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Abstract Electrical impedance tomography (EIT) reconstructs internal impedance images of the body

from electrical measurements on body surface. The temporal resolution of EIT data can be very high,

although the spatial resolution of the images is relatively low. Most EIT reconstruction algorithms

calculate images from data frames independently, although data are actually highly correlated espe-

cially in high speed EIT systems. This paper proposes a 4-D EIT image reconstruction for functional

EIT. The new approach is developed to directly use prior models of the temporal correlations among

images and 3-D spatial correlations among image elements. A fast algorithm is also developed to re-

construct the regularized images. Image reconstruction is posed in terms of an augmented image and
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measurement vector which are concatenated from a specific number of previous and future frames.

The reconstruction is then based on an augmented regularization matrix which reflects the a priori

constraints on temporal and 3-D spatial correlations of image elements. A temporal factor reflecting

the relative strength of the image correlation is objectively calculated from measurement data. Results

show that image reconstruction models which account for inter-element correlations, in both space and

time, show improved resolution and noise performance, in comparison to simpler image models.

Keywords Electrical Impedance Tomography · regularization · spatial and temporal priors · image

reconstruction.

PACS 42.30.Wb · 87.63.Pn

Mathematics Subject Classification (2000) 92C55 · 65F22

1 Introduction

This paper develops a regularized image reconstruction formulation which directly accounts for tem-

poral and spatial correlations between image elements in Electrical Impedance Tomography (EIT).

EIT reconstructs images of the impedance distribution within the body from electrical measurement

on the body surface. Because electrical current propagates diffusely in the body, EIT is a soft field

tomography modality; moreover, EIT is ill-posed according to conditions of well-posed problems sug-

gested by Hadamard. Thus, EIT reconstruction has poor spatial resolution and is very sensitive to data

errors [22]. However, EIT can have excellent temporal resolution (frame rates as high as 1000/s have

been achieved [31]) which makes EIT an attractive modality to monitor fast physiological activities

which produce conductivity distribution changes. This is valuable for monitoring of cardiac [14,35],

pulmonary [2,15,19] and brain [20] activities. The normal heart rate is physiologically limited to about

4 Hz, while a fibrillating heart rate can beat at up to 8 Hz [8]. The frequency content of images can

be much higher than the heart rate as shown by the frequency content of the QRS complex which

is mainly between 10–25 Hz [21]. For lung monitoring, high frequency ventilation (at frequencies of

5–25 Hz) is understood to be helpful to patients with respiratory distress; these patients have highly

a non-uniform distribution of ventilation in the lung [16] and monitoring with EIT has been shown to
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provide clinically useful information for control of ventilator settings [32]. Finally, EIT is potentially

useful for monitoring brain activity. Tests such as visually evoked responses or monitoring for epilepsy

result in rapid conductivity variations [29].

EIT uses single or multi-plane electrode arrangements to inject stimulation currents and measure

the voltage response [13,23,17]. It is limited by the relatively small number of attached electrodes,

and the severe ill-conditioning of the inverse problem due to the surface measurements and diffuse

nature of electrical stimulation. In order to calculate a “reasonable” image, regularization techniques

are required. Such regularized image reconstruction can be statistically formulated, in terms of a priori

information, as a prior matrix describing image element values and the correlation between them. In

many EIT algorithms, the zeroth order Tikhonov priors are commonly used [10,33]. While such priors

are easy to compute, they assume that elements of the conductivity distributions are statistically

independent – which is clearly not true for most EIT applications. Previously, shape-based inverse

solutions were investigated in EIT applications. These methods modelled spatial priors according to

geometrical knowledge of the target surface. e.g., boundary element method (BEM) based 3-D solution

[6], and spline-based 2-D solution [30].

Another limitation to the quality of EIT images is signal noise. In cases where the physiological

changes are slow with respect to the frame rate, time averaging of frames may be used to reduce

noise by the square root of the number of averaged frames, given uncorrelated noise. However, if EIT

data acquisition rate is comparable to the rate of change in the imaged processes, time averaging

sacrifices the temporal resolution. Some other signal uncertainties also introduce image degradations,

e.g., electrode-skin contact impedance drift which causes image distortion over time [9]. In these cases,

each frame of EIT data is typically reconstructed independently of the others. However, it is clear that

individual data frames are not completely independent, but do contain useful temporal correlations

which could be exploited to improve EIT image noise performance and resolution.

