combinations of norms by simply choosing difference pn and px. A similar `k norm choosing
method can be found in works of Cetin and Karl (2001).
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(6.6) is reformulated in quadratic forms:

x̂ = argmin
x

(y − Jx)tDt
nΣ

−1
n Dn(y − Jx) + (6.7)

(x− x0)
tDt

xΣ
−1
x Dx(x− x0)

where Dn is a diagonal matrix in which

[Dn]i,i = ([|y − Jx|]i)
1
2
pn−1 . (6.8)

here | · | is the absolute value. Similarly, Dx is a diagonal matrix with

[Dx]i,i = ([|x− x0|]i)
1
2
px−1 (6.9)

Note that for pn = 2 or px = 2, Dn or Dx will be the identity matrix. When pn = 1 or
px = 1, [Dn]i,i = ([|y − Jx|]i)−

1
2 or [Dx]i,i = ([|x− x0|]i)−

1
2 . In order to remove singular

points where [|y − Jx|]i or [|x− x0|]i equal zero, (6.8) and (6.9) are modified as follows

[Dn]i,i = ([|y − Jx|]i + β)
1
2
pn−1 (6.10)

[Dx]i,i = ([|x− x0|]i + β)
1
2
px−1 (6.11)

where β is a small positive scalar.
This formulation leads to an iterative update expression for calculation of x̂; the k + 1

iteration x̂(k+1) is calculated from x̂(k) using

x̂(k+1) = x(k) +
(
JtW(x(k))J + λ2R(x(k))

)−1
(6.12)

JtW(x(k))
(
y − Jx(k)

)

where

W(x) = σ2
nDn(x)tΣ−1

n Dn(x) (6.13)

R(x) = σ2
xDx(x)tΣ−1

x Dx(x) (6.14)

6.4 Simulation

Four EIT reconstruction types were tested on the proposed algorithm: `2 norms on both
the data residue and the image prior parts (`2-`2); `2 norm on the data residue part and
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`1 norm on image prior (`2-`1); `1 on the data residue part and `2 norm on image prior
(`1-`2); `1 norm on both parts (`1-`1).

Algorithms were implemented for evaluation of 2D EIT problems using the EIDORS
software (Adler and Lionheart, 2006). Numerical simulations were conducted using an
FEMmodel with 576 elements. Illustrated as Fig. 6.1: 16 electrodes (marked as green dots)
were simulated surrounding the medium, using an adjacent stimulation and measurement
pattern. Inside this model, there were two inhomogeneous areas with conductivity 2.0,
while the background had conductivity 1.0. The noise performance of the algorithms was
tested by adding pseudo random, zero mean Gaussian noise with a fixed random seed.
NSR = 1% where NSR is the ratio of noise to signal power. Images were reconstructed
on a 1024 element model which differs from the simulation model to avoid the inverse
crime (D. Colton, 1998).

The proposed algorithm was tested with ten iterations. The TV prior was used for all
algorithms. Hyperparameters were chosen empirically for the best comprise between image
resolution and noise performance. If the `1 norm was applied on data residue, λ = 1.0,
elsewhere, λ = 0.01.
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Figure 6.1: Simulation finite element model with 576 elements. Electrodes are indicated by green
dots. The background and inhomogeneities have conductivities 1.0 and 2.0, respectively.
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6.5 Results

Images were calculated from simulation data using the algorithms discussed in this chapter.
Fig. 6.2, compares the reconstructed images from the various choices of `1 and `2 prior.
(a) is equivalent to the conventional GN method by choosing the `2-`2 norm combination.
When applied to the image prior, the `1 norm obtains better edge sharpness and less
artefacts than the `2 norm.

Figure 6.2: Images reconstructed using different `1 and `2 norms: (a)pn = 2, px = 2 (`2-`2),
(b)pn = 2, px = 1 (`2-`1), (c)pn = 1, px = 2 (`1-`2), (d)pn = 1, px = 1 (`1-`1).

In order to evaluate the data error robustness of the different norm types, data errors
(outliers) were deliberately introduced. Assuming that for certain electrode malfunction,
the measurement failure rate was 5% where electrodes cannot sense voltages. The measure-
ment failure happens randomly. In this simulation, this erroneous effect was implemented
by randomly choosing 10 (out of 208) data and set them as zeros. By repeating the same
reconstructions as Fig. 6.2, the corresponding “electrode-error” images are generated, and
shown in Fig. 6.3. When `2 norm is used for the data residue term, the reconstructed
image shows only noise (Fig. 6.3(a)(b)); however, with the `1 norm on the data residue
(Fig. 6.3(c)(d)) the reconstructed images are very similar to the error free case. This shows
high resistance of `1 solutions against data errors.
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Figure 6.3: Electrode error was added to data. Images reconstructed with different data norms:
(a)pn = 2, px = 2 (`2-`2); (b)pn = 2, px = 1 (`2-`1); (c)pn = 1, px = 2 (`1-`2); (d)pn = 1, px = 1
(`1-`1)

6.6 Discussion

EIT images reconstructed using an `1 norm formulation give two distinct advantages: edge
preservation (when `1 norm is applied to the image priors term), and error robustness (when
applied to the data residue term). However, one of advantages of `1 norm minimization
is that it gives a sparse solution which is not accurate when the targets occupies large
portion of the image. Another disadvantage is that the `1 norm formulation cannot be
computed as a linear one-step reconstruction due to non-differentiability. Thus, `1 norm
image reconstruction requires an iterative algorithm which is computationally efficient. In
this chapter, an efficient iterative method for EIT reconstruction is proposed, which allows,
arbitrary choice of data and image prior norms (pn and px) to be implemented. Results
suggest that `1 norms on both terms provide the best images in terms of image resolution
and robustness to data noise.
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Chapter 7

In Vivo Blood Characterization from
Bioimpedance Spectroscopy of Blood Pooling

7.1 Summary

This chapter is based on the paper– In Vivo Blood Characterization from
Bioimpedance Spectroscopy of Blood Pooling accepted by IEEE Transactions
on Instrumentation and Measurement in August, 2008. Authors are Tao Dai
and Andy Adler.

Characterization of blood impedance properties is important to estimate clinical diag-
nostic indices such as haematocrit, glucose level and hydration. Current in vivo bioimpedance
spectroscopy methods are performed on a body appendage and thus represent a combined
measurement of all tissues in the measurement field, rather than the blood individually.
This chapter describes a novel in vivo measurement technique to calculate bioelectrical
properties of blood while excluding the disturbances from surrounding tissues, based on
analysis of the impedance changes caused by blood accumulation. The forearm was mod-
elled as a cylinder containing anatomical structures such as skin-fat layer, muscles, bones.
Blood volume was modeled as the inner cylinder. A tetrapolar electrode system was applied
to a human forearm and the impedance curves measured with and without blood pooling
were processed to calculate the impedance parameters of arterial blood. The bioelectrical
parameters of blood were estimated by fitting the blood curve to a Cole-Cole model using
the Levenberg-Marquardt (LM) nonlinear curve fitting method. The approach proposed
was verified using an experimental phantom, an equivalent circuit model and a preliminary
human experiment. Results show that electrical properties of blood and surrounding tis-
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sues can be separated successfully. Of Cole-Cole parameters, the characteristic frequency fc

is the most reliable parameter to characterize blood bioelectrical properties. This method
may allow simplified measurement of blood characteristic parameters for many biomedical
and clinical monitoring applications.

