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Abstract

Electrical Impedance Tomography (EIT) is an imaging technique which calculates the elec-
trical conductivity distribution within a medium from electrical measurements made at a
series of electrodes on the medium surface. Reconstruction of conductivity or conductivity
change images requires the solution of an ill-conditioned nonlinear inverse problem from
noisy data. EIT is a hard problem as it is a particularly difficult example of attempting to
recover a signal from noise.

To date most EIT scanners and algorithms have been designed for 2D applications. This
simplifying assumption was originally used due to the prohibitive computational complexity
of solving the larger 3D problem. Contemporary PC’s can now calculate 3D solutions,
however at the start of this thesis the prevailing algorithms in clinical use remain 2D models
that rely on ad hoc tweaking to produce useful reconstructions.

The aim of this thesis is to develop enhancements in EIT image reconstruction for 3D
lung imaging; to remove some of the limitations that continue to impede its routine use in
the clinic. The aim is attained through the systematic achievement of the following four
main objectives: (1) Improve the method of hyperparameter selection in order to eliminate
case by case tweaking of parameters, provide repeatability of experiments, and reduce the
number of reconstructions needed to find the best reconstruction for a given data set. (2)
Increase the resolution of 3D models by increasing the number of elements in the Finite
Element Model (FEM). This requires the development of an algorithm to solve the large
inversion using readily available computers. (3) Determine the best way to collect 3D data
from the chest given some equipment limitations and a specific set constraints concerning
electrode placement. (4) Determine the viability of non-blurring regularization for 3D lung
imaging.

The bulk of this thesis describes how the four objectives were successfully addressed
with the result that some of the major limitations discouraging and preventing the routine
use of 3D models for lung imaging have been eliminated. This thesis concludes with a
recommendation for how to collect and reconstruct 3D EIT images of the lungs.
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Chapter 1

Introduction

1.1 Background

Electrical Impedance Tomography (EIT) is an imaging technique which estimates the elec-
trical impedance distribution within some medium. Since impedance is not directly mea-
surable it is calculated from boundary voltage measurements which are a function of the
impedance and a current which is applied or injected by the EIT scanner. Using different
current injection patterns and voltage measurement sequences, an approximation of the
spatial distribution of the impedance or changes in impedance within the object are recon-
structed. It is also possible to inject voltages and measure the resulting currents, however
the majority of work to date uses the former technique.

EIT has numerous applications that can be categorized into three major fields:

1. Industrial. These applications include the imaging of fluid flows in pipelines, the
measurement of fluid distribution in mixing vessels, and non-destructive testing such
as crack detection [43][9].

2. Geophysical. Applications include geophysical prospecting, cross borehole measure-
ment and surface measurement [88][93].

3. Medical. EIT is used for monitoring of pulmonary and cardiac functions, measure-
ment of brain function, detection of haemorrhage, measurement of gastric imaging,
detection and classification of tumours in breast tissue and functional imaging of the
thorax [67][49][83][46][82][70][56][107]. This thesis is primarily concerned with medical
imaging applications, however the results are applicable to the other fields.

EIT suffers from severe limitations that may prevent its adoption for routine medical di-
agnosis. Its major limitations are low spatial resolution, susceptibility to noise and electrode
errors, and in medical imaging, large variability of images between subjects. Thus EIT is
not suited for anatomical imaging in the way that Magnetic Resonance Imaging (MRI) or
Computed Tomography (CT) are. EIT does however, show promise as a diagnostic tool
for medical clinicians. It has the advantage of being relatively inexpensive (on the order
of thousands of dollars) compared to modalities such as MRI, CT, and Positron Emission
Tomography (PET). Moreover, EIT equipment is non-invasive, is safe, and since it is small
and non-cumbersome it can be easily moved and left in place for extended time periods.
Thus it may be viable for continuous bedside monitoring for such pathologies as pulmonary
oedema, cerebral ventricular haemorrhage, and gastric emptying. Additionally, it has the
ability to produce a high number of images per second encouraging its use in functional
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as opposed to anatomical imaging. With functional applications images can be considered
intermediate data for some technique such as the determination of the change in lung tidal
volume.

1.2 Current state and problems

A detailed review of the current state of EIT is presented in chapters 2 and 3. Chapter 3
concludes with a discussion of the best practices used in EIT lung imaging at the start of
this work.

The field of impedance imaging of lungs is immature as an engineering endeavour. De-
spite 20 years of research and the availability of inexpensive medical grade EIT scanners,
EIT has yet to make the transition from the lab to the clinic [48]. The adoption of EIT
imaging for clinical use will require algorithms that provide 3D information, improve res-
olution, and be robust and reliable enough that clinicians will routinely and confidently
employ the equipment for diagnostics.

Although there are many papers (the bibliography lists over 80) and even a few books
(for example [69]) dealing with EIT, there is a lack of rigorous evaluation and comparison
of competing methods and techniques. Moreover, many algorithms (perhaps the majority)
are ad hoc and require tweaking of parameters that prevents repeatability in experimenta-
tion. Finally, 2D algorithms continue to be used: the bulk of research in EIT has revolved
around 2D finite element models. Improvements in computational power has permitted the
recent development of 3D algorithms, however the use of 2D continues to be routine in lung
imaging, perhaps due to the ready availability of equipment designed for 2D applications.
Among other limitations, 2D imaging cannot provide vertical location information of off-
plane contrasts. Although one can predict theoretically how a known off-plane contrast will
affect the resulting 2D image, one cannot infer the location of the source of an artefact in a
2D image, caused by an off-plane contrast, from the 2D image. This is a severe limitation
to 2D imaging that should encourage the development of 3D algorithms. The practical use
of 3D imaging has been pioneered by the Industrial Process Monitoring (IPM) community.
The main difference between IPM applications and lung applications is that IPM has the
advantage of well known and stable electrode position information thus reconstruction mod-
els can match the tank geometry to high precision. Contrarily, lung imaging suffers from
unknown a priori electrode position which is exacerbated by continuous electrode move-
ment throughout data collection. These problems make difference imaging difficult and
make absolute imaging practically impossible unless one can track the electrode positions.

EIT remains a promising medical imaging modality. However, to move the modality
into routine use for lung imaging will, as a minimum, require the development of rigorous,
repeatable and rapid 3D image reconstruction techniques. Thus the aim of this thesis is to
develop Enhancements in EIT Image Reconstruction for 3D Lung Imaging. In other words,
to remove some of the limitations that continue to prevent the routine use of 3D models.
Although it is expected that these enhancements will be useful in other applications the
specific interest in this thesis is 3D lung imaging.

1.3 Objectives

The aim of this thesis will be addressed in terms of the following four major objectives:

O1: Improve the method of hyperparameter selection in order to eliminate case by case
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tweaking of parameters, provide repeatability of experiments, and reduce the number
of reconstructions needed to find the best reconstruction for a given data set.

EIT is an ill-conditioned problem in which regularization is used to calculate a sta-
ble and accurate solution by incorporating some form of prior knowledge into the
solution. A hyperparameter is used to control the trade-off between conformance to
data and conformance to the prior. A difficulty with experimental and clinical EIT
reconstruction algorithms is the tendency of algorithms to rely on subjective meth-
ods to select this hyperparameter. The absence of objective hyperparameter selection
methods results in several issues which hinder experimental and clinical use of the
technique: (1) users of EIT for clinical applications are uncomfortable using ‘fiddle’
adjustments to modify images, (2) comparisons of EIT reconstruction algorithms can
be subjective due to the necessity of manual tuning of hyperparameter values, (3) ex-
perimental work is not repeatable if disparate researchers cannot objectively recreate
the hyperparameter values used in the work of others, (4) meta-algorithms, such as
detection of electrode errors [7], require a method to fix these values, and (5) Many ex-
isting methods of hyperparameter selection, such as the L-curve and expert selection,
require the calculation of multiple reconstructions in order to obtain the algorithm’s
output.

O2: Increase the resolution of 3D models by increasing the number of elements in the
FEM. This will require the development of an algorithm to solve the large inversion
using readily available computers.

Calculation of conductivity solutions using one of the Newton type methods requires
inverting large linear systems derived from finite element models in which the con-
ductivity is constant over each element. The Hessian matrix in these linear systems
scales with the square of the number of elements in the model and the square of
the number of measurements used in the reconstruction. The large number of ele-
ments required for 3D reconstructions have to date restricted 3D reconstructions to
coarse, low resolution (low number of elements) models. Although there is a limit to
the achievable spatial resolution that is independent of mesh density, overly coarse
meshes will result in the geometry of the mesh biasing the solution. Complex, accu-
rate geometries, a priori structures, the increased number of measurements possible
with newer machines and the desire for improved resolution in the third dimension
leads to a requirement to solve large 3D models. Such reconstructions are beyond the
capability of contemporary computers such as the AMD Athlon 64 3000+, 2GB RAM
computers used in our lab. Thus the development of algorithms that can efficiently
calculate full 3D solutions over dense finite element models using many measurements
is required.

O3: Determine the best way to collect 3D data from the chest given some equipment
limitations and a specific set of constraints concerning electrode placement.

Electrode placement for 2D reconstruction algorithms is typically confined to planar
arrangements that match the 2D reconstruction geometry; yet the EIT problem is
inherently 3D as currents cannot be confined to flow in the plane. Consequently 2D
reconstructions are subject to artefacts generated by off plane contrasts. 3D recon-
struction algorithms with multi-plane electrode arrangements have been used to more
accurately reconstruct impedance distributions [90][99][115]. Compared to 2D there
are many more ways to arrange and sequence electrodes when placing them in 3D.
Given the variety of possible 3D electrode placement configurations, it is important
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to know how various alternative configurations compare to one another in order to
determine which one to use in a specific application such as lung imaging.

O4: Determine the viability of non-blurring regularization for 3D lung imaging.

Most common regularization methods impose smoothness constraints on solutions
thereby prohibiting the reconstruction of edges in the recovered conductivity dis-
tribution. Employment of non-smooth reconstruction techniques is important for
medical imaging applications of EIT as they involve discontinuous profiles which oc-
cur at inter organ boundaries. Total Variation (TV) is a promising regularization
technique that permits the recovery of such discontinuities. However, TV regular-
ization requires the solution of the inverse problem formulated as the minimization
of a non-differentiable function. Application of traditional minimization techniques
(Steepest Descent Method, Newton Method) is computationally prohibitive [44][23].
Recently Borsic [23] developed the Primal-Dual Interior-Point Method for solution
of the TV minimization for static (absolute) EIT which reduces the complexity of
the TV minimization to the point of viability for general EIT applications. However
the performance of this algorithm with respect to traditional smooth algorithms is
unknown.

1.4 Contributions

1.4.1 Contributions by Objective

O1: Improve the method of hyperparameter selection in order to eliminate case by case
tweaking of parameters, provide repeatability of experiments, and reduce the number
of reconstructions needed to find the best reconstruction for a given data set.

In this thesis a calibration-based method of objective hyperparameter selection, called
BestRes is developed, evaluated and compared to five existing strategies for hyperpa-
rameter selection. Results of this thesis show that (1) heuristic selections of hyperpa-
rameter are inconsistent among experts, (2) generalized cross-validation approaches
produce under-regularized solutions, (3) L-curve approaches are unreliable for EIT,
(4) BestRes produces good solutions comparable to expert selections, and additionally
that (5) the method can be used to reliably detect an inverse crime when used with
the NF calculation. Thus the main contribution of this objective is the development
of the BestRes hyperparameter selection method which is demonstrated to be as good
or better than these existing methods while being stable and repeatable.

This work is described in detail in the article “Objective Selection of Hyperparameter
for EIT,” by BM Graham and A Adler, published in the IOP Journal Physiological
Measurement (2006). Chapter 4 is a copy of this paper.

O2: Increase the resolution of 3D models by increasing the number of elements in the
FEM.

In this thesis a Nodal Jacobian Inverse Solver algorithm that reduces the execution
time and memory required to calculate reconstructions is developed. This algorithm
scales with the number of nodes in a finite element mesh rather than with the number
of elements. The algorithm is evaluated by comparing its performance to traditional
2D Elemental Jacobian algorithms. Its performance is then evaluated with a 21504
element 3D mesh that is too large to be solved with common linear algebra systems
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based on 32 bit pointers (such as is available in current versions of Matlab). For
the example used in this paper the size of the linear system is reduced by a factor
of 26. The applicability of the algorithm for clinical use is shown by reconstructing
experimentally measured human lung data.

Additional advantages of the Nodal Jacobian Inverse Solver are the ability to store
the solution in a smaller number of parameters, and the ability to rapidly extract and
render graphical displays of solutions using a function such as Matlab’s built-in trisurf
function. The trisurf function takes as input a list of vertices and associated values
at each vertex. No explicit knowledge of the geometry is required, such as an element
list providing connectedness between nodes, in order to display cut planes of coplanar
nodes. Additionally, nodal solutions are easily processed using pixel based filtering
algorithms similar to those used in image processing work.

The main contribution of this objective is the development of the Nodal Jacobian
Inverse Solver which allows the solution of dense 3D models that were previously not
solvable using commonly available linear algebra systems based on 32 bit pointers.

This work is described in the article “A Nodal Jacobian Inverse Solver for Reduced
Complex EIT,” by BM Graham and A Adler, published in International Journal for
Information & Systems Sciences, Special Issue on Computational Aspect of Soft Field
Tomography, Volume 2, Number 4 (2006). Chapter 5 is a copy of this paper.

O3: Determine the best way to collect 3D data from the chest given some equipment
limitations and a specific set of constraints concerning electrode placement.

In this thesis several “regular” 3D electrode placement (EP) configurations tailored
to a 16 electrode adjacent drive EIT system are proposed and evaluated in terms of
several figures of merit, immunity to noise and performance in the presence of elec-
trode placement errors. An EP configuration is defined as a combination of physical
placement of the electrodes (we restrict ourselves to two planes of electrodes in this
work) and a current injection pattern.

The main conclusions are the observation that none of the evaluated EP configuration
offers a worthwhile improvement over the others under ideal conditions. Only when
noise and electrode placement errors are considered does the choice of EP configuration
become important. The Planar electrode placement is recommended for lung imaging.

The main contributions of this objective are the proposal of the EP configurations
with their constraints, the rigorous evaluation of their performance and the recom-
mendation of which of the studied EP configurations to use to collect 3D lung data.

This work is described in the article “Electrode Placement Strategies for 3D EIT,” by
BM Graham and A Adler, accepted for publication in the IOP Journal Physiological
Measurement (2007). Chapter 6 is a copy of this paper.

O4: Determine the viability of non-smooth regularization for 3D lung imaging.

In this thesis the PD-IPM algorithm for Total Variation (TV) regularization of EIT
reconstructions is evaluated and compared to the computationally less demanding
quadratic regularization. The main observations are that the TV solutions of 2D
models can produce the desired discontinuous solutions but require on the order of 10
iterations to converge. In comparison, the quadratic algorithm produces good, albeit
smooth solutions in 1 to 3 steps. The quadratic algorithm is slightly more robust
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to noise however both algorithms produce useful 2D reconstructions at realistic noise
levels.

The ability of PD-IPM algorithm to reconstruct edges in 3D models was not satis-
factorily determined. The PD-IPM algorithm reconstructs the conductivity in the
elemental basis. The complexity of the elemental solution limits the resolution of
the finite element model. Thus the capability of determining 3D TV performance is
limited to relatively coarse FEMs that may limit the performance of the algorithm.
Further work is required to enable the solution of higher resolution 3D models in order
to evaluate the performance of PD-IPM for 3D lung imaging.

In summary, TV regularised reconstructions are considerably more expensive to cal-
culate than quadratic reconstructions, however the TV PD-IMP algorithm is able to
compute 2D non-smooth reconstructions in the presence of moderate noise, and is
therefore of practical use in certain applications. It is not currently recommended for
use with 3D lung imaging.

The main contribution of this objective was the improvement in convergence of the
PD-IPM algorithm and the evaluation of the algorithm’s performance in 2D and 3D
applications.

This work is described in the article “Total Variation Regularization for EIT,” by
Borsic, Graham, Lionheart, and Adler. Chapter 7 is a copy of the a manuscript
in preparation for submission to IEEE Transactions on Medical Imaging. This is a
collaborative work. The development of the PD-IPM algorithm, it’s explanation and
implementation are the original work of Andrea Borsic and can be found in [23]. The
analysis of the algorithm’s performance, including the improvement in convergence,
the simplification of the β decay schedule as well as the design and execution of
the algorithm’s performance evaluation and subsequent conclusions are the original
contribution of this thesis. Dr Adler and Dr Lionheart are the PhD supervisors of
Graham and Borsic respectively.

1.4.2 Miscellaneous Contributions

The background research for this thesis is contained in chapters 2 and 3. These chapters
include, in one place, the complete development of the finite element solution of the forward
problem from Laplace’s equation through to the finite element solution. We are unaware of
the existence of a similar end-to-end derivation elsewhere in the EIT literature.

Numerical simulation of conductivity data permits the rapid development of imaging
algorithms than would not be possible if researchers were restricted to only using lab data.
However, many EIT papers rely strictly on simulated data to make conclusions. Scientific
and engineering results based on simulations are valuable but must be verified with empirical
(lab) data. Therefore a collateral objective of this thesis is to verify simulated results with
empirical data collected in our lab. Thus, where possible, the conclusions presented in this
thesis are verified using the Goe-MF II adjacent stimulation tomography system (Viasys
Healthcare, Höchberg, Germany).

The impulse function and point spread function are basic tools of signal processing for
linear systems. Neither the impulse function nor point spread function are mentioned in the
EIT literature perhaps because EIT is a non-linear modality. In this thesis pseudo-impulse
phantoms are introduced and used with EIT. In section 4.3.5 we first introduce the Blur
Radius measure which is an analog of the point spread function adapted for EIT using
finite element meshes. The argument for the use of pseudo-impulse functions in algorithm
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development and evaluation is not based on superposition since it does not hold for non-
linear systems, but because they are convenient to use and work well enough in practice.
Validation of their utility in spite of the lack of superposition is demonstrated by subsequent
verification of algorithm performance using realistic empirical data generated by complex
phantoms. Specifically although objectives 1-3 were developed and evaluated using the
pseudo-impulse phantom techniques, they were ultimately verified by empirical work.

1.5 Record of Miscellaneous Observations

In the course of this research, several other areas were studied that are outside the focus
area of this thesis. In order to record this work and these observations, they are recorded
in the appendix.

1.6 Summary

At the start of this work the prevailing algorithms in use for clinical lung imaging were
limited to 2D models that relied on ad hoc tweaking to produce reconstructions. The aim
of this thesis was to develop enhancements in EIT image reconstruction for 3D lung imaging.
The aim was attained through the systematic achievement of the four main objectives:

1. The development of the BestRes objective hyperparameter selection method provides
a calibration based method of calculating a hyperparameter once for a specific con-
figuration of mesh and equipment. Using this algorithm eliminates the necessity of
ad hoc tweaking by researchers during reconstruction. Different research groups can
more easily repeat the work of other research groups. Moreover, by calculating the
hyperparameter off-line, a good image can be obtained from a single inversion. Con-
trarily, methods such as L-curve and expert selection require multiple inversions to
be calculated for each useful solution.

2. The development of the Nodal Jacobian Inverse Solver algorithm enables the solution
of large dense 3D finite element models that, previous to this work, were not solvable
using linear algebra systems based on 32 bit pointers. This solver allows one to model
and solve complex, accurate geometries containing a priori structures with a system
that could not solve the same model using the traditional elemental Jacobian.

3. The evaluation of 3D EP configurations provides a rigorous basis for recommending
a specific method to collect 3D lung data. Moreover it provides a sound basis to
discontinue further evaluation of configurations, such as the proposed opposite con-
figurations, that perform poorly.

4. The improvement and evaluation of the PD-IPM algorithm for TV regularization pro-
vides a defensible argument for when and when not to use TV regularization. Moreover
the promising 2D results provide justification and incentive for further research into
this algorithm aimed at increasing the size of 3D models that can be solved with the
algorithm. The development of a nodal TV prior is a promising avenue for further
research.

The work described in this thesis has removed some of the major limitations that have
discouraged or prevented the routine use of 3D models for lung imaging. This thesis con-
cludes with a recommendation for how to collect and reconstruct 3D EIT images of the
lungs under the stated constraints.
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Chapter 2

Forward Problem

2.1 Description of a Basic EIT System and Experiment

The following two sections describe a prototypical EIT system for 2D medical applications.
The remainder of chapter 2 along with chapter 3 expand on the components and variations
of the prototype system.

2.1.1 Data Collection

A typical EIT system uses a set of electrodes attached to the surface of the medium being
imaged. One can apply current or voltage to the electrodes and then measure the resulting
voltage or current respectively. In most practical systems an alternating current is applied
to some electrodes and the resulting voltages are measured at the other electrodes. Assume
that ℓ = 16 electrodes have been fixed around the surface of the object such as the medium
in figure 2.1. There are many ways to apply current and measure the resulting voltages

Figure 2.1: Typical Imaging System with 16 Electrodes attached to the boundary of an object
for current injection and voltage measurement (from [3]).

which will be discussed in section 2.5.1. With the Adjacent drive pattern [16], current is
applied to an adjacent pair of electrodes and the resultant voltages between the remaining
13 adjacent pairs of electrodes is measured. The three possible measurements involving
one or both of the current injecting electrode are not used. This procedure is repeated
16 times with current injected between successive pairs of adjacent electrodes until all 16
possible pairs of adjacent electrodes have been used to apply the known current. This is
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Figure 2.2: Adjacent drive patterns

shown schematically in figure 2.2. In figure 2.2(a) current is injected through electrode
pair (1, 2) and the resulting boundary voltage differences are measured from electrode pairs
(3, 4), (4, 5), ..., (14, 15), (15, 16). Voltages are not measured between pairs (16, 1), (1, 2), or
(2, 3). In figure 2.2(b) the current is injected between pair (2, 3), and the voltage differences
measured between pairs (4, 5), (5, 6), ..., (15, 16), (16, 1). This process is repeated until cur-
rent has been injected between all 16 adjacent pairs of electrodes. This is called a frame
of data and will produce 16 × 13 = 208 measurements. By convention the data frame is
arranged as a column vector of length 208. Frame acquisition periods have decreased over
the years. For example the equipment used for the empirical work of this thesis, the Goe-
MF II type tomography system manufactured by Viasys Healthcare, Höchberg, Germany,
collects 12.5 frames per second (80ms per frame).

There are various situations, which will be discussed later, in which it is necessary
to numerically calculate the potential field within a medium. A mathematical model of
the spatial potential field, u(~x), resulting from injected current patterns over a known
conductivity can be formulated as u(~x) = F (σ, I) where F is a forward operator that
calculates the spatial potential as a function of the conductivity, σ, and the current injection
pattern, I. Here ~x is a position vector which for 2D is a function of (x, y). This model is
known as the forward model in EIT.

The forward problem is numerically solved using the Finite Element Method (FEM)
which will produce an algebraic equation of the form V = Y(σ)−1I in which Y is the FEM
system matrix, also known as the admittance matrix, V is a matrix of voltages. The ith

column of V contains the nodal voltages for current injection pattern i. I is a matrix of
the net current into each node. The ith column of I contains the nodal currents for current
injection pattern i. An operator T [] can be defined to extract the 208 voltage measurements
from the finite element model solution as v = T [V] = T [Y(σ)−1I] where v is the vector
of voltage measurements corresponding to a data frame. Numerical solution of the forward
problem is the subject of chapter 2.2.

2.1.2 Reconstruction

The process of estimating the impedance from the measured data is known as the inverse
problem in EIT. The inverse problem is solved using a reconstruction algorithm of which
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there are two primary types in EIT. Static imaging attempts to recover an estimate of the
absolute conductivity of the medium from which the boundary data was acquired. Static
imaging is discussed in section 3.3. Difference imaging attempts to recover an estimate
of the change in conductivity over some interval based on data frames measured at two
times, see figure 2.3. Difference images can be calculated in a single step with a linearized

(a) σ at t1 (b) σ at t2 (c) Conductivity Change

Figure 2.3: Example of 2D difference Image reconstruction

algorithm, however this assumes that the impedance change over the interval is small.
For large impedance changes one needs to solve the non-linear problem with an iterative
algorithm. The difference imaging algorithms discussed in this thesis are all of the one-step
linearized class.

Define a signal z = v2 − v1, where v1 is a vector of voltage measurements taken at
time t1 and v2 is a vector of voltage measurements taken at time t2. The estimation of a
difference image is calculated with an equation of the form

x̂ = Bz (2.1)

where x̂ = ∆σ is the change in conductivity between times t1 and t2, and B is a regularized
linearized reconstruction operator. It is also possible to define a “normalized difference”

signal in which z is defined as zi =
length(v)
∑

i
(v2,i − v1,i) /v1,i where v1,i and v2,i are the

ith elements of the vectors v1 and v2 respectively. This signal is not used in the current
development but is further discussed in section 4.5.3.1.

Calculation of the impedance or impedance changes based on the boundary voltage
data is an instance of an ill-conditioned, inverse problem. Such problems are unstable and
require some method of improving the conditioning to achieve stability. The most common
method is regularization, which involves trading off fidelity to the data against adherence
to some a priori condition on the solution. Typically, this means that the inverse problem
is augmented with a side constraint that is either chosen in an ad hoc manner, or based on
some sort of prior information about the solution such as amplitude (norm) or smoothness.
Numerical solution of the inverse problem is the subject of chapter 3. Figure 2.4 shows an
experimental setup of a Goe Type II analyzer connected to one of the several tanks used
for phantom studies.

2.2 The Forward Problem

Most EIT equipment uses alternating currents (AC) thus the various loads under analysis
could have reactive components. AC reduces electrode corrosion through electrolytic ef-
fects, AC detectors can extract the injected signal from the electrodes while filtering out
other signals such as the cardiac cycle, and in medical applications AC is required to meet
safety standards. Amplitude and frequency vary with application from several Amperes
and low frequency in geophysical applications to medical applications using 1-10mA and
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Figure 2.4: Typical experimental setup with laptop computer and Goe-MF II type tomography
system (Viasys Healthcare, Höchberg, FRG) connected to a tank with 16 electrodes.

10kHz-1MHz. Often in industrial applications loads are assumed to be mainly resistive
or mainly capacitive. In these cases only the in-phase or the out-of-phase voltage compo-
nent is measured therefore only the real or imaginary part of the impedance is estimated.
Such applications are referred to as Electrical Resistance Tomography (ERT) and Electrical
Capacitance Tomography (ECT). The work of this thesis is based on a family of medical
equipment that works with up to 50kHz current. At this low frequency, to a good approx-
imation, only the conductance or equivalently the resistivity is estimated. Thus the work
discussed in this thesis is restricted to the recovery of conductance only. One could there-
fore talk in terms of Electrical Conductance Tomography or the more accepted Electrical
Resistance Tomography. However, in keeping with common usage, the term EIT will be
maintained. The thesis of Polydorides [98] addresses the estimation of both the real and
complex components of the impedance.

In inverse problems a forward model is used to predict observations. In the specific case
of EIT, a model that predicts the spatial electric field resulting from applying a current to
a known conductivity distribution is required. The capability to calculate the electric fields
within an object also provides an efficient method to assemble the Jacobian matrix which
is necessary to solve the inverse problem.

2.2.1 Physics of the problem - from Maxwell to Laplace

An arbitrary medium, Ω, undergoing electrical stimulation has electrical properties that
vary as a function of position and time. These properties are represented by the electrical
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impedance, σ(~x, t) + jω(~x, t), and relative permittivity ǫ(~x, t) where ~x = (x1, x2) for 2D or
~x = (x1, x2, x3) for 3D is the position vector. This work does not consider the temporal
aspect of these functions nor, as discussed above, are the reactive components significant.
It is also common practice to neglect the effect of magnetic fields in medical applications
because the current and frequencies are low. At high frequencies magnetic effects cannot be
ignored [110], however, under low frequency conditions the electrical properties are entirely
described by the conductivity, σ(~x). Additionally, only the case in which the object being
imaged has a linear and isotropic conductivity is considered.

A mathematical model of the problem is derived from Maxwell’s equations [3]. Out-
side the medium, Ω, there is no current flow because the conductivity is zero. Energy is
applied to the medium in the form of current injection on the boundary, Γ, which sets up
a distribution of voltage, u(~x), and a pattern of current flow, J(~x), in the medium. The
electric potential, u(~x), can be expressed by an elliptic partial differential equation known
as Laplace’s equation or just the Laplacian:

∇ · (σ∇u) = 0 in Ω (2.2)

Laplace’s equation can be derived starting from the point form of Ohm’s Law:

J = σE (2.3)

where the electric field vector, E, is obtained from the scalar potential function u(x) by
taking the negative of the gradient of u:

E = −∇u (2.4)

Applying the field equivalent of Kirchoff’s current law, which states that the net current
leaving a junction of several conductors is zero, yields:

∇J = 0 (2.5)

Substituting 2.4 into 2.3 and taking the divergence of both sides in accordance with 2.5
gives Laplaces’s equation 2.2 for the electric potential inside some medium. Cheney and
Isaacson [37] provide the following intuitive description of this equation:

“To understand where the equation comes from, it helps to read it from the inside
out. The inside nabla takes the gradient of the potential, u(~x), computing the
direction in which electrons will tend to flow, as well as the rate of change of
voltage in that direction. In electric circuits, the conductance of a wire times the
change in voltage gives the current passing through the wire. The tissue inside
the human body act like an electrical resistor, so the same principle applies:
σ(~x) times the gradient of u(~x) represents the current at point ~x. Finally the
outer nabla computes the divergence of the current, a measure of its tendency
to flow into or out of one spot. As long as no charge is building up inside
the body (a reasonable assumption), the divergence equals zero. The inverse
electrical impedance problem is non-linear because the unknown conductivity
and potential are multiplied together.”

The boundary conditions on Γ, the boundary of Ω, are formed by fixing the normal
current, Jn̂, at every point of Γ. Representing the normal vector by n̂, we have

Jn̂ = −σ ∂u
∂n̂

on Γ (2.6)
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The presence of the electrodes is taken into account via appropriate boundary conditions
which will appear as modifications to the equation for normal current, 2.6, on Γ. Elec-
trode models are discussed in section 2.3.3. Equations 2.2 and 2.6 comprise the forward
problem in EIT and are used to find the voltage distribution within the medium. Analytic
methods using series approximations [76][33] have been used to solve the forward problem
for simplified models such as a single contrast in a circular medium. However, solving the
forward problem for models with arbitrary geometries requires numerical techniques such
as the finite element method. With such methods continuum problems of 2.2 and 2.6 are
converted into discrete algebraic problems that can be solved with a computer.

2.3 Finite Element Method

The Finite Element Method (FEM) is a numerical analysis technique for obtaining approx-
imate solutions to a wide variety of engineering problems. It was originally developed as
a tool for aircraft design but has since been extended to many other fields including the
modeling of electromagnetic and electrostatic fields [106]. Due to its ability to model arbi-
trary geometries and various boundary conditions the Finite Element Method is the most
common method currently used for the numerical solution of EIT problems [92][100]. The
following paragraphs borrow heavily from [75].