Temporal image reconstruction can be represented as a linear tracking problem. In [25,26], a priori

information about “temporal smoothness” was considered by adding one term which measures the

variation between adjacent images, into the Tikhonov-Phillips minimization task. Another temporal
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reconstruction method in EIT is the Kalman filter [34,27], in which the image at each instant is

estimated from the current data and the previous image estimate.

In this paper, we make the novel contribution of a general approach to model the 4-D (temporal

and 3-D spatial) correlations in the regularization prior. As image elements move further apart in

space and time, the correlation between them is modelled to decrease exponentially, with exponential

constants η and γ in space and time, respectively. This approach reconstructs each 3-D image at frame

t using the set of data in frames t − d to t + d, where d is the frame window width. Next, in order

to reduce the computational burden of such large models, we develop an efficient formulation of the

inverse matrices. This paper is an extension of our conference publication [12], where we considered

only the vertical inter-slice correlation. In the results section, we show that such 4-D prior modelling

gives improvements in both resolution and noise performance in the reconstructed images.

2 Methods

We consider an EIT system with nE electrodes placed in 2 rings on body surface using planar place-

ment [17] and adjacent current stimulation with parallel voltage measurement. nE current stimulation

patterns are sequentially applied and nV differential measurements are made for each stimulation.

We do not measure the voltages on the stimulation electrodes (however, given the proper hardware,

such measurements are recommended [5]), thus nV = nE − 3 and the total number of measurements

within one data frame is nM = nE × (nE − 3). Difference EIT calculates difference signal y ∈ RnM ,

yi = vi − [v0]i, or normalized as yi = (vi − [v0]i)/[v0]i, where the subscript i represents the mea-

surement sequence. [v0]i is the reference measurement, obtained at a time when conductivity is more

stable (such as diastole during a breath hold). In real applications, v0 can be obtained by averaging

over several cycles of ventilation.

The body under investigation is modelled as a cylindrical finite element model (FEM) with nN

piecewise smooth tetrahedral elements, represented by a vector σ ∈ RnN (σ represents conductivity

in this paragraph, elsewhere in this paper, σ is the standard deviation). Difference EIT calculates a

vector of conductivity change, xi = σi−[σ0]i between the present conductivity distribution, σ, and the

reference conductivity distribution, σ0, which is typically assumed to be homogenous (in this paper, σ0
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= 1S/m). For small variations around σ0, the relationship between the conductivity change image xt

and difference measurements yt at time t can be linearized (giving the difference EIT forward model):

yt = Jxt + n (1)

where J ∈ RnM×nN is the Jacobian or sensitivity matrix; n ∈ RnM is the measurement noise which is

assumed to be uncorrelated white Gaussian. J is calculated from the FEM as Jij = ∂yi

∂xj

∣∣∣
σ0

. The goal

of regularized image reconstruction (such as [10,3]) is to calculate a conductivity change estimate, x̂t,

which is both faithful to the measurements, yt, and to a priori constraints on a “reasonable” image.

In subsequent sections we develop a formulation for the spatial and temporal a priori image element

correlations, and use these to consider the following reconstruction approaches: 1) Gauss-Newton (GN)

inverse, using the current measurement frame yt only; 2) Temporal inverse, using measurement frames

yt−d . . . yt+d based on a temporal prior model; 3) 3-D spatial inverse, using measurement yt based

on a 3-D spatial prior model with spatial correlations among elements; and 4) 4-D prior inverse, using

measurement yt−d . . . yt+d and a temporal and and 3-D spatial model.

2.1 One-step linear Gauss-Newton solver

Regularized image reconstruction for EIT based on the one-step linearized Gauss-Newton (GN) solver

was first introduced into EIT by [36], and has been widely used. It calculates a linear reconstruction

matrix which may subsequently be used be used for rapid imaging, and allows taking advantage of

sophisticated regularization modalities to solve the inverse problem. This method seeks a solution, x̂,

which minimizes the error in the form

‖y − Jx̂‖2Σ−1
n

+ ‖x̂− x◦‖2Σ−1
x

(2)

here x◦ is the expected value of element conductivity changes, which is zero for difference EIT since

it assumes that the conductivity changes may be equally positive or negative. Σn ∈ RnM×nM is the

covariance matrix of the measurement noise n. Since n is uncorrelated, Σn is a diagonal matrix with