7.2 Introduction

The bioimpedance measurements on humans have seen significant interest because of sev-
eral advantages, such as low cost, ease of application, non-invasiveness and capability
for on-line monitoring (Grimnes and Martinsen, 2000; Valentinuzzi, 1996). The original
bioimpedance technique was bioelectrical impedance analysis (BIA). Within a decade, this
technique evolved into the more advanced technique known as bioelectrical impedance spec-
troscopy (BIS), also called multiple-frequency bioimpedance analysis (MFBIA). BIS ap-
plies multi-frequency stimulations to measure body impedance, and has been used for
applications such as: body fluid measurement (Siconolfi et al., 1997; Thomas et al., 1992)
which estimates extracellular fluid (ECF), intracellular fluid (ICF) and total body water
(TBW); tissue volume change, such as the impedance plethysmography (Nyboer, 1970);
and tissue characterization which is mostly based on Cole-Cole model parameters (Cole,
1940): for example, normal and ischemic tissues were differentiated by comparing R0 and
fc (Casas et al., 1999); plasma resistance, intracellular resistance and cell membrane ca-
pacitance of blood were calculated using three measuring frequencies (Zhao et al., 1993).
Characterization of blood bioimpedance properties is of importance for the development
of methods estimating some clinical diagnostic indices such as haematocrit, glucose level
and hydration. However, current bioimpedance spectroscopy measurements of blood are
either in vitro (Zhao et al., 1993; Alison and Sheppard, 1993) or are performed on a body
appendage and thus represent a combined measurement of all tissues in the measuring
field (Brown et al., 1994), rather than the blood impedance value. In this chapter, we
propose an in vivo measurement strategy to calculate bioelectrical properties of arterial
blood based on the bioimpedance signal from blood pooling in forearm. This work extends
our previous conference publication(Dai and Adler, 2006).

Blood pooling methods were adopted to measure the fluid and blood volume change of
the abdomen, thigh, and calf of aircraft pilots (Khan and Guha, 2002; Ebert et al., 1986).
This method occludes veins to prevent blood flowing out of the segment being investigated.

In this chapter, we propose a novel scheme to measure blood impedance in vivo by
analyzing the difference of bioimpedance spectroscopies before and after blood pooling.
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By using this method, blood parameters can be separated from those of the surrounding
tissues.

7.3 Methods

We consider a tetrapolar impedance sensor applied to the human forearm so that an alter-
nating current enters the forearm from two injection electrodes and the voltage is measured
between two measurement electrodes. The physiological structure of this compartment is
relatively simple compared with other measuring sites (e.g., chest) and can be approxi-
mated with a cylindrical model (Figure 7.1).

Figure 7.1: A tetrapolar BIS sensor applied to a forearm model. The tetrapolar BIS sensor is
composed of a pair of current injectors (outer) and a pair of voltage sensors (inner). The forearm
is modelled as a cylinder which is composed of two axial compartments: blood and other tissues.
The conductivity distribution is uniform in the axial direction. The former simulate volume of
blood; the latter contains tissues in the forearm except for blood, e.g., muscle, fat. The volume
of blood increases due to blood pooling.

Blood volume is simulated as an inner cylinder and other tissues are simulated to be in
the outer cylinder. Due to blood accumulation, the cross section area of the inner cylinder
increases from Sa to Sa+∆Sa and the impedance of this segment decreases correspondingly
from Za to Za −∆Za. The fractional variation is thus ∆Za/Za = ∆Sa/Sa.

There are two states for blood volume: unconstrained: blood volume is minimum,
corresponding to impedance value Zs; blood accumulated: with an incremental volume
on top of the static volume, corresponding to a lower impedance value Zp. Based on
assumption that blood pooling does not change volume of surrounding tissues, the blood
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pooling model of a forearm can be described as three electrical components in parallel
(Figure 7.2).

Figure 7.2: In term of electrical structure, the forearm measured is modelled as three compo-
nents in parallel. Tissue and static blood are grouped as part I (with impedance ZI), while the
incremental blood is part II (with impedance ZII). During unconstrained status, the model is
represented by part I; during blood pooling, the model is part I paralleled with part II due to
infused blood volume.

The impedance measurements, Zs and Zp, originate from the tissue model (Figure
7.2) where tissue and static blood are represented by impedance ZI , and incremental
blood is represented by impedance ZII . During static status, Zs = ZI , while after blood
accumulation, Zp = ZI‖ZII .

Traditionally, a bioimpedance locus of a tissue can be analyzed using Cole-Cole model.
According to Cole (1940), a bioimpedance spectrum can be fitted to the Cole-Cole equation,
given by (7.1), (illustrated as Figure 7.3)

Zib(f) = R∞ +
∆R

1 + j(f/fc)1−α
(7.1)

where R∞ is the resistance at infinite frequency; ∆R = R0−R∞, where R0 is the resistance
at zero frequency; fc is the characteristic frequency of the tissue or model under analysis;
and α is the constant depending on the heterogeneity of the tissue, where 0 represents
completely homogeneous and 1 completely heterogeneous tissue.

The Cole-Cole curve of the incremental blood (part II, in Figure 7.2) is calculated from
two measurements: 1) the impedance spectrum Zs(f) = ZI before blood pooling, and 2)
the impedance spectrum Zp(f) = ZI‖ZII after blood pooling. Based on these data the
incremental blood impedance spectrum Zib(f) = ZII is calculated by

Zib(f) =
Zs(f)Zp(f)

Zs(f)− Zp(f)
(7.2)
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Figure 7.3: Cole-Cole plot in the complex impedance plane

which is derived from the parallel circuit illustrated by Figure 7.2. The calculated Zib(f)

is blood-related only.
Theoretically and without noise, four independent equations are needed to calculate

four Cole-Cole parameters. However, due to the data noise, solving the parameters from
the theoretically minimal data set would result in large errors. It is thus necessary to use a
method which calculates an approximate solution which fits the all of the measured data.
In practice, Cole-Cole approximation is accomplished by curve fitting of experimental data
to a semi-circular arc in the complex impedance plane, illustrated as Figure 7.3. In this
chapter, data were fitted using the Levenberg-Marquardt (LM) algorithm (Moré, 1977).
The Cole-Cole model reduces a complex impedance spectrum to four parameters that
can be interpreted as physical properties of the tissue under study. The resulting model
parameter vector is m = [R0, ∆R, fc, α].

Of the Cole-Cole parameters obtained, R0 and R∞ are blood properties, as well as func-
tions of body segment geometry and electrode configuration, e.g., body segment geometric
changes, electrode movement, and blood pressure changes; while fc and α are functions of
blood properties alone. However, α is known to be sensitive to variability in measurements,
and relatively insensitive to variations in tissue properties, while fc is relatively stable with
respect to measurement geometry changes and more sensitive to tissue property variations
(Casas et al., 1999). This suggests that fc is the most discriminating parameter for charac-
terizing blood bioimpedance properties. R0, R∞, ∆R and the ratio R0/R∞ are also helpful
if careful calibrations are made.
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7.4 Methods: experimental

In order to verify the approach presented, we conducted two experiments: the experimental
phantom measurement and the equivalent circuit simulation. Their objectives were to
model blood pooling behavior in the forearm and estimate the parameters of interest. A
preliminary human experiment is discussed in the Section 7.6.

7.4.1 Experimental Phantom

An experimental phantom was built to model the forearm structure and blood accumulation
behavior (Figure 7.4). A piece of skinned porcine meat (size: 28 cm×14 cm×4 cm) was
taken from cold storage and placed in room environment (24 ℃ and 64% humidity) for at
least six hours to reach a stable temperature in order to eliminate the temperature drift.
A groove (length= 25 cm, width=height= 2 cm) was cut at the position which was about
one third of the meat width. A stick of porcine liver was cut to fill the groove. The meat
base is to simulate the unconstrained status of the forearm; the porcine liver is filled to
the groove to simulate infused blood after pooling.

Figure 7.4: Tissue phantom with a tetrapolar BIS sensor applied on the meat surface (background
removed from this figure). The phantom was made of a porcine meat base, with a groove cut in it.
A filling of porcine liver was filled in the groove. The meat base is to simulate the unconstrained
status of the forearm; the porcine liver is filled in the groove to simulate infused blood after
pooling.