In a continuum problem of any dimension the field variable, such as the electric potential
in EIT, is defined over an infinite number of values because it is a function of the infinite
number of points in the body. The finite element method first discretizes the medium under
analysis into a finite number of elements collectively called a finite element mesh. Within
each element the field variable is approximated by simple functions that are defined only
within the individual element. The approximating functions (sometimes called interpolation
or shape functions) are defined in terms of the values of the field variables at specified
points on the element called nodes. Most EIT work uses linear shape functions in which all
nodes lie on the element boundaries where adjacent elements are connected. Higher order
shape functions will have interior nodes. In summary, the finite element method reduces
a continuum problem of infinite dimension to a discrete problem of finite dimension in
which the nodal values of the field variable and the interpolation functions for the elements
completely define the behaviour of the field variable within the elements and the individual
elements collectively define the behaviour of the field over the entire medium.

There are three different methods typically used to formulate Finite Element problems:

1. Direct approach. The Direct approach is so called because of its origins in the direct
stiffness method of structural analysis. The method is limited, however it is the most
intuitive way to understand the finite element method.

2. Variational approach. Element properties obtained by the direct approach can also
be determined by the Variational approach which relies on the calculus of variations
and involves extremizing a functional such as the potential energy. The variational
approach is necessary to extend the finite element method to a class of problems that
cannot be handled by direct methods. For example problems involving elements with
non-constant conductivity, for problems using higher order interpolation functions and
for element shapes other than triangles and tetrahedrons.

3. Method of Weighted Residuals (MWR). The most versatile approach to deriving el-
ement properties is the Method of Weighted Residuals. The weighted residuals ap-
proach begins with the governing equations of the problem and proceeds without
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relying on a variational statement. This approach can be used to extend the finite
element method to problems where no functional is available. The method of weighted
residuals is widely used to derive element properties for non-structural applications
such as heat transfer and fluid mechanics.

Regardless of the particular finite element method selected, the solution of a contin-
uum problem by the finite element method proceeds with following general sequence of
operations:

1. Discretize the continuum. The FE method consists of discretizing the spatial do-
main, denoted Ω, into a number of non-uniform, non-overlapping, elements connected
via nodes. Triangles and rectangles are used in 2D problems while tetrahedral and
hexahedral elements are used for 3D. Additionally meshes using a mixture of differ-
ent types of elements are possible. In this thesis only simplices (triangles for 2D and
tetrahedrons for 3D) are used. Figure 2.5(a) shows a 2D mesh constructed of triangles
while figure 2.5(b) is a 3D mesh constructed of tetrahedrons.

(a) 2D Mesh with 256 Elements (b) 3D Mesh with 21504 Ele-
ments

Figure 2.5: Example 2D and 3D discretizations

2. Select interpolation functions. The field variable is approximated within each element
by an interpolating function that is defined by the values of the field variable at
the nodes of the element. Interpolation functions can be any piecewise polynomial
function defined at a number of nodes. Linear interpolation functions are used for
most of the work in this thesis. Other interpolation functions have been used with
EIT, for example Marko et al use quadratic interpolation functions in [116].

3. Find the element properties. This means calculating the local matrix for each element.
The symbol Y with appropriate subscripts is used to denote the components of local
matrices throughout this thesis.

4. Assemble the element properties to obtain a system equations. This means combining
the local matrices into a single master or global matrix. The symbol Y or A without
subscripts are used throughout to denote the global matrix.

5. Impose the Boundary Conditions (BC). Boundary conditions can be fixed (also known
as Type I, Dirichlet, or essential boundary conditions), derivative (also known as Type
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II, Neumann, or natural boundary conditions), or a combination of both (mixed, also
known as Type III boundary conditions). With Dirichlet boundary conditions the
value of the field variable is prescribed for selected boundary nodes. For Neumann
conditions the derivative of the field variable is prescribed at selected boundary nodes.

6. Solve the system of equations. The algebraic system is of the form YV = I. The
system is solved by Linear Algebra software such as Matlab.

7. Make additional computations if desired. This would be required for iterative algo-
rithms, algorithms that use adaptive currents and adaptive mesh refinement.

In the next two sections the Direct approach and the MWR are described by expanding the
above items. Hua et al provide a derivation of the Variational method for EIT in [74].

2.3.1 Direct Approach

The following section is derived from material in [106][74][92][69] and [70]. The Direct Ap-
proach can only be used for relatively simple problems and simple element shapes. For EIT
this means the direct method can only be used for finite elements of constant conductivity
with linear shape functions. In this case the finite element model for EIT is equivalent to a
linear electrical network (lumped resistor network) that connects the nodes [92]. In the 2D

3

1 2

 

(a) Triangular Element

3

1 2

Y23

Y12

Y31

(b) Equivalent Circuit

Figure 2.6: Derivation from Resistor Network

case a triangle such as figure 2.6(a) is equivalent to the electrical network of figure 2.6(b).
In this conversion each edge of the triangle is replaced by a resistor whose conductance is
σcotθj where resistor j is the resistor opposite the jth angle [69]. The three dimensional
case is similar with θj being the angle between the two faces meeting at the jth edge. In
terms of nodal coordinates, the conductance Yij, between node i and node j is determined
by the triangle-to-network conversion as

Yij =
σe

2Ae
(bibj + cicj), (i 6= j) (2.7)

with b1 = y2 − y3, b2 = y3 − y1, b3 = y1 − y2 and c1 = x3 − x2, c2 = x1 − x3, c3 = x2 − x1

where (xi, yi)(i = 1, 2, 3) denotes a coordinate of each node, Ae indicates the area of an
element and σe is the element conductivity (sheet conductivity) which is assumed to be
constant over the element. Superscript e refers to element e. Kirchoff’s current law for the
circuit is written as





Y11 Y12 Y13

Y21 Y22 Y23

Y31 Y32 Y33









u1

u2

u3



 =





c1
c2
c3



 or YeUe = Ie
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with Y11 = −Y12 − Y13, Y22 = −Y21 − Y23, Y33 = −Y31 − Y32, Yij = Yji, for i, j = 1, 2, 3
where ui(i = 1, 2, 3) are the nodal potentials and ci(i = 1, 2, 3) is the prescribed current
which flows in the ith node.

2.3.1.1 Assemble the element properties to obtain the system equations

The two element mesh of figure 2.7 is used to illustrate the assembling of the global admit-
tance matrix. The master matrix Y is assembled with the conductances between adjacent
elements adding in parallel as in figure 2.7. These two elements share nodes 2 and 4, how-
ever Y24 will be different for each triangle since the conductivity, σe, and the geometry is
different for each element. For the mesh of figure 2.7 the local matrices are:

1

2

3

4

2

1

3

4

2

1

Y
41

Y
34

Y
12

Y
23

4

2

Y    +   Y
24              24

Figure 2.7: Connection of Two Elements [92]

Y
(1)
ij =





Y11 Y12 Y14

Y21 Y22 Y24

Y41 Y42 Y44



 i, j ∈ [1, 2, 4] are the global node indices for element 1

Y
(2)
ij =





Y22 Y23 Y24

Y32 Y33 Y34

Y42 Y43 Y44



 i, j ∈ [2, 3, 4] are the global node indices for element 2

These are combined as follows:

Y =









Y11 Y12 Y13 Y14

Y21 Y22 + Y22 Y23 Y42 + Y42

Y31 Y32 Y33 Y34

Y41 Y42 + Y42 Y43 Y44 + Y44









i, j ∈ [1 : 4]

2.3.1.2 Impose Boundary Conditions

There are four common boundary conditions known as electrode models in EIT. They are
the Continuum, Gap, Shunt and Complete Electrode Models [112]. We describe the Gap
electrode model which is simplest model to implement numerically. In the Gap electrode
model electrodes are connected directly to selected nodes on the boundary of the FEM. With
the adjacent drive protocol current is applied at the two boundary nodes that represent a
pair of electrodes while the currents at the remaining nodes are set to 0 in accordance with
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Kirchoff’s current law. The resulting potential field is calculated by solving the following
algebraic system of equations:

YV = I (2.8)

where Y is the global admittance matrix which is a function of the FEM and the conduc-
tivity, V is a vector of nodal voltages

V = [u1, u2, ..., uN ]T (2.9)

and I is the current vector which for the adjacent drive is a permutation of

I = [0, 0, ...,−1, 1, ...0]T (2.10)

The non-zeros represent the current driven between a pair of electrodes while the zeros
represent the current at each node which is zero by Kirchoff’s current law. The two non-
zero elements of equation 2.10 are not necessarily adjacent elements of the vector I. By
convention ±1 are used as the current values, however when matching lab equipment one
uses the current values injected by the equipment, for example 5mA for the equipment in
our lab. Equation 2.8 is solved for the nodal voltages as V = Y−1I. Thus using the Direct
approach with the Gap model the forward problem can be viewed as using Kirchoff’s current
law to solve a large network assembled as a set of simultaneous linear equations.

With the adjacent current pattern equation 2.8 is solved once for each pair of electrodes
being driven thus I can be assembled as a matrix where each column is a permutation of
the vector equation 2.10 and V then becomes a matrix in which each column contains the
nodal voltage for a single current injection. The entire algebraic system has the form:












u11 · · · · · · u1M
...

. . . uij
...

... uij
. . .

...
u1M · · · · · · uNM













=











1 0 · · · 0
0 Y22 · · · Y2N
...

...
. . .

...
0 YN2 · · · YNN











−1












c11 · · · · · · c1M
...

. . . cij
...

... cij
. . .

...
c1M · · · · · · cNM













(2.11)

Thus uij is the voltage at the ith node due to the jth current injection pattern while cij is the
current at the ith node during the jth current injection pattern. As with equation 2.10 each
column of i has only two non-zero entries and is a permutation of I = [0, 0, ...,−1, 1, ...0]T .
Since electrodes in the Gap model map to a single node each the voltages measured between
a pair of electrodes is determined by the difference between two nodal values where the
specific nodes are those corresponding to the electrodes. The voltages measured between
adjacent electrodes are collected into a column vector through the use of an extraction
operator, T []. For example if v9 is defined to be the voltage measured between electrodes 4
and 5 during injection pattern 2, then the operator T will give T [V]9 = V42 − V52.

Solving equation 2.8 for V requires the inversion of Y. Although Y is square and sparse
it is also singular. To make the system non-singular a reference node is selected. This is the
same as choosing an arbitrary ground. For convenience node 1 is arbitrarily selected. To
implement this in the linear equation all entries in row 1 and column 1 of the admittance
matrix are set to 0 and the diagonal elements is set to 1. To ensure that the potential will
remain zero at that node during each injection pattern the corresponding element of each
current vector in I is set to zero.

Solution of equation 2.11 provides the potential values at the nodes. Interpolation
functions are used to calculate the potential within each element. The following discussion
derives the linear interpolation function over a triangular element. The derivation for a
tetrahedron is similar and is included in the subsequent section.
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2.3.1.3 Derivation of Linear Interpolation Functions, φi

Before proceeding to the Method of Weighted Residuals the one must derive the linear
interpolation functions of the field variable. The following derivation is based on [106]. The
potential within a typical triangular element can be approximated by the linear function:

U(x, y) = a+ bx+ cy =
[

1 x y
]





a
b
c



 (2.12)

Thus the true continuous potential distribution over the x-y plane is modelled by a piecewise
planar function U . The equation must hold at each node i where U = Ui when (x, y) =
(xi, yi) thus the coefficients a, b, c in equation 2.12 are found from the three independent
simultaneous equations, which are obtained by requiring the potential to assume the values
U1, U2, U3 at the three nodes. Substituting each of these three potentials and their geometric
nodal positions into equation 2.12 yields three equations which can be collected to form the
matrix equation





U1

U2

U3



 =





1 x1 y1

1 x2 y2

1 x3 y3









a
b
c



 (2.13)

The coefficients a, b, c are determined by





a
b
c



 =





1 x1 y1

1 x2 y2

1 x3 y3





−1 



U1

U2

U3



 (2.14)

Denote the inverse of the coefficient matrix by C which is

C =





1 x1 y1

1 x2 y2

1 x3 y3





−1

=





x2y3 − x3y2 y1x3 − x1y3 x1y2 − y1x2

y2 − y3 y3 − y1 y1 − y2

x3 − x2 x1 − x3 x2 − x1



 /det(C)

In 2D the determinant is equal to twice the triangle’s area. The determinant of C is

det(C) = 2A = x2y3 − x3y2 − x1y3 + x3y1 + x1y2 − x2y1

Substitution into 2.12 yields the potential function over the element:

U(x, y) =
[

1 x y
]





a
b
c



 =
[

1 x y
]





c11 c12 c13
c21 c22 c33
c31 c32 c23









U1

U2

U3





where cij are the elements of C. This can be more easily written as a summation:

U(x, y) =
3
∑

i=1

Uiφi(x, y) (2.15)

where the interpolation functions, φi(x, y) i ∈ (1, 2, 3) are given by:

φi = c1i + c2ix+ c3iy
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which are explicitly:

φ1 = 1
2A {(x2y3 − x3y2) + (y2 − y3)x+ (x3 − x2)y}

φ2 = 1
2A {(x3y1 − x1y3) + (y3 − y1)x+ (x1 − x3)y}

φ3 = 1
2A {(x1y2 − x2y1) + (y1 − y2)x+ (x2 − x1)y}

(2.16)

These newly defined functions are interpolatory on the three vertices of the triangle and
are identical to equation 2.7 shown in the direct method of section 2.3.1. Each function, φi

is zero at all vertices except one where it’s value is one:

φi(xj , yj) = 0 i 6= j
= 1 i = j

Equation 2.15 completely defines the potential within the triangular element as a function
of the values of the potential at the element’s three nodes. In an analogous manner the
linear interpolation functions for a 3D model are derived in the next section.

2.3.1.4 Derivation of Linear Interpolation Functions in 3D

The potential within a typical tetrahedral element can be approximated by the linear func-
tion:

U(x, y, z) = a+ bx+ cy + dz =
[

1 x y z
]









a
b
c
d









(2.17)

Thus the true continuous potential distribution over three space is modelled by a piecewise
hyper-planar function U .

The equation must hold at each node i where U = Ui when (x, y, z) = (xi, yi, zi) thus
the coefficients a, b, c, d in equation 2.17 are found from the four independent simultaneous
equations, which are obtained by requiring the potential to assume the values U1, U2, U3, U4

at the four nodes. Substituting each of these four potentials and their geometric nodal
positions into equation 2.17 yields four equations which can be collected to form the matrix
equation









U1

U2

U3

U4









=









1 x1 y1 z1
1 x2 y2 z2
1 x3 y3 z3
1 x4 y4 z4

















a
b
c
c









(2.18)

The coefficients a, b, c, d are determined by









a
b
c
d









=









1 x1 y1 z1
1 x2 y2 z2
1 x3 y3 z3
1 x4 y4 z4









−1 







U1

U2

U3

U4









Denote the inverse of the coefficient matrix by C which is

C =









1 x1 y1 z1
1 x2 y2 z2
1 x3 y3 z3
1 x4 y4 z4









−1

=
[

C1 C2 C3 C4

]

/det(C)
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with Ci being the following column vectors

C1 =









−(x2y3z4 − x2z3y4 − x3y2z4 + x3z2y4 + x4y2z3 − x4z2y3)
(y3z4 − z3y4 − y2z4 + z2y4 + y2z3 − z2y3)

−(x3z4 − z3x4 − x2z4 + z2x4 + x2z3 − z2x3)
(x3y4 − y3x4 − x2y4 + y2x4 + x2y3 − y2x3)









C2 =









(x1y3z4 − x1z3y4 − x3y1z4 + x3z1y4 + x4y1z3 − x4z1y3)
−(y3z4 − z3y4 − y1z4 + z1y4 + y1z3 − z1y3)
(x3z4 − z3x4 − x1z4 + z1x4 + x1z3 − z1x3)
−(x3y4 − y3x4 − x1y4 + y1x4 + x1y3 − y1x3)









C3 =









−(x1y2z4 − x1z2y4 − x2y1z4 + x2z1y4 + x4y1z2 − x4z1y2)
(y2z4 − z2y4 − y1z4 + z1y4 + y1z2 − z1y2)

−(x2z4 − z2x4 − x1z4 + z1x4 + x1z2 − z1x2)
(x2y4 − y2x4 − x1y4 + y1x4 + x1y2 − y1x2)









C4 =









(x1y2z3 − x1z2y3 − x2y1z3 + x2z1y3 + x3y1z2 − x3z1y2)
−(y2z3 − z2y3 − y1z3 + z1y3 + y1z2 − z1y2)
(x2z3 − z2x3 − x1z3 + z1x3 + x1z2 − z1x2)
−(x2y3 − y2x3 − x1y3 + y1x3 + x1y2 − y1x2)









In 3D the determinant is equal to six times the tetrahedron’s volume. The determinant of
C is

det(C) = 6A =

x2y3z4 − x2z3y4 − x3y2z4 + x3z2y4 + x4y2z3 − x4z2y3 − x1y3z4
· · · + x1z3y4 + x3y1z4 − x3z1y4 − x4y1z3 + x4z1y3 + x1y2z4 − x1z2y4

· · · − x2y1z4 + x2z1y4 + x4y1z2 − x4z1y2 − x1y2z3 + x1z2y3 + x2y1z3
· · · − x2z1y3 − x3y1z2 + x3z1y2

Substitution of this into 2.17 yields the potential function over the element

U(x, y, z) =
[

1 x y z
]









a
b
c
d









=
[

1 x y z
]









c11 c12 c13 c14
c21 c22 c23 c24
c31 c32 c33 c34
c41 c42 c43 c44

















U1

U2

U3

U4









where cij are the elements of C. This can be more easily written as a summation:

U(x, y, z) =

4
∑

i=1

Uiφi(x, y, z) (2.19)

where the interpolation functions, φi(x, y, z) i ∈ (1, 2, 3, 4) are given by:

φi = c1i + c2ix+ c3iy + c4iz

which are explicitly:

φ1 =
1

6A















−(x2y3z4 − x2z3y4 − x3y2z4 + x3z2y4 + x4y2z3 − x4z2y3)
· · · + (y3z4 − z3y4 − y2z4 + z2y4 + y2z3 − z2y3)x
· · · − (x3z4 − z3x4 − x2z4 + z2x4 + x2z3 − z2x3)y
· · · + (x3y4 − y3x4 − x2y4 + y2x4 + x2y3 − y2x3)z















20



with the remaining interpolation functions, φ2, φ3, φ4, following through cyclic interchange
of subscripts.

These newly defined functions are interpolatory on the four vertices of the tetrahedron.
Each function, φi is zero at all vertices except one where it’s value is one:

φi(xj , yj) = 0 i 6= j
= 1 i = j

Equation 2.19 completely defines the potential within the tetrahedral element as a function
of the values of the potential at the element’s four nodes.

2.3.2 Method of Weighted Residuals (MWR)

There are several different methods used in weighted residuals including Collocation, Least
Squares, and Galerkin with the latter method being the most common. Much of the material
in the following section was interpreted from [69] and [106]. The development of the MWR
starts with a discretization in which the field variable is represented as a linear combination
of piecewise polynomial interpolation functions of limited support:

ũ(~x) =

N
∑

i=1

uiφi(~x) where φi =

{

1 on vertex i
0 otherwise

(2.20)

where φi are the interpolation functions andN is the number of nodes in the FEM. Equation
2.20 is general, however, in the case of linear interpolation functions in 2D, φ will turn out
to be identical to equation 2.16. Since ũ represents only a finite approximation of the
potential, the Laplacian is not, in general, equal to zero due to the error introduced by
using the approximating functions. The method of weighted residuals proceeds by deriving
the weak form of the governing equation through the multiplication of Laplace’s equation
2.2 by some arbitrary test function v and integration over the domain, Ω:

∫

Ω

v[∇ · (σ∇ũ)]dΩ = 0 (2.21)

Here v is an arbitrary test function that weighs the residual such that it is zero in some
weighted or average sense. The Galerkin method of weighted residuals differs from other
MWR methods in the choice of weighing function. With the Galerkin method the test
function v has the same form as the trial function ũ in that it uses the same interpolation
functions φi. In other words

v(
⇀
x) =

N
∑

i=1

wiφi(
⇀
x) (2.22)

where wi are the coefficients that weigh the interpolation functions φi. The problem is to
find the ui that solve equation 2.21.

The “vector derivative identity” (the product rule for vectors) is:

∇ · (fA) = f(∇ ·A) + ∇f ·A (2.23)

In terms of the variables in 2.21 the “vector derivative identity” is

[∇ · (vσ∇ũ)] = σ∇ũ · ∇v + v∇ · (σ∇ũ) (2.24)
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Substitution of 2.24 into 2.21 yields
∫

Ω

[∇ · (vσ∇ũ) − σ∇ũ · ∇v]dΩ = 0 (2.25)

Rearranging gives
∫

Ω

∇ · (vσ∇ũ)dΩ =

∫

Ω

σ∇ũ · ∇vdΩ (2.26)

Gauss’ Theorem is the older name for the Divergence theorem which is a math-
ematical statement of the physical fact that, in the absence of the creation or
destruction of matter, the density within a region of space can change only by
having it flow into or away from the region through its boundary. Gauss’ Theo-
rem is valid in any dimension, however in 2D it is

∫

V

∇ · FdV =
∫

∂V

FdS where V is

volume and S is surface area.

Invoking Gauss’ Theorem on 2.26 permits the introduction of boundary conditions:
∫

∂Ω

vσ∇ũ · n̂dΓ =

∫

Ω

σ∇ũ · ∇vdΩ (2.27)

Note that ∇φ · n̂ =∂φ
∂n̂ so 2.27 could also be written

∫

Ω

σ∇ũ · ∇vdΩ =

∫

∂Ω

vσ
∂ũ

∂n̂
dΓ (2.28)

The boundary integral only needs to be carried out for elements underneath electrodes. The
left side of 2.28 is for the entire mesh. When examined for a single triangular 2D element,
k, the left side is

∫

Ek

σk∇ũ · ∇vdΩ (2.29)

Substituting the definitions of the interpolating versions of v and u yields

∫

Ek

σk∇
3
∑

i=1

uiφi · ∇
3
∑

i=1

wj ũj dΩ (2.30)

If the conductivity, σk, is constant over a single element then the nodal voltages ui, the
coefficients for the weighing functions, and the summations can be moved outside of the
integral:

σk

3
∑

i=1

ui

3
∑

j=1

wj

∫

Ek

∇φi · ∇φj dΩ (2.31)

It is common to break out the integral part of the equation as

Sk
ij =

∫

Ek

∇φi · ∇φj dΩ (2.32)
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Allowing equation 2.31 to be rewritten as

σk

3
∑

i=1

ui

3
∑

j=1

wjS
k
ik (2.33)

Thus each triangular element of the mesh produces a 3 by 3 matrix. In 3D this will be a 4
by 4 matrix.

The right side of equation 2.28 represents the boundary conditions. In terms of the
interpolating functions the boundary conditions are:

∫

∂Ω

vσ
∂ũ

∂n̂
dΓ = σk

3
∑

i=1

wi

3
∑

j=1

ui

∫

∂Ω

φi∇φj · n̂dΓ (2.34)

The ability to formulate solutions for individual elements before putting them together
to represent the entire problem is an important advantage of the finite element method.
For a single element of the FEM 2.27 becomes

σk

3
∑

i=1

ui

3
∑

j=1

wjS
k
ik = σk

3
∑

i=1

wi

3
∑

j=1

ui

∫

∂Ω

φi∇φj · n̂dΓ (2.35)

Both sides can be divided through by the summation of the weighing function coefficients
to yield:

σk

3
∑

i=1

ui

3
∑

j=1

Sk
ik = σk

3
∑

i=1

3
∑

j=1

ui

∫

∂Ω

φi∇φj · n̂dΓ (2.36)

In terms of the entire domain, the left side of 2.28 will be

∫

Ω

σ∇ũ · ∇φdV =

K
∑

E=1

σk

3
∑

i=1

3
∑

j=1

uiS
k
ij i, j = 1, ...N (2.37)

2.3.2.1 Calculating Local Matrices

The potential gradient within the element may be found from the linear interpolation equa-
tions 2.15 or 2.19 as

∇U =

3
∑

i=1

Ui∇φi (2.38)

Taking the divergence of 2.38 yields:

∇ · ∇U =

3
∑

i=1

3
∑

j=1

Ui

∫

∇φi · ∇φj dΓUj

For convenience define matrix elements (local stiffness matrix)

S
(e)
ij =

∫

∇φi · ∇φj dΓ (2.39)
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where the superscript identifies the element. Equation 2.39 is recognizable as equation 2.32
and may be written in matrix quadratic form as

∇ · ∇U = S(e)U

The gradient of the linear interpolation functions, equation 2.16, becomes the vector:

∇φi =
1

2A
(y2 − y3, x3 − x2) (2.40)

which, in terms of the local matrix for an element is the same as the matrices derived from
the direct method. That is Sij = Yij with Y as in equation 2.7.

2.3.3 Impose Boundary Conditions

If the Gap model is used then the algebraic system of equations is identical to those of the
direct method, as it must be. In terms of the derivation of MWR the Gap model boundary
conditions are analytically contained in the right side of 2.28:

∫

Γ

uσ
∂ũ

∂n̂
dΓ (2.41)

Away from the electrodes where no current flows ∂u/∂n = 0. This mixed boundary value
problem is well-posed, and the resulting currents are I =

∫

El

σ∂u/∂n. With the Gap model

current is injected between two nodes of the FEM. The boundary conditions are then:
∫

Γ

uσ
∂ũ

∂n̂
dΓ = uaIa + ubIb (2.42)

where Ia and Ib are injected current and ua and ub are the voltages at the current injection
electrodes.

There are 3 other electrode models in the literature, Continuum, Shunt and Complete.

2.3.3.1 Continuum Model

The continuum model assumes that there are no electrodes and injected current j is a
continuous function on the boundary of the medium. The current is a continuous function
of the angle, θ, in the plane, that is

j (θ) = C cos (kθ)

where C is constant. With experimental data it has been shown that this model under-
estimates the conductivities as much as 25% due to the fact that presence of electrodes is
ignored [112].

2.3.3.2 Shunt Electrode Model

The Shunt Electrode Model [69] is a refinement of the Gap Electrode model in which the
effect of perfectly conducting finite length electrodes is added. A complete mathematical
statement of the shunt model is equation 2.2 along with the following boundary conditions:

∫

Eℓ

σ
∂u

∂n̂
dΓ = Iℓ on ℓ = 1, ..., L (2.43)

∂u

∂n̂
= 0 on Γ′ (2.44)

u = Uℓ on Γ (2.45)
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where Γ = ∪ℓEℓ and Γ′ = ∂Ω−Γ on Γ. Equation 2.43 states that the net flux of the current
density through the electrode contact surface is equal to the injected current. Equation
2.44 means that away from the electrodes no current flows. Equation 2.45 means that the
voltage on each electrode, Uℓ, is constant on electrodes. This is a mixed boundary problem
that is well posed but seldom used.

2.3.3.3 Complete Electrode Model

In medical applications with electrodes applied to skin, and in phantom tanks with ionic
solutions in contact with metal electrodes a contact impedance layer exists between the
solution or skin and the electrode. This modifies the shunting effect so that the voltage
under the electrode is no longer constant; the voltage is constant on the electrode because
it is metallic (higher conductivity than the medium) however there is now a voltage drop
across the contact impedance layer. The contact impedance zℓ could vary over the electrode
but it is usually assumed to be constant. This electrode-skin contact impedance is high for
the frequencies used in EIT, thus, the voltage drop across the contact impedance is large [72].
Ignoring this voltage drop introduces a large modeling error, which results in errors in the
reconstructed conductivity. The complete electrode model includes the effect of the contact
impedance and is accordingly the most accurate description of the physical situation [112].
This model is able to predict tank measurements within the accuracy of a data acquisition
system [34]. Note that in the following it is assumed that the contact impedances zℓ are
known and are not part of the inverse problem.

The Complete Electrode Model is defined by the Laplacian, Equation 2.2 and the fol-
lowing Boundary Conditions [69][112].

u+ zℓσ
∂u

∂n̂
= Uℓ onEℓ, ℓ = 1, 2, . . . , L (2.46)

∫

Eℓ

σ
∂u

∂n̂
dΓ = Iℓ ℓ = 1, 2, . . . , L (2.47)

σ
∂u

∂n̂
= 0 on dΓ\⋃L

ℓ=1Eℓ (2.48)

In these equations Iℓ is the current sent to the ℓth electrode, Eℓ denotes the part of Γ that
corresponds to the ℓth electrode and Uℓ is the constant potential on electrode ℓ. Equation
2.46 accounts for the electrode contact impedance which is characterized by zℓ. Equation
2.46 means that the measured voltages on the boundary consist of the voltage on the
boundary plus the voltage dropped across the electrode impedance. The outward unit
normal term, ∂u

∂n̂
, means that the contact impedance is only a factor for current passing

across the electrode-skin boundary. Equation 2.47 says that the integral of the current
density over the electrode is equal to the total current that flows to that electrode. Finally,
equation 2.48 means that there is no current entering or leaving the object where there is
no electrode (i.e. on the inter-electrode gap). The complete electrode model consists of
equations 2.2 and 2.46-2.48 together with the conditions for conservation of charge:

L
∑

ℓ=1

Iℓ = 0

and an arbitrary choice of a ground:

L
∑

ℓ=1

Vℓ = 0
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2.3.3.4 Numerical Implementation of CEM

The following section is based on material from [69],[93], and [114]. The CEM model of
equations 2.46-2.48 can be formed numerically as

AVc = Ic (2.49)

where A is the global conductance (also called stiffness) matrix, Ic contains the injected
currents and Vc is the vector of voltages at the FEM nodes and the electrodes as follows:

A =

[

Ac1 + Ac2 Ae

AT
e Ad

]

(2.50)

Vc =

[

v
U

]

v ∈ N, U ∈ L are the voltages on the, L, electrodes, and

Ic =

[

0

I

]

0 ∈ N, I ∈ L

In equation 2.50 Ac1 is

Ac1(i, j) =

∫

Ω

σ∇φi∇φjdA (2.51)

and represents equation 2.2. The integral is carried out over the area or volume of each
element. Numerically this is the same as the matrix Y derived using the direct method in
section 2.3.1. Ac2 adds the effect of contact impedance to nodes situated underneath the
electrodes:

Ac2(i, j) =

L
∑

l=1

1

zj

∫

eℓ

φiφjdΓ (2.52)

In 2.50 component Ae is

Ae(i, j) = − 1

zj

∫

eℓ

φidΓ i ∈ [1, N ] and j ∈ [1, L]

and adds the effect of the contact impedance to the nodes situated under the electrodes.
Finally, component Ad is

Ad(i, j) =

{

|eℓ| 1
zj

for i, j ∈ [1, L]

0 otherwise
|eℓ| is the length of the electrode

which connects the contact layer to the electrode. So matrix A is first assembled as though
we were solving the natural boundary conditions (such as the gap-shunt electrode model)
and augmented by the CEM blocks Ae and Ad.