[Σn]i,i = σ2
i , where σ2

i is the noise variance at measurement i. Σx ∈ RnN×nN is the covariance matrix

of the expected image, which we consider in detail subsequently.
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Instead of calculating Σn and Σx directly, most proposed approaches have developed models of the

inverse of these matrices heuristically. We use the following terminology: W = σ2
nΣ−1

n and R = σ2
xΣ

−1
x ,

where σn is the average measurement noise amplitude and σx is the a priori amplitude of conductivity

changes. W models the relative measurement accuracy across channels. For uncorrelated noise, each

diagonal element is proportional to the signal-to-noise-ratio (SNR). For difference EIT with identical

channels, W is an identity matrix; this paper uses model, W = I. The regularization matrix R may

be understood to model the “unlikelihood” of image element configurations. A simple model for R

may consider all configurations equally likely, while more sophisticated models, such as the ones we

develop, may consider smooth distributions more likely than rapidly changing ones.

By solving (2) and defining the hyperparameter λ = σn/σx, a linearized, one-step inverse solution

is obtained

x̂ =
(
JT WJ + λ2R

)−1

JT Wy = By (3)

where B =
(
JT WJ + λ2R

)−1

JT W is the linear, one-step reconstruction matrix. λ controls the

trade-off between resolution and noise attenuation in the reconstructed image.

By assuming that image elements are independent to each other and have identical expected mag-

nitude, R becomes an identity matrix I and (3) uses zeroth-order Tikhonov regularization. For EIT,

since the measured data is much more sensitive to boundary elements than elements deep inside, such

solutions tend to push reconstructed noise toward the boundary. In order to compensate the sensitivity

discrepancy, R may be scaled with the sensitivity of each element, so that R is a diagonal matrix with

elements [R]i,i =
[
JT J

]p

i,i
. This is the NOSER prior of [10] for an exponent p. One similar variance

compensation strategy was proposed as variance uniformization in [7].

In (3), the term to be inverted is of size nN × nN . This is especially cumbersome in 3D (and 4D)

reconstruction models, where nN may be on the order of ten or a hundred thousand. This calculation

is then very demanding on computer time and memory. We address this issue by rewriting the matrix

B using the data form (also referred to as the Wiener filter form) [4] as:

B = PJT
(
JPJT + λ2V

)−1

(4)
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where P = R−1 = Σx/σ2
x and V = W−1 = Σn/σ2

n; Using (4), the size of the inverted matrix is

significantly reduced to nM × nM . This is especially helpful for large scale models, such as 3-D EIT

models and the temporal inverse be introduced below.

2.2 Temporal solver

In this section, we develop a temporal image reconstruction algorithm which calculates the image at a

current frame using a set of data frames nearby in time. This approach differs from Kalman filter based

algorithms [34] which estimate image xt based on measurements yt and the previous image estimate

xt−1. The temporal solver treats the estimate of the image frame sequence as a single inverse problem,

with a regularization prior which accounts for both spatial and temporal correlations between image

elements.

2.2.1 Temporal reconstruction

The temporal solver considers a sequence of 2d + 1 measurements frames from t − d to t + d around

the current frame, t. Given a vertically concatenated sequence of measurements frames ỹt and the

corresponding concatenated images x̃t,

ỹt = [yT
t−d . . . yT

t . . . yT
t+d]

T (5)

x̃t = [xT
t−d . . . xT

t . . . xT
t+d]

T

the direct temporal forward model (1) is rewritten as

ỹt = J̃x̃t + ñ (6)

where ñ = [nT
t−d . . . nT

t . . . nT
d ]T . We consider that the model structure is constant, and thus J does

not vary with time, giving J̃ = I⊗J, where the identity matrix I has size 2d+1, and ⊗ is the Kronecker

product.

The relationship between corresponding image elements between adjacent frames can be represented

by an inter-frame correlation which has a value between 0 (independent) and 1 (fully dependent). The

correlation could possibly be negative if subsequent frames have inverse correlation, although this
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scenario is physiologically unrealistic. As frames become separated in time, the inter-frame correlation

decreases; for a frame separation of δ, the inter-frame correlation is exp(−|δ|/γ), where γ is the temporal

exponential decay factor in units of frames. Frames with large time difference, |δ| > d, are considered

independent. The one-step inverse (4) for image reconstruction then becomes

B̃ = P̃J̃
T

(
J̃P̃J̃

T
+ λ2Ṽ

)−1

(7)

where Ṽ = I⊗V. Ṽ is diagonal since measurement noise is uncorrelated between frames. P̃ = Γ⊗P,

where Γ is the temporal weight matrix of an image sequence x̃ and is defined to have the form as

[Γ]i,j = exp(−|i− j|
γ

) i, j = −d . . . d. (8)

From (7) and (8),

B̃ =
[
Γ⊗

(
PJT

)] [
Γ⊗

(
JPJT

)
+ λ2 (I⊗V)

]−1

(9)

Given B̃, the one step solution for the current image (x̂t) is rewritten as

x̂t = B̃0ỹt (10)

where B̃0 is the rows nM × d + 1 . . . nM × (d + 1) of B̃.

