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Abstract—This paper presents a forgetting factor scheme for
variable step-size affine projection algorithms (APA). The proposed
scheme uses a forgetting processed input matrix as the projection
matrix of pseudo-inverse to estimate system deviation. This method
introduces temporal weights into the projection matrix, which is
typically a better model of the real error’s behavior than homogeneous
temporal weights. The regularization overcomes the ill-conditioning
introduced by both the forgetting process and the increasing size
of the input matrix. This algorithm is tested by independent trials
with coloured input signals and various parameter combinations.
Results show that the proposed algorithm is superior in terms of
convergence rate and misadjustment compared to existing algorithms.
As a special case, a variable step size NLMS with forgetting factor
is also presented in this paper.

Keywords—Adaptive signal processing, affine projection algo-
rithms, variable step-size adaptive algorithms, regularization.

I. INTRODUCTION

ADaptive signal processing algorithms have been widely
used in numerous applications, such as noise cancelation,

system identification and data feature extraction. These algo-
rithms are designed to minimize a performance cost function.
The Least Mean Square (LMS) algorithm [1][2], based on min-
imizing Mean Squared Error (MSE), is a common algorithm
of this type. The Normalized Least Mean Square (NLMS) [3]
algorithm is one of the most widely used adaptive algorithms
because of its computational simplicity and robustness. How-
ever, highly correlated/colored input signals can deteriorate the
convergence rate of LMS type algorithms [1]. Recursive Least
Squares RLS algorithm [4] is known for fast convergence even
with colored inputs, however, with cost of higher computa-
tional complexity. The Affine Projection Algorithm (APA)was
proposed by Ozeki and Umeda [5] using affine subspace
projections. As the generalization of the NMLS, the algorithm
applies de-correlation of the input process to speed up the
convergence, without evident increase of computations and
instability problems met by RLS[6]. A Fast Affine Projection
(FAP) was proposed by Gay and Tavathia [7] for acoustic echo
cancelation. Shin and Sayed [8] provided a unified treatment
of the transient performance of the APA family. Sankaran and
Beex [9] analyzed convergence behaviors of the APA class.
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In conventional LMS, NLMS, and APA algorithms, a fixed
step size μ governs the tradeoff between the convergence rate
and the misadjustment. To realize both fast convergence and
low steady-state deviation, a variable step (VS) is necessary.
Harris et al. [10] used a feedback coefficient based on the sign
of the gradient of the squared error; Mader et al. [11] proposed
an optimum step size for NLMS; Shin et al. [12] proposed
a criterion to measure the adaptation states and developed a
variable step-size APA based on this criterion.

In this paper, a forgetting factor method for the variable
step size affine projection algorithm is presented. This ap-
proach uses a forgetting factor processed input matrix as
the projection matrix of pseudo-inverse to estimate weights
deviation. Compared with existing algorithms, it significantly
improves convergence performance in terms of speed and
misadjustment. However, as the input matrix size increases,
especially when forgetting process is introduced, the matrix
singularity deteriorates and makes the projected error inaccu-
rate. The regularization method resolves this problem and it
gives further improvement over the previous method.

II. METHODS

A. Optimal Variable Step-Size APA

The Affine Projection Algorithm (APA)[5] updates the
weight vector w via

wi = wi−1 + μU∗
i (UiU

∗
i )−1 ei (1)

where

Ui =

⎡
⎢⎢⎣

xi

xi−1

. . .
xi−K+1

⎤
⎥⎥⎦ di =

⎡
⎢⎢⎣

di

di−1

. . .
di−K+1

⎤
⎥⎥⎦ wi =

⎡
⎢⎢⎣

w0,i

wi,i

. . .
wL−1,i

⎤
⎥⎥⎦

The subscript i is the time index corresponding to the ith

sampling instant; K is the APA order or signal window width;
L is filter order; wi ∈ R

L×1 is the filter weights vector; xi ∈
R

1×L is the input vector; di is the desired signal; μ is the step
size; The error signal is ei = di − Uiwi−1; the superscript
asterisk denotes complex conjugation.

