
A METHOD FOR THE CHARACTERISATION OF SPATIAL STRUCTURES OBSERVED 

IN CEREBRAL FMRI DATA 

 
Camille Gómez-Laberge12, Andy Adler1, Matthew J. Hogan2 

1Systems & Computer Engineering, Carleton University 
2Neuroscience, Ottawa Health Research Institute 

I. INTRODUCTION 

Functional Magnetic Resonance Imaging (fMRI) 
can detect venous concentration changes of 
deoxygenated hemoglobin. Cerebral blood flow is 
locally regulated by pre-capillary arteriolar smooth 
muscles [1]. Consequently, fMRI images inherit the 
spatial characteristic of localised signal change. In 
addition, spurious voxels also exhibit significant 
fluctuations due to instrumental and physiological 
noise. The superposition of these effects emerge when 
analysing the images for significant temporal changes. 

Hence, a characterisation of the spatial structures 
observed in the data may provide relevant information 
about the images and also assist in noise reduction. In 
order to model the spatial characteristics observed in 
these images, a quantitative measure of the contiguity 
of the voxel maps obtained from analysis is useful.  

In this study, a novel method for image analysis is 
developed based on a quantitative definition of 
contiguity. A synthesis of fMRI voxel maps, typically 
observed in clustering techniques, is developed using 
Gaussian random fields (GRF). A performance figure-
of-merit is obtained by comparison with the Euler 
number of level-sets from the image.  Contiguity 
characterisations are obtained in relation to GRF 
covariance and signal-to-noise ratio. Finally, a 
demonstration of the method on 3D fMRI data 
obtained from an event-related paradigm is presented. 

II. METHODS 

This methodology applies to gray scale images 
discretised into voxels. The typical images to be 
analysed are rather sparse, where few non-zero 
voxels exist representing a signal that is temporally 
correlated to a target function.  The gray scale value of 
the voxels is the correlation coefficient between these 
signals. The synthesis model is developed in 2D for 
illustrative purposes; however, it is easily extendible to 
3D for practical applications as is shown in section III. 

A quantitative definition of contiguity 

Some terminology is first needed to define 
contiguity. Two voxels sharing a face are called 

adjacent. A sequence of adjacent voxels is defined as 
a group. Let L be the number of non-zero voxels in an 
image, which can then be written as the series 
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where gl is the number of groups containing l voxels, 

and M is the largest group in the image. We define a 

group to be contiguous if it contains at least m voxels. 

Thus, by setting gl=0 for l<m, we obtain the fraction 

of voxels belonging to contiguous groups 
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To distinguish an image containing many groups 
from one containing fewer groups, we impose a 

penalty on the total number of contiguous groups G. 

From this, we define the contiguity c of an image as 

the series 
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Notice that the reciprocal of c provides an estimate of 

the total number of contiguous groups in the image. 
Figure 1 illustrates the contiguity of binary images 
progessively decreasing in contiguity. 

A synthesis model of fMRI voxel map images 

This section develops a model based on the 
empirical examination of voxel maps obtained during 
an fMRI event-related motor-task design on two 
normal subjects.  

 

 

 

Figure 1: The contiguity of five example images, each 

having L=14. The smallest contiguous group size is 

defined as m=3. 
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The voxel maps were obtained from a c-means 
cluster analysis as described in [2]. Each map contains 
a subset of voxels whose temporal signals are 
positively correlated to a target function (the cluster 
centroid). The voxels with large coefficients tend to be 
localised, where as the others with low correlations are 
rather sporadic. Our model synthesises images where 
the prominence of these characteristics are controlled 
by two parameters: the spatial covariance, and signal-
to-noise ratio (SNR). 