The goal of this experiment was to validate the approach developed in this chapter.
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From two sets of BIS data of the phantom (measured on meat base with and without liver
filling), we estimate the bioelectrical properties of the liver. This corresponds to the model
scenario: from two sets of BIS data measured on the forearm (with and without blood
accumulation), we calculate the bioelectrical properties of blood.

Four skin electrodes were placed equidistantly onto the surface of the meat, illustrated
as Figure 7.4. The inner pair were voltage sensors and the outer pair were current injec-
tors. BIS data were collected from 5 kHz to 1 MHz (at 50 frequencies, logarithmically
distributed) by an impedance analyzer (Xitron 4200 ECF-ICF Bioimpedance Analyzer,
Xitron Technologies, San Diego, CA, USA).

Firstly, BIS data were measured from the isolated liver filling and Cole-Cole parameters
were calculated as the standard to be compared with those of estimated. BIS data were
then measured from the meat base with and without liver filling. Cole-Cole parameters
were estimated from the measured data using the proposed method. Finally, estimated
parameters were compared to the standard parameters obtained initially.

Three pieces of phantom base were tested and each had three liver sticks as fillings.
Totally nine experiments were conducted.

7.4.2 Equivalent Circuit Modeling and Simulation

A equivalent circuit model was built using electronic components (resistors, capacitors and
inductors). This circuit was designed to simulate a biomaterial structure with a cylindrical
model (Figure 7.1) based on the following geometric configuration: this model was 5cm

long with a cross-section area 1cm2; it was composed of muscle (49%), fat (49%) and blood
(2%), where numbers in parentheses were fractions of the cross-section area (other tissues
were ignored for simplicity); blood volume increased by 10% after blood accumulation.

The dielectric properties of tissues are εr (ω) and σ (ω), where εr and σ are relative
permittivity and conductivity, respectively; ω is the angular frequency. εr (ω) and σ (ω)

were obtained from these reported values: 1) blood (rabbit, in vitro, Gabriel et al. (1996a));
2) muscle (bovine, paravertebral cut along muscle fibres, in vitro, Gabriel et al. (1996b));
3) fat (human, in vitro, Gabriel et al. (1996b)). All dielectric data were sampled from
the figures in the cited papers and interpolated along 44 points logarithmically distributed
from 5 kHz to 10 MHz.

The electrical equivalent circuit of certain tissue can be represented by its conductive
and capacitive components in parallel (Ivorra, 2002). Each tissue is modelled as a RC
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parallel pair.
Y = S + jωC (7.3)

where Y is the admittance, S is the equivalent conductance and C is the equivalent capac-
itance. Values of components were calculated by model geometric and dielectric properties
described above, using C = Kε0εr (ω) and S = Kσ (ω). K = A/l is the geometric scale
where A is the tissue cross-section area and l is the length. At 5 kHz, the equivalent circuit
of the biomaterial compartment and corresponding components values are illustrated in
Figure 7.5.

Figure 7.5: units: resistors–Ω; capacitors–F . The equivalent circuit of a cylindric biomaterial
compartment is composed of muscle, fat, blood and incremental blood. Each element is approx-
imated as an RC parallel pair. Component values were calculated from material composition,
geometrical configuration and tissue dielectric properties.

7.5 Results

This section presents the results of two experiments described in section 7.4. Estimated
parameters were compared with standard values, and the estimation accuracy was investi-
gated.

7.5.1 Experimental Phantom

Three pieces of skinned porcine meat (denoted as 1,2,3) were tested as phantom bases and
each had three liver sticks as fillings (denoted as a,b,c). Results were obtained from nine
experiments.
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Illustrated in Figure 7.6(a), two BIS measurements (each was the time averaging of ten
consecutive sweeps), Zbase(f) with and without liver filling, were made and the estimated
liver BIS curve was illustrated in Figure 7.6(c), marked as ∗. By fitting this curve using
a 1st order Cole-Cole model (Figure 7.6(c), solid line), the liver’s Cole-Cole parameters
were calculated and compared with those of the previously measured original liver (Figure
7.6(b), time averaging of ten consecutive sweeps). After being normalized, the original and
the estimated liver Cole-Cole curves were compared in Figure 7.6(d). Normalization was
performed by dividing real and imaginary parts of impedance by the maxima of real and
imaginary values, respectively. The error between the original Cole-Cole model parameters
m0 = [R0, ∆R, fc, α] and the estimated parameters m̂ = [R̂0, ∆̂R, f̂c, α̂], was calculated
through e = ((|m̂−m0|)./m0)× 100%.

The inductive effect, illustrated as the sub-ripple at the high frequency end (Figure
7.6(b)7.6(c)), can be observed in many real measurements even on homogenous tissues
(Lafargue et al., 2002). In our measurements, this effect was also observed above 400 kHz.
Although this additional effect could still be fitted well by using the ECFC (Extended
Cole-Fricke-Cole) model (Lafargue et al., 2002), we chose to fit 40 frequencies (5 kHz to
339 kHz) to avoid fitting the high frequency subripple, without affecting simulation results.
As listed in Table 7.1, The average parameter estimation errors (µe) of [R0, ∆R, fc, α] are
[22.35%, 15.85%, 5.99%, 22.79%], respectively. Compared with other parameters, fc has a
much lower error level and a much narrower standard deviation.

7.5.2 Equivalent Circuit Modeling and Simulation

According to measurements made (Gabriel et al., 1996a), fc of blood (rabbits, in vitro,
room temperature) was about 4.132 MHz which was approximated as the frequency where
the value f × εr was the maximum. White Gaussian noise was added into simulation data
to test noise performance of the method. We defined nsr as the ratio of noise standard
deviation to the amplitude of difference impedance signal. Without noise interference
(nsr = 0), the Cole-Cole curve of blood was calculated and then fitted by a 1st order Cole-
Cole model, the fitted f̂c was 4.2546 MHz with 2.97% error compared with the standard
fc (4.132 MHz), illustrated by Figure 7.7.

As noise increased, the simulated data no longer showed a consistent pattern and made
curve-fitting inaccurate. Figure 7.8 illustrated a successful curve-fitting when nsr = 0.05.
However, when the nsr was increased further, the nonlinear curve fitting could not converge
to a reasonable solution. This is determined in the nonlinear curve fitting process by an
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Figure 7.6: A representative phantom measurement. (a) Cole-Cole curves of the meat base
Zbase(f) without (′∗′) and with (′+′) liver filling; (b) The original Cole-Cole curve of porcine
liver stick, Zliver(f), was fitted in a 1st order Cole-Cole model; The measurement curve and the
fitted curve were represented by ′∗′ and solid line, respectively. (c) From data obtained in (a), the
estimated Cole-Cole curve of porcine liver Ẑliver(f) was calculated using the proposed method.
It was fitted in a 1st order Cole-Cole model. The measurement curve and the fitted curve were
represented by ′∗′ and solid line, respectively. (d) The fitted Zliver(f) (′×′) and Ẑliver(f) (′◦′)
were normalized.

extraordinarily large cost function value even after sufficient regression steps.
One practical approach to reduce noise is time averaging where nsr will be decreased by

a factor of
√

N for independent noise, where N is the number of data sets being averaged.
Figure 7.9 showed the normalized estimation error ( f̂c−fc

fc
× 100%) as a function of nsr

and N , where 100 independent trials were conducted and means/standard deviations were
plotted in the error bar form. For low nsr, the estimation errors were below 10%, but
jump dramatically when the noise exceeded a certain level, as illustrated in Figure 7.9.
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Table 7.1: Estimated (m̂) v.s Original (m0) Cole-Cole Parameters:
Measurements were made on three phantom bases (denoted as 1,2,3) and each of which had three
liver sticks as fillings (denoted as a,b,c). With the smallest estimation error mean µe and error
standard deviation δe, fc is a good candidate to characterize blood electrically.