The system input vector, xi, and the desired scalar output,
di, are related by

di = xiw◦ + vi (2)

where w◦ ∈ R
L×1 is an unknown vector to be estimated. v is a

zero mean Gaussian noise sequence. x and v are independent.
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Shin et al. [12] proposed the optimal variable step-size APA
(VS-APA) in which (1) can be written as

w̃i = w̃i−1 − μU∗
i (UiU

∗
i )−1 ei (3)

where w̃i = w◦ − wi.

pi � U∗
i (UiU

∗
i )−1

Uiw̃i−1 (4)

which is the projection of w̃i−1 onto �(U∗
i ), the range space

of U∗
i . Based on the definition of p,

E [pi] = E
[
U∗

i (UiU
∗
i )−1 ei

]
(5)

where E (·) is the expectation operator. Shin et al. [12]
selected the optimal adaptive filter as the minimizer of ‖pi‖.
For this case,

pi = U∗
i (UiU

∗
i )−1 ei (6)

and can be estimated as follows:

p̂i = αp̂i−1 + (1 − α)pi (7)

by a smoothing factor α, 0 ≤ α < 1. Then the variable step-
size APA becomes

wi = wi−1 + μiU
∗
i (UiU

∗
i )−1 ei (8)

where

μi = μmax
‖p̂i‖2

‖p̂i‖2 + C
(9)

and ‖·‖ denotes the Euclidean norm of a vector. For a positive
constant, C is related to σ2

vTr{E[(UiU
∗
i )−1]}, which can be

approximated as K/SNR. Here the Tr (·) is the trace of a
matrix. When ‖p̂i‖2 is large, wi is far from w◦ and μi is
close to μmax; when ‖p̂i‖2 is small, wi approaches w◦ and
μi is close to zero.

B. Optimal Variable Step Size APA with Forgetting Factor

In this section, a variable step size APA with a forgetting
factor λ is proposed. The motivation is similar as that of
the RLS algorithm. Choosing a value for λ that is less than
one introduces memory into the the structure of matrix Ui,
because such a weighting scheme would assign relatively
larger weights to recent input samples and smaller weights
to input samples in the remote past.

One entry of the input matrix Ui is generally denoted as
xi−k−l that is in the (k + 1)th row and (l + 1)th column of
Ui for k = 0, . . . , K − 1 and l = 0, . . . , L − 1.

By introducing a forgetting factor λ, where 0 < λ ≤ 1, and
multiplying every element in Ui by λk+l, a new observation
matrix Qi is introduced where its elements are given by

qi−k−l = λk+lxi−k−l, (10)

where qi−k−l denotes the element in row k + 1 and column
l + 1 of Qi for k = 0, . . . , K − 1 and l = 0, . . . , L − 1.

For simplicity, by decomposing the factor λk+l into two
terms, (10) can be rewritten as follows:

qi−k−l = λkxi−k−lλ
l. (11)

Then (11) can be written in matrix form as

Qi = Λ(K)UiΛ(L), (12)

where Λ(K) = diag(λ0, λ1, . . . , λK−1) and Λ(L) =
diag(λ0, λ1, . . . , λL−1). Note that Λ(K) can be considered as
a column operation on matrix Qi that assigns larger weight
to recent regressors. Whereas, Λ(L) is for row operation on
Qi which assigns larger weights to recent element of each
regressor.

In this way, the filter has a tracking mechanism that can
track slow statistical variations of the measured data. Since
the weighting scheme gives recent data more significance, the
algorithm is sensitive to system dynamics [2].

Two algorithms are preliminarily proposed by replacing Ui

by Qi in (8) and (6) as follows:
Algorithm 1:

wi = wi−1 + μiQ
∗
i (QiQ

∗
i )

−1 ei (13a)

μi = μmax
‖ĥi‖2

‖ĥi‖2 + C
(13b)

ĥi = αĥi−1 + (1 − α)hi 0 ≤ α < 1 (13c)

Algorithm 2:

wi = wi−1 + μiU
∗
i (UiU

∗
i )−1 ei (14a)

μi = μmax
‖ĥi‖2

‖ĥi‖2 + C
(14b)

ĥi = αĥi−1 + (1 − α)hi 0 ≤ α < 1 (14c)

where in both algorithms

hi � Qi
∗ (QiQi

∗)−1 ei (15)

As seen, the only difference between these two algorithms is
that, in the Algorithm 2, Ui is only replaced by Qi during the
error evaluation phase (6), not during the weights updating
phase (14a). The Algorithm 1 is not recommended because:
replacing Ui by Qi during the both phases introduces possible
convergence instability. This is discussed in details in the
section III.

