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Abstract—Electrical Impedance Tomography (EIT) uses
the difference in measurements between surface electrodes to
reconstruct an image of the conductivity of the contained
medium. However, changes in measurements result from
changes in internal conductivity and changes in the shape
of the medium relative to the electrode positions. Failure to
account for shape changes results in a conductivity image with
significant artifacts. Previous work to address shape changes
in EIT has shown that: a) theoretically, for an infinite number
of electrodes, non-conformal changes in boundary shapes and
electrode locations can be uniquely determined (Lionheart,
1998); and b) in some cases, conductivity and shape changes
can be recovered using a combined image reconstruction model
of both conductivity and shape changes (Soleimani et al, 2006).
This work has shown that the shape change problem can
be partially addressed. In this paper, we explore the limits
of compensation for boundary movement in EIT, using three
approaches: first, a theoretical model is developed to separate
a deformation vector field into conformal and non-conformal
components, from which the reconstruction limits may be
determined; next, finite element models are constructed from
which EIT measurements are simulated; finally, an experi-
mental phantom is constructed using a deformable gasket
and stainless steel electrodes in a saline medium, from which
boundary deformation measurements are acquired.

I. INTRODUCTION

In medical Electrical Impedance Tomography (EIT), it
has long been suspected that errors in the knowledge of the
boundary shape are an important factor in the inaccuracy of
reconstruction. This effect is most important in chest EIT
where the chest shape deforms as the patient breathes and
changes posture[2][3].

In general terms, if a distortion is applied to a domain
in two or three dimensional space, the assumed isotropy
of the conductivity distribution is not preserved.[4] If the
conductivity is assumed to be isotropic, the boundary voltage
and current data on the distorted domain will generally not
be consistent with an isotropic conductivity. This means that
in the isotropic case, the boundary data contains information
about both the conductivity and the boundary shape.

However, not all distortions lead to an anisotropic con-
ductivity containing this additional information. The ex-
ception is exactly the distortions that are conformal maps.

In two dimensional space, there are an infinite number of
conformal maps, whereas in three dimensions there is only
a finite set of conformal maps, the Möbius transformations.

In practical EIT, we would not usually want to use
the electrical measurement to recover the boundary shape,
as one could employ mechanical or optical measurement
devices to determine the external shape of the body and the
position of the electrodes. In the case of the chest, however,
the boundary shape changes with breathing, so it is desirable
to correct the boundary shape using the EIT data so that a
consistent isotropic conductivity can be fitted to the data.
This should result in a distorted image due to the anisotropic
nature of chest muscle, yet still preserve useful features of
the lungs.

In this paper, we explore the ability and limits of EIT to
resolve conductivity changes and reject boundary distortion.
First, we show that the theoretical results given in [4] still
hold in the case of a finite number of electrodes and a
finite element discretization of the forward problem. Our
example simulations in two dimensions, using a linearization
of the forward problem, suggest that the boundary shape and
electrode positions can be recovered up to an infinitesimal
conformal map. This provides an adequate and necessary
correction for acceptable reconstruction of the conductivity.

In order to validate these results experimentally, we
develop a deformable phantom from which we test the
theoretical and simulated results.

II. MATHEMATICAL BACKGROUND: CONFORMAL
VECTOR FIELDS

The linearization of a distortion of the domain is simply
the addition of a vector field V to each point. If the
distortions are all conformal mappings (that is, preserve the
angle between vectors) then V is what is known classically
as an infinitesimal conformal motion, conformal Killing
field, or more simply a conformal vector field.

Assuming sufficient smoothness, V is a conformal vector
field if and only if the conformal Killing field equation is
satisfied. (Eq. 1.)
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which are the Cauchy-Riemann equations, hence in two
dimensions V is a conformal vector field if and only if
V1 + iV2 is complex analytic as a function of x+ iy

As V1 and V2 are harmonic conjugate functions, they both
satisfy Laplace’s equation and at the boundary the tangential
component of the gradient of V1 is equal to the normal
component of the gradient of V2. Thus, V1 can be specified
arbitrarily on the boundary, and its tangential derivative,
dV1/ds where s is arc length on the boundary, is determined.
Thus, V2 is the solution of a Neumann problem for Laplace’s
equation and is determined up to a constant. Constants added
to V1 and V2 correspond to a translation, which we would
not expect to find from EIT data.

In a Finite Element setting, the infinitesimal vector field
becomes a vector that translates each vertex of the finite
element mesh. The discretization of the conformal vector
field is determined uniquely by its values at the vertices on
the boundary.

III. SIMULATED RESULTS

In order to explore the effect of reconstructing EIT
images from media with conformal and non-conformal
conductivity changes, we constructed 2D simulations using
the EIDORS software [1]. Using a 576 element FEM filling
the unit circle with 16 point electrodes and using adjacent
stimulation and measurement, we simulated two distortion
fields. Representing each boundary point by a complex
z = x+ iy, the distortions were:

z → 0.99x+ i1.01y Non-conformal (3)
z → z + 0.01z2 Conformal (4)

Additionally, one small conductive and one small non-
conductive target were simulated.

Using the approach of Soleimani et al [5], we recon-
structed the time-difference conductivity and movement
images. An assumed movement to conductivity change
parameter µ = 0.01 was used. For comparison, an algo-
rithm was used which assumes no boundary movement.
Results are shown in Fig. 1. For the case of non-conformal
movements, there are dramatic artifacts in the conductivity
only reconstruction, and there is a clear benefit to movement
reconstruction. In the case of conformal movements, no such

benefit is seen, and the movement reconstruction is unable
to detect movement.