R0(Ω) ∆R(Ω) fc(kHz) α

m0 m̂ err(%) m0 m̂ err(%) m0 m̂ err(%) m0 m̂ err(%)
a 1682 1530 9.04 1010 1003 0.69 157 141 10.2 0.304 0.261 14.0

1 b 2086 1512 27.5 1277 1041 18.5 155 162 4.52 0.319 0.261 18.2
c 1302 1678 28.9 835 878 5.15 140 145 3.57 0.320 0.269 15.9

a 1557 2076 33.3 964 943 2.18 189 157 16.9 0.301 0.251 16.7
2 b 1796 1986 10.58 1185 854 27.9 149 133 10.7 0.329 0.233 29.2

c 1369 1545 12.9 918 886 3.49 182 181 0.55 0.294 0.276 6.12

a 1651 1273 22.9 1455 770 47.1 149 150 0.67 0.438 0.316 27.8
3 b 1535 2028 32.1 875 668 23.7 193 195 1.04 0.263 0.153 41.9

c 2088 1590 23.9 1279 1100 14.00 155 164 5.81 0.317 0.206 35.0

µe(%) 22.35 15.85 5.99 22.79
δe(%) 9.30 15.32 5.58 11.41
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Figure 7.7: Blood impedance curve calculated from circuit simulation (denoted as ′∗′) and fitted
with a 1st order Cole-Cole model (solid line). Points of fc had been circled out on curves. The
estimated f̂c was 4.2546 MHz with 2.97% deviation to the true fc, where nsr = 0.
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Figure 7.8: Blood impedance curve calculated from circuit model with nsr = 0.05 (denoted as
′∗′) and fitted with a 1st order Cole-Cole model (solid line). The estimated f̂c was 4.4874 MHz,
8.60% deviation to the true fc.

7.6 Discussion

This chapter introduces a method to measure differential blood impedance curve by pro-
cessing bioimpedance spectroscopy data before and after blood pooling. This technique
offers the advantage that the blood impedance curve is caused by a single medium, blood,
while the global impedance signal is composed of all tissues lying in the field of view. Pa-
rameters (such as fc) of this blood curve may be more accurate for blood characterization,
compared with those from curves such as Zs(f) or Zp(f) which are generated from multiple
tissues due to heterogeneity in the measuring field.

To perform a preliminary in vivo validation of this technique, we conducted a blood
pooling experiment on a human subject. A resting, healthy adult was seated with his left
forearm resting on the table, the elbow approximately at the level of the heart. A tetrap-
olar sensor was applied on the forearm (Figure 7.10). The distance between two current
injection electrodes was 15 cm and that of two voltage measurement sensors was 10 cm.
BIS data were collected from 50 kHz to 1 MHz using the impedance analyzer (Xitron
4200 ECF-ICF Bioimpedance Analyzer, Xitron Technologies, San Diego, CA, USA). A
cuff from a blood pressure meter was applied to the upper arm. The first BIS data set
was measured before blood pooling (Figure 7.11(a), ′∗′) and then the cuff pressure was
increased to 100 mmHg which was between the normal systolic pressure and diastole pres-
sure. This enabled the blood pooling which let arterial blood flow into the forearm but
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Figure 7.9: The error between the estimated characteristic frequency f̂c and the true fc is highly
related to noise levels: above certain noise level, the f̂c is not a good estimate of the true fc.
However, time averaging applied on measurement data largely increases noise tolerance of the
approach. Without averaging (¤) the maximum noise level which could achieve reasonable esti-
mations (≤ 10%) was NSR≤ 0.05; with N = 10 (¦) and N = 100 (◦), the maximum noise levels
increased to NSR= 0.1 and 0.3, respectively. As illustrated, the maximum noise level which could
achieve reasonable estimations (≤ 10%) was about 30% with time averaging on 100 measurements
(◦), while was only about 5% for the case without time averaging (¤).

prevented venous return. The second BIS measurement was conducted after fifteen sec-
onds of blood pooling (Figure 7.11(a), ′+′). Blood spectroscopic values were calculated
from those data using the method proposed in this chapter (Figure 7.11(b)). There are
clear differences between the impedance magnitudes in the human experiment (Figure 7.11)
and the equivalent circuit simulation (Figure 7.7). These differences arise from the different
geometries: compared with the volunteer’s forearm, the simulation is geometrically thinner
(inter-electrode distance of 5 cm with cross-section area of 1cm2 for the model vs 10 cm
and approximately 100cm2, respectively, for the arm). Additionally, the dielectric tissue
properties and blood/body fraction in the arm are unknown, and differ from the model.

The characteristic frequency of human blood is about 1 ∼ 3 MHz (Kanai et al., 1987;
Zhao et al., 1993; Gabriel et al., 1996c). The impedance analyzer we used (Xitron 4200
ECF-ICF Bioimpedance Analyzer) can only measure up to 1 MHz. However, given that this
experiment was a preliminary exploration of the proposed technique’s in vivo applicability,
we can obtain some useful conclusions. As illustrated in figure 7.11(b), the fitted curve
can not show a full arc since the data measured are incomplete. Although we are not
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Figure 7.10: A preliminary blood pooling experiment on human arm. A tetrapolar BIS sensor
applied on the forearm. Two impedance spectroscopic curves were obtained before and after blood
pooling. The upper arm is clamped by a cuff of a blood pressure meter.

able to determine where exactly the fc is, the BIS curve of blood evidently shows that the
characteristic frequency is at least 1 MHz, because the curve does not reach the highest
reactance level which is specified as fc (illustrated as Figure 7.3). This is consistent with
previous reports (Kanai et al., 1987; Zhao et al., 1993; Gabriel et al., 1996c).

Some previous work is related to the method we propose. Yamakoshi et al. (1980)
showed that the changes in the admittance produced by pulsatile signal in the human fin-
ger dipped in the electrolyte vanished when the conductivity of the electrolyte was equal
to that of the blood. However, this method was limited by strict experimental conditions.
Brown et al. (1994) tried to characterize cardiac related impedance wave measured in the
chest and found inappropriate low values of fc while comparing resulting Cole-Cole param-
eters with those of blood. They demonstrated that the cardiac related impedance wave was
not from blood alone but a structure like “blood-tissue” parallel pair and this impedance
spectrum could be misleading if used directly for blood characterization. Similar work can
be found from Khan and Guha (2002) who carried out blood pooling on a human calf to
check bioelectrical variations.

In a blood pooling method such as we propose, the length of the occlusion is a key
parameter. Occlusion must be long enough to provide sufficient signal (via the volume
of pooled blood). However, too long occlusion results in changes in blood properties via
decreased blood O2 saturation, as well as inconvenience to the subject. We selected an
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Figure 7.11: The results of the preliminary human subject experiment. The data were measured
from 50 kHz to 1 MHz. (a) Cole-Cole curves were measured before (′∗′) and after (′+′) blood
pooling; (b) The Cole-Cole curve of blood, in ′∗′, was calculated from (a) and was fitted in a 1st

order Cole-Cole model (solid line). The blood curve is not sufficient to calculate the accurate fc

due to measurement device constraint, however, it shows that the characteristic frequency is at
least 1 MHz.

occlusion time of 15s as a compromise. In this chapter, we show that for NSR ratios below
5%, the proposed method is able to calculate reasonably accurate estimates of the blood
impedance values. In order to clarify the magnitude of acceptable noise, we first note that
bioimpedance measurements are subject to noise from electromagnetic interference, elec-
trode contact impedance, geometrical errors, movement artefacts, and instrument common
mode rejection ratio (CMRR). Since this scheme proposes analysis from measurements at
the same site close together in time, the electrode contact impedance and geometrical errors
may be assumed to be small (since the patient may be assumed to be motionless during
measurement). From the results of figure 7.11, measured impedance is approximately 50 Ω,
and decreases by 3 Ω due to blood pooling. Considering a stimulation current 1 mA, this
gives a difference signal of 3 mV with a common mode level of 50 mV. Since the electro-
magnetic interference signal may be reduced by averaging and use of advanced cabling, the
noise is limited by the instrument CMRR, which may be considered to be about 60 dB
below 10 MHz for this instrument. In this case, we estimate NSR is 50×10−60/20/3 = 1.7%

which is well below 5%. This approximate analysis (and our preliminary human experi-
mental results) suggests that this technique is able to achieve sufficiently low NSR levels
to be practically feasible.