2.2.2 Parameter selection

The γ is a hyperparameter of the system; it depends on the data acquisition frame rate, the speed

of underlying conductivity changes and the system noise level. This section develops an approach to

estimate the value of γ from the measurement sequence. By taking covariance on both sides of (6), we

have the estimated covariance matrix of the data as

Σ̂ỹ = J̃Σx̃J̃
t
+ Σñ (11)

the optimal γ is chosen so that the error between the true data covariance matrix Σỹ and the estimated

one Σ̂ỹ is minimized as

γ = arg min
γ

∥∥∥Σỹ −Σñ − J̃Σx̃J̃
t
∥∥∥

2

F
(12)

where the subscript F is the Frobenius norm. Since Σx̃ = Γ⊗Σx and J̃ = I⊗ J, (12) becomes

γ = arg min
γ

∥∥∥Σỹ −Σñ − Γ⊗ (
JΣxJt

)∥∥∥
2

F
(13)
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By taking covariance on both sides of (1), we have

Σy = JΣxJt + Σn (14)

so that JΣxJt = Σy−Σn; we also have Σñ = I⊗Σn and Σỹ = Γy⊗Σy, where Γy ∈ R(2d+1)×(2d+1)

is the correlation matrix of ỹ. Thus the optimal γ is calculated by

γ = arg min
γ

∥∥Γy ⊗Σy − I⊗Σn − Γ⊗ (
Σy −Σn

)∥∥2

F
(15)

Γy and Σy can be calculated directly from the data. Σn can be measured by calibration of EIT

system. For computational efficiency, (15) can be simplified as

γ = arg min
γ

∥∥∥Γy
∥∥Σy

∥∥2

F
− I ‖Σn‖2F − Γ

∥∥Σy −Σn
∥∥2

F

∥∥∥
2

F
(16)

where Γy,
∥∥Σy

∥∥2

F
, ‖Σn‖2F and

∥∥Σy −Σn
∥∥2

F
may be precalculated. Since Γ is relatively small

(R(2d+1)×(2d+1)) this optimization is performed directly by bisection search between limits.

2.3 3-D spatial prior with full model correlation

The most common assumption for image prior models is to consider independent image elements;

examples are the zeroth order Tikohonov prior [36], and the NOSER prior [10]. When elements are

independent, the inter-element correlation is zero, meaning Σx is diagonal. Another common assump-

tion is to consider that elements are locally correlated [33]. In this case Σx has a sparse non-diagonal

structure since in the z direction only adjacent elements are considered correlated. We consider that

these approaches have two important limitations. First, they do not reflect adequately the scale of

the correlations in the images; image elements are correlated globally. Secondly, the spatial frequency

behaviour will depend on the size of the image elements, with a larger spatial correlation being imposed

for larger elements. Thus, a fine and coarse model with the same spatial prior do not really implement

the same prior model, and the prior model will be spatially non-uniform for a model with localized

mesh refinement.

In this section, we develop a 3-D spatial prior model which accounts for the full correlation model. It

is more computationally expensive to compute than simpler prior models, but this is only performed as

a precalculation, not during image reconstruction. This model is based on three factors: 1) a sensitivity
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weighting, where elements are weighted by the norm of the measurement sensitivity, 2) exponentially

decreasing spatial correlation with inter-element distance, and 3) an additional smoothness constraint

for elements in regions with poor sensitivity, such as above and below the electrode planes.

2.3.1 Sensitivity weighting

The sensitivity of measurements to a change in element i is the norm of the ith column of the Jaco-

bian, ‖J:,i‖ = [JT J]i,i. As mentioned, we consider this weighting to be too strong for high sensitivity

elements, and tends to push image artefacts toward the center where the sensitivity is much lower.

Instead, we use a sensitivity weighting of p = 0.5. The choice of p is a heuristic compromise between

the pushing noise to the boundary (p = 0) or to the centre (p = 1).