One additional constraint is required as potentials are only defined up to an added
constant. This is manifested in the problem in that the matrix A is singular. One choice
described in [112] is to change the basis used for the vectors V and I to a basis for the
subspace S orthogonal to constants, while another choice is to “ground” an arbitrary vertex
i by setting φi = 0. The resulting solution V can then have any constant added to produce
a different grounded point.
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2.4 Algorithms to solve the Forward Model

The systems of equations 2.8 and 2.49 have the following special features [69][116]: The
admittance matrix for the Gap electrode model, Y, has dimension N × N . For the CEM
the matrix A has dimension (N + L) × (N + L). The matrices A and Y are sparse, the
number of non-zeros in each row of the main block depends on the number of neighbouring
vertices connected to any given vertex by an edge, they are symmetric and positive definite.
Positive definiteness allows a matrix to be decomposed into two triangular factors using
Cholesky factorization. With Cholesky factorization the matrix is expressed as the product
of lower and upper triangular factors which are transposes of one another. The solution of
the equations 2.8 and 2.49 is calculated by Cholesky factorization with back substitutions:

AV = UTUV = C (2.53)

by using a dummy variable:

UT q = C (2.54)

solving with respect to q then substituting q to calculate V by

UV = q (2.55)

The factorization process is essentially Gaussian elimination and has a computational cost
O(n3) [69]. For large 3D systems direct methods can be expensive and iterative methods
such as the Conjugate Gradient (CG) method may be required where each iteration has
computational cost O(n2k) and requires fewer than n iterations to converge. The CG
method searches for a minimum of the functional by taking conjugate search directions for
every iteration step and requires the computation of the gradient only, instead of the full
second derivative. Different choices for finding the minimum along a search direction, such
as the inexact line search algorithm, exist [69].

2.5 Variations on the Forward Model

2.5.1 Current Patterns

A variety of protocols for injecting current and collecting measurements have been proposed
over the years. With some minor exceptions protocols can be categorized as either pair drive
or multiple drive [23]. Pair drive scanners have a single current source whose terminals are
sequentially connected to the driving electrode pairs with voltages measured between the
remaining pairs of electrodes. The current source is then switched to another pair of elec-
trodes and the voltage measurement process repeated until a complete set of measurements
has been collected. Multiple drive systems are more complex and expensive but have the
ability to drive current in more than two electrodes at a time, while the obvious advantage
of a pair drive system is that only one current source is needed.

Number of available measurements. There are N(N − 1) ways to connect a pair of
leads to a set of N electrodes, including reversal of electrodes. When using alternating
currents, as in EIT, this is reduced to N(N − 1)/2. It is common in pair drive systems to
avoid using measurements that involve one of the driving electrodes. This is often referred
to as the four electrode or tetrapolar measurement scheme. Once a pair of driving electrodes

27



is selected, measurements are taken using only the remaining N − 2 electrodes. This allows
N−3 possible voltage measurements to be made using a single reference. The total number
of measurements possible is therefore N(N−1)(N−3)/2. For n = 16 this is 1560 individual
measurements. Any combination of electrode pair voltages can be reconstructed from this
basic set. This number of measurements is valid for any electrode spatial arrangement such
as 2D tomographic, 3D, and planar. Of these possible pairs only a subset are typically used.
The typical subsets used have been dictated in the past more by timing and system design
configurations more than anything else.

The next sections discuss the most well known current injection patterns for 2D configu-
rations. In 2D configurations the electrodes define a boundary encompassing the domain of
interest. Here there are as many electrodes as there are electrode pairs, with each pair de-
fined as being the neighbours along the boundary path. The electrodes in this configuration
also define a plane of intersection with the object being imaged.

2.5.1.1 Adjacent Pattern

The adjacent drive method [16], also known as the neighbouring method, is the most com-
mon pair drive protocol. As can be seen in figure 2.2, current is applied through two
adjacent electrodes and the voltages measured from successive pairs of adjacent electrodes.
Current is then applied through the next pair of electrodes and the voltage measurements
repeated. The procedure is repeated until each possible pair of adjacent electrodes has been
used to inject current.

The adjacent measurement strategy provides N2 measurements, where N is the number
of electrodes. However to avoid the problem of unknown contact impedance, the voltage is
not measured at a current injecting electrode thus the number of measurements is reduced to
N(N − 3). The four-electrode reciprocity theorem [38][55] states that for any measurement
set the mutual impedance is preserved under an interchange of injection and measurement
pairs. Therefore only N(N − 1)/2 of the measurements are independent. However, it is
common to use all N(N − 3) measurements in most reconstruction algorithms. Thus a 16
electrode system will produce 208 measurements of which 104 are independent but all 208
are used in the reconstruction algorithm.

The adjacent strategy requires minimal hardware to implement. With the adjacent
strategy current is driven mainly in the outer region of the imaged object. The current
density is highest between the injecting electrodes, and decreases rapidly as a function of
distance. The method is therefore very sensitive to conductivity contrasts near the boundary
and insensitive to central contrasts. It is also sensitive to perturbations in the boundary
shape of the object, in the positioning of the electrodes and is quite sensitive to measurement
error and noise [43].

A feature of adjacent drive protocol is that on a two dimensional domain the adjacent
voltage measurements are all positive. This can be seen in figure 2.8(a) which shows that
the potential is monotonically decreasing from source to sink. The resulting measurements
will have a ‘U’ shaped graph for each drive as shown in figure 2.8(b).

2.5.1.2 Opposite Pattern

The opposite or polar drive pattern [14], which is commonly used in brain EIT [20], applies
current through electrodes that are 180◦ apart while voltage differences are measured on
the remaining electrodes. There are various ways to collect the voltage measurements. The
most common appears to be to use the electrode adjacent to the current-injecting electrode
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Figure 2.8: Nodal and Measured voltages for a homogenous disk of conductive material with
adjacent drive.

as a voltage reference and measure the voltages between the reference and the remaining
non-current electrodes, except from the current injecting electrodes. With a 16 electrode
machine this will provide 13 voltage measurements per injection. The next set of 13 voltage
measurements are obtained by shifting the current injecting pair. This is done 8 times, since
injecting current between electrodes (1,9) will produce identical data as injecting current
between electrodes (9,1) under the assumption of isotropic medium. Thus with 16 electrodes
the opposite method yields 8×13 = 104 measurements of which half are independent. Thus
the opposite strategy suffers from the disadvantage that for the same number of electrodes,
the number of available current injections that can be applied is less than for the adjacent
strategy.

The opposite drive method offers a better distribution of the sensitivity, as the current
travels with greater uniformity through the imaged body. Therefore compared to the adja-
cent strategy, the opposite strategy is less sensitive to conductivity changes at the boundary.
The ideal angular position of the driving electrodes has been studied in [103] for a circular
object with a circular inclusion of known position and radius. The larger and deeper the
expected anomaly is, the larger the angular separation of the electrodes should be. Thus
the opposite strategy optimizes the sensitivity for a contrast in the centre of the imaged
object.

2.5.1.3 Cross Pattern

The cross or diagonal drive pattern [73] is rarely used. In the cross method, adjacent
electrodes are selected as current and voltage references. Current is first injected between
electrodes 16 and 2, while 13 voltage measurements are taken using electrode 1 as the
reference against the other 13 electrodes. Next current is applied to electrodes 16 and
4 while 13 voltage measurements are taken using electrode 1 as the reference. This is
repeated for currents injected between electrodes (16 ,8), (16, 10), (16,12), (16, 14). Since
each of these injections produces 13 measurements the sequence produces 7 × 134 = 91
measurements for a 16 electrode scanner. The entire sequence is repeated once more, with
the reference electrodes changed to electrodes 3 and 2. Thus current is applied between
electrode 3 and (5, 7, 9, 11, ..., 1) with voltage measured at the other 13 electrodes with
electrode 2 as a reference. This produces a further 91 measurements for a total of 182
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measurements of which only 104 are independent. The cross method does not have as good
a sensitivity in the periphery as does the adjacent method, but has better sensitivity over
the entire region.

2.5.1.4 Optimal Patterns

There have been several attempts to explore optimal patterns in EIT. The problem of
optimizing the drive patterns in EIT was first considered by Seagar [69] who calculated
the optimal placing of a pair of point drive electrodes on a disk to maximize the voltage
differences between the measurement of a homogeneous background and an offset circular
anomaly.

Gisser et al [57] studied the problem of optimizing measurements in terms of distin-
guishability. Isaacson [76] defined distinguishability δ as the ability of a pattern of currents
to distinguish between two conductivities. Two conductivities σ1 and σ1 are distinguishable
in the mean-square sense by measurements of precision ǫ if there is a current j for which

δ = δ (j) =
‖R (σ) −R (τ)‖

‖j‖ ≥ ε (2.56)

where R(σ) denotes a nonlinear functional associated with the resultant boundary voltage.
In [42] Demidenko et al argue that although the distinguishability criterion of Isaacson

[76] seems intuitively appealing it is not directly associated with the quality of the image
reconstruction. Instead of the distinguishability criterion they propose a statistical criterion
for optimal patterns in planar circular electrical impedance tomography that lead to the
best estimation of electromagnetic properties. A current (voltage) pattern is considered
optimal if it yields the minimum total variance of the resistance (conductance) matrix.

Optimal Patterns: Trigonometric Pattern An example of an optimal pattern is the
trigonometric current pattern [76] which is optimal for a centered circular contrasts located
in a larger circular object. In this pattern current is injected on all electrodes and voltages
are measured on all electrodes.

Ik
l =

{

cos(kψ) l = 1, 2..., 16, k = 1, ..., 8
sin((k − 16)ψ) l = 1, 2, ..., 16, k = 9, ..., 16

}

whereψ= 2πl/16

The obvious disadvantage of this method is that current drivers are needed for each electrode
and the unknown contact impedance will have an effect on the reconstruction.

The trigonometric pattern is optimal in the sense of satisfying Isaacsons [76] distin-
guishability criterion. However, Demidenko et al [42] show that the trigonometric patterns
are also a special case of their optimal statistical patterns.

Optimal Patterns: Problems Researchers have pointed out some issues with optimal
patterns. In [23] Borsic notes that the use of multiple drive optimal patterns does not
necessarily guarantee a better accuracy over pair drive systems. With the pair drive system
the stimuli are generated by a single driver and are repeatable through the whole set of
patterns. A gain error in such a device will affect all the measurements equally and manifest
itself as an insignificant scaling factor in the reconstruction. The use of multiple current
sources requires a precise matching of the devices, otherwise unmatched gains will distort
the applied patterns, and cause artefacts in the reconstruction [59] [60].

Eyüboglu and Pilkington [47] argue that the definition of optimality in 2.56 is not based
on practical considerations. For example in a medical application safety regulations restrict
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the total amount of applied current. In this environment the distinguishability should be
maximized with respect to this constraint. This is furthered by Lionheart in [69] where he
points out that the maximum Ohmic power dissipated in the body must be limited.

2.5.1.5 Other Patterns

In [99] Polydorides and McCann described a novel “scrolling” current injection pattern
using a single current source instrument. The current source is simultaneously connected
to several neighbouring electrodes while voltages are measured between single electrodes.
The current injection electrodes are then “scrolled” around the object by connecting new
electrodes at one side and leaving some free at the other. Voltage measurements are repeated
for each new configuration.

2.5.1.6 Compound Electrodes

In [72] Hua et al introduced compound electrodes comprised of a larger outer electrode with
a small, electrode in the centre. Current is injected in the larger outer electrode, and voltage
us measured from a small inner electrode. They show that using compound electrodes can
make reconstructions less dependent on the contact impedance value thus minimizing its
effects.
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Chapter 3

Reconstruction

The process of calculating an image from the EIT signal is called reconstruction. Recon-
struction algorithms can be classified into several categories each of which is intended to
image a different aspect of impedance:

1. Time Difference imaging systems are used to generate images of the change in impedance
over time. This method is discussed in the next section.

2. Absolute or static systems are used to obtain images of the absolute impedance dis-
tribution. This method is discussed in a subsequent section.

3. Multiple frequency imaging systems are used to construct images of frequency-dependent
impedance changes. Griffiths and Zhang [61] describe imaging the difference in
impedance between two frequencies. Brown et al [28] discuss injecting current at
many frequencies and deriving parameters, such as Cole-Cole parameters, from mea-
surements taken from 9.6 kHz to 1.2 MHz.

4. Dynamic imaging systems are used to reconstruct fast conductivity changes. In these
systems the conductivity is assumed to change rapidly compared to the acquisition
interval between signals [112] but slow with respect to the acquisition period of a
frame of data. In another example Seppänen applied dynamic methods to imaging
fast flowing liquids transporting resistive objects [104][105] while Vauhkonen used the
method to image cardiac function. Dynamic imaging is sometimes known by other
names, for example the Goettingen group calls it functional imaging [49].

3.1 Difference Imaging

The aim of difference imaging is to reconstruct the change in impedance or conductivity
that occurs over some time interval. A data set v1 is acquired at a time t1 and a second
data set v2 is acquired at a later time t2. The algorithm then calculates the change in
conductivity from time t1 to time t2. The method is commonly used for imaging temporal
phenomena in medical applications, such as impedance changes during respiration [5][4].
Difference imaging is widely understood to improve reconstructed image stability in the
presence of problems such as unknown contact impedance, inaccurate electrode positions,
poorly known boundary shape, non linearity, and the use of 2D approximations for 3D
electrical fields [18][87].

The calculation of the change in conductivity is performed using a linear approximation
operator. In the case where the full non-linear solution is desired the non-linear problem
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is solved iteratively with the linearized operator being updated and re-applied at each
iteration. However most difference image applications assume that the conductivity change
over the time interval is small so that a single step with the linearized operator is sufficient to
produce a solution that is “good enough.” The linear operator is developed as a Jacobian
or sensitivity matrix. On a model with E elements and M boundary measurements the
Jacobian is a M × E matrix. The Jacobian matrix is calculated column by column with
the ith column describing the effect of the change in conductivity of the ith element on the
signal, z measured between electrode pairs.

3.2 Jacobian Derivation

In section 2.1.2 both static and difference image reconstructions were modelled as x̂ = Bz.
For difference imaging x̂ = ∆σ = σ2 − σ1 is the change in a finite element conductivity
distribution due to a change in difference signal, z = v2 − v1, over a time interval (t1, t2).
By convention the signal at t1 is considered to be the reference frame and the signal at t2
is the data frame. Since σ1 is unknown, x̂ is interpreted as the change in conductivity with
respect to the unknown initial conductivity x = ∆σ.

The Jacobian for a linearized forward problem is developed as follows using the notation
of difference imaging: Construct a matrix H such that

z = Hx + n (3.1)

where H is the Jacobian or sensitivity matrix and n is the measurement system noise,
assumed to be uncorrelated additive white Gaussian (AWGN). Each element i, j, of H is

calculated as Hij = ∂zi
∂xj

∣

∣

∣

σ0

and relates a small change in the ith difference measurement

to a small change in the conductivity of jth element [4]. H is a function of the FEM, the
current injection pattern, and the background conductivity. A homogenous background
conductivity with σ0 = 1 for each of the elements is used.

In order to calculate the linear approximation matrix, H, the signal

z = v2 − v1 (3.2)

is expressed in terms of the forward model as z = T [V(σ2)]−T [V(σ1)]. T [] is an extraction
operator that produces the measurements between electrodes from the nodal voltage matrix
V. Under the assumption that the conductivity changes by only a small amount between
the two times we can use σ1 = σ and σ2 = σ+∆σ which gives z = T [V(σ) − V(σ + ∆σ)].
Further algebraic manipulation gives

z = T

[

−V(σ + ∆σ) − V(σ)

∆σ
∆σ

]

In the limit as ∆σ → 0:

lim
∆σ→0

V(σ + ∆σ) −V(σ)

∆σ
=
∂V(σ)

∂σ

Neglecting noise, this allows us to write the linearized form, equation 3.1, as

z = T

[

−∂V(σ)

∂σ

]

∆σ
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where the Jacobian is

H = T

[

−∂V(σ)

∂σ

]

In terms of the Finite Element Model

∂V(σ)

∂σ
=

∂

∂σ

(

Y−1(σ)
)

I

Derivative of an inverse matrix: Assume that A an invertible matrix dependent on
a parameter t and differentiable with respect to t. Then ∂

∂t

(

A−1
)

= −A−1 ∂A
∂t A−1

Invoking the chain rule provides the final form of the Jacobian in terms of the FEM which
can be used as the basis for an algorithm to calculate the Jacobian matrix.

H = T

[

− ∂

∂σ
Y−1(σ)I

]

= T

[

Y−1(σ)
∂

∂σ
Y(σ)Y−1(σ)I

]

The only derivative that must be calculated is the derivative of the stiffness matrix:

∂

∂σ

(

Y−1(σ)
)

With linear basis functions the derivative is a constant for matrix elements of the given
element and zero elsewhere. The resulting answer for each operation is another vector
representing the change in the M voltages due to a small change in σi

∂

∂σi

(

Y−1(σ)
)

i ∈ E

The solution is organized in columns of length M with each column being ∂
∂σi

(

Y−1(σ)
)

.
Thus H is M × E.

The calculation of the Jacobian algorithm has historically been done following the stan-
dard method [114][116]. However a more efficient method to calculate the Jacobian involves
the concept of measurement fields [26]. The measurement fields are defined as the fields
that would have been developed if currents were injected from the measurement electrodes.
If we denote ∇Φ as the gradient of the current fields obtained by normal forward solution
and ∇Ψ as the gradient of the measurement fields then the ith column of the Jacobian
corresponding to the ith element is given by the dot product of the two fields integrated
over each mesh element as:

∂Uk
ℓ

∂σi
= −

∫

i
∇Φ · ∇Ψ (3.3)

In [98] Polydorides describes an implementation of this product that is currently the most
computationally efficient way to calculate the Jacobian.

3.2.1 Näıve Least Squares Solutions

The näıve approach to solving the linearized problem, equation 3.1, for x is to find the least
squares solution which minimizes ‖Hx − z‖. This is found through the generalized least
squares solution

x̂ = (HTH)−1HTz (3.4)
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Unfortunately the equation cannot be solved this way because HTH is rank deficient and ill-
conditioned. An ill-conditioned problem is one with the property that a small perturbation
of the input data leads to a large change in the output, and even if the solution exists and
it is unique it can be completely corrupted by a small error in the data or by noise.

3.2.2 Ill Posed Problems

In 1902 Jacques Hadamard classified all mathematical problems as either “well-posed” or
“ill-posed” [63]. The solution to a well-posed problem is unique and has a solution that
depends continuously on the data. In other words, for a problem to be well posed a solution
must exist, the solution must be unique, and small changes in the data must not result in
a large change in the solution. A problem is ill-posed if at least one of the three conditions
(existence, uniqueness, stability) is not satisfied.

From a practical point of view violation of the first condition, existence of a solution,
is not a concern. Existence can be usually be enforced by relaxing the notion of a solution
to that of an approximate solution through regularization. Violation of solution uniqueness
is more serious in that the existence of multiple solutions requires some other criteria from
which to select one of the solutions. For example one could obtain a unique solution by
preferring the solution of smallest norm or by adding some other additional information to
the problem. Lack of stability is the most onerous problem. A problem whose solution does
not depend continuously on the data will lead to an unstable numerical solution. In terms
of EIT this means that the inverse solution will be dominated by noise unless additional
conditions are imposed.

Strictly speaking ill-posed problems can only exist in the continuous domain in that,
under the assumption of infinite precision arithmetic, the discrete problem z = Hx is never
ill-posed [Hansen 94]. However with finite precision arithmetic the discretization of an ill-
posed problem leads to a numerical problem that is ill-conditioned. The ill-conditioning of
a problem is defined by condition number of its matrix. To define the condition number
requires an understanding of the Singular Value Decomposition (SVD) of a matrix. Detailed
theory and examples of linear ill-posed problems can be found in [117], [10] and [63].

3.2.3 SVD

The singular value decomposition is a way of factoring a matrix that does not require the
matrix to be either symmetric or have full rank. The SVD has many properties some
of which are useful in discussing inverse problem characteristics and solutions [65]. Let
A ∈ ℜm×n be a rectangular matrix with m ≥ n. Then the SVD of A is a decomposition of
the form

A = UΣVT =

n
∑

i=1

uiσiv
T
i (3.5)

where U = (u1, ...,un) and V = (v1, ...,vn) are matrices with orthonormal columns,
UTU = VTV = In , and where Σ = diag (σ1, ..., σn) has non-negative diagonal elements,
which by convention, are arranged in non-increasing order such that

σ1 ≥ ... ≥ σn ≥ 0

The numbers σi are the singular values of A while u and v are, respectively, the left
and right singular vectors of A. The condition number of A is equal to the ratio σ1/σn.
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The condition number of a matrix is relative, as it is related to the precision level of the
computations and is a function of the size of the problem [37]. A problem with a low
condition number is said to be well-conditioned, while a problem with a high condition
number is said to be ill-conditioned.

In [65] Hansen discusses two observations concerning the singular values of discrete ill-
conditioned matrices derived from practical applications. By plotting the singular values of
an ill-posed matrix, as in figure 3.1, one will observe that:

1. The singular values σi decay gradually to zero with no particular gap in the spectrum.
An increase of the dimensions of A will increase the number of small singular values.

2. The left and right singular vectors ui and vi tend to have more sign changes in their
elements as the index i increases, i.e., as σi decreases.
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Figure 3.1: Singular Values of HTH for an EIT example.

The following material is taken from [65] which is one of the better descriptions of SVD.
To see how the SVD gives insight into the ill-conditioning of A, consider the following
relations which follow directly from equation 3.5:

Avi = σiui

‖Avi‖2 = σi

}

i = 1, ..., n

A small singular value σi, compared to ‖Avi‖2 = σi, means that there exists a certain linear
combination of the columns of A, characterized by the elements of the right singular vector
vi, such that ‖Avi‖2 is small. In other words, one or more small σi implies that A is nearly
rank deficient, and the vectors vi associated with the small σi are numerical null-vectors of
A. From this and the characteristic features of A we conclude that the matrix in a discrete
ill-posed problem is always highly ill-conditioned, and its numerical null-space is spanned
by vectors with many sign changes. The SVD also gives important insight into another
aspect of discrete ill-posed problems, namely the smoothing effect typically associated with
the measurement process. As σi decreases, the singular vectors ui and vi contain higher
and higher frequency components. Consider now the mapping Ax of an arbitrary vector x.
Using the SVD, we get x =

∑n
i=1 (vT

i x)vi and

Ax =

n
∑

i=1

σi

(

vT
i x
)

ui (3.6)
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This shows that due to the multiplication with the σi the high-frequency components of x

are more damped in Ax than then low-frequency components. The inverse problem, that
of computing x from Ax = b has the form

x̂ = A−1b =

n
∑

i=1

(

uT
i b
)

vi

σi

which clearly shows that the high-frequency oscillations in b will be amplified by the small
singular values.

In terms of EIT reconstruction the noise in the data will be amplified by the inversion
of the small singular values. Consequently the solution to equation 3.4 will be dominated
by the noise in the signal. To overcome the ill-conditioning of HTH requires the use of
regularization techniques. These techniques generally involve either truncating or filtering
the singular values corresponding to the singular vectors with high frequency components.

3.2.4 Regularization

A regularization method, of which there are a wide variety, is often formally defined as
an inversion method depending on a single real parameter λ ≥ 0, which yields a family of
approximate solutions [81]. Discrete regularization techniques include truncated singular
value decomposition, maximum entropy, and a number of generalized least squares schemes
including Twomey and Tikhonov regularization methods[37]. All of these methods attempt
to reduce the effects of solving an ill-conditioned system by restoring continuity of the
solution on the data [37].

The most widely referenced regularization method is the Tikhonov or Tikhonov-Phillips
method. With Tikhonov regularization additional information about the solution, com-
monly referred to as prior information, is incorporated into the solution as an additional
term in the least squares minimization. That is rather than minimize ‖Hx− z‖ one mini-
mizes an expression of the form:

x̂ = arg min
x

{

‖Hx − z‖2 + λ2 ‖Rx‖2
}

(3.7)

Here R is a regularization matrix that is often diagonal or banded diagonal and the expres-
sion λ2 ‖Rx‖2 represents some prior information about the conductivity. This is a quadratic
minimization that is guaranteed to have a unique solution for λ > 0. The most often used
regularization matrices in EIT are the identity matrix and the matrices corresponding to
the first and second difference operators [114]. The corresponding implied prior assump-
tions when these matrices are used are that x is either small, slowly changing or smooth,
respectively. Classic Tikhonov regularization refers to the case where R = I, however the
term Tikhonov is often applied to any solution of equation 3.7 regardless of the choice of
R. The solution to equation 3.7 is calculated from the regularized inverse

x̂ = (HTH + λ2RTR)−1HTz = Bz (3.8)

Here B is the symbol used for the regularized linearized reconstruction operator of equation
2.1. Equation 3.8 is a linear equation which must be solved iteratively for the non-linear
solution [68]. The regularized inverse has two important properties:

1. For large enough λ the regularized solution, x̂ (λ), is stable in the face of perturbations
or noise in the data (unlike the generalized solution) and,
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2. As λ goes to zero, the un-regularized generalized solution, which is dominated by
noise, is recovered: x̂ (λ) → x asλ→ 0.

The parameter λ is called the “regularization parameter” or “hyperparameter” and controls
the trade-off between solution stability and nearness of the regularized solution [4], x̂ (λ),
to the un-regularized solution, x. This can be understood as the approximation error in the
absence of measurement noise and the discretization noise due to finite precision arithmetic.
Chapter 4 of this work explores hyperparameter selection methods in detail.

Equation 3.8 is the most general form of the reconstruction model for EIT. Most EIT
reconstruction algorithms can be built from this framework. The MAP Regularized Inverse
Model of the next section is one such example.

In terms of the SVD the effect of Tikhonov regularization with R = I is that the singular
values are filtered as follows [63]:

x̂ = A−1b =

n
∑

i=1

fi

(

uT
i b
)

vi

σi
(3.9)

with filter factors

fi =
σ2

i

σ2
i + λ2

This filter function decays smoothly from f1 ≈ 1 for σi ≫ λ to f1 ≈ 0 for σi ≪ λ. In other
words the right singular vectors with singular values smaller than λ are effectively filtered
out. The Tikhonov filter function is structurally identical to the Wiener filter, which is the
optimal filter to separate noise of spectral density λ2 from a signal of spectral density σ2

i

[81].

3.3 Static Imaging

Static reconstruction in EIT has been proposed by various groups [128][35][123]. The basic
technique is to use a modified Gauss-Newton algorithm with Tikhonov style regularization.
With such techniques an error function f is defined such that

f (σ) = 1
2

(

‖T [V(σ)] − vmeasured‖2 + λ2 ‖R(σ − σ0)‖2
)

(3.10)

where vmeasured is a vector of voltage measurements from the physical medium, σ0 is the
initial estimate of the background conductivity, and V(σ) is the forward operator which
simulates the voltage measurements from a medium with conductivity distribution σ. The
desired reconstructed conductivity distribution is the vector σ that minimizes f .

The non-linear solution of equation 3.10 is solved iteratively using a linearized step at
each iteration. Figure 3.2 is a functional diagram of one such process [3]. In the figure a
set of currents is injected into the medium and the resulting voltages , vmeasured, recorded.
This data is compared to voltages, vsimulated = T [V (σ)], generated by simulating the same
process (current injection and voltage measurement) on a Finite Element Model (FEM) of
the medium. Initially, the medium is assumed to be homogeneous. If the simulated data
approximates the measured data by some measure then the conductivity of the model is
assumed to approximate the conductivity of the medium and the problem is solved. If the
simulated data does not approximate the medium then another iteration is executed. To
summarize the steps of the iterative Gauss-Newton method for static reconstruction are:

38



Figure 3.2: Typical Static Imaging System (from [3]).

1. Obtain an initial approximation for the conductivity distribution. The initial con-
ductivity, σ0, distribution of the model reflects an a priori assumption about the
conductivity distribution of the medium. However, it is often a crude estimate of the
equivalent homogenous conductivity of the medium based on the data [69].

2. Solve the forward problem to determine the simulated measurements, vsimulated.

3. Calculate the change in conductivity,

∆σ = (HTH + λ2RTR)−1HTz (3.11)

where

z = vmeasured − vsimulated (3.12)

4. Update the absolute conductivity,

σk+1 = σk + ∆σ (3.13)

where σ0 is a vector of length E and is the initial, a priori, conductivity.

In terms of the Jacobian used for static imaging, each element of the Jacobian is

Hij = ∂zi
∂xj

∣

∣

∣

σk

and relates a small change in the ith error measurement, zi where z is as

defined in 3.12, to a small change in the conductivity of jth element. H is a function
of current injection pattern and the kth conductivity estimate. Thus calculation of
the Jacobian is identical for both difference and static imaging however with static
imaging the signal is the error signal, 3.12, and the conductivity change is used in the
iterative build up of the absolute conductivity via 3.13.

5. Update the admittance matrix with the current estimation of the conductivity. In
other words form Y(σk+1).
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6. Evaluate a stopping rule. For example stopping after a single iteration [35], stopping
after some fixed number of iterations, or stopping after the difference between the two
sets of measurements drops below some threshold [114], i.e. ε ≤ ‖vmeasured − vsimulated‖.
If the current solution satisfies the stopping rule then exit, otherwise continue to step
7.

7. Update the Jacobian based on the current estimate of the conductivity. Some re-
searchers update the Jacobian at each iteration, others do not.

8. go to step 2. Note that vsimulated calculated at step 2 is a function of the iteration
number, k.

Equation 3.11 is similar to the difference image equation 3.7 with x̂ = ∆σ and z defined
as the difference between the measured voltages and the set of simulated voltages, z =
vmeasured − vsimulated. Although the interpretation of x and z are different the Jacobian is
the same as those used for difference imaging. Often the regularization matrices are also
the same as those used in difference imaging.

3.3.1 MAP Regularized Inverse

The most clearly formulated reconstruction model for 2D difference imaging at the start of
this work was the Maximum a Posteriori (MAP) algorithm of Adler and Guardo [4]. The
MAP approach to image reconstruction defines the solution as the most likely estimate of
x̂ given the measured signal z and certain statistical information about the medium. This
approach allows an elegant interpretation of the image reconstruction algorithm in terms of
statistical properties of the experimental situation. It is explained in the following section.

In order to simplify the reconstruction algorithm the image statistical properties are
modeled by a Gaussian distribution of mean x∞ and covariance Rx

x∞ = E [x]
Rx = E [x− x∞] = E

[

xTx
]

− xT
∞x∞

(3.14)

With these parameters the distribution function of the image, f(x), is modeled as

f(x) =
1

(2π)N/2
√

|Rx|
e−(1/2)(x−x∞)T R−1

x (x−x∞) (3.15)

The a posteriori distribution function of z given a conductivity distribution x is derived
from the definition of the inverse problem, equation 3.1:

f(z|x) =
1

(2π)M/2
√

|Rn|
e−(1/2)(z−Hx)T R−1

n (z−Hx) (3.16)

The difference (z − Hx) is due entirely to the noise n, which is assumed to be Gaussian,
white, zero mean with covariance Rn. Thus

Rn = E
[

nTn
]

=











σ2
1 0 · · · 0
0 σ2

2 0
...

. . .
...

0 0 · · · σ2
M











(3.17)

where σ in this and all subsequent equations in this section, represents the square root of
the variance and not the conductivity.
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The MAP estimate, x̂, maximizes the a posteriori probability distribution f(x|z). This
can be understood as finding the most likely image, x, to have produced the measured
signal, z,

f(x|z) = f(z|x)f(x)
f(z)

= e
−(1/2)[(z−Hx)T R−1

n (z−Hx)+(x−x∞)T R−1
x (x−x∞)]

(2π)(M+N)/2
√

|Rx||Rn|f(z)

(3.18)

f(x|z) is maximized when the exponent is minimized

x̂ = arg min
x

[

(z − Hx)TR−1
n (z − Hx) + (x− x∞)TR−1

x (x− x∞)
]

(3.19)

yielding the estimate

x̂ =
(

HTR−1
n H +R−1

x

)−1 (
HTR−1

n z +R−1
x x∞

)

(3.20)

3.3.1.1 Parameters of the MAP estimate

The noise covariance, Rn, measures the noise power in each component of the signal. Mea-
surement noise on each channel of the scanner can be determined from the hardware. Adler
and Guardo take the case where each channel has equal noise variance σn. Using the defini-

tion of the signal, z = v2 = v1 (equation 3.2), Rn is calculated as [Rn]ii =
(

σn/v
h
i

)2
where

vh
i are the measurements from the medium on which the noise measurements were taken.