In conclusion, we proposed a novel scheme to calculate in vivo properties of blood
based on measurements of the blood accumulation induced differential BIS signals. The
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calculated blood curve was fitted using nonlinear curve fitting method and a simple first
order Cole-Cole model. Results show that fc is a reliable parameter to characterize blood
bioelectrical property in vivo. This method may potentially allow simplified in vivo mea-
surement of blood parameters for many biomedical monitoring applications and clinical
diagnoses.
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Chapter 8

Conclusion and Future Work

Electrical impedance tomography (EIT) is a non-invasive imaging modality with signifi-
cant potential clinical applications. Due to merits such as high temporal resolution, low
cost, portability. EIT has the potential to be widely applied in medical, industrial and geo-
physical areas. On the other hand, EIT is severely ill-conditioned and suffers from model
errors, such as imperfect body shape meshes, deformation of the subject being measured.
In addition, measurement disturbances, such as electrode movement and malfunction, also
degrade qualities of reconstructions.

This thesis aims at the improvement of EIT in terms of the image quality and ro-
bustness against system errors/measurement noise, by developing advanced regularization
frameworks.

8.1 Conclusions

The aims of this thesis are achieved as follows:

• Introduction of a novel temporal regularization method.

This method builds a temporal model and directly formulates the temporal inverse in
terms of a single regularized expression. This method is illustrated to attain effective
lowered artefacts and noise in reconstructions.

• The development of a 4D spatial prior.

On top of the temporal regularization, a novel exponential model considering element
spatial correlations is proposed based on: 1) weighted sensitivity, 2) an exponential
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model of inter-element correlations, and 3) a smoothness constraint for poor sensi-
tivity regions. The spatial prior model counts the spatial variation as a random walk
process and calculate the inter-element correlation that is independent of element
size. Besides merits of the temporal regularization, enhanced image resolution is also
illustrated through numerical simulations.

• The development of temporal regularization on both conductivity change and elec-
trode movement.

Images of the conductivity change and electrode movement are calculated in a sin-
gle step from sequences of EIT data around the current frame. Besides the internal
conductivity distribution, variation of boundary shapes is also treated as highly cor-
related elements. Thus the influence from boundary element movement is effectively
removed.

• The development of a generalized iterative reconstruction using the `1 norm regular-
ization.

EIT images reconstructed using `1 norm minimizations give two distinct advantages:
edge preservation (when `1 norm is applied to the image priors term), and error
robustness (when applied to the data residue term). An efficient iterative method
for EIT reconstruction is proposed, which allows, arbitrary choice of data and image
prior norms to be implemented in LS means or `1 means. Results suggest that `1

norms on both terms provide the best images in terms of resolution and robustness
to data defects.

8.2 Future work

During the research period of generating all contents of this thesis, many interesting sub-
jects related to main topics are concerned. Although beyond the scope of this thesis, some
ideas have already been preliminarily explored. The following subjects are most significant
areas of future work that definitely benefit improving the capabilities and integrity of EIT
reconstruction algorithms.

• 4D regularization on multi-frequency EIT

By introducing frequency dimension to data, the multi-frequency EIT is also known
as spectroscopic EIT. It is well-known that tissues can be well characterized through
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certain bioelectric model, e.g., Cole-Cole model (One of example is illustrated in this
thesis– Chapter 7: “In vivo Blood Characterization from Bioimpedance Spectroscopy
of Blood Pooling”). Each image element can be described as certain characterized
tissue parameter instead of traditional conductivity change. The advantage is signif-
icant:

1. Certain characterized parameters are not sensitive to tissue deformation, but only
determined by tissue properties. e.g., the characteristic frequency fc, as discussed in
the Chapter 7. Therefore, data are collected without significantly affected by patient
gesture change and hence avoid movement artefact.

2. It is well-known that bioimpedance spectroscopy (BIS) is good at early stage
cancer detection.

3. The integration of the 4D regularization and spectroscopic measurement can
largely enhance imaging accuracy of EIT.

• All-element movement model

In Chapter 5, we investigated temporal regularization on electrode movement model.
As we understand, the electrode movement model (Soleimani et al., 2006a) is a sub-
set of the all-element movement model. When one is investigating a “deformable”
medium, actually all elements within this medium, not only the boundary elements,
have displacements. A preliminary numerical simulation has been done on modeling
movements of all medium elements, as part of reconstruction parameters. Significant
imaging enhancements have been observed compared with the partial model.

• Variable step size iterative reconstruction.

In Chapter 6, a nonlinear iterative reconstruction provides an efficient solution to
solve `1 norm regularizations. For iterative method, two primary concerns of evalu-
ating algorithm quality are convergence speed and misadjustment (refer to Appendix:
A). Adopting a variable step size is widely used, in order to achieve both fast conver-
gence speed and low misadjustment. This effect is sufficiently illustrated in Appendix:
A by investigating the VS-APA algorithm. For simplicity, in Chapter 6, a fixed step
size is used. We anticipate prominent algorithm optimization by using a properly
designed scheme of a variable step size.
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Appendix A

Variable Step-Size Affine Projection Algorithm
with a Weighted and Regularized Projection
Matrix

EIT reconstruction is a system identification problem. The reconstruction methods include
linearized one-step solution and nonlinear iterative solution. This appendix describes one
of research works of the author in adaptive regression area for system identification.

A.1 Summary

This appendix is based on the paper Variable Step-Size Affine Projection Algo-
rithm with a Weighted and Regularized Projection Matrix which is submitted
to International Journal of Signal Processing by Tao Dai, Andy Adler and
Behnam Shahrrava in January, 2008.

This appendix presents a forgetting factor scheme for variable step-size affine projection
algorithms (APA). The proposed scheme uses a forgetting processed input matrix as the
projection matrix of pseudo-inverse to estimate system deviation. This method introduces
temporal weights into the projection matrix, which is typically a better model of the real
error’s behavior than homogeneous temporal weights. The regularization overcomes the
ill-conditioning introduced by both the forgetting process and the increasing size of the
input matrix. This algorithm is tested by independent trials with coloured input signals
and various parameter combinations. Results show that the proposed algorithm is superior
in terms of convergence rate and misadjustment compared to existing algorithms. As a
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special case, a variable step size NLMS with forgetting factor is also presented in this
appendix.

A.2 Introduction

Adaptive signal processing algorithms have been widely used in numerous applications,
such as noise cancelation, system identification and data feature extraction. These algo-
rithms are designed to minimize a performance cost function. The Least Mean Squares
(LMS) algorithm (Widrow and Stearns, 1985; Haykin, 2002), based on minimizing Mean
Squared Error (MSE), is a common algorithm of this type. The Normalized Least Mean
Squares (NLMS) (Nagumo and Noda, 1967) algorithm is one of the most widely used adap-
tive algorithms because of its computational simplicity and robustness. However, highly
correlated/colored input signals can deteriorate the convergence rate of LMS type algo-
rithms (Widrow and Stearns, 1985). Recursive Least Squares (RLS) algorithm (Orfanidis,
1985) is known for fast convergence even with colored inputs, however, with cost of
higher computational complexity. The Affine Projection Algorithm (APA)was proposed
by Ozeki and Umeda (1984) using affine subspace projections. As the generalization of
the NMLS, the algorithm applies de-correlation of the input process to speed up the con-
vergence, without evident increase of computations and instability problems met by RLS
(Yu and Bouchard, 2001). A Fast Affine Projection (FAP) was proposed by Gay and Tavathia
(1995) for acoustic echo cancelation. Shin and Sayed (2003) provided a unified treatment
of the transient performance of the APA family. Sankaran and Beex (2000) analyzed con-
vergence behaviors of the APA class.