F ig. 1 Images reconstructed from three different movement patterns,
illustrating that conformal distortion fields cannot be distinguished from
conductivity changes. Left (a), (b), (c): Non-conformal Distortion field
z → 0.99x + i1.01y. Middle (d), (e), (f): Conformal Distortion field
z → z + 0.01z2. Right (g), (h), (i): Combined Conformal and Non-
conformal Distortion field. Top (a), (d), (g): Simulation movement and
conductivity change pattern. Middle (b), (e), (h): Reconstruction assuming
only conductivity change. Bottom (c), (f), (i): Reconstruction of conduc-
tivity change and movement. Green arrows indicate electrode movement
(40× exaggeration).

IV. EXPERIMENTAL DATA: PHANTOM

In the following, we describe the deformable phantom
used to take EIT measurements for comparison with simu-
lated results of the previous section.

A. Construction

The phantom is constructed of a sponge rubber plumbing
gasket placed in a shallow pan. The gasket forms a thick
rubber ring that is easily compressed yet rigid enough to
return to its original shape easily.

Sixteen electrodes were constructed from stainless-steel
wire pressed into the gasket, then looped over the edge
of the gasket such that they lie along the inner wall of
the gasket in a vertical orientation. An additional stainless-
steel electrode placed roughly in the geometric center of



the gasket forms the ground connection. A shallow layer
of saline solution is employed to limit conductivity in the
vertical direction, thereby presenting an approximately two-
dimensional section in the experimental measurements. The
electrodes are each wired to a terminal bolted to the plastic
pan providing a good connection to the EIT system. (Fig.
2.)

The thickness of the gasket allows the electrodes to be
securely attached to the phantom as it is deformed. The
thickness of the gasket also provides electrical insulation
between the saline solution inside and outside the gasket.

F ig. 2 Photograph of phantom built from a rubber gasket and stainless
steel electrodes. The yellow dish is filled with saline.

B. Method

A 16 electrode Goë-MF II EIT system (Viasys Health-
care, Höchberg, Germany) was used for taking measure-
ments from the deformable phantom. The phantom was
submerged in a saline bath (0.68% NaCl salinity) such that
the bottom of the ring was in contact with the bottom of the
container, and the top of the ring broke the surface, provid-
ing insulation between the inside and outside of the ring.
Salinity was set such that a nominal electrical impedance of
250Ω was measured between adjacent electrodes.

C. Deformations

Measurements were taken with the phantom in
• an approximately circular (relaxed) arrangement,
• with a side-to-side compression from two points, and

• with the ring under three points of compression. (Fig.
3.)

For each of these deformations measurements were ob-
tained with

• a conductive target,
• a nonconductive target, and
• no target.

An iron cylinder with a diameter of 6mm was used as the
conductive target while a glass cylinder of 42mm was used
for the nonconductive target.

Fig. 3 Compressions: none (a), 2 points (b), 3 points (c)

D. Electrode Displacements

The true physical displacements of the electrodes were
found by taking a digital photograph from above the phan-
tom. A piece of graph paper was placed under the phantom,
taped to the bottom of the pan. The locations of the
electrodes were measured from the photograph, in pixels,
and then normalized based on the known graph paper grid
size.

V. EXPERIMENTAL DATA: FEM SIMULATIONS

With the EIDORS software[1], the experimental EIT data
measured from the phantom was used in reconstructing 2D
images of the targets. An initial model consisting of a 256
element FEM filling the unit circle with 16 point electrodes
was constructed. The mean of a sequence of data frames
measured from the uncompressed phantom was used as an
image prior.

Figure 4 shows the reconstructed images. Reconstructions
under compression that did not account for the movement
of electrodes displayed significant artifacts in the recon-
structed image, particularly around the boundary. When
accounting for conductivity and movement changes together
the algorithm performed well (based on visual inspection)
in estimating electrode movements as well as significantly
reducing the image artifacts around the FEM boundary.



F ig. 4 Images reconstructed from experimental data. Top Left, (a):
Reconstruction of no compression scenario. Top Right, (c): Reconstruction
of 2-point compression assuming only conductivity change. (3-point com-
pressions look very similar.) Bottom: Reconstruction of movement with
2-point (b) and 3-point (d) compressions. (Movement reconstruction with
and without conductivity change resulted in similar images.) Green arrows
indicate electrode movement (2× exaggeration).

VI. DISCUSSION AND CONCLUSION

This paper describes conformal and non-conformal vector
fields and develops their application to electrode movement
and boundary distortion in Electrical Impedance Tomogra-
phy (EIT). Results, both in simulation and with experimental
data, suggest that, with non-conformal mappings, electrode
movement and boundary distortions can be reconstructed
based on conductivity changes alone, reducing image arti-
facts in the process.

A limitation of this method is that the body is assumed
to be isotropic. While this is a reasonable approximation for
the lung, it it not true of muscle tissue or flowing blood. The
effect of parts of the domain being anisotropic, possibly in
a predictable orientation, is an interesting topic for further
investigation.

This study was based on a linear approximation of the
dependence of the transfer impedance data on both the
conductivity and shape. Most in vivo EIT studies assume
a linear approximation and typically reconstruct time or fre-
quency difference images even though the forward problem
is non-linear.

One reason given that a non-linear forward solution gives
improved images on in vitro tank data but fails to deliver
an improvement on in vivo reconstruction is that the errors
caused by an inaccurate knowledge of boundary shape are
greater than the error in using a linear approximation. This
work holds out the hope that, with the correction of the
boundary shape and electrode positions, using the EIT data
will be sufficient for non-linear and accurate absolute EIT
reconstruction of clinical data.
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