We define a matrix W such that σ2
nW = R−1

n

The properties of the image Rx and x∞ are less concrete than the noise properties and
can only be estimated from a knowledge of the experimental configuration. The expected
change in the image E[x] is represented by x∞. Conductivity changes are equally likely to
be conductive or non-conductive, consequently the expected image is one of no conductivity
change, and is best modelled by x∞ = 0.

The covariance of the image Rx includes information on the amplitude of the image
and also on the spatial frequency distribution. The diagonal elements of [Rx]ii represent
the variance of the amplitude of each image element, whereas off diagonal elements are a
function of the correlation coefficient r between a pixel in element i and a pixel in element
j as follows

[Rx]ij = r
√

[Rx]ii [Rx]ij (3.21)

Since EIT has low spatial resolution due to the small number of measurements, it is unable
to detect high spatial frequency contrasts in the image, indicating that the spatial frequency
of the reconstructed distribution of conductivity change has little high frequency content.
Therefore elements close to each other will have correlated reconstruction values. Adler and
Guardo set diagonal elements of Rx to σ2

x. Off diagonal elements account for the resolution
of the medium: using 16 electrodes there is not enough information to see resolution on
the order of 5% of the medium diameter. They assume that pixels closer than this distance
are highly correlated and pixels further apart are not correlated with a gradual diminishing
between the two extremes. Thus Rx is interpreted as a low pass filter. Since the formulation
Rx is numerically unstable a regularization matrix, Q, was constructed directly using a high
pass filter to represent R−1

x . Derivation of this filter is described in section 5.2.3 with the
result that Q = σ2

xF
TF .
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Finally Adler and Guardo define the regularization hyperparameter in terms of the

statistical standard deviations as λ = σ2
x

σ2
n

from which they arrive at the MAP regularized
inverse

x̂ = (HTWH + λQ)−1HTWz = B(λ)z (3.22)

where B(λ) is the image reconstruction matrix first discussed in equation 2.1. Since noise is
uncorrelated in the system, W is a diagonal matrix with Wii = 1/σ2

i where σ2
i is the noise

variance for measurement i. W can also be modified to account for variable gain settings
on each tomograph channel. However, for this work we assume that all measurements have
equal noise variance with the result that W becomes a multiple of the identity matrix.

3.3.1.2 Electrode Errors

One important difficulty with experimental and clinical EIT measurements is the care re-
quired to ensure proper electrode measurements. Electrodes can become detached, the
contact impedance can change because of sweat or peripheral oedema, and changes in sub-
ject posture can move electrodes and corrupt readings [89][5]. In [7], Asfaw and Adler
describe a method to detect bad data caused by a single poorly attached electrode. The
method appears to be useful for multiple electrode errors however the study is restricted to
the former case.

In [6] Adler describes a method to explicitly account for known electrode errors in terms
of the parameters of the MAP regularized inverse algorithm of 3.3.1. Electrode errors
imply high noise, which is reflected in the measurement noise variance values contained in
the diagonal elements of Rn of equation 3.20. Thus, if measurement i is subject to increased
noise (by a factor σ2

n), Wii is reduced by the same factor. If an electrode becomes completely
disconnected, or noise levels are very high, the noise variance, σn, can be assumed to be
infinite, and the corresponding elements of W set to 1/∞ = 0.

Electrode errors will reduce the number of available measurements. The adjacent pattern
provides N(N − 3) measurements, however with a single electrode error this is reduced to
(N − 4)(N − 3) measurements. For an eight electrode system this error reduces the number
of measurements by 50%, while for a 16 electrode system, the available measurements are
reduced by 25%. Other stimulation patterns will have different electrode error patterns [6].
Naturally the quality of the reconstructions will be reduced by the loss of data. Details of
the degradation are discussed in [6].

3.4 Variations of the Basic Model

While there are many variations to regularized solutions, the framework of the generalized
Tikhonov inverse lends itself to two fundamental variations, that of the regularization matrix
and that of the norm of the side constraint.

Due to its differentiability the ℓ2 norm has been the mainstay of regularized solutions
in EIT. However such quadratic optimizations are inherently smooth [69]. Recent work has
investigated the use of ℓ1 norms [25][44][79] in order to recover non-smooth conductivities.
Chapter 7 discuss one such method, Total Variation, in greater detail.

With respect to the prior, in EIT, the choice of the regularization matrix R has tradi-
tionally been either the identity matrix [127], a diagonal matrix [35] or an approximation
of differential operators [4][71][72][93].
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Cheney et al introduced a diagonal matrix, R = diag(HT H), as the prior used in
their NOSER algorithm [35]. This matrix is diagonal, and with SVD decomposition, the
regularized solution can be expressed as

x̂ =

M
∑

i=1

f
uT

i d

σi
vi

with

f =
σ2

i

σ2
i + λr2i

f are the “filter factors”, ri are the diagonal elements of R, and σi are the singular values
of R. For small singular values f → 1 and for large singular values f → 0.

3.4.1 Thoughts on Regularization

The use of Tikhonov style regularization techniques is equivalent to introducing a priori
information to the reconstruction process. The fundamental prior information of the con-
ductivity solution is that it is a positive function, Such methods provide stability but force
solutions to be smooth in some sense thus eliminating the possibility of non-smooth so-
lutions. This is reasonable given that the undesired, noise dominated, solutions contain
components with high spatial frequencies.

One way in which the generalized Tikhonov regularization method can be understood
to work, is that it draws the solution towards the null space N(R) of the regularization
matrix R [114]. If we use, for example, the first difference matrix, the solution is drawn
toward a constant distribution because a constant solution forms the basis for the null
space of the first difference matrix. Moreover if we have some information on the true
resistivity distribution, the regularization matrix can be constructed in such a way that
the solution is drawn towards the known distribution by the regularization. This can be
implemented by penalizing the difference between the reconstructed conductivity, σ, and
the a priori assumption about the conductivity instead of the just penalizing the solution.
Symbolically, rather than minimize equation 3.7 we minimize

x̂ = arg min
x

{

‖Hx − z‖2 + λ2 ‖R(x − x∗)‖2
}

(3.23)

where x∗ is the a priori assumed distribution. This idea was evaluated by Vauhkonen
et al in [113] and [114]. In [113] the conductivity distribution was approximated as a
linear combination of some pre-selected basis functions that were constructed from prior
information on the structures and conductivities. The method, called the Basis Constraint
Method (BCM), produced good results when the priors were correct but provided misleading
results when the prior was incorrect. Here misleading means that the solutions contained
structural artefacts due to the prior that were not part of the true conductivity. In [114]
Vauhkonen et al used the same kind of idea but rather than forcing the solution to be
in the subspace spanned by pre-selected basis functions they only “draw” the solution
towards the subspace. This method, called the Subspace Regularization Method, provided
an improvement over the BCM in that they could partially avoid misleading results even if
the prior information was not correct.
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3.5 3D Considerations

In EIT it is often assumed that the injected currents stay in the two-dimensional electrode
plane [115]. This assumption has been used since the early days of EIT, however, it is
obviously incorrect since electric currents will spread out in three dimensions.

Reports of EIT in the clinical literature rarely use 3D EIT possibly due to the difficulty of
applying large numbers of electrodes and the high data collection rate needed for monitoring
physiological function. 3D reconstruction algorithms concerning medical applications can
be found in Gobel et al [59], Metherall et al [90], Polydorides [98], Polydorides and McCann
[99], Blue et al [22] and Molinari et al [91]. In three dimensions the possibilities for electrode
configurations and injection and measurement protocols are much larger than in 2D. With
cylindrical tanks a typical configuration is to use equally spaced electrodes arranged on
several parallel planes.

The main problem with 3D is computational: with three dimensional EIT the complexity
of body shapes and components requires a finite element model with a large number of
elements. Since the storage and computing time increase as a function of the number of
elements either the mesh discretization must be left too coarse to obtain images unaffected
by the element size or the mesh will so large that it causes the computer to run out of memory
during solution [91]. One either has to parallelize the problem onto several processors [21],
or investigate more efficient algorithms such as dual meshing [95]. The iterative Newton-
Raphson method is suitable for small-scale EIT problems. However it can be unsuitable for
large 3D problems where the number of elements can easily exceed 5000. This corresponds
to a matrix size of 25×106 or a memory requirement of 200 MB to store the matrix alone.

3.6 GOE MF Type II System

A detailed analysis on EIT hardware design and analysis can be found in [58][40][129]. The
first successful tomographic style impedance imaging was performed by Barber and Brown
in the early 80’s [15] using the Sheffield Mark 1 system [27] with the filtered backprojection
reconstruction algorithm. This is a 16 electrode adjacent drive system that measures 12.5
frames per second. The architecture of medical scanning equipment has not changed much.
For example Viasys Healthcare, Höchberg, Germany manufactures the Goe-MF II type
tomography system, which like the Sheffield Mk 1 has a single amplification unit and a
single detection unit that are multiplexed to 16 electrodes. Both are intended for use with
the adjacent constant current drive. The EIT group at Goettingen has improved the basic
system by optimizing some analog components and digitizing the signal at an earlier stage
of the processing. This has provided a large improvement in signal to noise ratio of the
EIT signal. In [62] they reported that the Goe-MF type II provides an order of magnitude
improvement in SNR over the Sheffield Mk 1. Like the Sheffield Mk 1 this machine is
intended to be used to collect 2D data from a planar set of 16 electrodes equispaced around
the thorax. The default reconstruction algorithm is a functional image based on individual
frames reconstructed using filtered backprojection [62]. However the raw measurement data
can be exported for use with algorithms not included with the Goe-MF II. This machine
was used to obtain empirical data used to verify some of the work in this thesis.
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3.7 Summary

3.7.1 Reconstruction Summary

Here we summarize the state of the art in EIT difference imaging for clinical applications
such as pulmonary imaging. The framework is the non-linear optimization problem, equa-
tion 3.7, which is reproduced below:

x̂ = arg min
x

{

‖Hx − z‖2 + λ2 ‖Rx‖2
}

(3.24)

This is solved using the MAP regularized framework of equation 3.22 again repeated below:

x̂ = (HTWH + λ2RTR)−1HTWz = B(λ)z (3.25)

where z = v2 − v1. The framework has several explicit parameters that must be selected
by the user:

1. The regularization hyperparameter, λ, is the subject of chapter 4.

2. The norm of the prior, ‖Rx‖2, has historically been the ℓ2 norm. The ℓ1 norm has
been used for “blocky” reconstructions. An algorithm for solving the ℓ1 norm is
evaluated in chapter 7.

3. The prior matrix, R, has many possibilities as discussed in this chapter.

4. The data weighting matrix W has the ability to consider noise and erroneous electrode
data. However with equal noise variance on each measurement channel and with good
electrodes (no accounting for erroneous electrodes), W becomes a scaled version of
the identity matrix.

In addition to these explicit parameters there are several implied parameters that conform
to some assumptions:

1. The initial conductivity, σ0, is typically assumed to be homogenous.

2. The conductivity used to calculate the Jacobian, σ∗, is typically assumed to be ho-
mogenous.

3. FEM modeling issues including degree of the shape functions (linear, quadratic),
isotropy of element conductivity, and mesh parameters such as number and degree
(triangle, quadrilateral) of elements, geometry, shape of the reconstructed mesh di-
mension (2 or 3).

4. Electrode types, locations and size.

5. Current injection and measurement patterns.

None of these parameters appear explicitly in equations 3.24 or 3.25 but are important
parts of the problem. There is much work describing variations of the framework in terms
of explicit and implied parameters, however, there is little quantitative information on how
they compare and how important any one of them is.
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Chapter 4

Objective Selection of
Hyperparameter

This chapter is the text, with minor revisions, of a paper titled “Objective Selection of Hy-
perparameter” by Bradley GRAHAM and Andy ADLER published in Physiological Mea-
surement 27 (2006) S65-79.

This paper addresses the issue of hyperparameter selection in EIT (section 1.3 objective
O1 and section 1.4.1 Contributions by Objective O1): improve the method of hyperparame-
ter selection in order to eliminate case by case tweaking of parameters, provide repeatability
of experiments, and reduce number of reconstructions needed to find the best reconstruc-
tion for a given data set. The main contribution of this paper is the development of the
BestRes hyperparameter selection method which is demonstrated to be as good or better
than existing methods while being stable and repeatable.

Abstract

An algorithm for objectively calculating the hyperparameter for linearized one-step electrical
impedance tomography (EIT) image reconstruction algorithms is proposed and compared
to existing strategies. EIT is an ill-conditioned problem in which regularization is used to
calculate a stable and accurate solution by incorporating some form of prior knowledge into
the solution. A hyperparameter is used to control the trade-off between conformance to data
and conformance to the prior. A remaining challenge is to develop and validate methods
of objectively selecting the hyperparameter. In this paper, we evaluate and compare five
different strategies for hyperparameter selection. We propose a calibration-based method
of objective hyperparameter selection, called BestRes, that leads to repeatable and stable
image reconstructions that are indistinguishable from heuristic selections. Results indicate:
(1) heuristic selections of hyperparameter are inconsistent among experts, (2) generalized
cross-validation approaches produce under-regularized solutions, (3) L-curve approaches are
unreliable for EIT and (4) BestRes produces good solutions comparable to expert selections.
Additionally, we show that it is possible to reliably detect an inverse crime based on anal-
ysis of these parameters.

Keywords: regularization, EIT, hyperparameter, L-Curve, GCV
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4.1 Introduction

Electrical impedance tomography (EIT) attempts to calculate a stable and accurate image
of the conductivity or conductivity change within a medium from electrical measurements
made on the medium boundary. The image reconstruction problem is essentially under-
determined and characterized by a system matrix with large condition number. Image
reconstructions obtained through näıve methods such as least squares are unstable and
dominated by noise. The problem has been overcome through the use of various regulariza-
tion methods which produce useful solutions by imposing additional conditions (priors), such
as image smoothness, on the problem [113]. The trade-off between solution conformance to
the measured data and conformance to the prior is controlled by a scalar hyperparameter,
often labelled λ.

A difficulty with experimental and clinical EIT reconstruction algorithms is the tendency
of algorithms to rely on subjective methods to select a hyperparameter. The absence of ob-
jective hyperparameter selection methods results in several issues which hinder experimental
and clinical use of the technique: (1) users of EIT for clinical applications are uncomfortable
using ‘fiddle’ adjustments to modify images, (2) comparisons of EIT reconstruction algo-
rithms can be subjective due to the necessity of manual tuning of hyperparameter values,
(3) experimental work is not repeatable if disparate researchers cannot objectively recreate
the hyperparameter values used in the work of others and (4) meta-algorithms, such as
detection of electrode errors [7], require a method to fix these values.

In order to address this issue, we investigate some existing hyperparameter selection
methods and propose a new calibration based method called BestRes (Best Resolution).
By ‘calibration’ we mean that a procedure is defined to select a value for a given EIT
system and measurement configuration rather than for each image or data set. We de-
fine a configuration as the combination of current injection pattern, finite element mesh
(FEM), assumed prior conductivity (σ0) and regularization prior. Consequently, the ob-
jective hyperparameter methods discussed in this paper are functions of this configuration.
Hyperparameter selection methods are then compared for several one-step linearized EIT
reconstruction algorithms.

4.2 Methods

This paper addresses the problem of objective hyperparameter as follows: in the methods
section we describe the family of EIT reconstruction algorithms used throughout this paper.
In hyperparameter selection methods we describe five hyperparameter selection strategies,
including a new calibration-based method called BestRes. In the results, we describe the
effectiveness of each strategy and compare the performance of the objective methods with
heuristic selection. In the discussion we consider some additional observations of this work.
We conclude with a recommendation of the BestRes hyperparameter selection method.

We consider EIT difference imaging, which is widely understood to improve recon-
structed image stability in the presence of problems such as unknown contact impedance,
inaccurate electrode positions, nonlinearity, and the use of 2D approximations for 3D elec-
trical fields [18] [87]. Initially, we address the class of normalized one-step linearized re-
construction algorithms that calculate the proportional change in a finite element conduc-
tivity distribution, x = (σ2 − σ1)/σ1, due to a proportional change in difference signal,
z = (v2 − v1)/v1, over a time interval (t1, t2). By convention we consider the signal at t1
to be the reference frame and the signal at t2 to be the data frame. Since we do not know
σ1, x is interpreted as the proportional change in conductivity with respect to the unknown
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initial conductivity x = ∆σ/σ0. For small changes around a background conductivity the
relationship between x and z may be linearized as

z = Hx + n (4.1)

where H is the Jacobian or sensitivity matrix and n is the measurement system noise,
assumed to be uncorrelated additive white Gaussian (AWGN). Each element i, j, of H

is calculated as Hij = ∂zi
∂xj

∣

∣

∣

σ0

and relates a small change in the ith proportional difference

measurement to a small change in the proportional conductivity of jth element. H is a func-
tion of the finite element mesh (FEM), the current injection pattern, and the background
conductivity, σ0 . We use the adjacent current injection pattern and a homogeneous back-
ground conductivity with σ0 = 1 for each of the elements. Normalizing the signal requires
that we also normalize the sensitivity matrix by dividing its columns by vref which is a
vector of reference voltages obtained by solving the forward problem [4] over a homogeneous
domain.

4.2.1 Regularization

In order to overcome the ill conditioning of H we solve 4.1 using the following regularized
inverse

x̂ = (HTWH + λR)−1HTWz = Bz (4.2)

where x̂ is an estimate of the true proportional change in conductivity distribution, R is
a regularization matrix, λ is a scalar hyperparameter that controls the amount of regular-
ization, and W models the system noise. Since noise is uncorrelated in the system W is
a diagonal matrix, Wi,i = 1/σ2

i where σ2
i is the noise variance for measurement i. W can

also be modified to account for variable gain settings on each tomograph channel. How-
ever, for this work we assume that all measurements have equal noise variance, thus W

becomes a multiple of the identity matrix. With R = I (labelled RT ik) equation 4.2 is the
0th order Tikhonov algorithm. With R = diag(H) (labelled Rdiag(H) equation 4.2 is the
regularization matrix used in the NOSER algorithm of [35]. [4] modelled R as a spatially
invariant Gaussian high pass filter (labelled RHPF ) with a cut-off frequency selected so the
spatial period is a given fraction of the medium diameter. RHPF reconstructions appear
reasonable for cut-off frequencies corresponding to 5%, 10% and 20% diameter. A 16 elec-
trode EIT system, using adjacent measurements not at current injection sites, yields 208
measurements of which 104 are independent. 104 measurements justifies the recovery of
104 conductivity parameters which permits, for example, the reconstruction of a 10 × 10
grid corresponding to a resolution of roughly 10%. Thus we consider λHPF for 10% because
it appears better justified in terms of available independent measurements. All three of
these priors are smoothing filters, however the Gaussian HPF has the advantage of being
mesh size independent in that it is a function of the mesh inter-element correlations. Both
Tikhonov and NOSER are ad hoc priors that do not consider correlations between solution
mesh elements.

While several other one-step regularized inverse algorithms exist for EIT [18][86][36],
in this paper we consider equation 4.2 with the Tikhonov, NOSER and Gaussian HPF
regularization matrices as a representative sample with which to compare hyperparameter
selection strategies. The hyperparameter selection functions discussed in this paper were
developed primarily with EIDORS [8] and will be contributed to that EIT framework. In
this paper, we do not address issues of execution speed or algorithm efficiency as we are
primarily interested in effectiveness of hyperparameter selection.
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4.2.2 Figure of merit

A quantitative figure of merit is required in order to compare the quality of the reconstructed
images. In [120] Wheeler et al reviewed several figures of merit for EIT that have been
proposed in the literature. The primary figure of merit used in this work is resolution
which we calculate in terms of blur radius (BR). We define BR as BR = rz/r0 =

√

Az/A0

where r0 and A0 are the radius and area respectively of the entire 2D medium and rz and
Az are the radius and area of the reconstructed contrast containing half the magnitude of
the reconstructed image [4]. BR calculates the area fraction of the elements that contain
the largest amplitude contributions to 50% of the total image amplitude. It is a measure
of the concentration of image amplitude. We call the set of elements that contribute to the
blur radius the half amplitude (HA) set. Figure 4.1(a) shows the evolution of the HA set
in response to increasing λ for an impulse contrast. Figure 4.1(b) shows the corresponding
impedance change images, here represented with 3D visualization. With insufficient λ the
image is dominated by noise and the HA set is composed of spatially disjoint elements. As λ
is increased, noise is filtered through the smoothing action of the prior, image energy starts
to concentrate and the HA set starts to cluster. The point at which the HA set is comprised
of adjacent elements is termed the ‘onset of stability’ (OS). Excessive regularization blurs the
image and expands the now contiguous HA set. A resolution curve (plot of blur radius versus
λ) such as figure 4.5(b) shows a rapid improvement in resolution (indicated by decreasing
blur radius) reaching a maximum resolution indicated by the minimum blur radius value.
This is followed by a slow degradation in resolution (indicated by an increasing blur radius)
as filtering starts to blur the image. For an impulse contrast the minimum point of the
resolution curve indicates the best resolution. This value can be considered optimal with
respect to both resolution and stability (slope of curve is low indicating small change in
signal for a small change in λ) for the given data set.

Blur Radius as the Point Spread Function The point spread function (PSF)1 de-
scribes the response of an imaging system to a point source or point object. A point source
has negligible extent, distinguishing it from other source geometries. When a signal is gen-
erated by an impulse or pseudo-impulse (i.e. from a phantom consisting of a single element
of the generating mesh), the HA set of the resulting image is the EIT analog of the point
spread function of the system.

4.3 Hyperparameter Selection Methods

The goal of hyperparameter selection is to produce a “good” reconstruction. Intuitively
hyperparameter selection should produce solutions that preserve as much of the measured
data as possible by applying the least amount of a priori information required to obtain a
useful reconstruction.

4.3.1 Heuristic Selection

The most common method of hyperparameter selection is Heuristic Selection in which re-
searchers examine sets of reconstructions generated over a range of hyperparameter values
and select the image they like best. This method is highly subjective and not repeat-
able. To our knowledge no research has specifically evaluated the performance of objective
hyperparameter selection for one step solutions.

1Another commonly used term for the PSF is a system’s impulse response.
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λ=0.0008 λ=0.0302 λ=0.0616 λ=6.3822

(a) 2D images of the evolution of half amplitude set (dark triangles) with in-
creasing λ

λ=0.0008 λ=0.0302
λ=0.0616

λ=6.3822

Vertical Axis indicates relative change in conductivity

(b) 3D images of the evolution of proportional conductivity change image with
increasing λ.

Figure 4.1: Images reconstructed on a 576 element mesh using tank data of an impulse
phantom and the RHPF prior. The third image with λ = 0.0616 represents the best image
in terms of resolution.

In this work, heuristic selection was performed by five graduate students2 who were asked
to participate in an experiment evaluating human performance in choosing regularization
parameters. A web site was set up in which five independent data sets were used to generate
sequences of reconstructions. Each sequence showed reconstructions as a function of 77
different values of the hyperparameter. Each web page, such as the example of figure 4.2(a),
showed the same conductivity change solution using eight visual styles (sub-images). Each
pair of images is shown as a 2D false colour representation of the conductivity change image
and an associated 3D version where the z dimension represents conductivity change. The
left half of the page shows the reconstruction as a decrease in conductivity while the right
side shows the inverse of the image (we reverse the reference and data frames) so that the
reconstruction appears to be a conductivity increase. The top row uses relative colour and
z-axis scaling, thus each subimage in the 77 page sequence uses the full range of colours.
For the 3D representation the conductivity is scaled to fill the entire z-axis. The bottom
row uses an absolute colour and z-axis scaling thus each subimage of the 77 page sequence
uses the same colour and vertical axis extent. Consequently highly smoothed images (large
hyperparameter values), such as figure 4.2(b) have little color variation and reduced vertical
extent compared to images reconstructed with lower hyperparameter values such as figure
4.2(a). Students were instructed to choose the best image based on the following definition:
the image which shows the best resolution for the contrasting region(s) without excessive

2We use the term expert to denote a person who has been instructed to select an image based on some
criteria.
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(a) λ = 0.00071036, NF = 8.3048 (b) λ = 3.736, NF = 0.3026

Figure 4.2: Two web pages from the heuristic selection experiment. Images generated from
tank data using RHPF prior with different hyperparameter values.

contamination by noise.
The same set of students was asked to repeat the experiment four months later. Students

were instructed not to look at their earlier results as the aim of the second experiment was
to evaluate repeatability.

4.3.2 L-Curve

Perhaps the most well known method of hyperparameter selection after heuristic selection
is the L-Curve method [64]. This method plots the semi-norm of the regularized solution,
log10 |Rx̂|, versus the norm of the corresponding residual vector, log10 |Hx̂− z|, paramet-
rically over λ. The resulting plot, such as figure 4.3(a), will often have an “L” shape where
the optimal value for λ is located at the point of maximum curvature. Hansen describes a
method for calculating this “corner” of the L-curve in [63]. We call this value λLC . There
are cases where the L-Curve may fail, for example figure 4.3(b) is an L-Curve that does not
have a “corner”.
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(a) Tank data reconstructed using the
RTik prior
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(b) Simulated data reconstructed using
the Rdiag prior. The L-curve fails to in-
dicate a corner value for (b).

Figure 4.3: Example L-curves reconstructed from tank phantom data using a 2D 576 element
mesh.
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4.3.3 Generalized Cross-Validation

Generalized cross-validation (GCV) is based on the principle that if any arbitrary element of
the data (right hand-side, z, is left out, then the corresponding regularized solution should
predict the missing element [63]. Its advantage is that no prior knowledge about the error
norm is required. This leads to choosing a regularization parameter which minimizes the
GCV function

GCV (λ) =
‖Hx̂− z‖2

trace (I − HB)2
(4.3)

where B, z and x̂ are as in equations 4.1 and 4.2. Hansen [63] discusses the use of GCV
with the Tikhonov prior; however, in this work we evaluate the GCV method with all three
priors.
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Figure 4.4: NF versus λ (logarithmic axes) for algorithms Rdiag(H) (black), RHPF (blue),
RT ik (red). Solid lines: simulated data reconstructed on 256 element 2D mesh. Dashed
lines: tank data reconstructed on 576 element 2D mesh. Throughout the range of useful
solutions, NF and λ are linearly related.

4.3.4 Fixed Noise Figure (NF)

The Fixed NF Method is based on a Noise Figure calculation introduced by Adler and
Guardo in [4] where NF is defined as the ratio of signal-to-noise-ratio in the measurements
to signal-to-noise-ratio in the image:

NF =
SNRin

SNRout
=

(

mean[zc]
√

var[n]

)/(

mean[Bzc]
√

var[Bn]

)

(4.4)

The signal used in this definition is zc = Hxc , where xc is a small contrast in the centre of
the medium. The user selects a NF value and the corresponding λ is found using a bisection
search technique. The Fixed NF Method substitutes the manual selection of λ with the
manual selection of a NF, which the algorithm then maps to a hyperparameter value; the
value for NF = 1 is labelled λNF=1. As shown in figure 4.4, for a given configuration
log(NF ) is nearly linearly inversely proportionally to log(λ) throughout the extent where
λ yields good solutions.
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Figure 4.5: Comparison of hyperparameter values selected from the various methods mapped
to L-curve and resolution curve. Un-annotated points on the curves indicate the first set of
heuristic selections. Un-annotated crosses indicate the second set of heuristic selections.

4.3.5 BestRes Method

The resolution curve, of which figure 4.5(b) is an example, was introduced in section 4.2.2.
This curve suggests the following hyperparameter selection strategy, which we refer to as
the “BestRes” method, as follows:

1. Image an impulse contrast

(a) The preferred method is to use imaging equipment to collect a frame of reference
data from a homogenous medium. Then collect a data frame by imaging an
impulse contrast using a physical phantom located halfway between the centre
and boundary of medium (r/2).

(b) If equipment is not available the method can use simulated data. Again simu-
late a reference frame using a homogenous medium. Simulate a data frame by
changing the conductivity of a single mesh element located at r/2

2. Reconstruct a series of images as a function of the hyperparameter and plot the
associated Resolution curve as in figure 4.5(b).

3. Determine λBestRes as the point for maximum resolution - minimum BR. This value
of λ is then used for all subsequent reconstructions using simulated or real data.

If using simulated data then representative noise should be included. We suggest producing
several resolution curves (we used 50) each with a different instance of the representative
noise level. Each curve will produce a value of λBestRes. The mean of this set of λBestRes is
the output of the BestRes method.

4.4 Results

4.4.1 Data Sources

Three sources of test data were used to compare the hyperparameter selection methods:
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1. simulated data, generated using a 2D finite element mesh with 1968 elements using the
point electrode model. Data for the reference frame was generated using a homogenous
background conductivity with σ0 = 1. The data frame was generated by reducing the
conductivity of a single FEM element (0.05% of medium area) located halfway along
the radius of the tank (r/2) by 15%.

2. simulated data obtained by adding Gaussian noise to set #1. Noise variance was
0.05% of maximum signal value, and

3. tank data using a Goe-MF II type tomography system (Viasys Healthcare, Höchberg,
FRG). The reference frame of the tank data was generated using a homogenous saline
solution in a 30cm diameter tank. The data frame was generated using a 2cm diameter
non-conductive impulse phantom located at r/2 in the plane of the electrodes.

Both simulated and tank data used 16 electrodes equispaced in a plane driven with the
adjacent current drive protocol, excluding data on driven electrodes.

The three data sets were used to reconstruct images using 18 configurations (6 meshes,
3 regularization matrices). The 6 meshes have 64, 256, 492, 576, 1024, and 1968 elements.
Reconstructions of simulated data using the 1968 element mesh constituted an inverse crime
[122], which we discuss later. The hyperparameter selection methods are compared using
the L-Curve and Resolution Curves of figures 4.5. Hyperparamater values selected from
each of the methods are shown on both curves. Associated reconstructions are shown in
figure 4.6.

4.4.2 Heuristic Results

The points on figures 4.5 indicate the first set of hyperparameters selected (indirectly)
by heuristic selection. The associated reconstructions are found in figure 4.6. Heuristic
selections varied and were not confined to the minimum region of the Resolution Curve or
knee of the L-Curve: no clear preference was shown among images reconstructed using λ
from the minimum region of the Resolution Curve. The crosses on figures 4.5 indicate the
hyperparameter values selected by the same experts when the experiment was repeated 4
months later. Results indicate that Heuristic selections of hyperparameter are inconsistent
among experts and unrepeatable. Heuristic selections are subject to many biases including
the colour scheme used in images, whether impedance changes are shown from a 2D or 3D
perspective, the a priori expectation of the expert concerning noise levels, desired image
properties, and other unknown individual idiosyncrasies. The heuristic results suggests that
there is no single preferred value of λ, rather there is a preferred region of λ over which
reconstructions are not subjectively distinguishable.