The inter-element sensitivity is based on the product of the square root of the sensitivity to each

element. Thus, we define the sensitivity weighting part of the prior matrix P
1
2
N as

[
P

1
2
N

]
i,i

=
[
JT J

]− p
2

i,i
(17)

Based on (17) the 3-D spatial prior is defined as

P = P
1
2
NPCP

1
2
N (18)

where PC is the spatial correlation matrix

2.3.2 Exponential spatial correlations

Given two small image elements i, j, centred at ri = (xi, yi, zi) and rj = (xj , yj , zj), the spatial

correlation is defined in terms of a spatial exponential constant η in units of distance. Elements closer

together than η are highly correlated, and those further apart have low correlation. Thus

[PC ]i,j = exp(−‖ri − rj‖
η

) (19)

However, for larger finite elements, (19) has to be modified because not all parts of each image

element are at distance ‖ri − rj‖ from each other. Instead we replace it with

[PC ]i,j =
1

ViVj

∫

Ei

∫

Ej

exp(−‖ri − rj‖
η

)drjdri (20)

where the integrals are over the volume of finite elements Ei and Ej . Vi and Vj are the volumes of

each element, where Vi =
∫

Ei
dri. We derive a closed form estimate for the integrals in (20) below.
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2.3.3 Low sensitivity constraint

The EIT sensitivity is extremely low for regions above and below the electrode bands. This has impor-

tant consequences for image reconstruction because it further increases the ill-conditioning of the EIT

inverse. The consequence is that the algorithm may “push” image artefacts to these regions; since the

measurement norm from these regions is so small, large artefacts have only a small effect on the data

fit. To avoid this effect, it is possible to tightly crop the 3D FEM model near the electrode planes, but

this also introduces artefacts, since it prevents the model current from flowing into these areas.

Using the exponential spatial correlations, it is possible to naturally account for low sensitivity

regions by imposing a strong smoothness constraint. By dramatically increasing η for image elements

in these regions, we force the algorithm to consider elements to be highly correlated, and reduce the

effective degrees of freedom (or number of fitted parameters) allocated to this region. This has the

advantage that it will reduce high spatial frequency artefacts, but does not arbitrarily and unnaturally

impose a penalty on reconstructed image amplitude in these regions. Thus we modify (20),

[PC ]i,j =
1

ViVj

∫

Ei

∫

Ej

exp(−‖ri − rj‖
η(ri, rj)

)drjdri (21)

where η(ri, rj) =





η0 if zp1 ≤ zi ≤ zp2 or zp1 ≤ zj ≤ zp2

K(zi, zj)η0 otherwise.

where η0 is the value used in the central regional, zp1 and zp2 are the vertical positions of the electrode

planes, and K(zi, zj) is a penalty term which may depend on the distance from the zp1 and zp2. For

simplicity, we use a constant value of K = 5 in this paper. Note that the low sensitivity penalty is only

imposed if both zi and zj are outside the electrode plane.

2.3.4 Integral of exponential correlations

The integrals in (20) are over the coordinates of each finite element simplex. In order to develop a closed

form integral we model each element instead as a sphere of the same volume and centre coordinates

as the original finite element simplex. For a simplex of coordinates (xk, yk, zk), k = 1 . . . 4, we have

volume V = 1
3!detD, where the kth row of Dk,: = [1, xk, yk, zk]. From this volume, the sphere radius is

r = 3

√
3V
4π . With this model, the integral may be approximated as a 1-D integral over the line from ri
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to rj . Based on element centres, (ri, rj) and radii (ri, rj), we calculate the (i, j) element of the 3-D

spatial prior PC as follows:

[PC ]i,j =
1

ViVj

∫ ri

−ri

∫ rj

−rj

exp(−|∆ij + x + y|
η

)dydx (22)

where Vi = 2ri, Vj = 2rj and ∆ij = ‖ri − rj‖.