The model uses a superposition of signal and  
noise components, each defined as a GRF sampled 
on a rectangular lattice [3,4]. Consider their respective 
uncorrelated Gaussian processes, independent of one 
another 
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Now, we introduce spatial correlation in the signal 

source with a d-dimensional Gaussian kernel 
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such that the convolved signal S=k∗Y is spatially 

correlated according to the covariance matrix ΣΣΣΣk.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We define the superposition of these random fields as 
our model 

{ }. ,max NSR =  (6) 

In our contiguity analysis in section III, we 

implement R for d=2 on a 64×64 8-bit pixel lattice  

with parameters σ
2
 such that ΣΣΣΣk=σ

2
Id, and  

SNR= sS
2
/ σN

2
. We use the sample variance for each 

realisation of S. The top row of figure 2 shows some 

typical realisations of R(σ
2
, SNR) obtained when 

varying the parameter σ
2
 at SNR=1.5. 

Contiguity performance figure-of-merit 

The contiguity defined in (3) is applied to the level-

set images obtained from realisations of R. A level-set 

is a binary image where all pixels above an intensity 
threshold are set to one and otherwise zero [3].  The 
contiguity of these level-sets is compared to the 

classic Euler number ψ, which counts the number of 

groups minus the number of holes in an image. To 
obtain comparable results for the Euler number, we 
erode spurious pixels. The performance figure-of-merit 
used to test the contiguity is the root-mean-square 
(RMS) difference of the group-count obtained by both 
methods over 100 realisations. 

 

Figure 2: Synthesis of fMRI voxel maps using a Gaussian random field model. (Top row) Four typical 2D 

realisations of the model R(σ
2
, SNR) on a 64x64 8-bit pixel lattice. (Bottom row) Corresponding contiguity 

distribution averaged over 200 realisations for all combinations of parameters σ
2
=0, 1, 8, 32; SNR=1.0, 1.5, 3.0. 
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III. RESULTS 

Synthetic data 

We selected a subset of parameter values for the 
synthesis model that were representative of the range 
of fMRI voxel maps previously observed. For each pair 
of parameter values, we generated 200 realisations of 

our model R(σ
2
, SNR). For each realisation, we 

computed the contiguity values on the binary level-sets 
with threshold starting from 255 down to 0. The 
resulting “contiguity distributions” are a plot of these 
contiguity values versus the level-set threshold.  The 
bottom row of figure 2 shows the averaged (n=200) 

contiguity distributions for parameters σ
2
=0, 1, 8, 32 

shown in the graphs from left to right, respectively 
(error bars were unnoticeable at this scale). Also 
shown on these graphs are the median values 
(marked as squares) for each distribution. The 
distributions flatten for thresholds below 140 and are 
not shown, since our model rejects all pixels below this 
value (as was described in section II). 

The graphs in figure 2 reveal a rapid growth in 

area of the contiguity distribution as σ
2
 increases, as 

well as an incremental growth in each graph as SNR 
increases.  These trends are also reflected in the 
median values shown. An apparent contradiction is 
visible here: the first graph shows a lower median 
value for higher SNR. Indeed a low SNR value will 
blend the uncorrelated signal uniformly with the noise 
signal.  Thus, any level-set admits or rejects both 
signal and noise components.  This explains why the 
distribution vanishes beyond threshold 180 and grows 
rapidly for lower values, producing a single entangled 
chain-like group. Another interesting case is the 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Performance comparison of the contiguity 
method with the Euler number method. 

insensitivity of a SNR increase between 1.5 and 3.0 

for σ
2
=8. Here the median values are slightly 

reversed; however, the contiguity distribution remains 
larger for the higher SNR. 

To ascertain the performance of the proposed 
method, we computed the contiguity median for 100 

realisations of R(σ
2
, SNR) for all integer values σ

2 

with SNR=1.0, 1.2, and 3.0. These values were 
compared with Euler number to obtain the figure-of-
merit described in section II. The mean and standard 
error values of the RMS group-count difference 
between methods are graphed in figure 3. A uniform 
reduction in the count difference between methods is 

seen as SNR increases. Secondly, for the curves 

corresponding to SNR 1.2 and 3.0, a gradual 

reduction in count difference occurs as σ
2
 increases. 