In conventional LMS, NLMS, and APA algorithms, a fixed step size µ governs the trade-
off between the convergence rate and the misadjustment. To realize both fast convergence
and low steady-state deviation, a variable step (VS) is necessary. Harris et al. (1986) used
a feedback coefficient based on the sign of the gradient of the squared error; Mader et al.
(2000) proposed an optimum step size for NLMS; Shin et al. (2004) proposed a criterion
to measure the adaptation states and developed a variable step-size APA based on this
criterion.

In this appendix, a forgetting factor method for the variable step size affine projection
algorithm is presented. This approach uses a forgetting factor processed input matrix as
the projection matrix of pseudo-inverse to estimate weights deviation. Compared with
existing algorithms, it significantly improves convergence performance in terms of speed
and misadjustment. However, as the input matrix size increases, especially when forget-
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ting process is introduced, the matrix singularity deteriorates and makes the projected
error inaccurate. The regularization method resolves this problem and it gives further
improvement over the previous method.

A.3 Methods

A.3.1 Optimal Variable Step-Size APA

The Affine Projection Algorithm (APA)(Ozeki and Umeda, 1984) updates the weight vec-
tor w via

wi = wi−1 + µU∗
i (UiU

∗
i )−1 ei (A.1)

where

Ui =




xi

xi−1

. . .

xi−K+1


 di =




di

di−1

. . .

di−K+1


 wi =




w0,i

wi,i

. . .

wL−1,i




The subscript i is the time index corresponding to the ith sampling instant; K is the APA
order or signal window width; L is filter order; wi ∈ RL×1 is the filter weights vector;
xi ∈ R1×L is the input vector; di is the desired signal; µ is the step size; The error signal
is ei = di − Uiwi−1; the superscript asterisk denotes complex conjugation.

The system input vector, xi, and the desired scalar output, di, are related by

di = xiw
◦ + vi (A.2)

where w◦ ∈ RL×1 is an unknown vector to be estimated. v is a zero mean Gaussian noise
sequence. x and v are independent.

Shin et al. (2004) proposed the optimal variable step-size APA (VS-APA) in which
(A.1) can be written as

w̃i = w̃i−1 − µU∗
i (UiU

∗
i )−1 ei (A.3)

where w̃i = w◦ −wi.
pi , U∗

i (UiU
∗
i )−1 Uiw̃i−1 (A.4)

which is the projection of w̃i−1 onto <(U∗
i ), the range space of U∗

i . Based on the definition
of p,

E [pi] = E
[
U∗

i (UiU
∗
i )−1 ei

]
(A.5)
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where E (·) is the expectation operator. Shin et al. (2004) selected the optimal adaptive
filter as the minimizer of ‖pi‖. For this case,

pi = U∗
i (UiU

∗
i )−1 ei (A.6)

and can be estimated as follows:

p̂i = αp̂i−1 + (1− α)pi (A.7)

by a smoothing factor α, 0 ≤ α < 1. Then the variable step-size APA becomes

wi = wi−1 + µiU
∗
i (UiU

∗
i )−1 ei (A.8)

where
µi = µmax

‖p̂i‖2

‖p̂i‖2 + C
(A.9)

and ‖ · ‖ denotes the Euclidean norm of a vector. For a positive constant, C is related to
σ2

vTr{E[(UiU
∗
i )−1]}, which can be approximated as K/SNR. Here the Tr (·) is the trace

of a matrix. When ‖p̂i‖2 is large, wi is far from w◦ and µi is close to µmax; when ‖p̂i‖2 is
small, wi approaches w◦ and µi is close to zero.

A.3.2 Optimal Variable Step Size APA with Forgetting Factor

In this section, a variable step size APA with a forgetting factor λ is proposed. The
motivation is similar as that of the RLS algorithm. Choosing a value for λ that is less
than one introduces memory into the the structure of matrix Ui, because such a weighting
scheme would assign relatively larger weights to recent input samples and smaller weights
to input samples in the remote past.

One entry of the input matrix Ui is generally denoted as xi−k−l that is in the (k + 1)th

row and (l + 1)th column of Ui for k = 0, . . . , K − 1 and l = 0, . . . , L− 1.
By introducing a forgetting factor λ, where 0 < λ ≤ 1, and multiplying every element

in Ui by λk+l, a new observation matrix Qi is introduced where its elements are given by

qi−k−l = λk+lxi−k−l, (A.10)

where qi−k−l denotes the element in row k + 1 and column l + 1 of Qi for k = 0, . . . , K − 1

and l = 0, . . . , L− 1.
For simplicity, by decomposing the factor λk+l into two terms, (A.10) can be rewritten

as follows:
qi−k−l = λkxi−k−lλ

l. (A.11)
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Then (A.11) can be written in matrix form as

Qi = Λ(K)UiΛ
(L), (A.12)

where Λ(K) = diag(λ0, λ1, . . . , λK−1) and Λ(L) = diag(λ0, λ1, . . . , λL−1). Note that Λ(K)

can be considered as a column operation on matrix Qi that assigns larger weight to recent
regressors. Whereas, Λ(L) is for row operation on Qi which assigns larger weights to recent
element of each regressor.

In this way, the filter has a tracking mechanism that can track slow statistical variations
of the measured data. Since the weighting scheme gives recent data more significance, the
algorithm is sensitive to system dynamics (Haykin, 2002).

Two algorithms are preliminarily proposed by replacing Ui by Qi in (A.8) and (A.6) as
follows:

Algorithm 1:

wi = wi−1 + µiQ
∗
i (QiQ

∗
i )
−1 ei (A.13a)

µi = µmax
‖ĥi‖2

‖ĥi‖2 + C
(A.13b)

ĥi = αĥi−1 + (1− α)hi 0 ≤ α < 1 (A.13c)

Algorithm 2:

wi = wi−1 + µiU
∗
i (UiU

∗
i )−1 ei (A.14a)

µi = µmax
‖ĥi‖2

‖ĥi‖2 + C
(A.14b)

ĥi = αĥi−1 + (1− α)hi 0 ≤ α < 1 (A.14c)

where in both algorithms
hi , Qi

∗ (QiQi
∗)−1 ei (A.15)

As seen, the only difference between these two algorithms is that, in the Algorithm 2, Ui

is only replaced by Qi during the error evaluation phase (A.6), not during the weights
updating phase (A.14a). The Algorithm 1 is not recommended because: replacing Ui by
Qi during the both phases introduces possible convergence instability. This is discussed in
details in the section A.4.

The algorithm 2 is the proposed variable step size affine projection algorithm with
a forgetting factor (VS-APA-FF). A special case is the variable step size NLMS with
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forgetting factor (VS-NLMS-FF). This can be obtained by setting K = 1 when the input
matrix Ui is a row vector and the forgetting factor processing is implemented only in the
row direction as follows:

Qi = UiΛ
(L). (A.16)

A.4 Algorithm Stability Analysis

The convergence behavior of the general form of APA class had been investigated by
Sankaran and Beex (2000). Ikeda (2002) derived the convergence rates of the APA family
for both white and the coloured signals. As proofed in (Sankaran and Beex, 2000), µ ∈
(0, 2) is a necessary and sufficient condition for the APA class to be stable; when µ = 1,
the algorithm conducts the fastest convergence. Therefore, the proposed variable step size
APA with forgetting factor (VS-APA-FF), (Algorithm 2), guarantees stability as long as
the initial step size is within (0, 2) (Sankaran and Beex, 2000).