Because of the absolute value, the inner integral has two cases:

∫ rj

−rj

e−
1
η |∆ij+x+y|dy = ηe

∆ij+x

η [e
y
η ]y

′
−rj

− ηe−
∆ij+x

η [e−
y
η ]rj

y′ (23)

where y′ = −(∆ij + x) if −rj ≤ ∆ij + x ≤ rj and is otherwise limited to the range y′ = ±rj . Based on

these cases, the outer integral is split into three portions −ri ≤ x ≤ x′, x′ < x < x′′, and x′′ < x < ri,

where x′ = min(ri,−∆ij − rj) and x′′ = min(ri,−∆ij + rj). Thus

[PC ]i,j =
η

4rirj

(∫ x′

−ri

e
∆ij+x

η [e
y
η ]rj

−rj
dx +

∫ ri

−x′′
e−

∆ij+x

η [e
y
η ]rj

−rj
dx (24)

+
∫ x′′

−x′
e

∆ij+x

η [e
y
η ]−(∆i,j+x)
−rj

+ e−
∆ij+x

η [e
y
η ](∆i,j+x)
−rj

dx

)

=
η2

4rirj

(
e−

∆ij
η

[
e

x
η

]+ri+x′

−ri−x′′

[
e

y
η

]+rj

−rj

+
[
2
η
x− e−

∆i,j+rj−x

η + e−
∆i,j−rj+x

η

]x′′

x′

)

2.4 Methods: Simulations

Numerical simulations were designed to model the movement of blood through the mitral valve during

systolic ejection. We use the following average values for healthy humans: Mitral valve area is 7.1 ±

1.3 cm2 [24] and the rate of change of left ventricular volume is 473 ml/s [18]. These values correspond

to a mitral radius of 1.5 cm; we thus simulate the ventricular ejection blood flow as conductive sphere

of 1.5 cm radius moving at 97.8 cm/s.

Numerical simulations were conducted using a 3-D cylindrical FEM model with 77999 elements

using the Netgen 4.4 software. Illustrated as Fig. (1), the model height is 30 cm (z : 0 ∼ 30); two

electrode rings (8 electrodes each) were attached at heights z = 10, 20 cm using adjacent stimulation

and measurement pattern. The systolic ejection is upwards and lateral which can be roughly simulated

as a helical pattern movement in blood vessel. Illustrated as Fig. (2), inside the model, a conductive

sphere with radius 1.5 cm rotates and rises in a the helical pattern at a uniform speed from z = 7.5 cm to
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z = 22.5 cm, moving clockwise (bird’s eye view) along a trajectory with radius 10 cm. The background

material was set to a homogeneous conductivity, σ0 = 1.0 S/m, and the spherical target to be more

conductive: σ = 1.2 S/m. The projection of the movement trajectory on the x−y plane is a full circle,

and corresponds to a movement of 64.5 cm. Thus, to model systolic ejection, one cycle of conductive

sphere movement is set to be 0.66 seconds. In model an EIT system with a frame rate ≈ 40 frames/s,

and thus simulate a movement rate of the conductive sphere of 26 frames/cycle.

The noise performance of the algorithms was tested by adding pseudo random, zero mean Gaussian

noise to each image reconstruction (with the same random seed). Images were reconstructed on a 3-D

model generated by using the EIDORS software [3] with 10 vertical slices and 256 elements on each

slice; this inverse model differs from the simulation model to avoid the inverse crime[11].

3 Results

Reconstructed targets were calculated using EIDORS to evaluate four algorithms with different regu-

larization priors: 1) GN solver, with no spatial or temporal prior model; 2) temporal solver, with a tem-

poral but no spatial prior model; 3) 3-D prior solver, with a spatial but no temporal prior model; and 4)

4-D prior solver, with both a spatial and temporal prior model. The measurement to be reconstructed

was chosen for the conductive sphere in a left anterior position, and slightly closer to the bottom than

the top electrode plane. Fig 2 shows the conductive sphere location (x, y, z) = (3.1,−9.5, 14.25) and

that of the position of the sphere during the d = 3 frames before and after the centre measurement

used in the image reconstruction. The reconstructions were plotted as nine vertical slices chosen from

z = 9 cm to z = 21 cm. Figures 3 and 4 show images with Noise to Signal Ratios (NSR) of 0 and 2,

respectively. NSR was defined as σn/ȳ, where ȳ is the mean value of the difference signal. The optimal

value of γ was calculated based on Section 2.2 as 0.97 and 0.89 frames, for NSR=0 and NSR= 2,

respectively. Different random seeds were used without evidently different results observed. The value

of η was chosen to be 3 cm or 0.1 of the medium diameter. This value will tend to penalize spatial

frequency content in images that is less than 10% of the diameter, or 1% of the area. This value (1%)

corresponds approximately the number of independent measurements available from this EIT system

(104).
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Fig. 1 The forward model: 3-D cylindrical finite element model generated from netgen. The tank of height

30 cm and diameter 30 cm is meshed with 77999 tetrahedral elements. Sixteen circular electrodes (diameter

1.0 cm) are placed in two planes (8 electrodes each) located at z = 10 cm and 20 cm, respectively. Mesh

refinement is applied around electrodes. (a) 3-D forward model; (b) side view, (c) one of electrodes with mesh

refined around it.