The algorithm 2 is the proposed variable step size affine
projection algorithm with a forgetting factor (VS-APA-FF).
A special case is the variable step size NLMS with forgetting
factor (VS-NLMS-FF). This can be obtained by setting K = 1
when the input matrix Ui is a row vector and the forgetting
factor processing is implemented only in the row direction as
follows:

Qi = UiΛ(L). (16)

III. ALGORITHM STABILITY ANALYSIS

The convergence behavior of the general form of APA class
had been investigated by Sankaran and Beex [9]. In [13], Ikeda
et al. derived the convergence rates of the APA family for both
white and the coloured signals. As proofed in [9], μ ∈ (0, 2)
is a necessary and sufficient condition for the APA class to
be stable; when μ = 1, the algorithm conducts the fastest
convergence. Therefore, the proposed variable step size APA
with forgetting factor (VS-APA-FF), (Algorithm 2), guarantees
stability as long as the initial step size is within (0, 2) [9].
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To investigate the effect of introducing the forgetting
scheme on the weight update, the convergence behavior of
the traditional fixed step size APA [14] is firstly investigated:

wi = wi−1 + μU∗
i (UiU

∗
i )−1ei (17)

Subtracting both sides of (17) from w◦ leads to the following
weight-error recursion:

w̃i = [I − μU∗
i (UiU

∗
i )−1Ui]w̃i−1 (18)

where I is an L × L identity matrix.
The singular value decomposition (SVD) of the input matrix

U is given by
U = RΣV ∗ (19)

where R and V are K × K and L × L unitary matrices
respectively, and the K × L matrix Σ is defined as

Σ =
[

S 0
]

(20)

where S is a diagonal matrix,

S = diag(σ1, σ2, . . . , σK). (21)

and the σ’s which are called the eigenvalues of U are positive
square roots of the eigenvalues of UiU

∗
i and are usually

ordered in a decreasing manner, σ1 ≥ σ2 ≥ . . . ≥ σK > 0.
Substituting (19) into (18) gives

w̃i = Vi[I − μΣ∗
i (ΣiΣ∗

i )
−1Σi]V ∗

i w̃i−1. (22)

Multiplying on the left by V ∗
i then gives

V ∗
i w̃i = [I − μΣ∗

i (ΣiΣ∗
i )

−1Σi]V ∗
i w̃i−1. (23)

In this result, let define the rotational coefficient error vector
as w̆i = V ∗

i w̃i and write

w̆i = [I − μΣ∗
i (ΣiΣ∗

i )
−1Σi]w̆i−1 (24)

Now each element of w̆i converges at its own rate, which is
determined by the corresponding eigenvalue of the transfor-
mation matrix Ti = [I − μΣ∗

i (ΣiΣ∗
i )

−1Σi]. Suppose the kth

eigenvalue of Ti is ρk, k = 1, . . . , K, then the kth element of
w̆i has converge rate as

ρk = 1 − μ
σkσk

σkσk
= 1 − μ (25)

Conclusions: 1. μ ∈ (0, 2) is the sufficient and necessary
condition for APA class algorithm convergence; 2. if μ = 1, the
algorithm converges at the highest rate. These are consistent
with the conclusions drawn by Sankaran and Beex [9].

Next, let investigate the convergence behavior of the APA
algorithm if a forgetting weighted process is introduced into
the weight updating phase (17). After being weighted, the
singular value decomposition of the input matrix Q is (here the
time index is ignored for simplicity, without loss of generality):

Q = Λ(K)UΛ(L) = Λ(K)
[
RΣV T

]
Λ(L)

= R
[
Λ(K)ΣΛ(L)

]
V T = RΣ′V T (26)

where
Σ′ = Λ(K)ΣΛ(L) (27)