To investigate the effect of introducing the forgetting scheme on the weight update, the
convergence behavior of the traditional fixed step size APA (Haykin and B.Widrow, 2003)
is firstly investigated:

wi = wi−1 + µU∗
i (UiU

∗
i )−1ei (A.17)

Subtracting both sides of (A.17) from w◦ leads to the following weight-error recursion:

w̃i = [I − µU∗
i (UiU

∗
i )−1Ui]w̃i−1 (A.18)

where I is an L× L identity matrix.
The singular value decomposition (SVD) of the input matrix U is given by

U = RΣV ∗ (A.19)

where R and V are K ×K and L×L unitary matrices respectively, and the K ×L matrix
Σ is defined as

Σ =
[

S 0
]

(A.20)

where S is a diagonal matrix,

S = diag(σ1, σ2, . . . , σK). (A.21)

and the σ’s which are called the eigenvalues of U are positive square roots of the eigenvalues
of UiU

∗
i and are usually ordered in a decreasing manner, σ1 ≥ σ2 ≥ . . . ≥ σK > 0.
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Substituting (A.19) into (A.18) gives

w̃i = Vi[I − µΣ∗
i (ΣiΣ

∗
i )
−1Σi]V

∗
i w̃i−1. (A.22)

Multiplying on the left by V ∗
i then gives

V ∗
i w̃i = [I − µΣ∗

i (ΣiΣ
∗
i )
−1Σi]V

∗
i w̃i−1. (A.23)

In this result, let define the rotational coefficient error vector as w̆i = V ∗
i w̃i and write

w̆i = [I − µΣ∗
i (ΣiΣ

∗
i )
−1Σi]w̆i−1 (A.24)

Now each element of w̆i converges at its own rate, which is determined by the correspond-
ing eigenvalue of the transformation matrix Ti = [I − µΣ∗

i (ΣiΣ
∗
i )
−1Σi]. Suppose the kth

eigenvalue of Ti is ρk, k = 1, . . . , K, then the kth element of w̆i has converge rate as

ρk = 1− µ
σkσk

σkσk

= 1− µ (A.25)

Conclusions: 1. µ ∈ (0, 2) is the sufficient and necessary condition for APA class algorithm
convergence; 2. if µ = 1, the algorithm converges at the highest rate. These are consistent
with the conclusions drawn by Sankaran and Beex (2000).

Next, let investigate the convergence behavior of the APA algorithm if a forgetting
weighted process is introduced into the weight updating phase (A.17). After being weighted,
the singular value decomposition of the input matrix Q is (here the time index is ignored
for simplicity, without loss of generality):

Q = Λ(K)UΛ(L) = Λ(K)
[
RΣV T

]
Λ(L)

= R
[
Λ(K)ΣΛ(L)

]
V T = RΣ′V T (A.26)

where
Σ′ = Λ(K)ΣΛ(L) (A.27)

Σ′ ∈ <K×L and

[Σ′]k,l =

{
σ′k = λ2(k−1)σk k = l

0 k 6= l
(A.28)

for k = 1, 2, . . . , K; l = 1, 2, . . . , L.
The (A.17) becomes

wi = wi−1 + µQ∗
i (QiQ

∗
i )
−1ei (A.29)
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Subtracting both sides of (A.29) from w◦

w̃i = (I − P ′
i )w̃i−1 (A.30)

where P ′
i = µQ∗

i (QiQ
∗
i )
−1Ui. The equation (A.24) changes to

w̆i = [I − µΣ′∗
i (Σ′

iΣ
′∗
i )−1Σi]w̆i−1 (A.31)

the weighted transformation matrix becomes T ′
i = [I − µΣ′∗

i (Σ′
iΣ
′∗
i )−1Σi]. Suppose the kth

eigenvalue of T ′
i is ρ′k, k = 1, . . . , K, then the kth element of w̆i has converge rate as

ρ′k = 1− µ
σ′kσk

σ′kσ
′
k

= 1− µ
σk

σ′k
= 1− µλ2(1−k) (A.32)

when λ and k are chosen such that 2
µ

< λ2(1−k), certain converge rate |ρ′k| > 1 which means
the algorithm is unstable.

Conclusion: The APA algorithm may be unstable if the forget-weighting process is
introduced into the weight updating phase (Algorithm 1). Although parameters can be
chosen carefully to assure |ρ′k| ≤ 1, applying the proposed forgetting process on the weight
updating phase is not recommended.

In the Section A.5, the proposed algorithm VS-APA-FF is further upgraded.

A.5 Regularization of the Weighted Projection

According to equation A.6 and A.15, the accuracy of the error evaluation depends on
the condition number (define by the ratio of the maximum eigenvalue and the minimum
eigenvalue) of the projection matrix (U or Q). For a projection matrix with large condition
number, even a small amplitude of noise in the error signal will be amplified which makes
the h or p relatively noisy. Thus the V S-APA and V S-APA-FF algorithms adopt a
smoothing function, in the form of (A.7), to alleviate this problem, however, with the cost
loss of error signal fidelity, which sacrifices convergence speed and/or misadjustment.

In the previously proposed algorithm (Algorithm 2, denoted as VS-APA-FF), the
weighted projection matrix Q has a larger condition number compared with the non-
weighted U . This can be illustrated as follows:

The condition number of U is:

cond U = σmax/σmin = σ1/σK (A.33)
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from (A.12), the SVD of the weighted input matrix Q is:

Q = Λ(K)UΛ(L) = Λ(K)[RΣV ∗]Λ(L)

= R(Λ(K)ΣΛ(L))V ∗ (A.34)

= RΣ′V ∗

where Σ′ is a K ×L matrix with all zero entities except [Σ′]j,j = λ2(j−1)σj, j = 1, 2, . . . , K.
The condition number of Q is:

condQ = σ1/[λ
2(K−1)σK ] = λ2(1−K) condU (A.35)

which illustrates the increased condition number by a factor of λ2(1−K). According to
equation (A.15), this means that the estimated h is more sensitive to the noise in error
signal.

In stead of solving this problem using a smoothing function as the V S-APA and V S-
APA-FF, this problem is addressed to use a Tikhonov regularization approach, under which
(A.15) becomes:

hi = Qi
∗(QiQi

∗ + δ2I)−1ei. (A.36)

where I is the identity matrix on the assumption that each element in hi has identical
variance; δ is a hyperparameter to control the amount of regularization. The modified
algorithm becomes (denoted as VS-APA-FF-REGU :

wi = wi−1 + µiU
∗
i (UiU

∗
i )−1 ei

µi = µmax
‖ĥi‖2

‖ĥi‖2 + C
(A.37)

Note that the smoothing functions (such as (A.7), (A.14c)) is no longer needed (effectively
α = 0), since the regularization process accomplishes this function.

A.6 Simulation Results

The proposed algorithm is validated by simulations of a system identification model (Figure
A.1).