4.4.3 L-Curve Results

Although most L-Curves from this data were able to indicate an optimal trade-off region, not
all curves had a pronounced enough corner to allow unambiguous selection of λ. In the six
Tikhonov configurations the L-Curve always indicated a clear point of maximum curvature.
However there were some configurations, such as figure 4.3(b), where the L-Curve did not
exhibit a corner from which a hyperparameter could be calculated. In general the L-Curve
indicated a lower value for λ than the Fixed NF and BestRes methods. As a result L-Curve
derived images were comparatively noisier. In several instances λLC occurred much earlier
than the onset of stability. We make the observation that L-Curves for the NOSER and
Gaussian HPF priors are shallower than classic L-Curves discussed in the inverse problems
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(a) Lowest Heuristic
Selection

(b) λLC (c) λGCV (d) λBestRes which
was coincidentally
the highest heuristic
selection.

Figure 4.6: Reconstruction of phantom data on 576 element 2Dmesh, using different hyper-
parameter selection strategies. Black bordered triangles are elements of the half amplitude
set.

field such as [64]. This is illustrated in figure 4.7 which compares the relatively sharp corner
of the Tikhonov L-Curve to the shallower curves for the Gaussian HPF and NOSER priors.

The L-Curve method also requires the generation of an L-curve for each set of data. It is
preferable to be able to calculate a single hyperparameter value suitable for continuous use
with a specific configuration which can be done with the BestRes and fixed NF methods.
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Figure 4.7: L-curves reconstructed on 576 element 2D FEM using data from saline phantom
for priors RT ik, RHPF , and Rdiag. The L-curve shapes vary significantly; only RT ik shows
a well-defined knee, while the others are much shallower.

4.4.4 GCV

It has been noted [111] that that the GCV method can lead to very small values of λ
leading to solutions that are severely under-regularized. As illustrated in figure 4.8 the
GCV function can also be very shallow making it difficult to isolate a clear minimum. In
some cases the GCV curve was monotonically increasing thus did not have a minimum. For
example the GCV curve for a reconstruction using tank data on the 576 element mesh with
the Tikhonov prior failed to exhibit a minimum. Overall the GCV criterion was unreliable
in calculating hyperparameters for linearized one-step EIT reconstructions.
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Figure 4.8: GCV curves for different priors reconstructed on the same 576 element mesh
using the same tank data. Plot indicates shallowness of some GCV curves and consequent
potential difficulty of finding a clear minimum.
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Figure 4.9: λ versus noise for simulated data reconstructed on the 256 element mesh with
the Gaussian HPF prior. Simulated AWGN was added to the signal.

4.4.5 BestRes Results

As described in section 4.3.5, the BestRes method can use real or simulated data to calculate
the hyperparameter with similar results. Using real data has the potential to produce a
hyperparameter for the given configuration that is tailored to the equipment. In practice the
reconstructions obtained using this seemingly more accurate method are not qualitatively
improved over those that are generated using simulated data. For both tank and simulated
data using all 18 configurations the resolution curve exhibited a distinct minimum point at
which λBestRes could be calculated and subsequently used to obtain a “good” reconstruction.
It appears that resolution is a useful figure of merit for EIT reconstructions.

4.4.6 Fixed NF Results

With both the tank and simulated data λNF=1 was consistently located in the minimal
region of the resolution curve. Moreover λNF=1 always fell within the boundaries of the
hyperparameters selected by the experts (i.e. it was as consistent as the experts). Fixed NF
with NF = 1 always calculated a hyperparameter that resulted in a good reconstruction.
Our earlier experience using simulated, tank and clinical data has shown that noise figures
in the range 0.5 − 2 consistently lead to good reconstructions regardless of configuration
while the associated λ value can range over several orders of magnitude dependent on con-

56



figuration. For the 18 configurations used in this work, λ ranged over 3 orders of magnitude
for NF = 1. The advantage of the fixed NF method is that the suitable NF range is not
configuration dependent while λ is.

4.5 Discussion

This paper has investigated the performance of various hyperparameter selection methods
including the BestRes method herein introduced. In the course of these studies it became
clear that several other aspects of EIT image reconstruction are related to hyperparameter
selection. In this section we discuss the effects of noise level, radial position of contrasts
and normalization on hyperparameter selection. We also touch on applicability to nonlinear
reconstructions and inverse crimes.
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Figure 4.10: λ and resolution versus radial position, simulated data reconstructed on the
256 element mesh using the Gaussian HPF prior. Left axis is log10 λBestRes, right axis is
resolution measured in terms of blur radius. Radial position of 0 is centre of the tank, radial
position of 1 is edge of the tank. The simulated data included AWGN with noise = 0.50%
of the signal amplitude.

4.5.1 Effect of noise on λ

We performed additional experiments in order to explore further the behaviour of the fixed
NF and BestRes methods. Simulated data from an impulse contrast were generated with
increasing amounts of additive white Gaussian noise (AWGN). Figure 4.9 shows λBestRes

as a function of increasing noise. Hyperparameter values calculated by all methods except
fixed NF increased as noise level increased resulting in greater noise suppression through
increased smoothing. The maximum noise levels used in this work are much larger than
found in practice but were used to understand trends.

Since fixed NF is not a function of the data, hyperparameters selected with fixed NF do
not change with noise. Consideration of data noise will in general require more smoothing
(therefore larger λ values). However at realistic noise levels λNF=1 falls within the minimum
region of the resolution curve, is indistinguishable from heuristic selections, and consistently
results in good reconstructions.

4.5.2 Clinical Considerations

The BestRes method is intended to preserve information in the data through compensation
of the ill-conditioning of the sensitivity matrix, given a fixed noise level in the data. As
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a hyperparameter selection method, BestRes does not consider problems associated with
equipment such as uncertain electrode positioning, electrode and cable problems, and elec-
tromagnetic interference (EMI) from other sources in the clinical environment. The problem
of uncertain electrode positioning is mitigated primarily by using difference measurements
and should not be addressed through hyperparameter adjustments. Electrode and cable
errors are best addressed by detecting the problem and alerting an operator to fix it, or by
compensating for the problem a posteriori through use of an algorithm such as that of [7].
Excessive EMI in a clinical environment [89] will swamp the signal such that extraction of
information is impossible regardless of hyperparameter. The BestRes method is a calibra-
tion technique to choose a hyperparameter based on a noise level that is fixed, regardless
of whether the noise is representative of clinical data or added to simulated data.

4.5.3 Effect of radial position on λBestRes

Figure 4.10 is a plot of Resolution and λBestRes as a function of radial position of the
generating contrast. These curves were generated by reconstructing a set of simulated data
generated by an impulse contrast located at increasing radial positions. The best resolution
is achieved for contrasts located at 75% of radial distance from the centre. Although λBestRes

continues to increase as the radial position increases past 90%, the corresponding resolution
starts to decrease due to blurring caused by proximity to the edge.

4.5.3.1 Normalization

Although primarily concerned with proportional (normalized) difference imaging we also
investigated the performance of the Fixed NF method using simple (non-normalized) differ-
ence algorithms. The simple difference problem is solved using equation 4.2 with x defined
as x = σ2 − σ1 and z defined as z = v2 − v1. (H is also modified in that its columns
are not divided by vref as in section 4.2). Similar to the proportional difference algorithm
the Fixed NF method was able to consistently calculate a hyperparameter located in the
minimum region of the associated resolution curve.

Comment on Normalization

Normalization has some advantages. By normalizing the data, one does not need to know
the amplitude current injected. Thus, the forward problem can be solved using a value of
injected current which is convenient for the algorithm (usually ±1). The authors of [90]
justify normalization with the argument that a normalized sensitivity matrix is less sensitive
to the boundary shape of the object and the position of the electrodes, which is a substantial
problem in clinical applications. Also, some EIT systems change the gain settings for each
electrode depending on the amplitude of signal expected. Normalization can compensate
for these cases as well as instances where the calibrated gain settings are not exact.

Normalization of the sensitivity matrix does not change the spectrum of singular values
of HTH. Although the condition number of HTH may improve by an order of magnitude
or more the relative change is not significant. For the meshes used in this work the condition
number of HTH improved by a factor of about 10. In other work involving non-circular
meshes we have seen changes from as low as 1.5 to as high as 1000. In some cases (non-
homogenous background conductivity) the condition number increased, so it is not possible
to state that, as a rule, normalization always improves the condition number of HTH.
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4.5.3.2 Nonlinear Reconstructions

We investigated the use of the fixed NF method with an iterative static reconstruction
algorithm. In this experiment we used fixed NF to calculate a single hyperparameter that
was used for each iteration. Running the algorithm to convergence indicated that the λNF=1

was located in the minimum region of the resolution curve. It may be possible to use the
fixed NF method to calculate a new hyperparameter for each step of the iterative algorithm,
however, this was not pursued.

4.5.3.3 Inverse Crime

The act of employing the same model to generate, as well as to invert, simulated data is
known as an inverse crime [122]. In this work, data were simulated using a 1968 element
mesh, so reconstructions using the same mesh constitute an inverse crime. Such reconstruc-
tions had noticeably better resolution than was achieved with other meshes and, as shown
in figures 4.11(a) and 4.11(b), exhibited λBestRes and λLC corresponding to an uncharac-
teristically high NF. This suggests a method to detect inverse crimes: using the suspect
FEM, and associated data, construct a resolution curve or L-curve with the simulated data
and calculate the NF corresponding to λBestRes or λLC . If the NF >> 3 (for example,
figure 4.11(a) had NF > 7) it is likely that the reconstruction algorithm is committing
an inverse crime. The method was validated by the observation that reconstructions over
the 1968 element mesh using tank data did not exhibit the large NF bias while the high
NF phenomenon was observed every an “inverse crime” configuration was analyzed. One
explanation for these results is that the optimal hyperparameter for the inverse crime case
is significantly lower than that generally required, since the geometry matching between
forward and inverse solutions is giving a regularizing effect.
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Figure 4.11: Either the L-curve or resolution curve can be used to detect an inverse crime.

4.6 Conclusion

This paper proposes a new method of objective hyperparameter selection for use in one-
step image reconstructions and compares it to some existing methods including heuristic
selection. We present the following observations:
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1. Heuristic selections of hyperparameter are inconsistent among experts and unrepeat-
able. This suggests that there is no single preferred value of λ, rather there is a
preferred region of λ over which reconstructions are not subjectively distinguishable.
Moreover, it was not possible for observers to differentiate reconstructions based on
heuristic hyperparameter selections from those produced from the objective methods.

2. The GCV method is unreliable for the class of algorithms used in this work.

3. The L-Curve is, in general, shallow for EIT applications and is not reliable for all
configurations (doesn’t indicate a hyperparameter). When the method does work it
provides a lower hyperparameter value than the Fixed NF and BestRes methods.

4. With NF = 1 the Fixed NF Method calculates a hyperparameter that falls in the
minimum region of the Resolution Curve. At low noise levels λNF=1 is very close to
λBestRes. As AWGN is added to the simulated data λBestRes increases while λNF=1

remains constant. However at the noise level found in our EIT equipment a NF of 1
produces good reconstructions that are close to the optimal reconstructions achieved
with BestRes method.

5. The Fixed NF Method provides a configuration independent method to select λ that
is repeatable and is more consistent than expert selection. One could use the Fixed
NF method with NF = 1 to calculate a minimum hyperparameter value for any
configuration. This method is repeatable and in applications with realistic noise levels
will produce consistent stable reconstructions that are as good as heuristic selection.

6. Hyperparameters taken from the minimum region of the Resolution Curve (BestRes
method) always produce good solutions that are comparable to, but more consistent
than expert selections. Moreover λBestRes is optimal in terms of our figure of merit.

For the class of regularized reconstruction algorithms used in this work both the Fixed NF
and BestRes methods provide objective methods to select a good value for λ. The values
were indistinguishable from those selected by human experts. Both methods were developed
using simulated data but shown to be applicable (validated) using Tank data.

Although these methods do not completely solve the problem of obtaining an optimal
hyperparameter value, they do provide a rationale and method for objectively and auto-
matically selecting λ. Using the BestRes method with imaging equipment provides a sound
engineering method for manufacturers or researchers to obtain a configuration-dependent
hyperparameter that is optimal in terms of resolution. This allows end users to perform
impedance imaging without the necessity of having to manually tweak parameters.
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Chapter 5

A Nodal Jacobian Inverse Solver
for Reduced Complexity EIT
Reconstructions

This chapter is the text, with minor revisions, of a paper titled “A Nodal Jacobian Inverse
Solver for Reduced Complexity EIT Reconstructions” by Bradley GRAHAM and Andy
ADLER published in the International Journal of Information & Systems Sciences, Special
Issue on Computational Aspect of Soft Field Tomography, Volume 2, Number 4 (2006).

This paper addresses the problem of solving increased resolution, high density, 3D EIT
models (section 1.3 objective O2 and section 1.4.1 Contributions by Objective O2): develop
an algorithm that reduces the execution time and memory required to calculate reconstruc-
tions using dense high resolution 3D finite element models.

In [77] Kaipo et al use a 2D finite element model based on a piecewise linear discretization
of the conductivity as opposed to the more common piecewise constant conductivity model
that is used in element based solvers. Such models lead to a Jacobian matrix that scales
with the number of nodes in a model instead of the much larger number of elements, the
consequence of which is a large reduction in the computational complexity of the resulting
linear system. The main contribution of this objective is the development of Nodal Jacobian
Inverse Solver, which is an algorithm for efficiently calculating a nodal Jacobian which is
used to reduce the complexity of the EIT reconstruction problem. Additional contributions
include the systematic evaluation of the algorithm’s performance in both 2 and 3 dimensions.

Abstract

Electrical impedance tomography (EIT) uses surface electrodes to make measurements from
which an image of the conductivity distribution within some medium is calculated. Cal-
culation of conductivity solutions requires inverting large linear systems that have to date
restricted reconstructions to 2D or coarse 3D domains. This paper presents a Nodal Jaco-
bian Inverse Solver that scales with the number of nodes in a finite element mesh rather
than with the number of elements. For the example used in this paper the size of the linear
system is reduced by a factor of 26. We validate the algorithm by comparing its performance
to traditional 2D Elemental Jacobian algorithms. We then analyze its performance with a
21504 element 3D mesh that is too large to be solved with linear algebra systems based on
32 bit pointers (such as is available in current versions of Matlab). Finally, we demonstrate
the applicability of the algorithm for clinical use by reconstructing experimentally measured
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human lung data.

Keywords: regularization, 3D, EIT, hyperparameter, Jacobian

5.1 Introduction

Electrical Impedance Tomography (EIT) uses body surface electrodes to make measure-
ments from which an image of the conductivity distribution within some medium is calcu-
lated. Calculation of conductivity solutions using one of the Newton type methods requires
inverting large linear systems derived from finite element models of the medium under
analysis. The Hessian matrix in these linear systems scale with the square of number of
elements in the model and the square of the number of measurements used in the recon-
struction. Almost all EIT algorithms use a piecewise constant conductivity model, in which
the conductivity is considered to be constant over an element. The large number of ele-
ments required and large number of measurements available for 3D reconstructions have
to date restricted 3D reconstructions to coarse, low resolution models. Complex, accu-
rate geometries, a priori structures, the increased number of measurements possible with
newer machines and the desire for improved resolution in the third dimension leads to a
requirement to solve large 3D models. Such reconstructions are beyond the capability of
contemporary computers such as the AMD Athlon 64 3000+, 2GB RAM computers used in
our lab. Thus the development of algorithms that can efficiently calculate full 3D solutions
over dense finite element models with many measurements is required.

In this paper we present and evaluate a Nodal Jacobian Inverse Solver algorithm that
reduces the execution time and memory required to calculate reconstructions. In addition
to gains in reconstruction efficiency, the extraction and display of data stored in the nodal
format is much quicker than for data stored in the elemental format. Moreover, nodal
solutions are easily processed using pixel based filtering algorithms similar to those used in
image processing work.

The finite element model used in this work includes a mesh that has a simple cylindrical
geometry but is comprised of over 20,000 elements. This high mesh density is not warranted
for a 16 electrode-208 measurement protocol, however it is used in this work to show the
performance improvement possible using the proposed solver. It is expected that appli-
cations that use many electrodes or require huge numbers of elements to model complex
geometries will be able exploit the performance benefits of the proposed algorithm.

5.2 Methods

This paper introduces the Nodal Jacobian Inverse Solver as follows. In the methods section
we describe the traditional family of EIT reconstruction algorithms used in our research,
describe the Nodal Jacobian variation of this family of algorithms, and describe the evalua-
tion procedure. In the results we describe the effectiveness of the new family of algorithms
compared to the traditional algorithms. In the discussion we consider some additional
observations of this work and conclude with a recommendation of the proposed algorithm.

5.2.1 Data Acquisition

Lab data used in this paper was obtained using a 16 electrode adjacent drive EIT machine
(the Goe-MF II type tomography system, Viasys Healthcare, Höchberg, Germany) designed
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for use with 2D reconstruction algorithms based on data from electrodes placed in a planar
section of the medium as shown in figure 5.1(a). Adjacent current stimulation is used
with adjacent voltage measurement at all remaining electrodes except the driven electrode
pair. The general formula for the number of measurements, M , obtained using this type of
injection-measurement protocol is M = (Nel−3)/Nel where Nel is the number of electrodes.
For 16 electrodes, 208 measurements are available per frame, while for a 32 electrode system
the number of available measurements is 928. Although the 16 injection-measurement
patterns are obtained over a finite time interval, 80ms for the Goe-MF II, the entire vector
of 208 measurements is treated as representing the boundary voltages at a single instant in
time and is considered a frame of data.

Data obtained from a 2D electrode placement such as in figure 5.1(a) is most often
used to calculate a 2D estimate of the conductivity although a 3D reconstruction algorithm
could use these data. By placing the electrodes in multiple planes 2D equipment can be
used to acquire data that are better suited for 3D reconstructions. One such method is
the hybrid electrode placement strategy (described in chapter 6) shown in figure 5.1(b) in
which electrodes are placed in two axially aligned planes with the 16 electrodes connected
sequentially as shown by the numbers in the figure. This arrangement will result in an
inter-plane injection-measurements between electrodes 8 and 9 as well as 16 and 1. This
strategy is used in this work in order to validate some of the simulated results with lab data
collected using the Goe-MF II. The choice of 2 electrode planes was mainly one of simplicity
and convenience. Many other electrode placement strategies are possible. The EIDORS v3
suite [8], using the Complete Electrode Model, was extended to perform the work in this
paper.
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Figure 5.1: 2D and 3D Finite Element meshes.

5.2.2 EIT Modeling

We consider EIT difference imaging, which is widely understood to improve reconstructed
image stability in the presence of problems such as unknown contact impedance, inaccu-
rate electrode positions, non linearity, and the use of 2D approximations for 3D electrical
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fields when reconstructing in 2D [18][87]. We address the class of one-step linearized recon-
struction algorithms that calculate the change in a finite element conductivity distribution
x = σ2 − σ1 indicated by a measured change in difference signal, z = v2 − v1, over a time
interval (t1, t2). By convention we consider the signal at t1 to be the reference frame and
the signal at t2 to be the data frame. Since we do not know σ1, x is interpreted as the
change in conductivity with respect to the unknown initial conductivity x = ∆σ.

A forward model is required when one wants to solve the non-linear problem, generate
simulated data or calculate the Jacobian using the efficient method described in [98] that
requires calculation of the electric fields in the interior of the object. Using the finite element
method (FEM), the voltage distribution at E electrodes is simulated by current injection
into the medium with a conductivity distribution discretized on N finite elements. This
model of the forward problem accepts a vector of conductivity values and calculates the
voltage Vij at each node i for each current injection pattern j through the linear equation

V = Y(σ)−1I (5.1)

where Y(σ) is the admittance matrix of the FEM and Iij is the current at each node i during
current injection pattern j. With the point electrode model each electrode is modeled as a
single boundary node, thus the columns of I have only two non-zero entries corresponding
to the current injected at the two electrodes. Calculation of the vector v of M voltage
differences is represented by v = T [V(σ)]. For instance if v9 is defined to correspond to the
voltage difference between electrodes 4 and 5 during injection pattern 2, then the operator
T will give T [V ]9 = V42 − V52.

The most accurate mathematical model for EIT is the Complete Electrode Model (CEM)

[

AM + AZ AW

AT
W AM

] [

Φ
V

]

=

[

0
I

]

(5.2)

where AM , AW , and AZ represent the CEM boundary conditions. In this paper we use
the point electrode model for the 2D experiments and the CEM for the 3D experiments. A
complete derivation of the CEM can be found in [114] however the salient point is that in
equation 5.1 and 5.2 AM = Y is the N by N symmetric admittance matrix given by

Yij =

∫

Ω

σ∇wi·∇wjdΩ (5.3)

where wi is a linear basis function with value 1 on ith node and 0 elsewhere. In the majority
of cases σ is considered constant on each element (piecewise constant) which allows σ to be
brought outside the integral in 5.3

Yij =

N
∑

k=1

σk

∫

Ωk

∇wi·∇wjdΩk (5.4)

The integral in 5.4 is calculated analytically for each element with each element contributing
9 (for a triangle) or 16 (for a tetrahedron) entries to the master admittance matrix Y.

For small changes around a background conductivity the relationship between x and z

may be linearized as

z = Hx + n (5.5)
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where H is the Jacobian or sensitivity matrix and n is the measurement system noise,
assumed to be uncorrelated additive white Gaussian (AWGN).

For piecewise constant conductivity models, each element i, j, of H is defined as Hij =
∂zi
∂xj

∣

∣

∣

σ0

and relates a small change in the ith difference measurement to a small change in

the conductivity of jth element with respect to a background conductivity vector, σ0. H

is a function of the FEM, the current injection pattern, the measurement pattern, and the
background conductivity. We use the adjacent current injection pattern and a homogenous
background conductivity with σ0 = 1 for each of the elements. H is a matrix comprised of
E columns of length M where E is the number of elements in the finite element model and
M is the number of measurements per frame. Thus the ith column represents the change
in the M boundary measurements due to a change in the conductivity of the ith element.
There are several ways to calculate the Jacobian; the EIDORS2D toolset [116] uses the
method of [114][127] (which is referred to as the Standard Method) whereas the EIDORS3D
toolset [93] uses a more efficient method involving the dot products of the interior electric
fields.

5.2.3 Image Reconstruction

In order to overcome the ill-conditioning of H we solve 5.5 using the following regularized
inverse originally described in [4]

x̂ = (HTWH + λ2R)−1HTWz = Bz (5.6)

where x̂ is an estimate of the true change in conductivity, R is a regularization matrix, λ
is a scalar hyper parameter that controls the amount of regularization, and W models the
system noise covariance. We calculate λ using the BestRes algorithm described in chapter
4. Noise is modeled as uncorrelated with conductivity changes and among measurement
channels; thus, W is a diagonal matrix with Wi,i = 1/σ2

i where σ2
i is the noise variance

for measurement i. W can also be modified to account for variable gain settings on each
tomograph channel. With R = I (labelled RT ik) equation 5.6 is the 0th order Tikhonov
algorithm. With R = diag(HT H) (labelled Rdiag) equation 5.6 is the regularization matrix
used in the NOSER algorithm [35]. In [4] R is a model of the inverse a priori image
covariance. EIT has the potential for only a relatively few independent measurements. As
a direct consequence there will be limited high spatial frequency content and therefore low
spatial resolution, associated with any reconstructed image. This implies that the elements
with a separation less than the minimum recoverable spatial period (EIT resolution) are
highly correlated. Consequently Adler and Guardo [4] model R as a spatially invariant
Gaussian high pass filter (labelled RHPF ) with a cut-off frequency selected so the spatial
period is a given fraction of the medium diameter. In two dimensions a Gaussian high pass
filter of spatial frequency ω0 has the form

F(u, v) = 1 − e−ω0(u2+v2) (5.7)

In the spatial domain the convolution kernel is

f(x, y) = δ(x, y) − π

ω2
0

e−(π2/ω2
0)(x2+y2) (5.8)

where δ(x, y) is the Dirac delta function. The filtering matrix F multiplies an image vector
x to give a filtered image Fx. Fij is calculated by centering the high pass filter in element
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i and integrating across element j

Fij =

∫

Ej

[

δ (x− xi, y − yi) −
π

ω2
0

e−(π2/ω2
0)((x−xi)

2+(y−yi)
2)
]

dxdy (5.9)

This integration is performed numerically on a mesh of 512× 512 points superimposed over
the 2D FEM. We define this as an integration density of 512 points per linear unit or 5122

points per square unit. The filter cut-off frequency is expressed in terms of the percentage
of the diameter. Using a mesh of Np points

(% diameter) =
Np

2πω0
(5.10)

The regularization matrix is calculated as RHPF = FTF. This filter could be extended to
3D by including the z component in equation 5.9 and integrating numerically over a mesh
of integration density 5123 points per cubic unit; however we do not use a 3D version of the
Gaussian filter in this paper.

Although all three of these priors are smoothing filters which attenuate the contribution
of the high frequency components of the SVD of HTH, the Gaussian high pass filter has
the advantage of being mesh size and mesh shape independent in that it is a function of
the area weighted mesh inter-element correlations.

5.2.4 Nodal Jacobian

As the number of elements in a FEM increases, the time and memory required to calculate
the solution increases, such that solving problems of useful resolution in 3D becomes difficult
or impossible to perform. For example the term HTWH, in equation 5.6 for the 21504
element FEM of figure 5.1(b) produces a matrix of size 21504 × 21504 which exceeds the
memory capabilities of 32-bit matrix indexing arithmetic, such as is currently available in
Matlab software.

The ratio of nodes to elements can be up to a factor of two for 2D FEM meshes; the
sum of angles in a triangle is 180, a point has 360 degrees, thus a dense mesh will tend to
have an element to node ratio of two. In 3D a point has a solid angle of 4π, six tetrahedra
fit into a cube (solid angle of 4π); a tetrahedron therefore has solid angle of 4π/6. Thus
a dense mesh will tend to have an element to node ratio of six although practical meshes
will have a lower ratio; the 3D mesh used in this paper has an element to node ratio of 5.1.
The incentive to develop an algorithm that scales with the number of nodes rather than the
number of elements is the fact that the size of the Hessian matrix will be reduced by the
square of the element to node ratio. Thus the Hessian matrix for the 3D mesh used in this
paper will be reduced by a factor of 26 which is sufficient to allow it to be formed within
the 32-bit matrix indexing environment of Matlab.

The construction of a Nodal Jacobian is based on the development of a nodal finite
element model. In [77] Kaipo et al use a 2D finite element model based on a piecewise
linear discretization of the conductivity in which the conductivity of an element is linearly
interpolated throughout its volume based on the conductivity values at its vertices. The
adoption of piecewise linear conductivity on each element means that the conductivity
cannot be brought outside the integral in equation 5.3 thus equation 5.4 cannot be used to
calculate the admittance matrix rather we must solve

Yij =

N
∑

k=1

∫

Ωk

σk(~r)∇wi·∇wjdΩk (5.11)
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where ~r is a position vector within element k. For an inhomogenous isotropic material
σk (̃r) is a conductivity tensor of the form σk (̃r) = σk (̃r)I where r̃ is a scalar function of the
conductivity and I is the identity matrix.

In [77] Kaipo et al use the same linear basis functions, wi, for σ as are used for the
potential. In [77] the authors do not discuss or exploit the complexity improvement associ-
ated with using the nodal basis. Their use of piecewise linear conductivity was motivated
by a requirement to calculate the gradient of the conductivity within each element for the
purposes of incorporating a structural prior into their reconstructions. By using a piecewise
linear conductivity model the gradient over each element is a constant. An implementation
of the piecewise linear element is available in the EIDORS2D toolset [116] in which Y is
calculated from equation 5.11. Also provided is a function to calculate the corresponding
Nodal Jacobian using the Standard Method.

EIDORS3D [93] calculates an Elemental Jacobian using the NSHI (nullspace scaled
hybrid isotropic) algorithm described in [121]. The NSHI algorithm is over 60 times faster
than the Standard Method for the example cited in [98] but requires components calculated
from an element based master matrix. Thus in order to retain the speed advantage of the
NSHI algorithm, we adapted the EIDORS2D nodal master matrix construction algorithm
to construct a Nodal Jacobian, HN , from the elemental Jacobian, HE , as follows:

1 d = 3 for triangles or d = 4 for tetrahedrons

2 for each node, n, in the mesh

3 elems=list of elements using node n

4 HN
:,n =

∑

i∈elems

1/dHE
:,i where H:,i means the ith column of matrix H.

5 end for each node

Intuitively this can thought of as having each element contribute an equal proportion of its
sensitivity to each of its three or four contained vertices.

When using the Nodal Jacobian in the regularized inverse 5.6 the resulting solution will
be in the nodal basis. It is possible to convert the nodal solution back to a piecewise constant
element basis where it is determined by E parameters. Conversion back to an elemental
basis can be done by setting the conductivity value for each element to an average of
the conductivity values of its enclosing vertices. This has the advantage of being simple
to implement and works well for meshes constructed of regularly spaced nodes. It is also
possible to weigh the average as a function of subtended angle or Voronoi cell area. In either
case the conversion to an elemental solution will introduce additional smoothing through
local averaging which may or may not be desirable. In this paper we maintain solutions in
the nodal basis.

Two advantages of the nodal basis are the ability to store the solution in a smaller
number of parameters, and the ability to rapidly extract and render graphical displays of
solutions using a function such as Matlab’s built-in trisurf function. The trisurf function
takes as input a list of vertices and associated values at each vertex. No explicit knowledge
of the geometry is required, such as an element list providing connectedness between nodes,
in order to display cut planes of coplanar nodes. For example the 3D model of figure 5.1(a)
has coplanar nodes at each of its 29 nodal layers as well as coplanar nodes at vertical slices
such as x = 0 and y = 0 and other angles. Figure 5.7(a) shows three multiplane conductivity
representations of figure 5.1(b) that were rendered by trisurf in real time (60ms each).
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5.2.5 Nodal Gaussian Filter

The Gaussian High Pass filter, RHPF , of [4] can be extended to work over the nodes of the
mesh as opposed to the elements. The regularization matrix is RHPF = FTF where Fij is
calculated by centering the high pass filter at node i and integrating across the Voronoi cell
of node j in accordance with equation 5.9. As with equation 5.9 the filter cut-off frequency
is expressed in terms of the percentage of the diameter in accordance with equation 5.10.
This filter is extended to 3D by including the z component in equation 5.9 and integrating
over the Voronoi polyhedra of node j. A Voronoi cell is a polygon (polyhedra in 3D) whose
interior consists of all points in the plane (hyper plane in 3D) which are closer to a particular
node than to any other. Figure 5.2(b) shows part of a Voronoi diagram for a 64 element,
41 node FEM of figure 5.2(a). Note that there are no closed Voronoi cells for the nodes
located on the boundary since they are by definition unbounded and extend to infinity. To
overcome this problem for the 2D mesh, we add a set of auxiliary nodes by replicating the
boundary nodes but located radially offset from the original location by a small distance
(0.00001 was used for a mesh of diameter 1). Figure 5.2(c) is for illustrative purposes
and shows the auxiliary nodes at an exaggerated stand off distance resulting in additional
closed Voronoi cells. Figure 5.2(d) shows the auxiliary nodes located almost coincident with
the boundary nodes which brings the outer Voronoi cell edge close to the boundary of the
original mesh. The Voronoi cells, including the cells added through the auxiliary nodes, are
used as the domain of integration for the Gaussian filter calculations. Note that it would
also be possible to integrate each element in F over the basis function of each FEM node.