In order to allow comparison across algorithms, we select identical hyperparameter for all algorithms

tested. When λ is low, there is no significant difference between the GN method and temporal/3-D/4-

D priors methods. We empirically choose a relatively large value of λ = 0.5 to illustrate the effect in

higher noise conditions. Figures 3 and 4 show reconstructed images for each algorithm with no noise

and with a fairly large (NSR=2) level of noise. All images show reconstructions in arbitrary units and

are scaled equally.

In order to evaluate the quality of reconstructed images, the following figures of merit are used: 1)

target resolution: the point spread function (PSF) of the target is small in the horizontal plane, and the

off plane ghosts (which illustrated as virtual targets in the planes other than the target plane z = 14.25)

are small; 2) reconstruction position error : the planar position of the reconstructed target is correct. The
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Fig. 2 The trajectory of a spherical conductive target of radius 1.5 cm, representing the bolus left ventricular

ejection. To clarify the target movement, the tank model is cropped by the plane defined by y + 15 < z. The

target ((x, y, z) = (3.1,−9.5, 14.25)) is black in the position at which the frame is taken for image reconstruction.

Targets in dark blue are positions on from which data frames are measured and used in the calculation by the

temporal solver (d = 3 as illustrated).

planar position of the reconstructed target is calculated from the slice at z = 14.25 using the position

definition described in [1]: the centre of gravity is computed on a zone defined by half magnitude of

image; and 3) noise performance: the reconstructed images should be robust to measurement noise.

Based on these criteria and Figs. 3, 4 and Table 1, we observe that: 1) target resolution: 4-D prior

solver is ranked as the highest resolution; 2) reconstruction position error : The position error (distance

to the optimal position (3.1,−9.5)) is listed as Table 1. 4-D prior solver achieves best planar position

accuracy for both the noisy and noise-free situations; 3) noise performance: temporal prior solver has

the best noise robustness. However, 3-D prior solver introduces more artefacts when noise is added.

Figure (5) shows the relationship of the hyperparameter γ to the noise and speed of conductivity

change. γ is a measure of the exponential rate of loss of coherence between images elements across
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Fig. 3 Comparison of algorithm images with no noise. From right to left, algorithms are: conventional GN

solver, temporal solver, 3-D prior solver, and 4-D prior solver. The image to be reconstructed was at t = 0.3 sec.

Electrode planes were at z = 10 and 20 cm. Parameters are NSR=0, λ = 0.5, η = 0.1, γ = 32.8.

Table 1 The list of planar positions of reconstructed target at the level z = 14.25, and the distances to the

optimal position (3.1,−9.5).

NSR = 0 NSR = 2

solvers (x,y) (cm) distance (cm) (x,y) (cm) distance (cm)

Conventional GN (4.15,-9.93) 1.14 (3.93,-9.83) 0.89

Temporal prior solver (3.93,-9.97) 0.95 (3.84,-9.98) 0.88

3-D prior solver (3.91,-9.51) 0.81 (3.95,-9.05) 0.96

4-D prior solver (3.76 -9.04) 0.80 (3.63,-8.84) 0.85

frames. The figure shows, as expected, that γ decreases as the conductivity change rate increases (or,

equivalently, as the data frame rate decreases) or as the noise level increases. At very low system

speed and/or very high NSR, γ reaches zero, indicating that adjacent frames are independent, and

the temporal prior provides no advantage.
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Fig. 4 Comparison of algorithm images with noise. From right to left, algorithms are: conventional GN solver,

temporal solver, 3-D prior solver, and 4-D prior solver. The image to be reconstructed was at t = 0.3 sec.

Electrode planes were at z = 10 and 20 cm. Algorithm parameters are NSR=2, λ = 0.5, η = 0.1, γ = 8.6.
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Fig. 5 The inter-frame correlation γ as a function of target speed and noise level. vertical axis temporal

exponential decay parameter γ (units frames) calculated from measurements. horizontal axis target frame

period relative to the frame rate of 40 frame/s used elsewhere. Image reconstruction used d = 3,λ = 0.5.
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4 Discussion

Traditionally, EIT reconstruction algorithms assume each data frame to be independent. However,

since EIT is able to make measurements at high frame rates, we know a priori that image frames are

correlated. Intuitively, it makes sense that a sophisticated image reconstruction algorithm should be

able to take advantage of known correlations in the input data to benefit the reconstructed images.