Σ′ ∈ �K×L and

[Σ′]k,l =
{

σ′
k = λ2(k−1)σk k = l

0 k �= l
(28)

for k = 1, 2, . . . , K; l = 1, 2, . . . , L.
The (17) becomes

wi = wi−1 + μQ∗
i (QiQ

∗
i )

−1ei (29)

Subtracting both sides of (29) from w◦

w̃i = (I − P ′
i )w̃i−1 (30)

where P ′
i = μQ∗

i (QiQ
∗
i )

−1Ui. The equation (24) changes to

w̆i = [I − μΣ′∗
i (Σ′

iΣ
′∗
i )−1Σi]w̆i−1 (31)

the weighted transformation matrix becomes T ′
i = [I −

μΣ′∗
i (Σ′

iΣ
′∗
i )−1Σi]. Suppose the kth eigenvalue of T ′

i is
ρ′k, k = 1, . . . , K, then the kth element of w̆i has converge
rate as

ρ′k = 1 − μ
σ′

kσk

σ′
kσ′

k

= 1 − μ
σk

σ′
k

= 1 − μλ2(1−k) (32)

when λ and k are chosen such that 2
μ < λ2(1−k), certain

converge rate |ρ′k| > 1 which means the algorithm is unstable.
Conclusion: The APA algorithm may be unstable if the

forget-weighting process is introduced into the weight updat-
ing phase (Algorithm 1). Although parameters can be chosen
carefully to assure |ρ′k| ≤ 1, applying the proposed forgetting
process on the weight updating phase is not recommended.

In the Section IV, the proposed algorithm VS-APA-FF is
further upgraded.

IV. REGULARIZATION OF THE WEIGHTED PROJECTION

According to equation 6 and 15, the accuracy of the error
evaluation depends on the condition number (define by the ra-
tio of the maximum eigenvalue and the minimum eigenvalue)
of the projection matrix (U or Q). For a projection matrix
with large condition number, even a small amplitude of noise
in the error signal will be amplified which makes the h or p
relatively noisy. Thus the VS-APA and VS-APA-FF algorithms
adopt a smoothing function, in the form of (7), to alleviate this
problem, however, with the cost loss of error signal fidelity,
which sacrifices convergence speed and/or misadjustment.

In the previously proposed algorithm (Algorithm 2, denoted
as VS-APA-FF), the weighted projection matrix Q has a larger
condition number compared with the non-weighted U . This
can be illustrated as follows:

The condition number of U is:

condU = σmax/σmin = σ1/σK (33)

from (12), the SVD of the weighted input matrix Q is:

Q = Λ(K)UΛ(L) = Λ(K)[RΣV ∗]Λ(L)

= R(Λ(K)ΣΛ(L))V ∗ (34)
= RΣ′V ∗

where Σ′ is a K × L matrix with all zero entities except
[Σ′]j,j = λ2(j−1)σj , j = 1, 2, . . . , K. The condition number
of Q is:

cond Q = σ1/[λ2(K−1)σK ] = λ2(1−K) condU (35)

International Journal of Computer, Information, and Systems Science, and Engineering 2;3 © www.waset.org Summer 2008

205



which illustrates the increased condition number by a factor
of λ2(1−K). According to equation (15), this means that the
estimated h is more sensitive to the noise in error signal.

In stead of solving this problem using a smoothing function
as the VS-APA and VS-APA-FF, this problem is addressed
to use a Tikhonov regularization approach, under which (15)
becomes:

hi = Qi
∗(QiQi

∗ + δ2I)−1ei. (36)

where I is the identity matrix on the assumption that each
element in hi has identical variance; δ is a hyperparameter to
control the amount of regularization. The modified algorithm
becomes (denoted as VS-APA-FF-REGU:

wi = wi−1 + μiU
∗
i (UiU

∗
i )−1 ei

μi = μmax
‖ĥi‖2

‖ĥi‖2 + C
(37)

Note that the smoothing functions (such as (7), (14c)) is no
longer needed (effectively α = 0), since the regularization
process accomplishes this function.

V. SIMULATION RESULTS

The proposed algorithm is validated by simulations of a
system identification model (Fig. 1).

Fig. 1. System identification model

Following the test framework of Shin et al. [12], the
system to be simulated is represented by a moving average
model with L taps. The adaptive filter has the same number
of taps. The goal of the adaptive processing is to estimate
system parameters by optimizing the adaptive filter parameters
iteratively using the proposed algorithm.