(a) (b) (c) (d)

Figure 5.2: One quarter of a 2D FEM showing development of Voronoi Cells for boundary
nodes.

The 3D models used in this work are constructed by using layers of nodes that are
replicated and shifted versions of the nodes of an initial 2D mesh. The 3D Voronoi cell
for such a mesh is an extruded version of the 2D Voronoi cell. This permits the numerical
integration of the 3D Gaussian filter using equation 5.9. We use equation 5.9 and integrate
with an integration density of 5123 points per cubic unit.

5.2.6 Laplacian Mask Filter

A further advantage of a nodal basis is that it facilitates the use of filters derived from pixel
oriented domains such as found in the image processing literature. Rather than develop a
low pass filter and then invert it, we follow the method of [4] and develop a high pass filter
directly (based on the Laplacian mask described in [60] labelled RLap that is subsequently
inverted in equation 5.6. We define the region of support for the Laplacian as nodes located
with in a radius of some percentage of medium diameter. In this work we use 10%, a number
arrived at through experience. The filtered value for node i is calculated as follows

x̂′(i) = (1 − x̂(i))
∑

n∈Ωi

x̂(n)(r/dn) (5.12)
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where x̂(i) is the prior value of node i, r is the radius of the neighbourhood, d is distance
between node i and node n. Ωi represents the radial neighbourhood of node i; members
of the set Ω are nodes that are located within a distance r of node i. n ∈ Ωi means that
n belongs to the radial neighbourhood of node i. r/dn is a weighing of the nodal value.
This formulation for a Laplacian filter is mesh size independent which is different from the
discrete Laplacian filters used in [93] and [25].

5.2.7 Smoothing Mask Filter

In addition to the filters used directly in the regularized inverse it is also possible to apply
a spatial smoothing filter, RLP , to the nodal solutions of equation 5.6 by multiplying the
solution with the low pass filter. This can be treated as a post processing step that increases
the signal-to-noise ratio (SNR) of the solution. This filter is implemented through matrix
multiplication as x̂′ = Rk

LP x̂. The exponent k indicates that this filter can be applied
multiple times. In this paper we use k = 1 but other values are possible. RLP calculates a
filtered value for node i as follows

x̂′(i) =
∑

n∈Ωi

x̂(n)/‖Ωi‖ (5.13)

where n ∈ Ωi means that n is a member of the radial neighbourhood of node i including
node i and ‖Ωi‖ means the number of members of Ωi. We incorporate RLP into equation
5.6 before hyperparameter selection. Thus equation 5.6 with W = I is restated as

x̂ = Rk
LP (HTH + λ2R)−1HTz (5.14)

with hyperparameter selected using the BestRes algorithm described in chapter 4. The
complete algorithm can then be performed with any z.

5.2.8 Evaluation Procedure

In order to evaluate the performance of this algorithm, the following test procedures were
conducted.

1. Initially we validate the performance of the new algorithm by comparing its per-
formance to the traditional algorithm for 2D reconstructions using tank data of a
pseudo-impulse phantom. Comparisons are made between the nodal and elemental
Jacobians using the RT ik, Rdiag , RHPF and RLap priors.

2. We validate the 2D hyperparameter selection method, BestRes, (chapter 4) for 3D
reconstructions.

3. We quantify the performance of the 3D nodal algorithm using the RT ik, Rdiag , RHPF

and RLap priors, with two sets of simulated impulse phantom data. Both sets of sim-
ulated data were created by moving an impulse contrast through 28 vertical positions
of a 28 layer, 86016 element, 15805 node FEM that is similar to, but denser than
the FEM of figure 5.1(b). Reconstructions are made using the 21504 element mesh
of figure 5.1(b) One set of data had the impulse contrasts located at the axial center
(r = 0), the second set of data had the contrasts located halfway between the axial
center and the tank boundary (r/2).

4. Finally we validate the Nodal Jacobian algorithm with some lab data of human lungs.
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Quantitative figures of merit are required in order to compare the accuracy of the recon-
structed images. Several figures of merit for EIT proposed in the literature were reviewed
in [120]. The primary figures of merit used in this work are resolution, image energy, and
signal to noise ratio of the reconstruction. We define resolution in terms of blur radius
(BR). BR calculates the area fraction of the elements that contain the largest amplitude
contributions to 50% of the total image amplitude and is therefore a measure of the con-
centration of image amplitude. BR is defined as BR = rz/r0 = 3

√

Vz/V0 for 3D, where
r0 and V0 are the radius and volume respectively of the entire medium and rz and Vz are
the radius and volume of the reconstructed contrast containing half the magnitude of the
reconstructed image [4]. In 2D, V represents area and a square root is taken. Image Energy,
an arbitrary but global measure, is defined as P =

∑

i
x̂2

iVi. For elemental solutions x̂i is the

solution amplitude at element i, while for nodal solutions x̂i is the solution amplitude at
node i. Signal to Noise Ratio is defined as SNR = x̂V

/

σx̂V which is the volume weighted,
solution mean over the volume weighted, solution standard deviation). Again area is used
for 2D. For elemental solutions the area and volumes used are those of the element triangles
(2D) and tetrahedrons (3D), for nodal solutions the Voronoi cell area is used in 2D while
the extruded Voronoi cell is used for 3D.

5.3 Results

5.3.1 2D Results

We initially validated the performance of the nodal algorithm by calculating 2D reconstruc-
tions using data collected from a single plane of electrodes arranged around the middle of a
tank. This is 3D tank data reconstructed with the assumption that the fields are confined
in 2D. The phantom data used are from a 2cm non-conductive sphere located at r/2 in a
tank of diameter 29cm and height 29cm. Data were collected using the Goe-MF II using the
adjacent protocol described in section 5.2.1. Figure 5.3 shows reconstructions made using
the RT ik, Rdiag, and RHPF priors with the element based Jacobian. Figure 5.4 shows the
same data reconstructed over the same mesh using the nodal based Jacobian and the RT ik,
Rdiag, RHPF and RLap priors. Resolution and signal to noise ratio are indicated in the
figures.

(a)
RTik

BR=.309,
SNR=.450

(b)
Rdiag

BR=.233,
SNR=.337

(c)
RHPF

BR=.279,
SNR=.444

Figure 5.3: Comparison of 2D Elemental reconstructions using tank data for different filters
and Jacobians using 1024 element mesh. Reconstructions are normalized so that the vertical
axis and color scales are maximized.

Figures 5.3 and 5.4 show reconstructions normalized so that the vertical axis and color
scales are maximized. The nodal algorithms produce much larger peak signals than the
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(a)
RTik

BR=.328,
SNR=.462

(b)
Rdiag

BR=.236,
SNR=.332

(c)
RHPF

BR=.324,
SNR=.440

(d)
RLap

BR=.296,
SNR=.485

Figure 5.4: Comparison of 2D Nodal reconstructions using tank data for different filters and
Jacobians using 1024 element mesh. Reconstructions are normalized so that the vertical axis
and color scales are maximized.

corresponding elemental solutions; however, this can be compensated for through normal-
ization which is how the solutions of figures 5.3 and 5.4 are displayed. Resolution and SNR
are better discriminators between algorithms. The elemental Jacobian algorithm with a
Rdiag prior is the best all around reconstruction in terms of resolution. The nodal algo-
rithm with the Rdiag prior is competitive with its elemental counterpart in terms of both
resolution and SNR. Conversion from nodal to elemental basis, as described in section 5.2.4,
imparts additional smoothing to the elemental solutions. This effect is not quantified here,
however the elemental solutions do have the advantage of this additional smoothing. The
solutions presented in figures 5.3 and 5.4 are in the elemental basis.

It is possible to improve the signal to noise ratio while maintaining the peak signal
advantage of the nodal solutions by applying one or more stages of spatial filter discussed
in 5.2.7. As shown in figure 5.5 the results are substantive. Repeated applications of the
smoothing filter to the Rdiag solution increase the SNR at the expense of peak amplitude
and resolution. One or two passes of the filter can improve the SNR by 50% for a small
cost in resolution.

The 2D results validate the applicability of the Nodal Jacobian algorithms by showing
that for the configuration tested here, the nodal algorithm produces reconstructions as good
as the elemental algorithms in terms of resolution and SNR. Moreover the nodal algorithms
require less memory and run faster due to the smaller linear system that must be solved.
Although not important for 2D reconstructions these speed and memory improvements
allow the solution of larger systems inherent to 3D applications.

5.3.2 Hyperparameter Selection

The BestRes method of hyperparameter selection for 2D EIT is described in chapter 4.
This method suggests selecting a hyperparameter that results in a reconstruction that has
maximum resolution for an impulse contrast. The method was evaluated for 3D as follows.
λBestRes was evaluated as a function of radial position at the centre plane. For the Rdiag

prior the curve does not have a narrow minimum (is flat) for contrasts near the centre but
becomes stable with a pronounced minimum for contrasts located between 20 and 75% of
the radius from the centre. The curve becomes unstable for contrasts located at 85% radial
position (close to the edge). The RT ik curve remains flat for contrasts located near the
centre and is unreliable until the contrasts are at radial positions between 30 and 65% to
the edge. The resolution curve is very flat for the RLap prior but has detectable minimums
that allow selection of the hyperparameter when the radial position of the target phantom
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(a)
Rdiag

BR=.236,
SNR=.332

(b)
Filtered
Once
BR=.253,
SNR=.444

(c)
Filtered
Twice
BR=.282,
SNR=.546

(d)
Filtered
3 times
BR=.318,
SNR=.644

Figure 5.5: Spatial smoothing filter applied to nodal inverse solver algorithm with Rdiag

prior, 1024 element mesh. Reconstructions are normalized so that the vertical axis and
color scales are maximized.

is between 10% and 75%.
In chapter 4 Graham and Adler recommend using λBestRes calculated for a contrast

located at r/2 for the 2D case. This suggestion is valid for the 3D case with the added
rule that the contrast be located halfway between the electrode planes. Figure 5.6 shows
resolution as a function of radial position and shows the effective ranges of the BestRes
algorithm for a given priors.

Resolution vs rad Pos

Radial Position (%)
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Figure 5.6: Resolution vs Radial Position for RT ik, Rdiag and RLap Priors

5.3.3 3D Simulation Results

Due to the excessive memory requirements it is not possible to calculate elemental solutions
of the 3D models using 32 bit Matlab. Consequently we do not evaluate the performance
of the nodal 3D algorithm by comparison with its elemental counterpart. Rather we report
on the performance of the nodal algorithms for 3D.

We calculated four sets of solutions, one for each prior, for each of the two data sets
(r = 0 and r/2) described in section 5.2.8. These data sets were reconstructed using the
FEM illustrated in figure 5.1(b) and the hybrid adjacent protocol described in section 5.2.1.

Some reconstructions from the r/2 data set are shown in figure 5.7. This figure shows
vertical slices through a one quarter section of the reconstructed tank for 3 different vertical
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positions of the impulse phantom. The leftmost column is the RT ik prior, the centre column
is the Rdiag, the right most is the RLap prior. We do not show the RHPF solutions as they
were similar to the RT ik results.

From a qualitative point of view the three priors provide similar reconstructions in that
none of them appears superior to the others in terms of a qualitative assessment of figure
5.7. Analysis of the various plots of figure 5.8 show that the RT ik is inferior to the others
in terms image energy while the Rdiag prior is slightly superior in terms of resolution.

(a) Target Height 23cm

(b) Target Height 19cm

(c) Target Height 15cm

Figure 5.7: Quarter section reconstructions of contrasts located at radial offset of r/2. Left
column is RT ik prior, centre column is Rdiag prior, right column is RLap prior. Two
electrodes per layer are shown

Figure 5.8(a) shows the resolution for all three priors for the two sets of simulated data,
r=0 and r/2. The resolution varies by 20% as a function of height. The best resolution
for each prior occurs near the electrode planes with the worse resolution occurring in the
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plane located halfway between the electrode planes. This is expected as resolution or its
counterpart, sensitivity, decreases as position moves from current injecting or measuring
electrodes. Thus resolution will be worse half way between the electrode planes. Radial
position error as shown in figure 5.8(b) is lowest for contrasts at the centre of the tank and
increases as contrasts move radially outward. In general however, the radial position error
is small.
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Figure 5.8: Performance Measures for 3D Reconstructions of Two Simulated Data Sets.
Legend in figure (c) applies to all figures. Electrode Planes are centered at heights of 8.5
and 19.5cm as indicated in 5.8(d) and 5.8(f)

Height error as shown in figure 5.8(c) is common for all priors. There is a general
tendency for contrasts to be reconstructed closer to the electrode planes than they actually
are.

Position error is shown in figure 5.8(d) is a combination of the radial and vertical position
errors and mainly indicates an asymmetry in the vertical axis. Figure 5.8(e) shows the
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variability of image energy as a function of target height. The Rdiag and RLap priors
provide the largest image energy but are also the most variable with respect to target vertical
position. For example targets located in one of the electrode planes result in reconstructions
with four times as much energy as the same target located at the extreme ends of the tank.
Figure 5.8(f) shows the signal to noise ratio of the reconstructed images.

Overall the Rdiag prior gives the best results however the difference between it and the
RLap prior is minor. No work was completed for this paper concerning the effect of electrode
plane separation on reconstruction performance.

5.3.4 Human Lung Data Results

The basic analysis of sections 5.3.1 and 5.3.3 are based on impulse contrasts which are not
necessarily representative of complex contrasts. In order to test the Nodal Jacobian Inverse
Solver for complex contrasts we reconstructed some lab data of human lungs using the Rdiag

prior. Data were measured from a human subject using the equipment and 3D protocol
of section 5.2.1. The reconstruction shown in figure 5.9 was calculated in 12s on an AMD
Athlon 64 3000+ with 2GB RAM using 45 iterations of Matlab’s built-in preconditioned
conjugate gradient function. The image on the left of figure 5.9 shows vertical planes of
the 3D volume. The images on the right of figure 5.9 are two horizontal slices of the 3D
reconstruction model. The lungs are readily observed in the two horizontal slices. The
vertical slice on the left shows that the vertical extent of the lungs does not extend to the
vertical extremes of the 3D modeled volume. These results suggest that the Nodal Jacobian
algorithm can be used for clinical applications.

Figure 5.9: Human Lung Data reconstructed using Nodal Jacobian Algorithm with the Rdiag

prior.

5.4 Discussion

This paper has presented a new family of algorithms for solving the inverse problem in
EIT. The main advantage of the Nodal Jacobian algorithm is that it reduces the size of
the linear system that must be solved. This allows the reconstruction of images from 3D
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models that are difficult or impossible to solve using element based algorithms. 16 electrode
protocols were used in this work. Existing and future 3D EIT systems have 32, 64 or even
128 electrodes. The associated Jacobian will be large but it is possible to construct an
elemental Jacobian for meshes with up to 130,000 elements with the 32 bit computers used
in our lab. However the corresponding Hessian matrix will be too large to form, consequently
such large models will be unsolvable using the elemental Jacobian via equation 5.6. The
algorithm introduced in this paper reduces the computational requirements by a factor of
up to 36 (26 for this paper’s model) for dense 3D meshes and provides a promising way to
solve high density 3D models with many electrodes. A secondary advantage of the nodal
algorithm is the improvement in data extraction and rendering speeds which allow the
display of multiple reconstructed image slices in real time.

The Nodal Jacobian algorithm is not an element or mesh free method, since the element
based model is used to solve the forward problem and to calculate the elemental Jacobian
from which the Nodal Jacobian is calculated. Future work could look at developing an
algorithm to calculate a nodal Jacobian directly instead of calculating it from the elemental
Jacobian.

Although the motivation for this work was to solve 3D problems, the Nodal Jacobian
Inverse Solver algorithms produce solutions as good, in terms of resolution and SNR, as tra-
ditional algorithms for 2D configurations. 3D reconstructions from simulated data indicate
that the Nodal Jacobian Inverse Solver with the Rdiag or RLap prior is useful for imagin-
ing situations that have to date used an element based Jacobian with a smoothing prior.
Finally, the successful reconstruction of a conductivity change image of human lungs from
clinical data shows that the Nodal Jacobian Inverse Solver algorithm has good potential
for clinical use.
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Chapter 6

Electrode Placement
Configurations for 3D EIT

This chapter is the text of a paper titled “Electrode Placement Configurations for 3D
EIT” by Bradley GRAHAM and Andy ADLER accepted for publication in Physiological
Measurement.

This paper addresses the problem of determining good electrode placement strategies
for collecting 3D data from the chest given some equipment limitations and a specific set
of constraints concerning electrode placement: (section 1.3 objective O3 and section 1.4.1
Contributions by Objective O3). Electrode placement for 2D reconstruction algorithms
is typically confined to planar arrangements that match the 2D reconstruction geometry;
yet the EIT problem is inherently 3D as currents cannot be confined to flow in the plane.
Consequently 2D reconstructions are subject to artefacts generated by off plane contrasts.
3D reconstruction algorithms with multi-plane electrode arrangements have been used to
more accurately reconstruct impedance distributions [90][99][115]. Compared to 2D there
are many more ways to arrange and sequence electrodes when placing them in 3D. Given
the variety of possible 3D electrode placement strategies, it is important to know which
ones perform best in a specific application such as lung imaging.

The main contribution of this objective is the proposal of several EP configurations,
followed by a rigorous evaluation of their performance, concluding with a recommendation
for which of the proposed strategies is the best way to collect 3D lung data using existing
adjacent drive tomography systems intended for 2D.

Abstract

This paper investigates several configurations for placing electrodes on a 3D cylindrical
medium to reconstruct 3D images using 16 electrode EIT equipment intended for use with
a 2D adjacent drive protocol. Seven different electrode placement configurations are com-
pared in terms of the following figures of merit: resolution, radial and vertical position error,
image energy, immunity to noise, immunity to electrode placement errors, and qualitative
evaluation of image artefacts. Results show that for ideal conditions, none of the configura-
tions considered performed significantly better than the others. However, when noise and
electrode placement errors were considered the planar electrode placement configuration
(two rings of vertically aligned electrodes with electrodes placed sequentially in each ring)
had the overall best performance. Based on these results, we recommend planar electrode
placement configuration for 3D EIT lung imaging of the thorax.
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6.1 Introduction

EIT attempts to calculate a stable and accurate image of the conductivity or conductiv-
ity change within a medium from electrical measurements made on the medium boundary.
Due to computational complexity, reconstructions have usually been over a 2D Finite Ele-
ment Mesh (FEM). Continued improvements in computing power have permitted the recent
exploration of 3D reconstructions [90][98]. Electrode placement for 2D reconstruction al-
gorithms is confined to planar arrangements that match the 2D reconstruction geometry;
yet the EIT problem is inherently 3D as currents cannot be confined to flow in the plane.
Consequently 2D reconstructions are subject to artefacts generated by off plane contrasts.

3D reconstruction algorithms with multi-plane electrode arrangements have been used
to more accurately reconstruct impedance distributions [90][98][113]. Dehghani et al in [41]
investigated excitation patterns for applications of 3D breast imaging using 64 electrodes
arranged in four layers. Performance was evaluated in terms of singular value decomposition
and qualitative evaluation of reconstructed images. Polydorides and McCann [99] developed
and evaluated an electrode segmentation scheme for 3D reconstructions. They examined
the effects of the singular values of the Jacobian on the spatial resolution and concluded that
the electrode segmentation scheme significantly improved the conditioning of the Jacobian
and resulted in improved resolution.

Many EIT research groups use 16 electrode systems using adjacent stimulation and
measurement, based on the original configuration of [17] and [127]. This is the case, for
example, of the Goe-MF II adjacent stimulation tomography system (Viasys Healthcare,
Höchberg, Germany) available in our lab. With the adjacent drive pattern the 16 electrodes
are arranged equispaced in a single plane around the perimeter of the medium. Current is
applied to an adjacent pair of electrodes and the resultant voltages between the remaining
13 adjacent pairs of electrodes is measured. The three possible measurements involving
one or both of the current injecting electrode are not used. This is repeated 16 times with
current injected between successive pairs of adjacent electrodes until all 16 possible pairs of
adjacent electrodes have been used to apply the known current. This is shown schematically
in figure 6.1. This procedure produces 16 × 13 = 208 voltage measurements called an EIT
data frame. Since the electrodes are numbered 1 through 16 the adjacent pattern in 2D is
obtained through a simple sequencing of the 16 machine leads to the 16 electrodes. This
work is motivated by the desire to use such a 2D system to perform 3D EIT reconstructions.

Compared to 2D there are many more ways to arrange and sequence electrodes when
placing them in 3D. Given the variety of possible 3D electrode placement strategies, it is
important to know which ones perform best. However the large numbers of possibilities
make this problem intractable. Consequently we choose to study a small set of possibilities
guided by our intention to use the results for pulmonary imaging.

In this paper we propose and evaluate seven EP configurations in which the electrodes are
arranged in two parallel planes of eight electrodes each, with electrodes equispaced around
the medium. We define an EP configuration as the combination of physical placement
of the electrodes and current injection pattern. Different current injection patterns are
obtained through various sequencings or mappings of the 16 electrode leads to electrodes.
Performance is evaluated in terms of several figures of merit as well as immunity to noise and
performance in the presence of electrode placement errors. The results apply to any medium
which is approximately cylindrical; however, we are specifically interested in lung imaging
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Figure 6.1: 2D Adjacent drive patterns. In figure 6.1(a) current is injected through electrode
pair (1, 2) and the resulting boundary voltage differences are measured from electrode pairs
(3, 4), (4, 5), ..., (14, 15), (15, 16). Voltages are not measured between pairs (16, 1), (1, 2), or
(2, 3). In figure 6.1(b) the current is injected between pair (2, 3), and the voltage differences
measured between pairs (4, 5), (5, 6), ..., (15, 16), (16, 1). Voltages are not measured between
pairs (1, 2), (2, 3), or (3, 4).

applications, in which one wants to obtain more accurate tomographic slices through the
chest.

6.2 Methods

We consider EIT difference imaging, which is widely understood to improve reconstructed
image stability in the presence of problems such as unknown contact impedance, inaccu-
rate electrode positions, nonlinearity, and in the 2D case, the use of 2D approximations for
3D electrical fields [17][87]. We address the class of normalized one-step linearized recon-
struction algorithms that calculate the change in a finite element conductivity distribution,
x = σ2 − σ1 due to a change in EIT difference signal, z = v2 − v1 over a time interval
(t1, t2). By convention we consider the signal at t1 to be the reference frame and the signal
at t2 to be the data frame. Since we do not know σ1, x is interpreted as the change in
conductivity with respect to the unknown initial conductivity x = ∆σ = σ2 − σ1.

For small changes around a background conductivity the relationship between x and z

may be linearized as

z = Hx + n (6.1)

where H is the Jacobian or sensitivity matrix and n is the measurement system noise,
assumed to be uncorrelated additive white Gaussian (AWGN). Each element i, j, of H is

calculated as Hij = ∂zi
∂xj

∣

∣

∣

σ0

and relates a small change in the ith difference measurement to

a small change in the conductivity of jth element. H is a function of the FEM, the current
injection pattern, and the background conductivity. We use a homogenous background
conductivity in which σ0 = 1 for each of the elements.
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6.2.1 Image Reconstruction

In order to overcome the ill-conditioning of equation H we solve equation 6.1 using the
following regularized inverse

x̂ = (HTWH + λ2R)−1HTWz = Bz (6.2)

where x̂ is an estimate of the true change in conductivity distribution, R is a regularization
matrix, λ is a scalar hyperparameter that controls the amount of regularization, and W

models the system noise. Since noise is uncorrelated in the system, W is a diagonal matrix
with Wii = 1/σ2

i where σ2
i is the noise variance for measurement i. W can also be modified

to account for variable gain settings on each tomograph channel. However, for this work we
assume that all measurements have equal noise variance with the result that W becomes a
multiple of the identity matrix.

In this work we use R = diag(HTH) which is the regularization matrix used in the
NOSER algorithm of Cheney et al [35]. Hyperparameter selection was performed using the
BestRes method [52] extended for 3D as described in Graham and Adler [53].

Solution of 6.2 for 3D requires solving linear systems that are too large to be solved
with linear algebra systems based on 32 bit pointers (such as is available in current versions
of Matlab). Graham and Adler [53] describe a Nodal Jacobian inverse solver algorithm
that converts the element based Jacobian of equation 6.2 to a nodal based Jacobian. This
algorithm reduces the size of HTWH by up to a factor of 36 (the improvement factor for
the model used in this work is 26.15) and allows the solution of Finite Element Models with
21000 elements and over 4000 nodes such as those used in this work1.

6.2.2 Finite Element Models

Simulated data were generated from a dense 28 layer, 86016 element, 15805 node FEM mesh,
while reconstructions were performed on a coarser 28 layer, 21504 element, 4205 node mesh.
Both meshes matched the geometry of the 28cm diameter by 28cm high cylindrical tank in
our lab which can be used with the Goe-MF II type tomography system. Thus each layer
was 1cm thick. Electrodes were 2.8cm by 1cm in size and arranged in two parallel planes
11cm apart which can be seen in figure 6.2. The lower plane of electrodes are located in
the 9th layer (z=8 to z=9cm), while the upper plane of electrodes are located in the 20th

layer (z=19 to z=20cm). Figure 6.3 shows the dense mesh while figure 6.2 shows the coarse
meshes.

6.2.2.1 Electrode Placement Configurations

Electrodes can be arranged in multiple planes or random locations, however the EP con-
figurations proposed in this paper all consist of electrodes arranged at two layers of the
mesh. The choice of 2 layers is based on the desire for a “regular” arrangement that will
be easy to apply to the thorax. With 2 layers of electrodes the 16 electrode leads can be
connected to the 16 tank electrodes in an arbitrary way that we call a sequence. We call
the combination of electrode arrangement on the tank (either aligned or offset in this work)
and sequencing an Electrode Placement (EP) configuration. The following 7 EP configu-
rations are proposed and evaluated in this paper: Planar, Planar-Offset, Planar-Opposite,
Zigzag, Zigzag-Offset, Zigzag-Opposite, and Square. Table 6.1 provides a mapping of the 16

1The work discussed in this paper was developed with the EIDORS Version 3 package using the complete
electrode model [113]. Software for this work is currently being added to EIDORS Version 3 [8].
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sequentially numbered electrodes, indicated in figure 6.1, to the 16 physical tank locations
which are identified by letter on figures 6.2(a) and 6.2(b).

C

B A

H

a

h
c

b

(a) Aligned

C

B A
H

b
a

h

c

(b) Offset

Figure 6.2: Meshes used for reconstruction. Figure 6.2(a) is the aligned electrode arrange-
ment. Figure 6.2(b) is the offset electrode arrangement. With the offset arrangement the
lower electrode plane is rotated such that the electrodes are offset by half the inter-electrode
spacing.

For the three Planar EP configurations, measurements are mainly taken between elec-
trodes in the same plane (intra-planar), with the exception of measurements taken be-
tween electrodes 8 & 9, and 16 & 1 which are inter-planar measurements. With the three
Zigzag patterns measurements are always taken between electrodes in different planes (inter-
planar). The Square EP configuration has an equal amount of data taken from inter- and
intra-planar electrode pairs.

6.2.3 Evaluation Procedure

The seven EP configurations were evaluated using three simulation experiments for each
configuration: vertical target movement, radial target movement, and contrast discrimina-
tion. For each of the seven EP configurations a single homogenous reference frame was
simulated using the dense FEM shown in figure 6.3. The vertical target movement exper-
iment consisted of data frames generated using a small target located halfway along the
radius of the tank (r/2) that was moved through 28 vertical positions as illustrated by the
vertical stack of (green) elements indicated in figure 6.3. The radial target movement ex-
periment consisted of data frames generated using a small target located at the midplane
of the figure 6.3 tank (a height of 14 cm) that was moved from the centre to the side of
the mesh in 14 steps along the radius. The contrast discrimination experiment consisted of
data frames generated using two small targets: a conductivity decrease located vertically
at a height of 14cm, at a radial distance of r/2 at 0◦ (3 o’clock) and a conductivity increase
located vertically at height 4cm, at a radial distance of r/2 at 180◦ (9 o’clock - opposite
side of tank).

Subsequently, for each of the seven EP configurations, 28 reconstructions were calculated
for the vertical target movement experiment and 14 reconstructions were calculated for
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Aligned, fig 6.2(a) Planar Zigzag Zigzag-Opposite Square
Offset, fig 6.2(b) Planar-Offset Zigzag-Offset Planar-Opposite

1 a a a a a
2 b B E e b
3 c b b b B
4 d C F f C
5 e c c c c
6 f D G g d
7 g d d d D
8 h E H h E
9 A e e D e
10 B F A H f
11 C f f C F
12 D G B G G
13 E g g B g
14 F H C F h
15 G h h A H
16 H A D E A

Table 6.1: Mapping of electrode number to tank location (letter) for the seven EP configu-
rations. First column is electrode lead number, other columns are corresponding electrode
position on tank as shown in 6.2.

the radial target movement experiment under various conditions of noise and electrode
placement errors. A single reconstruction was made for each of the EP configurations
for the contrast discrimination experiment. Two planes of electrodes lead to a logical
partitioning of the tank into three zones (top and bottom end zones, and the middle zone).
It is assumed that in many cases the region of interest (ROI) will be confined to the middle
zone. A good EP configuration will minimize reconstruction artefacts in the middle zone
caused by contrasts in the end zones.

Reconstructions were evaluated and compared based on the following criteria:

1. SNR and Conditioning : The SNR of the difference signals for each configuration were
compared. We define SNR = 20 log10 mean(z)/stdDev(z). The condition numbers
and singular values of each Jacobian matrix were compared: the SVD of a matrix H

is a decomposition of the form

H = UΣVT =
N
∑

i=1

uiσiv
T
i

where U = (u1, ...,un) and V = (v1, ...,vn) are matrices with orthonormal columns,
UT U = VTV = In, and where Σ is a diagonal matrix with non-negative diagonal
elements, σi arranged in non-increasing order such that σ1 ≥ ... ≥ σn ≥ 0. The σi are
the singular values of H. The condition number of H is cond(H) = σ1/σn.

2. Resolution is a figure of merit (FOM) defined in terms of the 3D extension of the
blur radius measure used in Adler and Guardo [4]. For 3D BR is defined as BR =
rz/r0 = 3

√

Vz/V0 where r0 and V0 are the radius and volume respectively of the entire
3D medium and rz and Vz are the radius and volume of the reconstructed contrast
containing half the magnitude of the reconstructed image. BR calculates the volume
fraction of the elements that contain the largest amplitude contributions to 50% of
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Figure 6.3: The r/2 impulse was generated from a three tetrahedron wedge taken from each
of the 28 layers of the large mesh. This produced 28 data frames per EP configuration.
Lower electrode plane is at z=8 to z=9cm. Upper electrode plane is at z=19 to z=20cm.

the total image amplitude. It is a measure of the concentration of image amplitude.
The set of elements that contribute to the blur radius is called the half amplitude
(HA) set [52].

3. Radial Position Error (PE) is a FOM defined as the proportional difference in radial
position of the centre of mass of the reconstructed image HA set and the centre of mass
of the generating small target. This is expressed as a percentage where a negative
quantity indicates that the reconstructed image is closer to the centre of the tank than
the corresponding generating impulse.