Kalman filter techniques in EIT (such as [34]) provide a temporal image reconstruction based on

iterative tracking. The estimated image is calculated from the current data and the previous image

estimate. This differs from our proposed method which calculates a single step solution using a ”frame

window” with d frames before and after the current frame. It improves over Kalman filter based algo-

rithms by allowing an explicit control over the regularization prior and the weighting of measured data.

The one-step temporal reconstruction method was applied to experimental data from the Magnetic

Inductance Tomography (MIT) which is a similar inverse problem case to EIT [28]. The improved

reconstruction performance was also demonstrated compared to static method.

In this paper, we carefully consider the a priori spatial and temporal correlations in EIT images.

For spatial correlations, a novel exponential model is presented based on: 1) sensitivity weighting, 2) an

exponentially model of inter-element correlations, and 3) a smoothness constraint for poor sensitivity

regions. In order to avoid dependence on mesh element density, a closed form approximation to the

integral is developed. The spatial prior model developed in this paper models the spatial variation

in conductivity as a random walk process. It has the advantage over simpler prior models (such as

the discrete Laplacian and NOSER priors) of accounting for the spatial interactions in a way that is

independent of element size. However, linear prior models cannot account for sharp edges and piece-

wise constant conductivity regions; it is possible to use total variation priors for this case [22], at the

expense of significantly longer iterative solutions. For the temporal correlations, an exponential model

is presented of inter-frame correlations (based on an exponential constraints γ), and an automatic

approach to determine γ from the measurements is developed. The choice of temporal window d

depends on several considerations; large d may decrease artefacts and reconstruction noise; however,

it increases the size of the matrix inverse, and increases the condition number of the matrix to be

inverted. In order to implement a temporal solver in an EIT system for real-time imaging, a delay
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must be introduced between the measurements and reconstruction to allow acquisition of d “future

frames”. This corresponds to the linear phase filters used in digital signal processing applications.

For fast EIT systems, with frame rates above 15 frames/sec, a choice of d = 3 introduces a delay of

200 ms. One core assumption of linearized time difference imaging is that conductivity variation is

small. This allows the solution to assume that J does not vary during the 2d + 1 frames considered in

the reconstruction formulation. In the (relatively unlikely) case that J could not be assumed constant,

the choice of d would need to be limited by the rate of change of background conductivity.

Comparisons of reconstructed images with these algorithms show that increasing consideration of

prior correlations does improve the reconstructed image quality. In figures. 3, 4, we compare four ap-

proaches: traditional one-step GN, GN with temporal prior, GN with 3-D spatial prior and GN with

4-D prior. These results indicate that the temporal prior provides better image SNR and resolution

compared with the tradition GN method. The 3-D spatial prior shows still better resolution; however,

the 3-D spatial prior is more sensitive to noise than temporal prior. The 4-D prior shows a combined

advantage advantage with less noise sensitivity. Some interesting effects are that the GN and tem-

poral reconstructions show more disjoint image elements, which would appear to be due to a lack of

smoothness constraint. Another effect is a circumferential elongation of the reconstructed object in the

direction of movement in the temporal and 4-D reconstructions. This is a consequence of the temporal

model accounting for additional data from times before and after the current instant.

In this paper, the ventricular ejection blood flow is simulated as a conductive sphere which moves

laterally and upward in a helical pattern. This is a simplification which matches the velocity, direction

and ejection volume during systolic ejection; however, the phyiological blood transport is much more

complicated, which we do not simulate.

In summary, this paper proposes a four dimensional regularization for EIT reconstruction algo-

rithms. We demonstrate that it is advantageous to take into account any spatial and temporal correla-

tions which exist in the underlying images. We recommend the temporal method for cases in which the

data noise is high and the underlying conductivity changes are rapid with respect to the frame rate. If

the frame rate is much larger than the conductivity changes, then time averaging of measurements will

provide the same effect with a simpler algorithm. Similarly, if data noise is very low, it does not help to



20

consider measurements from data frames at different times. However, we propose that the considera-

tion of temporal and spatial correlations will generally be advantageous for EIT image reconstruction,

and, most likely, for other imaging modalities as well.
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