Following the test framework of Shin et al. (2004), the system to be simulated is repre-
sented by a moving average model with L taps. The adaptive filter has the same number of
taps. The goal of the adaptive processing is to estimate system parameters by optimizing
the adaptive filter parameters iteratively using the proposed algorithm.
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Figure A.1: System identification model

Two coloured Gaussian noises are used as input signals. The input signal colorizations
are obtained by filtering a white Gaussian random noise (zero mean, unit variance) through
a first order filter, G1(z) = 1/(1− 0.9z−1) or a 4th order filter

G2(z) =
1 + 0.9z−1 + 0.6z−2 + 0.81z−3 − 0.329z−4

1 + z−1 + 0.21z−2

The measurement noise vi is added to yi (yi = xiw
◦) and the SNR of the measurement

signal is calculated by

SNR = 10log10(
E[y2

i ]

E[v2
i ]

)

The simulation results are obtained from the ensemble average of 100 independent trials
(ten thousand iterations each), with µmax = 1 and a smoothing factor α = 0.99 for VS-
APA and VS-APA-FF. The convergence is evaluated by Mean Square Deviation (MSD)
which is calculated by

E(‖w̃i‖2) = E(‖w◦ −wi‖2)

Figures A.2-A.3 illustrate effects of different forgetting factors of VS-APA-FF through
G1 and G2 colorizations, respectively. The special case of VS-APA-FF is VS-NLMS-FF
(when K=1) which is illustrated in Figure A.2(a)A.2(c) and A.3(a). (Note that when λ = 1,
the VS-APA-FF becomes the original VS-APA. Therefore, VS-APA can be regarded as a
special case of VS-APA-FF).

From figures A.2-A.3, following observations can be made:
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Figure A.2: Effects of λ in VS-APA-FF (VS-APA when λ = 1.0), G2 colorization. (a) VS-
NLMS-FF K=1, taps=16, C=0.0001, SNR=30dB; (b) K=8, taps=16, C=0.15, SNR=30dB; (c)
VS-NLMS-FF K=1, taps=16, C=0.0001, SNR=40dB; (d) K=4, taps=16, C=0.01, SNR=40dB;
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Figure A.3: Illustration of different forgetting factors for VS-APA-FF(VS-APA when λ = 1.0),
G1 colorization. (a) VS-NLMS-FF K=1, taps=16, C=0.0001, SNR=30dB; (b) K=2, taps=16,
C=0.001, SNR=30dB; (c) K=2, taps=16, C=0.001, SNR=40dB; (d) K=8, taps=16, C=0.15,
SNR=40dB;

• VS-APA-FF outperforms VS-APA by applying a temporal weighted projection ma-
trix Q.

• in Figures A.2-A.3, some adaptation curves are noisy (e.g. Figures A.2(b)and Figures
A.3(d), when K is large and λ is small), which also illustrated the increased condition
number of the projection matrix.

• noise color affects adaptation performance. (This applies for all APA class)

Using experimental conditions described previously, and λ = 0.5, δ = 1, simula-
tion comparisons between VS-APA, VS-APA-FF and the regularized version VS-APA-
FF-REGU are illustrated by figure A.4 (noise G2) and figure A.5 (noise G1). For some
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cases, when the update matrix of VS-APA-FF becomes severly ill-conditioned (Figure
A.4(a)A.5(a)A.5(b)A.5(c)) and experiences unsatisfactory convergence, the VS-APA-FF-
REGU can still converge quickly with low misadjustment. Therefore, the conclusion is that
VS-APA-FF-REGU is a good complement for VS-APA-FF, when the forgetting processed
input matrix is close to singular.
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Figure A.4: Comparisons among VS-APA, VS-APA-FF, and VS-APA-FF-REGU, G2 colorization.
λ = 0.5. (a) K=8, taps=16, C=0.15; (b) K=12, taps=32, C=0.2; (c)K=16, taps=32, C=0.3

On the other hand, by using a larger forgetting factor (e.g., λ = 0.9) when the VS-
APA-FF has less singularity problem, the VS-APA-FF-REGU is still advantageous over
the VS-APA and the VS-APA-FF, illustrated in Figures (A.6,A.7).
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Figure A.5: Comparisons among VS-APA, VS-APA-FF, and VS-APA-FF-REGU, G1 colorization.
λ = 0.5. (a) K=8, taps=32, C=0.15; (b) K=12, taps=64, C=0.2; (c)K=16, taps=64, C=0.3

A.7 Conclusions

This appendix presents an upgraded variable step size APA algorithm,VS-APA-FF, and
its regularized version VS-APA-FF-REGU. With a projection matrix processed with a for-
getting factor, VS-APA-FF obtains upgraded convergence performance in terms of higher
convergence rate and lower misadjustment. However, due to the singularity becomes worse
after been weighted, VS-APA-FF is incapable of some cases, such as the APA window
size K is large and a small forgetting factor λ is used. The Tikhonov regularization is
used to overcome the deteriorated singularity problem of the processed input matrix. The
regularized algorithm is more stable and converges better than previous algorithms.
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Figure A.6: Comparisons between algorithms: VS-APA, VS-APA-FF and VS-APA-FF-REGU.
G2 colorization, λ = 0.9, δ = 1, SNR=30dB. (a) K=8, taps=32, C=0.15; (b) K=16, taps=32,
C=0.3; (c) K=16, taps=64, C=0.3; (d) K=32, taps=64, C=1;
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Figure A.7: Comparisons between algorithms: VS-APA, VS-APA-FF and VS-APA-FF-REGU.
G1 colorization, λ = 0.9, δ = 1, SNR=30dB. (a) K=8, taps=32, C=0.15; (b) K=16, taps=32,
C=0.3; (c) K=16, taps=64, C=0.3; (d) K=32, taps=64, C=1;
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Appendix B

Formulation of `1 Norms Regularization

This appendix includes derivations that are not included in Chapter 6, Section 6.3.3, for
conciseness. B.1 calculate the exponent value of the D matrix; B.2 mathematically derives
the iterative formation; B.3 provide a data form method to reduce size of reconstruction
matrix during iterations.

B.1 Exponent on D

We want a pn-norm. If the exponent on the D matrix is p, then we have

2 + 2p = pn (B.1)

which yeilds 1 + p = px/2, and p = px/2− 1.

B.2 Inverse formulation

ε = (y − Jx)tW(y − Jx) + (x− x0)
tR(x− x0) (B.2)
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Minimum at derivative dε/dx = 0

0 = −2JtW(y − Jx) + 2R(x− x0) (B.3)

JtWJx + Rx = JtWy + Rx0 (B.4)

= JtW(y − Jx0 + Jx0) + Rx0 (B.5)

= JtW(y − Jx0) + JtWJx0 + Rx0 (B.6)

(JtWJ + R)x = JtW(y − Jx0) + (JtWJ + R)x0 (B.7)

(JtWJ + R)(x− x0) = JtW(y − Jx0) (B.8)

x− x0 = (JtWJ + R)−1JtW(y − Jx0) (B.9)

x = x0 + (JtWJ + R)−1JtW(y − Jx0) (B.10)

B.3 Data formulation for inverse

The previous equation suggests an iterative update formula where x(k+1) is calculated from
x(k) by:

x(k+1) = x(k) + (JtWJ + R)−1JtW(y − Jx(k)) (B.11)

Start with the matrix (JtWJ + R)−1JtW. Multiply by the identity matrix, as (JR−1Jt +

W−1)(JR−1Jt + W−1)−1 to get

(JtWJ + R)−1JtW(JR−1Jt + W−1)(JR−1Jt + W−1)−1 (B.12)

(JtWJ + R)−1(JtWJR−1Jt + JtWW−1)(JR−1Jt + W−1)−1 (B.13)

(JtWJ + R)−1(JtWJR−1Jt + Jt)(JR−1Jt + W−1)−1 (B.14)

(JtWJ + R)−1(JtWJR−1 + I)Jt(JR−1Jt + W−1)−1 (B.15)

(JtWJ + R)−1(JtWJR−1 + RR−1)Jt(JR−1Jt + W−1)−1 (B.16)

(JtWJ + R)−1(JtWJ + R)R−1Jt(JR−1Jt + W−1)−1 (B.17)

R−1Jt(JR−1Jt + W−1)−1 (B.18)

Thus, eqn B.11 becomes

x(k+1) = x(k) + R−1Jt(JR−1Jt + W−1)−1(y − Jx(k)) (B.19)
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