Two coloured Gaussian noises are used as input signals.
The input signal colorizations are obtained by filtering a white
Gaussian random noise (zero mean, unit variance) through a
first order filter, G1(z) = 1/(1− 0.9z−1) or a 4th order filter

G2(z) =
1 + 0.9z−1 + 0.6z−2 + 0.81z−3 − 0.329z−4

1 + z−1 + 0.21z−2

The measurement noise vi is added to yi (yi = xiw◦) and the
SNR of the measurement signal is calculated by

SNR = 10log10(
E[y2

i ]
E[v2

i ]
)

The simulation results are obtained from the ensemble average
of 100 independent trials (ten thousand iterations each), with
μmax = 1 and a smoothing factor α = 0.99 for VS-APA and
VS-APA-FF. The convergence is evaluated by Mean Square
Deviation (MSD) which is calculated by

E(‖w̃i‖2) = E(‖w◦ − wi‖2)

Figs.4-5 illustrate effects of different forgetting factors of
VS-APA-FF through G1 and G2 colorizations, respectively.
The special case of VS-APA-FF is VS-NLMS-FF (when K=1)
which is illustrated in fig. 4(a)4(c) and 5(a). (Note that
when λ = 1, the VS-APA-FF becomes the original VS-APA.
Therefore, VS-APA can be regarded as a special case of VS-
APA-FF).

From figs.4-5, following observations can be made:
• VS-APA-FF outperforms VS-APA by applying a temporal

weighted projection matrix Q.
• in figs.4-5, some adaptation curves are noisy (e.g.

figs.4(b)and figs.3(d), when K is large and λ is small),
which also illustrated the increased condition number of
the projection matrix.

• noise color affects adaptation performance. (This applies
for all APA class)

Using experimental conditions described previously, and
λ = 0.5, δ = 1, simulation comparisons between VS-APA,
VS-APA-FF and the regularized version VS-APA-FF-REGU
are illustrated by figure 4 (noise G2) and figure 5 (noise
G1). For some cases, when the update matrix of VS-APA-
FF becomes severly ill-conditioned (Figure 4(a)5(a)5(b)5(c))
and experiences unsatisfactory convergence, the VS-APA-FF-
REGU can still converge quickly with low misadjustment.
Therefore, the conclusion is that VS-APA-FF-REGU is a good
complement for VS-APA-FF, when the forgetting processed
input matrix is close to singular.

On the other hand, by using a larger forgetting factor (e.g.,
λ = 0.9) when the VS-APA-FF has less singularity problem,
the VS-APA-FF-REGU is still advantageous over the VS-APA
and the VS-APA-FF, illustrated in Figure (6,7).

VI. CONCLUSIONS

This paper presents an upgraded variable step size APA
algorithm,VS-APA-FF, and its regularized version VS-APA-FF-
REGU. With a projection matrix processed with a forgetting
factor, VS-APA-FF obtains upgraded convergence performance
in terms of higher convergence rate and lower misadjustment.
However, due to the singularity becomes worse after been
weighted, VS-APA-FF is incapable of some cases, such as the
APA window size K is large and a small forgetting factor λ
is used. The Tikhonov regularization is used to overcome the
deteriorated singularity problem of the processed input matrix.
The regularized algorithm is more stable and converges better
than previous algorithms.
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Fig. 2. Effects of λ in VS-APA-FF (VS-APA when λ = 1.0), G2 colorization.
(a) VS-NLMS-FF K=1, taps=16, C=0.0001, SNR=30dB; (b) K=8, taps=16,
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Fig. 3. Illustration of different forgetting factors for VS-APA-FF(VS-APA
when λ = 1.0), G1 colorization. (a) VS-NLMS-FF K=1, taps=16, C=0.0001,
SNR=30dB; (b) K=2, taps=16, C=0.001, SNR=30dB; (c) K=2, taps=16,
C=0.001, SNR=40dB; (d) K=8, taps=16, C=0.15, SNR=40dB;
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FF-REGU. G1 colorization, λ = 0.9, δ = 1, SNR=30dB. (a) K=8, taps=32,
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