4. Vertical PE is a FOM defined as the proportional difference in the vertical position
of the centre of mass of the reconstructed image HA set and the centre of mass of
the generating small target. This is expressed as a percentage of tank height where a
negative quantity indicates that the reconstructed image is closer to the central plane
of the tank than the corresponding generating impulse.

5. Image Magnitude (IM) is a FOM that measures the magnitude of the HA set. It is
defined as the sum of the volume-weighted element conductivity magnitudes where the
only elements of the HA set are included: IM =

∑

i∈HA
||σi||Vi where Vi is the volume

of the ith element, σi is the estimated change in conductivity of the ith element.

6. Qualitative Evaluation of reconstructed images which is primarily a subjective evalu-
ation of image artefacts. We expect a qualitatively good image to appear as a small
spherical blur corresponding to the generating target. A poor image could exhibit
artefacts such as non-spherical extent, features that exist in the wrong locations or
that do not correspond to the generating target, and protrusions from the main image.

7. Immunity to Noise. Using the vertical target movement data, an additional six sets
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of reconstructions were calculated for each of the seven EP configurations in which
AWG noise was added in six steps from 0.1% to 0.6% of the difference signal, z. The
ability of each EP configuration to reconstruct images in the presence of this noise
was then compared in terms of the FOMs described earlier.

8. Immunity to systematic electrode placement errors. Two techniques were used to
evaluate electrode position errors.

(a) In the first technique reconstructions were performed with a systematic elec-
trode position error in which data collected with one of the EP configurations
were reconstructed using the same electrode sequence but with the lower plane
of electrodes rotated by half the inter-electrode distance (Offset-Error). Thus
in this first case data generated with the Planar EP configuration were recon-
structed using the Planar-Offset EP configuration. This is shown in figure 6.4
direction A. In the second case data generated with the Planar-Offset EP con-
figuration were reconstructed using the Planar EP configuration. This is shown
in figure 6.4 direction B. In the case of pulmonary imaging this error simulates
a twisting of the thorax.

A

B

Figure 6.4: Offset Error. Direction A: Data observed with aligned arrangement were recon-
structed with offset arrangement. Direction B: Data observed with offset arrangement were
reconstructed with aligned arrangement

(b) In the second technique an Electrode Plane Separation Error was evaluated as
follows: For each EP configuration 9 sets of data were simulated with the distance
between the electrode planes increasing from the correct separation of 11cm, to
a layer separation of 20cm. Each set was comprised of homogenous reference
frame and 28 data frames generated with a small target as in section 6.2.3. Each
of 9 data sets per EP configuration was then reconstructed on the same mesh
geometry but always with the electrodes at the interplanar distance of 11cm.
This simulates a systematic electrode placement error in which the reconstruction
model does not match the actual electrode placement for 8 of the 9 simulated
data sets. In the case of pulmonary imaging this error simulates an inaccurate
application of the electrodes.

6.3 Results

In this section, we compare each EP strategy against each figure of merit, in order to
differentiate amongst the performance of the various EP configurations.
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Figure 6.5: Singular Values of H for the 7 EP Configurations

6.3.1 Evaluation of Maximum Performance Experiments.

The initial evaluation looked at the best case performance of the EP configurations in that
noise was not added to the vertical or radial movement data described in section 6.2.3 nor
were electrode errors present. The following observations were made concerning this best
case set of reconstructions:

6.3.1.1 SNR and Conditioning

The normalized SNR is listed in table 6.2. The Planar and Planar-Offset EP configurations
have similar and significantly larger SNRs than the other configurations. This indicates that
these two configurations should be more robust to noise than the others. This is observed
in section 6.3.2 - Evaluation of Noise Effects. The condition numbers are also listed in table
6.2 but are less informative. Although there is a difference of a factor of 10 between the
Square and Planar-Opposite configurations this is not significant in that all of the condition
numbers are in excess of 1022.

EP Configuration SNR SNR cond(HT H)
(normalized) (db) (×1023)

Planar 1.0000 -3.9568 0.7826
Planar-Offset 0.9709 -4.0849 3.8234
Planar-Opposite 0.3852 -8.0997 0.4019
Zigzag 0.2965 -9.2365 2.0639
Zigzag-Offset 0.2702 -9.6406 2.6358
ZigZag-Opposite 0.2924 -9.2971 0.6721
Square 0.3907 -8.0380 5.8860

Table 6.2: Comparison of EP Configurations in terms of SNR and Jacobian Condition
Number.

The singular values of each Jacobian were calculated for each EP configuration and are
plotted in figure 6.5. Also included are the singular values for the 2D EP configuration
in which the 16 electrodes are arranged in a single plane. The long term trend of the
singular values is not significantly different between the various EP configurations with the
exception of the 2D configuration. Figure 6.5(a) shows the first 25 singular values, in this
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case normalized to the first and largest singular value. Although there are variations in
the singular values the long term trends are similar and we conclude in this case that the
singular values are not useful discriminators of the seven EP configurations. Picard plots of
all EP configurations are similar; the Picard condition is satisfied for each EP configuration,
however the singular values never cross the Picard coefficients. Thus it is not possible to
use Picard plots to determine the number of singular values above the noise.

6.3.1.2 Resolution

Figure 6.6(a) shows Resolution as a function of reconstructed height. The resolution of all
EP configurations varies as a function of the height of the contrast. The resolution curves of
figure 6.6(a) show that the range of variation in resolution amongst the EP configurations,
in the end regions is large compared to the range of variation in the middle section. The
Planar EP configuration has the best resolution in the end zones, the opposite configurations
have the worse performance in the middle zone; however, the differences are small and it
appears that Resolution is not a strong discriminator of EP configurations. In general the
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Figure 6.6: Performance measures for 7 EP Stategies vs Contrast Height for noise free
reconstructions of a contrast moving through 28 vertical positions at r/2. Legend in figure
6.6(b) is for all plots.

resolution of all EP configurations varies as a function of distance from electrode plane so
none of the EP configurations have a stable resolution vs contrast height function; however,
the relative magnitude of the instability is small.
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6.3.1.3 Vertical PE

Figure 6.6(b) shows Vertical PE vs reconstructed height. For perfect reconstructions the
curves would be straight lines. All of the EP configurations suffer from a vertical range
compression in the end sections. The Zigzag, Zigzag-Offset, Square, and Planar-Opposite
EP configurations have a large non-linearity in the central region of the graph. This is
undesirable as it causes the reconstruction to be unstable; a small change in the vertical
position of the generating contrast can cause a large change in the vertical position of the
reconstruction. A good EP configuration should have a near linear response in the middle
zone. Vertical PE is an useful discriminator of EP configurations.

6.3.1.4 Radial PE

Figure 6.6(c) shows that for all of the EP configurations Radial PE is largest at the ends,
improves as the generating contrast approaches the electrode planes, and decays as the con-
trast moves between the electrode planes. The various Radial PE curves behave differently
in the inter-planar region; however, the difference is mainly one of sign with the magnitudes
being small. Radial PE is not a strong discriminator of EP configurations.

6.3.1.5 Image Magnitude

Figure 6.6(d) is a plot of Image Magnitude vs phantom height showing that Image Mag-
nitude increases as the phantom location moves from the ends of the tank toward the
electrode planes. Although the behaviour of the various EP configurations in the middle
section is different for each configuration it is difficult to say what behaviour is desired and
therefore which EP configuration is preferable. Overall, Image Magnitude is not a strong
discriminator of EP configurations.

6.3.1.6 Radial Performance

Figure 6.7 shows various performance measures for reconstructions from the radial move-
ment data. As expected, the resolution plot of figure 6.7(a) shows a large variability in
resolution as a function of radial position for all the EP configurations. The Zigzag and
Zigzag-Opposite EP configurations have the most stable response albeit at a lower average
resolution while the Planar-offset and Zigzag-offset configurations show the most variability
in resolution yet have the best peak resolution (at the 80% radius). Figure 6.7(b) shows a
large variability in vertical position error for all EP configurations with the exception of the
Planar-Opposite, and Planar-Offset configurations which are relatively stable. Image radial
position error, figure 6.7(c), is similar for all configurations thus is a poor discriminator
for the set of configurations being evaluated. Finally, figure 6.7(d), indicates that image
magnitude of the Planar and Planar-offset EP configurations are marginally more stable
than the other configurations; however, image magnitude does not appear to be a strong
discriminator between configurations.

6.3.1.7 Qualitative Evaluation

Figure 6.8 shows several reconstructions for contrasts located at the centre plane of the
tank. The Planar, Planar-Opposite, Planar-Offset and Square EP configurations, figure
6.8(a), produce circular reconstructions that are all circular/spherical. The Zigzag figure
6.8(b) and Zigzag-Opposite figure 6.8(c) configurations produce images that are vertically
elongated while the reconstruction of the Zigzag-Offset EP configuration figure 6.8(d) is
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Figure 6.7: Performance measures for 7 EP Stategies vs Contrast Radial Position for noise
free reconstructions of a contrast moving through 14 radial positions at the vertical centre
of the tank. Legend in figure 6.7(c) is for all plots.

banana shaped. Additionally the Zigzag-Opposite configuration figure 6.8(c) has “finger”
like artefacts extending from the image to the electrode planes. The best performance for
targets located in the end sections are obtained with the Zigzag and Square EP configura-
tions while reconstructions using the Planar, Planar-Offset (similar) and Planar-Opposite
EP configurations produce images with large artefacts. As mentioned in section 6.2.3, in
some applications the region of interest (ROI) may be confined to the middle zone in which
case it may be preferable to use an EP configuration that works very well in the ROI despite
producing artefacts for contrasts located in the end zones.

6.3.1.8 Contrast Discrimination

Figure 6.9 show vertical slices through the mesh for 3D reconstructions of the contrast dis-
crimination experiment data. All of the 3D EP configurations are able to localize the two
contrasts as shown in figures 6.9(a) to 6.9(c). The Square and Zigzag-Offset EP configu-
rations, figure 6.9(a), provide the best qualitative performance in terms of section 6.2.3(6);
however, the Planar, Planar-offset and Zigzag EP configurations, which are similar in ap-
pearance to each other, figure 6.9(b), are almost as good. Of the 3D EP configurations, the
Planar-opposite is clearly the worst performer with the lower phantom being quite blurred,
figure 6.9(c). Figure 6.9(d) shows that the 2D electrode arrangement cannot accurately lo-
cate the contrasts: the centrally located phantom appears as a conductivity decrease image
with a large vertical extent and a crescent shape centred in the mesh while the phantom
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(a) Planar-
Offset, Planar,
Planar-Opposite,
and Square are
similar.

(b) Zigzag-Offset (c) Zigzag (d) Zigzag-
Opposite

Figure 6.8: Baseline reconstructions for the r/2 small target at midplane (z = 14cm).

located at 4cm height is also reconstructed as a large crescent shape centered through the
middle of the mesh.

(a) Zigzag-Offset,
Square

(b) Planar, Zigzag,
Planar-Offset

(c) Planar-Oposite (d) 2D Adjacent

Figure 6.9: 2D slices taken vertically through the centre of the reconstruction mesh showing
3D localization of contrasts.

6.3.2 Evaluation of Noise Effects

In addition to the baseline reconstructions discussed above, an additional six sets of re-
constructions were calculated for each of the seven EP configurations in which AWG noise
was added in six steps from 0.1% to 0.6%. The noise was added to the data simulated as
described in section 6.2.3. The Zigzag and Zigzag-Offset EP configurations could not pro-
duce useful reconstructions for noise levels above 0.2% while the Square EP configuration
did not work with noise above 0.3%. Although useful reconstructions could be calculated
using the two Opposite EP configurations with up to 0.6% noise, their Resolution and PE
performance degraded rapidly. The Planar and Planar-Offset EP configurations were very
robust to noise; resolution and PE degraded slowly and good images were reconstructed
with noise in excess of 0.6%.

6.3.3 Electrode Position Errors - Offset Error

All of the EP configurations suffered degradation in resolution due to the offset error. The
Zigzag-Offset pattern has the largest loss of resolution; however, the Planar-Opposite EP
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configuration gave the worse overall performance: a conductivity decrease resulted in images
of a conductivity increase. The Planar, Planar-Offset, and Zigzag EP configurations were
able to reconstruct a circular/spherical image without introducing image shape artefacts. In
all cases the centre of mass of the reconstructions were rotated in the axial plane by about
20◦. Since EIT is expected to be used for functional imaging as opposed to anatomical
imaging, the rotation position error may not be important as long as the magnitude of the
conductivity change is accurate.

6.3.4 Electrode Position Errors - Electrode Plane Separation Error

Radial PE, Vertical PE and Resolution are not significantly affected by electrode plane
separation errors for any of the EP configurations. All of the performance measures de-
graded smoothly. This can be seen with some representative plots in figures 6.10(a) to
6.10(c). Qualitatively, all configurations produced vertically elongated images with the
Square and the two Opposite EP configurations being most affected, Zigzag and Zigzag-
Offset configurations less so, and the Planar and Planar-Offset EP configurations the least.
For contrasts located in the end zones, the Zigzag, Zigzag-Offset, and Square configurations
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Figure 6.10: Degradation of selected performance measures for selected configurations due
to electrode plane separation error. The Error Free curves represent no electrode plane
separation error. The dotted curves represent increasing electrode plane separation to a
maximum of 10 cm error represented by the red solid line.

show a swirling artefact while the Opposite EP configurations show an extensive vertical
lengthening of the reconstructed contrast. The Planar and Planar-Offset EP configurations
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also showed an increased Radial PE due to the contrast being pushed toward the tank
centre for phantoms located in the end sections. This effect was less noticeable with the
Planar EP configuration. Both the Planar and Planar-Offset EP configurations show little
degradation due to electrode plane separation errors of up 20% (6cm on the 28cm tall tank).
The Planar-Offset is slightly more robust than the Planar EP configuration in this regard.

6.3.5 2D Limitations

In addition to the seven 3D EP configurations additional reconstructions were performed
using the same 3D meshes but with the 16 electrodes arranged in a single plane at a height
of 14cm. The plots of figure 6.11 were generated similarly to those of section 6.2.3: 28
data frames from the r/2 phantom moving through 28 vertical locations. Figure 6.11(c)
validates the obvious insight that vertical position cannot be resolved using a single plane of
electrodes. Regardless of actual phantom height, the 2D arrangement always reconstructs
an image that is located in the plane of the electrodes. As the small target moves farther
away from the electrode plane the resolution, figure 6.11(a), and the image magnitude,
figure 6.11(d), both decrease while the the radial error, figure 6.11(b), increases.
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Figure 6.11: Performance measures vs Phantom Height for noise free reconstructions with
single layer of 16 electrodes for the small target moving through 28 vertical positions at r/2.

6.3.6 Summary

A qualitative summary of the significant discriminators is presented in table 6.3. Five of
the configurations show poor performance in one or more of the discriminators while the
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Planar and Planar-offset configurations, which have similar performance, do not.

Figure of Merit Res VPE Qual Noise Offset Err Sep Err VPE (Radial)
Reference Fig 6.6(a) Fig 6.6(b) Sect 6.3.1.7 Sect 6.3.2 Sect 6.3.3 Sect 6.3.4 Fig 6.7(b)
Planar + + + +
Planar-Offset + + + + +
Planar-Opposite - + - - - - +
Zigzag - - - - - + -
Zigzag-Offset - - - - - - - -
ZigZag-Opposite - - - -
Square - - + - - -

Table 6.3: Comparison Summary of EP Configurations - in the ROI.

6.4 Conclusion

This paper has investigated the performance of a small set of 3D electrode placement con-
figurations under the constraints of a 16 electrode adjacent drive system intended for 2D
applications arranged in two planes. We make the following observations:

1. Opposite EP configurations are highly susceptible to corruption by noise and are not
recommended.

2. The Zigzag EP configuration performs poorly in the presence of noise.

3. The Zigzag-Offset EP configuration is susceptible to Offset error.

4. The Square configuration suffers from the instability in VPE, has poor noise perfor-
mance, and shows electrode to contrast “finger” artefacts.

5. The Planar and Planar-Offset EP configurations are most robust to noise and sys-
tematic electrode placement errors and have performance as good or better than the
other configurations for targets in the ROI.

6. The Planar EP configuration provides the largest image energy for contrasts located in
the centre section, and is the most robust to noise (slightly better than Planar-offset).

The current data suggest that no one EP configuration offers a worthwhile improvement over
the others under ideal conditions. This observation that there is little difference in the noise
free cases may be attributable to the fact that the various patterns are linearly dependent;
thus given noise free data, it is possible to calculate any set from any other. Only when
noise and electrode placement errors are considered does the choice of EP configuration
become important. The difficulty of accurately placing a large number of electrodes on a
person may be the largest discriminating factor amongst EP configurations intended for
clinical use. Moreover electrode placement errors are exacerbated and change throughout
the imaging session due to subject movement. This leads one to prefer an EP configuration
that is robust to electrode placement errors and is easy to apply on a patient.

The addition of more electrodes to a 2D planar arrangement will allow higher resolution
2D reconstructions, however it is not known how the addition of more electrode layers
will improve the vertical resolution on 3D reconstructions. Future work is required to
analyze such configurations in order to understand how such electrode arrangements may
be generalized.

In summary, the goal of this paper is to evaluate some electrode placement strategies for
16 electrode adjacent drive EIT systems in order perform 3D image reconstructions. Based
on the results, and considering the value of easy of electrode placement, we recommend the
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Planar electrode placement. Thus, 16 electrodes should be placed in two rings of vertically
aligned electrodes with electrodes placed sequentially in each ring.
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Chapter 7

Total Variation Regularization in
EIT

This chapter is the text, with minor revisions, of a paper titled “Total Variation Regular-
ization in EIT” by Andrea BORSIC, Bradley GRAHAM, Andy ADLER, and Bill LION-
HEART to be submitted to IEEE Transactions on Biological Medical Imaging.

This paper addresses the problem of determining the viability of a non-blurring regular-
ization method for 3D lung imaging (section 1.3 objective O4 and section 1.4.1 Contributions
by Objective O4) by evaluating the PD-IPM algorithm for TV regularization of EIT re-
constructions and comparing the algorithm’s performance to the computationally simpler
quadratic regularization. TV regularised reconstructions are considerably more expensive
to calculate than quadratic reconstructions, however the TV PD-IMP algorithm is able to
compute 2D non-smooth reconstructions in the presence of moderate noise, and is therefore
of practical use in certain applications. The main contribution of this objective was the im-
provement in convergence of the PD-IPM algorithm and the evaluation of the algorithm’s
performance in 2D and 3D applications.

This is a collaborative work. The development of the PD-IPM algorithm, its explanation
and implementation are the original work of Andrea Borsic and can be found in [23]. The
analysis of the algorithm’s performance, including the improvement in convergence, the
simplification of the β decay schedule as well as the design and execution of the algorithm’s
performance evaluation and subsequent conclusions are the original contribution of this
thesis.

Abstract

The paper presents a Primal-Dual Interior Point Method (PD-IPM) for efficiently solv-
ing the Total Variation (TV) regularized inverse conductivity problem for EIT. The TV
functional leads to the formulation of the inverse problem as a minimization of a non-
differentiable function which cannot be efficiently solved with traditional minimization
techniques such as Steepest Descent and Newton Methods. The ability of the TV func-
tional to preserve discontinuities in reconstructed profiles promotes the development of new
algorithms, such as PD-IPM, that are able to efficiently solve the non-differentiable mini-
mization.

This paper initially outlines of the discontinuity preserving properties of the TV func-
tional followed by the development of the PD-IPM algorithm. The paper concludes with
an evaluation of the PD-IPM algorithm and a comparison of its performance to that of
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the traditional quadratic regularized inverse. Results show that TV regularized images for
EIT have an improved ability to reconstruct images with sharp discontinuities for low noise
data. Noise performance was similar for TV and quadratic inverse.

Keywords: regularization, EIT, TV Electrical Impedance Tomography, Total Variation,
Primal Dual Interior Point Methods

7.1 Introduction

Electrical Impedance Tomography (EIT) uses surface electrodes to make measurements
from which an image of the conductivity distribution within some medium is calculated.
The inverse conductivity problem is ill-posed [26]; consequently regularization techniques
have been adopted in order to stabilize the inversion. Most common regularization methods
impose (explicitly or implicitly) a penalty on non-smooth regions in a reconstructed image.
Such methods confer stability to the reconstruction process, but limit the capability of
describing sharp variations in the sought parameter.

One technique to permit image regularization without imposing smoothing is the Total
Variation (TV) formulation of regularization. The Total Variation functional is assuming
an important role in the regularization of inverse problems belonging to many disciplines,
thanks to its ability to preserve discontinuities in the reconstructed profiles. Application of
non-smooth reconstruction techniques is important for medical and process imaging appli-
cations of EIT, as they involve discontinuous profiles. Qualitative and quantitative benefits
can be expected in these fields.

We outline the properties of the TV functional in the next section, to motivate its use as
a regularization penalty term and to understand the numerical difficulties associated with
it. The use of the TV functional leads in fact to the formulation of the inverse problem
as a minimization of a non–differentiable function. Application of traditional minimization
techniques (Steepest Descent Method, Newton Method) has proven to be inefficient [44][23].
Recent developments in non-smooth optimization (Primal Dual–Interior Point Methods)
have brought the means of dealing with the minimization problem efficiently. The perfor-
mance of this algorithm with respect to traditional smooth algorithms is the subject of this
paper.

7.2 Methods

This paper introduces the PD-IPM algorithm as follows. In the Methods section we describe
the traditional family of EIT reconstruction algorithms used in our research, describe the
TV functional and its PD-IPM implementation for EIT, and describe the evaluation pro-
cedure. In the Results section we describe the effectiveness of the TV functional compared
to the quadratic regularized inverse. In the Discussion section we consider some additional
observations of this work.

7.2.1 Static Image Reconstruction

We consider static EIT imaging where the goal of the algorithm is to recover the absolute
conductivity of the medium under analysis. The technique requires a forward operator F
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on the conductivity vector, σ, which calculates V = F (σ), the simulated voltages at the
boundary. The reconstruction is commonly stabilized using regularization; the inversion is
stated as:

σ̂rec = arg min
σ

1

2
‖F (σ) − Vmeas‖2 + αG(σ) (7.1)

where Vmeas is the vector of the measured voltages F (σ) the forward model prediction,
G(σ) the regularization functional, α is a hyperparameter controlling the level of applied
regularization and the norm || · || is the 2-norm.

7.2.2 Quadratic Solution

The functional G(σ) is often assumed to be of the form:

G (σ) = ‖L (σ − σ
∗)‖2 (7.2)

where L is an appropriate regularization matrix and σ
∗ a prior estimate of the conductivity

distribution. In the literature there are several choices for the matrix L, for example the
identity matrix [126], a positive diagonal matrix [35], approximations of first and second
order differential operators [71], and the inverse of a Gaussian matrix [4]. Algorithms of
this class fall into general framework expressed by equations 7.1 and 7.2, that is:

σ̂rec = arg min
σ

1

2
‖F (σ) − Vmeas‖2 + α ‖L (σ − σ

∗)‖2 (7.3)

The framework expressed by equation 7.3 can be called quadratic regularization since the
2-norm is used. A norm guarantees that the functional is always positive, as a penalty
term should be, and more important, the resulting functional is differentiable, leading to an
easier solution of the minimization problem. Quadratic regularization, because of its simple
differentiability, has been the common framework for solving several inverse problems, and
particularly for EIT [126][35][71][26][78][24].

The optimization problem 7.3 can be solved by replacing F (σ) with its linear approxi-
mation for a small change about an initial conductivity distribution σ0

F (σ) ≈ F (σ0) + J(σ − σ0) (7.4)

where J is the Jacobian matrix of F (σ) calculated at the initial conductivity estimate σ0.
The function to be minimized, equation 7.1, with regularizing penalty term, equation 7.2,
becomes a quadratic function when F is replaced by its linear approximation, equation 7.4.
Defining δσ = σ−σ0 and δV = F (σ0)−Vmeas, the solution to the linearized regularization
problem is given by

δσ = (JTJ + αLTL)−1
JT δV + αLT L(σ − σref ) (7.5)

Equation 7.5 is solved iteratively with σi+1 = σi + δσ. The drawback is that, regardless
of the choice of L, the technique cannot reconstruct step changes, smooth solutions are
favoured.

7.2.3 Total Variation Functional

There are situations in almost every field of application of EIT where the imaged conductiv-
ity has discontinuities. In the medical field an example is that of the inter organ boundaries
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where each organ has its own electrical properties. In archaeology a buried wall will give
rise to a sudden step in conductivity, and in process tomography a multiphasic fluid will
give rise to discontinuities at each phase interface. It is therefore important to be able to
reconstruct these situations correctly, even though such conductivities are difficult to deal
with using traditional algorithms. Several approaches have been investigated in order to
overcome these limitations. Often they can be considered a way to introduce prior informa-
tion. An example is anisotropic regularization [78][24] where the structure of the expected
sudden changes is assumed to be roughly known. The smoothness constraints are relaxed
therefore in the direction normal to the discontinuities. In this way the algorithm better
describes rapid variations in the object, however prior structural information needs to be
known in order to adopt such methods.

Many regularization matrices are discrete representations of differential operators and
are used in conjunction with the 2–norm. A different approach is represented by the choice
of the total variation functional, which is still a differential operator but leads to a ℓ1

regularization. The total variation (TV) of a conductivity image is defined as:

TV (σ) =

∫

Ω

|∇σ|dΩ (7.6)

where Ω is the region to be imaged.
The TV functional was first employed by Rudin, Osher, and Fatemi [102] for regular-

izing the restoration of noisy images. The technique is particularly effective for recovering
“blocky” images, and has become well known to the image restoration community [31].
The effectiveness of the method in recovering discontinuous images can be understood by
examining the following one dimensional situation. Suppose that the two points A and B

A

B

f1(x)

f2(x)
f3(x)

Figure 7.1: Two points A and B can be connected by several paths. All of them have the
same TV.

of figure 7.1 are connected by a path. Three possible functions f(x) connecting them are
shown. As the functions are monotonically increasing, the TV of each function is:

TV (f) =

B
∫

A

f ′ (x) dx = f (B) − f (A) (7.7)

which is the same value for each function. TV treats f1, f2 and f3 in the same way and
when used as a penalty term in a Tikhonov regularized inverse problem, will not bias the
result towards a smooth solution. On the other hand, the ℓ2 norm assumes different values
for f1,f2 and f3. When used as a penalty term the ℓ2 norm will bias the solution towards
smoother functions, for which the ℓ2 norm assumes smaller values. In the cited example f3

is inadmissible as a quadratic solution since its ℓ2 norm is infinity. With the use of TV as
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a regularization penalty term a much broader class of functions are therefore allowed to be
the solution of the inverse problem, including functions with discontinuities. Another way
to understand the differences with other techniques is to consider the discretized version of
equation 7.6. Suppose that the conductivity is described by piecewise constant elements,
the TV of the 2D image can be expressed as the sum of the TV of each of the k edges, with
each edge weighted by its length:

TV (σ) =
∑

k

lk
∣

∣σm(k) − σn(k)

∣

∣ (7.8)

where lk is the length of the kth edge in the mesh, m(k) and n(k) are the indices of the
two elements on opposite sides of the kth edge, and the index k ranges over all the edges.
Equation 7.8 can be expressed in terms of matrices as:

TV (σ) =
∑

k

|Lkσ| (7.9)

where L is a sparse matrix, with one row per each edge in the mesh. Every row Lk has
two non zero elements in the columns m(k) and n (k) : Lk = [0, ..., 0, lk , 0, ..., 0,−lk , 0...0].
TV regularization is therefore of the ℓ1 kind: it is a sum of absolute values, in this case a
sum of vector lengths. The absolute value guarantees the positivity of the penalty function
but unfortunately results in non–differentiability in the points where σm(k) = σn(k). The
numerical problem thus needs to be addressed properly. However, the important gain is
that the ℓ1 regularization does not penalize discontinuities.

7.2.3.1 Solving TV - Early Approaches.

Two different approaches were proposed for application of TV to EIT, the first by Dobson
and Santosa [44] and the second by Somersalo et al [109] and Kolehmainen [85]. Dobson
and Santosa replace the absolute value function in the neighbourhood of zero by a poly-
nomial to obtain continuously differentiable function upon which steepest descent is then
used to perform the minimization. Their approach is suitable for the linearized problem
but suffers from poor numerical efficiency. Somersalo and Kolehmainen successfully applied
Markov Chain Monte Carlo (MCMC) methods to solve the TV regularized inverse problem.
The advantage in applying MCMC methods over deterministic methods is that they do not
suffer from the numerical problems involved with non-differentiability of the TV functional;
they do not require ad hoc techniques. Probabilistic methods, such as MCMC, offer cen-
tral estimates and error bars by sampling the posterior probability density of the sought
parameters (therefore differentiability is not required). The sampling process involves a
substantial computational effort, often the inverse problem is linearized in order to speed
up the sampling. What is required is an efficient method for deterministic Tikhonov style
regularization, to calculate a non-linear TV regularized inversion in a short time.

Examination of the literature shows that a variety of deterministic numerical methods
have been used for the regularization of image de-noising and restoration problems with the
TV functional (a good review is offered by Vogel in [117]). The numerical efficiency and
stability are the main issues to be addressed. Use of ad hoc techniques is common, given the
poor performance of traditional algorithms. Most of the deterministic methods draw from
ongoing research in optimization, as TV minimization belongs to the important classes of
problems known as “Minimization of sum of norms” [11][13][39] and “Linear ℓ1 problems”
[19][125].
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Recent developments in operations research [13] have provided new classes of methods
to deal efficiently with the problems of minimising the sum of absolute values. Chan,
Golub and Mulet [30] have drawn from these advances and investigated the problem of
restoring images with Primal Dual-Interior Point Methods (PD-IPM). The formulation of
the image restoration problem is very similar to the EIT reconstruction problem, and results
can be easily exploited. In the next section we summarize some results from Andersen,
Christiansen, Conn and Overton [13] that are at the base of the method proposed by Chan
[30] in image restoration applications, and of the method we propose for EIT.

7.2.4 Duality Theory for the Minimization of Sums of Norms Problem

The minimization of the term TV (σ) =
∑

k

|Lkσ|, can be thought to be a Minimization of

Sum of Norms problem (MSN) as
∑

k

|Lkσ| =
∑

k

‖Lkσ‖, and in this case important results

for MSN problems can be applied. The most general way of expressing the MSN problem
is

min
y

n
∑

i=1

‖Aiy − ci‖ (7.10)

with y ∈ R
m; ci ∈ R

d and Ai ∈ R
d×m, which is equivalent to

(P ) min
y

{

n
∑

i=1

‖zi‖ : Aiy + zi = ci, i = 1, . . . , n

}

(7.11)

with zi ∈ R
d. We call equation 7.11 the primal problem, and we label it (P). An equivalent

problem to (P), which is called dual, and which is a maximization problem, can be obtained
in the following way

min
y:Aiy+zi=ci

n
∑

i=1

‖zi‖ = min
y:Aiy+zi=ci

max
xi:‖xi‖≤1

n
∑

i=1

xT
i zi

= max
xi:‖xi‖≤1

min
y:Aiy+zi=ci

n
∑

i=1

xT
i zi

= max
xi:‖xi‖≤1

min
y∈Rm

(

n
∑

i=1

cT
i xi − yT

n
∑

i=1

AT
i xi

)

= max
xi

{

n
∑

i=1

cT
i xi : ‖xi‖ ≤ 1;

n
∑

i=1

AT
i xi = 0

}

(7.12)

where the first equality follows from Cauchy–Schwartz, the second from min–max theory

[13] [101], the third trivially, and the fourth because if
n
∑

i=1
AT

i xi is not zero, the minimised

value would be −∞. The dual problem of (P) is therefore

(D) max
xi

{

n
∑

i=1

cT
i xi : ‖xi‖ ≤ 1;

n
∑

i=1

AT
i xi = 0, i = 1, . . . , n

}

(7.13)

and the variables y are called primal variables and the variables xi ∈ R
d dual variables.