Moreover, the graph reveals large differences between 

methods for σ
2
<5. This is expected since these 

parameter values produce noisy images of spurious 
signal and noise components similar to those shown 
on the left side of figure 2. As described in section II, 
the Euler number method erodes spurious pixels, 
leaving an almost blank image, whereas the contiguity 
measure attempts to disentangle both components, 
and leaves both noise and signal combined.  

fMRI data 

An excerpt of the results from an analysis of fMRI 
blood-oxygen level dependent (BOLD) data acquired 
during a visually cued motor-task on one normal 
subject is presented in figure 4. The spatial contiguity 
method was paired with a temporal cross-correlation 
method as cluster selection criteria for data-driven 
fMRI analysis [5]. Briefly, these data were first 
clustered using a correlation measure between all 
voxel time sequences. Figure 4 shows two selected 
cluster voxel maps (one per row). Each voxel map is 
shown along with the anatomical outline in superior 
transcranial, right sagittal, and posterior coronal views, 
from left to right, respectively. Their centroid fMRI 
BOLD response is graphed (solid line) versus time in 2 
second intervals along with the paradigm sequence 
(dashed line). The right most graph is the contiguity 
distribution plotted versus the PPMC coefficient 
between each voxel and the centroid time sequences. 
The squares mark the median value: the level-sets 
used to display the voxel maps. 

Although both voxel maps exhibit significant 
temporal cross-correlation with the paradigm, as well 
as large contiguity values, the top row voxel map 
appears more correlated and localised than the bottom 
one. The contiguity distribution shows that its member 
voxels with PPMC > 0.8 are perfectly contiguous, 
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localised in the expected cerebellar lobe, contralateral 
to the cerebral sensorimotor cortex that was also 
identified in [5]. The bottom row voxel map, although 
significant, is suspected of containing a venous 
artefact emerging bilaterally from the transverse sinus. 
Its contiguity distribution characterises the map as 
consisting of several groups, regardless of the level-
set PPMC threshold. 

IV. DISCUSSION 

The results in section III show that the proposed 
contiguity method is effective at characterising models 
of various spatial characteristics. However, its 
application to real data sets is limited by strong 
assumptions:  

1. the paradigm stimulus has two states: “rest” 
and “active”, which can be arbitrarily 
represented by 0 and 1, respectively, and 

2. the imaging modality has coarse enough 
resolution such that the cerebrovascular 
capillary bed appears contiguous. 

Indeed, there is no obvious rationale for modelling 
multi-state paradigms as a time sequence, and 
secondly, perhaps the true cerebral hemodynamics 
will not appear contiguous at a fine enough image 
resolution. However, most fMRI analyses may benefit 
from the proposed method as described. 

The biophysical discovery of the paramagnetic 
property of deoxygenated hemoglobin led to the 
development of fMRI techniques for imaging 
cerebrovascular activity. The analysis of the acquired 
data is mainly based on the temporal changes of the 
response signal observed in each voxel. In particular, 
data-driven models have demonstrated the capability 
of clustering voxels with similar response signals.  

 

 

 

 

 

 

 

 

 

This study proposes a novel complimentary 
technique for characterising the spatial distribution of 
such voxel maps based on a measure of contiguity. 
The motivations for developing a spatial analysis 
method is that relevant information exists in the 
location and distribution of the voxels, since there is a 
general understanding that brain function is organised 
in a somewhat compartmental manner. Furthermore, 
data-driven methods aim to identify all patterns in a 
data set, without a priori knowledge of the subject or 
experiment. Therefore, such analyses necessarily 
require a post-processing interpretation stage to 
determine whether any results are plausibly related to 
the experimental stimulus. It may be that much of this 
interpretation stage can be automated by robust 
selection criteria appealing to both temporal and 
spatial priori information. 
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Figure 4: Cluster voxel maps resulting from fMRI BOLD data acquired during an event-related visually cued motor-
task on one normal subject [5]. (each row) Selected cluster voxel map shown from transcranial, sagittal, and 
coronal views along with the anatomical outline. Centroid BOLD response (solid) and paradigm (dashed) time 
sequences plotted versus time in image (TR) intervals. Contiguity distribution versus voxel-centroid PPMC. 
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