The problems (P) and (D) are therefore equivalent. The concept of duality and the relation
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between primal and dual optimal points can be formalised defining the primal feasible region
as

Y =
{

(y, z) ∈ R
m × R

dn : Ay + z = c
}

(7.14)

and the dual feasible region as

X =
{

x ∈ R
dn : ATx = 0; ‖xi‖ ≤ 1, i = 1, . . . , n

}

(7.15)

where x is obtained by stacking the vectors xi. Andersen et al [13] have shown that for
feasible points (y, z) ∈ Y, x ∈ X

n
∑

i=1

‖zi‖ −
n
∑

i=1

cT
i xi > 0 (7.16)

and that for optimal points (y∗, z∗) ∈ Y, x∗ ∈ X
n
∑

i=1

‖z∗i ‖ −
n
∑

i=1

cT
i x∗

i = 0 (7.17)

In words: for feasible points the term
n
∑

i=1
‖zi‖ is an upper bound to

n
∑

i=1
cT

i xi and vice-versa.

The difference
n
∑

i=1
‖zi‖ −

n
∑

i=1
cT

i xi =
n
∑

i=1
(‖zi‖ − xT

i zi) is called the primal–dual gap; it is

positive except at an optimal point where it vanishes. The primal–dual gap can be zero if
and only if, for each i = 1, . . . , n , either ‖zi‖ is zero or xi = zi/‖zi‖. This can be expressed
conveniently in a form called complementary condition

zi − ‖zi‖xi = 0, i = 1, . . . , n (7.18)

The complementary condition encapsulates therefore the optimality of both (P) and (D).
An important class of algorithms called Primal Dual Interior Point Methods (PD–IPM) is
based on the observation that equation 7.18 with the feasibility conditions equation 7.14
and equation 7.15 captures completely the optimality of both problems. The framework for
a PD–IPM algorithm for MSN problem works by enforcing the three following conditions
(primal feasibility, dual feasibility, complementary)

Ay + z = c (7.19a)

ATx = 0 (7.19b)

zi − ‖zi‖xi = 0 (7.19c)

The Newton Method cannot be applied in a straightforward manner to equation 7.19 as
the complementary condition is not differentiable for ‖zi‖ = 0. Andersen et al [13] suggest
replacing it with the so called centering condition

zi − (‖zi‖2 + β2)
1
2 xi = 0, i = 1, . . . , n (7.20)

where β is a small positive scalar parameter. Even if at first sight the centring condition is
very similar to the smooth approximations that are generally used in the first attempts in
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using total variation as a regularization functional [2][118][45][32], where TV (σ) is approx-
imated with

∑

k

√

‖Lkσ‖2 + β, it has different implications in this context. Particularly,

it was shown in [12] that the centering condition is the complementary condition of the
following pair of smooth optimization problems

(Pβ) min

{

n
∑

i=1

(‖zi‖2 + β2)
1
2 : (y, z) ∈ Y

}

(Dβ) min

{

cTx + β

n
∑

i=1

(1 − ‖xi‖2)
1
2 : x ∈ X

} (7.21)

The problem Pβ and Dβ are a primal dual pair. Specifically, Dβ has the solution (y(β), z(β))
and Pβ has the solution x(β), all satisfying equations 7.19a, 7.19b, and 7.20.

Introducing the perturbation β in the complementary condition for the original pair
of problems is therefore equivalent to smoothing the norms in (P) and introducing a cost

into (D). Particularly the cost function
n
∑

i=1
(1−‖xi‖2)

1
2 can be understood to keep the dual

solution away from its boundary (‖xi‖ = 1), from which the name of centring condition
for equation 7.20, and of interior point method for the algorithm. The concept of keeping
iterates away from the boundary of feasible regions originates from interior point methods
for linear programming (LP) [124]. In LP optimal points are known to lie on vertices of the
feasible set; traditional algorithms, such as the simplex method, exploited this by working on
the frontier of the feasible region and examining vertices to find the solution. This approach
changed in the mid 80s with Karmarkar’s [80] introduction of interior point methods, which
work by following a smoother path inside the feasible region called a central path (identified
by a centering condition), and possibly making larger steps at each iteration. In MSN the
central path is defined by the solutions (y(β), z(β), x(β)) of Pβ , Dβ for β > 0, β → 0. Using
these results Andersen et al realised an efficient PD–IPM algorithm that works maintaining
feasibility conditions, equations 7.19a, 7.19b and applies the centering condition, equation
7.20, with a centering parameter β which is reduced during iterations, following the central
path to the optimal point.

In the next Section we describe the application of the PD-IPM framework to TV regu-
larized linear inverse problems.

7.2.5 Duality for Tikhonov Regularized Inverse Problems

In inverse problems, with linear forward operators, the discretized TV regularized inverse
problem, can be formulated as

(P ) min
x

1

2
‖Ax− b‖2 + α

∑

k

|Lkx| (7.22)

where L, as in 7.9, is a discretization of the gradient operator. We will label it as the primal
problem (P ). The dual problem, can be derived noting, as for the MSN problem, that

|Lkx| = ||Lkx|| = max
y:‖y‖≤1

y Lkx (7.23)

By applying 7.23 to (P ), the dual problem (D) is obtained as follows [23]

(D) max
y:‖yi‖≤1

min
x

1

2
‖Ax − b‖2 + αyT Lx (7.24)
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The optimization problem

min
x

1

2
‖Ax− b‖2 + αyT Lx (7.25)

has an optimal point defined by the first order conditions

AT (Ax− b) + αLTx = 0 (7.26)

the dual problem can be written therefore as

(D) max
y : ‖yi‖ ≤ 1

AT (Ax− b) + αLTx = 0

1

2
‖Ax− b‖2 + αyT Lx (7.27)

The primal–dual gap for (P ) and (D) is therefore:

1

2
‖Ax − b‖2 + α

∑

k

|Lkx| −
1

2
‖Ax − b‖2 − αyT Lx =

α

(

∑

k

|Lkx| − yTLx

) (7.28)

The complementary condition, which nulls the primal–dual gap, for 7.22 and 7.27 is
therefore:

∑

k

|Lkx| − yT Lx = 0 (7.29)

which with the dual feasibility ‖yi‖ ≤ 1 is equivalent to requiring that

Lix − yi‖Lix‖ = 0 i = 1, . . . , n (7.30)

The PD-IPM framework for the TV regularized inverse problem can thus be written as

‖yi‖ ≤ 1 i = 1, . . . , n (7.31)

AT (Ax− b) + αLTx = 0 (7.32)

Lix − yi‖Lix‖ = 0 i = 1, . . . , n (7.33)

It is not possible to apply the Newton method directly to equations 7.31,7.32,7.33 as equa-
tion 7.33 is not differentiable for Lix = 0. A centering condition has to be applied [13][23],
obtaining a smooth pair of optimization problems (Pβ) and (Dβ) and a central path pa-

rameterised by β. This is done by replacing Lix by (‖Lix‖2 + β)
1
2 in 7.33.

7.2.6 PD-IPM for EIT

The PD-IPM algorithm described in section 7.2.5 was developed by Chan et al [30] for in-
verse problems with linear forward operators. We next describe a numerical implementation
of the PD-IPM algorithm, based on [23], to calculate the non-linear solution to

σrec = arg min
σ

1

2
‖F (σ) − Vmeas‖2 + αTV (σ) (7.34)
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With a similar notation as used in Section 7.2.1. This is recognized as equation 7.1 with
G(σ) = TV (σ). The system of non-linear equations that defines the PD-IPM method for
7.34 can be written as

‖yi‖ ≤ 1
JT (F (σ) − Vmeas)

Lσ − Ey = 0

+ αLT
σ = 0 (7.35)

with E a diagonal matrix defined by E = diag

(

√

‖Liσ‖2 + β

)

and J the Jacobian of

the forward operator F (σ). Newton’s method can be applied to solve 7.35 obtaining the
following system for the updates δσ and δy of the primal and dual variables

[

JTJ αLT

KL −E

] [

δσ
δy

]

= −
[

JT (F (σ) − Vmeas) + αLT y

Lσ − Ey

]

(7.36)

with

K = diag

(

1 − yiLiσ

E(i, i)

)

(7.37)

equation 7.36 can be solved as follows

[

JTJ+αLTE−1hL
]

δσ = −
[

JT (F (σ) − Vmeas) + αLTE−1Lσ
]

(7.38)

δy = −y + E−1Lσ + EKLδσ (7.39)

Equations 7.38 and 7.39 can therefore be applied iteratively to solve the non-linear inversion
7.34. The iterative procedure must be initialized which is done by setting y0 = 0. Thus in
the first iteration 7.38 is solved as

δσ = (JTJ + αLTL)−1(JT (F (σ) − Vmeas) (7.40)

and δy = E−1Lσ+EKLδσ. This is recognizable as the first step of the 2–norm regularized
inverse of equation 7.3. Some care must be taken on the dual variable update, to maintain
dual feasibility. A traditional line search procedure with feasibility checks is not suitable as
the dual update direction is not guaranteed to be an ascent direction for the modified dual
objective function (Dβ).

The simplest way to compute the update is called the scaling rule [13] which is defined
to work as follows

y(k+1) = ϕ∗
(

y(k) + δy(k)
)

(7.41)

where ϕ∗ is a scalar value such that

ϕ∗ = sup
{

ϕ : ϕ
∥

∥

∥
yi

(k) + δyi
(k)
∥

∥

∥
≤ 1, i = 1, . . . , n

}

(7.42)

An alternative way is to calculate the exact step length to the boundary, applying what is
called the step length rule [13]

y(k+1) = y(k) + min (1, ϕ∗) δy(k) (7.43)
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PD-IPM Algorithm

ψ(σ) = 1
2‖F (σ0) − Vmeas‖ + αTV (σ)

find a homogeneous σ0 to minimise ‖F (σ0) − Vmeas‖;
initialise dual variable y to zero;

initialise primal variable σ with one step of traditional quadratic

regularised inversion;

set initial β;
k=0;

while (termination condition not met)

δVk = (F (σk) − Vmeas);
Jk = J(σk);
Ek = diag (

√

‖Li σk‖2 + β);

Kk = diag (1 − yi Liσ
Ek(i,i) );

δσk = −[JTJ + αLTE−1
k KkL]−1 JT

k δVk + αLTE−1
k Lσk;

δyk = yk +E−1
k Lσk + E−1

k KkLδσk;
λσ = argmin ψ(σk + λσ δσk);
λx = max{λy : ‖yi + λyδyi‖ ≤ 1, i = 1, . . . , n};
if a reduction of primal objective function has been achieved

σk+1 = σk + λσ δσk;
yk+1 = yk + min(1, λy) δyk;
decrease β by a factor βreduction;
decrease βreduction;

else

increase β;
end if

k=k+1; evaluate termination condition;

end while

Figure 7.2: Pseudo code for the PD–IPM algorithm with continuation on β, line search on
σ and dual steplength rule on y.

where ϕ∗ is a scalar value such that

ϕ∗ = sup
{

ϕ :
∥

∥

∥
yi

(k) + ϕδyi
(k)
∥

∥

∥
≤ 1, i = 1, . . . , n

}

(7.44)

In the context of EIT, and in tomography in general, the computation involved in calculating
the exact step length to the boundary of the dual feasibility region is negligible compared
to the whole algorithm iteration. It is convenient therefore to adopt the exact update,
which in our experiments resulted in a better convergence. The scaling rule has the further
disadvantage of always placing y on the boundary of the feasible region, which prevents the
algorithm from following the central path. Concerning the updates on the primal variable,
the update direction δσ is a descent direction for (Pβ) therefore a line search procedure
could be appropriate. In our numerical experiments, based on the pseudo code illustrated
in Figure 7.2 we have found that for relatively small contrasts (e.g. 3:1) the primal line
search procedure is not needed, as the steps are unitary. For larger contrasts a line search
on the primal variable guarantees the stability of the algorithm.
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7.3 Evaluation Procedure

A reconstruction algorithm that formulates the inverse problem as in equation 7.34 and
solves it as in equations 7.38 and 7.39 was developed in the MATLAB environment. The
method proposed by Chan et al [31] to solve equation 7.35 assumes the forward operator
to be linear. The reconstructions that we present in this section of the paper are fully
non-linear, the algorithm is shown to work on the cases we used as tests, but we do not
provide a proof of convergence.

Evaluation was performed by comparing the performance of the TV PD-IPM algorithm
with that of the quadratic algorithm equation 7.3. In equation 7.3 L = RHPF where
RHPF is the Gaussian spatial high pass filter originally described in [4]. 2D Simulated
data were computed on a 1024 element circular mesh using the two phantoms shown in
figures 7.3(a) and 7.3(b). Phantom A is a single “blocky” contrast with a conductivity

(a) Phantom A (b) Phantom B

Increasing σ

(c) Phantom C

Figure 7.3: 2D Phantom contrasts on a 1024 element mesh, used to generate simulated data
using 16 electrode adjacent current injection protocol.

of 0.90, phantom B consists of 2 “blocky” contrasts with conductivities of 0.90 and 1.10.
Phantom C has a single contrast whose conductivity varies linearly from 1 at the edge to
1.6 at the centre. 15 sets of reconstructions were made for phantoms A and B for each
algorithm (TV regularization and ℓ2 Gaussian regularization) with increasing amounts of
simulated noise added. 15 reconstructions were made of phantom C without adding noise.
The 16 electrode adjacent protocol was used [4]. 2D reconstructions were performed on a
576 element circular mesh, not matching the mesh used for forward computations, in order
to avoid what is referred as an inverse crime [122].

7.4 Results

7.4.1 Phantom A

Figure 7.4(a) and 7.4(b) shows that after the first iterative step the TV and the quadratic
solutions are similar. The resolution, in terms of blur radius, is slightly better for the TV
solution, however visual inspection of figures 7.4(a) and 7.4(b) shows that the TV solution
has more noise. Blur Radius (BR) is defined as a measure of the resolution: BR =

√

Az/A0

where A0 is the area of the entire 2D medium and Az is the area of the reconstructed
contrast containing half the magnitude of the reconstructed image [4]. BR calculates the
area fraction of the elements that contain 50% of the total image amplitude. We call this the
half amplitude (HA) set. The convergence behaviour of the two algorithms is illustrated
in Figure 7.5 in which Residual Error, Total Variation, and Resolution are plotted against
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(a) First step, TV solu-
tion. BRTV = 0.3741

(b) First step, ℓ2 solution.
BRL2 = 0.3643

Figure 7.4: Black bordered triangles are elements of the HA set. No noise added.

iteration number. Both the ℓ2 and ℓ1 solutions show steady decrease in Residual Error over
the first 4 iterations. By the 5th iteration both solutions have converged in this measure.

3D visualizations of selected TV solutions are shown in Figure 7.7. The characteristic
blocky structures of a TV solution start to emerge by the 3rd iteration as shown in Figure 7.7
and by the profile plots of figure 7.6. Visibly detectable improvements in the TV solution are
impossible to detect after the 8th iteration with no appreciable changes in the total variation
or in the reconstructed images. The profile plots of figure 7.6 show that the TV algorithm
is able to reconstruct the profile of phantom almost exactly in the noise free case. Although
the residual error of the ℓ2 solution decreases over the first 4 iterations the Resolution,
shown in Figure 7.5(c), has peaked by the 5th iteration . Although not shown, the resulting
ℓ2 images are visually similar. Figure 7.5(c) indicates that the resolution measure of Blur
Radius is not a good indicator of TV image quality since the TV and visual images steadily
improve while the Blur Radius decrease for the first 3 iterations then increase until it has
stabilized by the 8th iteration.

7.4.2 Noise Effects

Noise was added to the simulated data in 15 increments from 0 to a maximum standard
deviation of 3% of the signal. Good images, such as those in figures 7.8(a) and 7.8(b) were
produced by both algorithms for noise levels smaller than 0.6%. AWGN up to 1.0% produced
TV images that by the 7th iteration were recognizable but had large noise artefacts.

AWGN up to 1.0% produced TV images that by the 7th iteration were recognizable
but had large noise artefacts. TV reconstructions of data with more than 1.5% noise, as
illustrated in figure 7.9(b), were dominated by noise artefacts. The quadratic algorithm
was more robust to noise with the best reconstructions occurring with the first step of the
algorithm. As more iterations were used the quadratic reconstructions became corrupted
by noise. However, the first step of the quadratic algorithm produced a relatively good
image quality with noise as high as 2.5%, see Figure 7.9(a).

7.4.3 Phantom B

With low noise, the TV algorithm is able to recover a single blocky object almost exactly.
With two objects the TV algorithm provides a reasonable reconstruction however it is unable
to recover the profile as accurately as it does in the phantom A case. Figure 7.10 shows the
profiles for the TV and ℓ2 algorithms while figures 7.11(a) and 7.11(b) show reconstructions

106



Iteration Number
L
og

1
0

R
es

id
u
al

E
rr

or
N

or
m

TV
ℓ2

1 2 3 4 5 6 7 8 9 10
10−4

10−3

10−2

(a) Residual Error vs iteration.
Iteration Number

Im
ag

e
T

V

TV

0 1 2 3 4 5 6 7 8 9 10
.38

.40

.42

.44

.46

.48

.50

.52

(b) Total Variation vs iteration.

Iteration Number

R
es

ol
u
ti
on

(B
R

) TV
ℓ2

0 5 10 15
.354
.356
.358
.360
.362
.364
.366
.368
.370
.372
.374

(c) Resolution vs iteration.
Iteration Number

N
or

m
al

iz
ed

R
M

S
d
iff

er
en

ce

1 2 3 4 5 6 7 8 9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(d) RMS Error for phantom A.

Iteration Number

Im
ag

e
T

V

0 1 2 3 4 5 6 7 8 9 10
1.6

1.7

1.8

1.9

2.0

2.1

2.2

(e) Total Variation vs iteration
for phantom C.

Iteration Number

N
or

m
al

iz
ed

R
M

S
d
iff

er
en

ce

1 2 3 4 5 6 7 8 9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(f) RMS Error for phantom C.

Figure 7.5: Convergence Behaviour of Algorithms. No Noise added.

from both algorithms for the 8th iteration. Figure 7.10 shows the profiles for the TV and
ℓ2 algorithms while figures 7.11(a) and 7.11(b) show reconstructions from both algorithms
for the 8th iteration.

7.4.4 Phantom C

With a single smoothly varying, non-blocky, contrast the TV algorithm provides a rea-
sonable reconstruction of step changes however it is unable to recover the the profile as
accurately as it does in the phantom A case. Figure 7.12 shows the profiles for the TV
algorithm while figures 7.13 show associated reconstructions for several iterations. Figure
7.5(e) shows the TV convergence of the algorithm for Phantom C, while figure 7.5(f) shows
the RMS error between the generating phantom and the reconstruction. The algorithm has
converged by the 6th iteration. Interestingly the best image in terms of qualitative match-
ing of the phantom conductivity profile is the 3rd iteration however figure 7.5(f) shows that
the RMS error is still decreasing after the 3rd iteration even though later iterations cannot
reconstruct the edge between the two largest conductivity values.
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Iteration 1

(a)

Iteration 2

(b)

Iteration 3

(c)
Iteration 4

(d)

Iteration 5

phantom

TV
L2

(e)

Iteration 6

(f)
Iteration 7

(g)

Iteration 8

(h)

Iteration 9

(i)

Figure 7.6: Profile plots of the originating contrast, TV, and ℓ2 reconstructions. No Noise
added. Profiles are vertical slices through the middle of the reconstructed image.

7.4.5 Parameters

The PD-IPM method has two tuneable parameters β and λ. The value of β has a large
effect on convergence. Too large a value of β (greater than 10−6) prevented convergence
to the desired “blocky” solution; the solution stabilized but showed smoothed features that
were not consistent with the edges obtained with smaller values of β. Ultimately it was
determined that the quickest convergence occurred when β was initialized to a small value
(we used 10−12) and left unchanged. This was the method used in the results shown in this
paper.

With an iterative algorithm multiple values of the regularization hyperparameter, λ,
could be used for each iteration. In this work, for the TV algorithm, a different value was
used for λ0, in the initialization step (7.40) and for λi in the iterative steps (7.38). λ0

was selected using the BestRes method described in [52]. BestRes is an algorithm for ob-
jectively calculating the hyperparameter for linearized one-step EIT image reconstruction
algorithms. This method suggests selecting a hyperparameter that results in a reconstruc-
tion that has maximum resolution for an impulse contrast. Although TV is not intended
for use in imaging impulse type contrasts the first step of the algorithm requires solution
of the quadratic problem. In previous work the BestRes algorithm has provided λ values
based on an impulse contrast that has generalized well to non-impulse contrasts. See, for
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(a) i=1 (b) i=2 (c) i=3

(d) i=4 (e) i=5 (f) i=7

Figure 7.7: TV reconstructions of Phantom A at increasing iterations. Vertical axis is
absolute conductivity. Normalized to 0. No Noise added.

(a) TV solution at 7th iteration. (b) L2 solution at 7th iteration.

Figure 7.8: Reconstructions of Phantom A with 0.6% AWGN.

example, the use of BestRes in chapter 5. The PD-IPM algorithm did not show to be
strongly sensitive to the value of λ0. We varied the value of λ0 three orders of magnitude
above and one order of magnitude below λBR without appreciably changing the TV solution
at convergence or the rate of convergence.

The initial hyperparameter, λ0, was always selected using Best Res, however, several
numerical experiments were performed to determine the effect of the iterative hyperparam-
eter, λi, on algorithm performance. Although λi could be changed at each iteration, in
the reconstructions shown in this manuscript λi was maintained constant, thus λi = λi+1.
Figure 7.14 shows the results of running the algorithm to convergence six times with a
different value λi for each run. It is obvious from the figure that the algorithm is sensitive
to the value of λi; too small a value of λi prevents a “blocky” solution, too large a value of
λi will allow blocky reconstructions but suppress the amplitude. The BestRes method was
originally used to calculate λi however the method was unable to find a good value for λi.
Best results were obtained by the ad hoc visual inspection of figures such as figure 7.14 for
various values of λi. Further work is required to develop an objective method to select λi.

The original PD-IPM methods includes updating the Jacobian matrix at each iteration.
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(a) L2 solution with 2.5%
AWGN, first step. Noisy
but useful reconstruction.

(b) TV solution with 1.5%
AWGN, first step. Noise
dominated solution.

Figure 7.9: Reconstructions of Phantom A.

Iteration 8

phantom

L1
L2

Figure 7.10: Phantom B profiles.

In our work numerical experiments this did not result always in a significant improvement in
reconstructed images. We adopted therefore a the arrangement of not updating the Jacobian
at each single iteration. This provides a reduction in the reconstruction computational time.

As an additional numerical experiment, we evaluated the use of the same regularization
matrix L as for TV regularization, (equation 7.9), with the quadratic algorithm (7.3).
Although reconstructions from the first step were identical to TV reconstructions, the
quadratic solutions rapidly degraded, producing noisy reconstructions that were dominated
by noise artefacts after the 10th iteration. The TV prior is not recommended for use with
the quadratic algorithm.

7.4.6 Preliminary testing in 3D

The generality of the PD-IPM scheme allows its use for the 3D EIT reconstructions. The
method was expected to work equally well in three dimensions, and to be easily extended
to this case. To validate this a single experiment with the simulated tank of figure 7.15 was
performed. The tank has 315 nodes, 1104 elements, 32 electrodes and is constructed of 4
identical layers of tetrahedrons and was used for both simulating data and reconstruction. A
single object in the shape of a crescent was used to generate simulated data. Reconstructions
were made on the same mesh. The convergence of the PD-IPM algorithm is shown in figure
7.16. Convergence occurred rapidly with a reasonable image appearing in the first iteration
and convergence being achieved by the 8th iteration - there was no appreciable improvement
in the image or change in the error norm after the 8th iteration. Figure 7.17 shows slices
taken at the five layer boundaries (including top and bottom tank surfaces) of the simulated
tank. Figure 7.17 shows reconstructed conductivities after the first iteration, Figure 7.18
shows reconstructed conductivities after 8 iterations. The results were not as good as
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(a) TV solution at 8th it-
eration

(b) ℓ2 solution at 8th iter-
ation

Figure 7.11: Reconstructions of Phantom B with 2.5% AWGN.
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(d)

s15

Iteration 5

phantom

(e)

Iteration 6

(f)

Figure 7.12: Profile plots of the originating contrast and TV reconstructions for the phantom
C, non-blocky, contrast. No Noise added. Profiles are vertical slices through the middle of
the reconstructed image.

the results obtained from the 2D numerical experiments. This may be attributable to poor
quality of the 3D model in terms of number of mesh elements. More work is required in
order to properly evaluate the performance of PD-IPM in 3D.

Aside on an Inverse Crime The act of employing the same model to generate, as well
as to invert, simulated data is known as an inverse crime [122]. In earlier work [87] we have
cautioned against unqualified publication of results obtained in this manner. The fact that
an algorithm works with self simulated data does not imply that it will work well with real
data because the use of self simulated data confers an advantage to the algorithm. The acid
test for an algorithm occurs when it works successfully with empirical data. However, it
is common methodology for researchers to start development of new algorithms using the
same model for generation and subsequent inversion of simulated data. The justification is
that an algorithm that does not work with such advantageous data will not work at all with
real data. Once satisfactory results are obtained with the advantageous data, researchers
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(a) i=1 (b) i=2 (c) i=3

(d) i=4 (e) i=5 (f) i=6

Figure 7.13: TV reconstructions of Phantom C at increasing iterations. Vertical axis is
absolute conductivity. Normalized to 0. No Noise added.

use lab data or more often noise contaminated simulated data obtained using a different
mesh. This paper is primarily concerned with 2D performance. The 3D results reported
herein are preliminary and have not yet progressed past the first stage of development.
Thus we reluctantly publish results in which an inverse crime is committed. However our
aim in this case is simply to demonstrate that the PD-IPM framework can be used for 3D
TV regularized reconstructions.

7.5 Discussion and Conclusion

Practical results of the TV regularisation and the efficiency of PD-IPM method are of
interest in process and medical imaging. In this work we have demonstrated a practical
implementation of a TV regularized reconstruction algorithm for EIT, and compared its per-
formance to a traditional ℓ2 regularized reconstruction algorithm. Currently, TV regularised
reconstructions are considerably more expensive to calculate than quadratic reconstructions,
however the TV PD-IMP algorithm is able to compute non-smooth reconstructions in the
presence of moderate noise, and it is therefore of practical use.

The typical number of iterations required by the TV PD-IPM algorithm for convergence,
and thus for being able to show sharp profiles in the reconstructed images, is on the order
of 10 iterations. The quadratic algorithm produces good, albeit smooth, solutions in 1 to
3 steps. Thus there is a clear execution time advantage in using quadratic regularisation.
On a 1.8GHz AMD Turion 64 with 1GB ram, one step of the quadratic algorithm took
0.78 seconds for the 576 element mesh, while one step of the PD-IPM algorithm took 0.86
seconds. Thus the TV solution at convergence takes about 9 seconds to calculate compared
to the 1 to 2 seconds needed by the quadratic solution.

In our experiments we have found that the quadratic algorithm is slightly more robust
to noise however both algorithms produce useful reconstructions at realistic noise levels.
Further work will be required to better understanding the convergence behaviour of the
PD-IPM algorithm in order to possibly reduce the number of iterations that this algorithm
typically requires in order to converge, and thus to make it more competitive in terms of
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λ = 10−9 λ = 10−8 λ = 10−7

λ = 10−6 λ = 10−5 λ = 10−4

Figure 7.14: Profiles of TV solutions at the 7th iteration (convergence). Showing effect of
using different λi values in equation 7.38. Dotted line is generating contrast, solid line is
TV solution. λi ∈ [10−9, 10−4]

computational requirements.
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Figure 7.15: Four layer tank used for 3D reconstructions. Red patches are the 32 electrodes
in 2 layers. Phantom contrast are the blue elements which are only in the second layer
(between z=1 and z=2). Simulated water depth is full vertical extent of tank.

Iteration

E
rr

or
N

or
m

0 2 4 6 8 10 12 14 16 18 20

Figure 7.16: Convergence of 3D PD-IPM algorithm.

(a) z=0 (bottom) (b) z=1 (c) z=2 (d) z=3 (e) z=4 (top)

Figure 7.17: Slices of 3D reconstructions for Iteration 1. No noise added.

(a) z=0 (bottom) (b) z=1 (c) z=2 (d) z=3 (e) z=4 (top)

Figure 7.18: Slices of 3D reconstructions for Iteration 8. No noise added.
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Chapter 8

Conclusion and Future Work

At the start of this work the prevailing algorithms in use for lung/chest imaging were limited
to 2D models that relied on ad hoc tweaking to produce reconstructions. The aim of this
thesis was to develop enhancements in EIT image reconstruction for 3D lung imaging; in
other words, to remove some of the limitations that continue to impede the routine use of 3D
models for lung imaging. Due to our desire to validate theoretical and simulated models with
lab data we constrained our field of investigation to models that could be realized with a 16
electrode scanner designed for tetrapolar (ostensibly adjacent drive protocol) measurements
in a 2D configuration. This required the application of engineering principles to develop
and analyze reconstruction algorithms and protocols suitable for use with the 16 electrode
EIT systems such as the Goe-MF Type II scanner.

The aim was attained through the systematic achievement of the four main objectives:

1. The development of the BestRes objective hyperparameter selection method provides
a calibration based method of calculating a hyperparameter once for a specific con-
figuration of mesh and equipment. Using this algorithm eliminates the necessity of
ad hoc tweaking by users during reconstruction. Disparate researchers can now more
easily repeat the work of others. Moreover, by calculating the hyperparameter off-line,
a good image can be obtained from a single matrix inversion. Contrarily, methods
such as L-curve and expert selection require multiple inversions to be calculated for
each useful solution. Moreover the L-Curve method is shown to be unreliable for EIT.

2. The development of the Nodal Jacobian Inverse Solver algorithm enables the solution
of large dense 3D finite element models that, previous to this work, were not easily
solvable using linear algebra systems based on 32 bit pointers. This solver allows
one to model and solve complex, accurate geometries containing a priori structures
with linear algebra software that could not solve the same model using the traditional
elemental Jacobian.

3. The evaluation of an admittedly small set of potential 3D EP configurations, nev-
ertheless provides a sound basis for recommending a specific method to collect 3D
lung data. Moreover it provides a firm basis to discontinue further evaluation of
configurations that perform poorly, such as the proposed opposite configurations.

4. The convergence improvements and subsequent evaluation of the PD-IPM algorithm
for TV regularization provide a defensible argument for when and when not to use TV
regularization. Moreover the promising 2D results provide justification and incentive
for further research into this algorithm aimed at increasing the size of 3D models that
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can be solved with the algorithm. The development of a nodal TV prior is a promising
avenue for further research.

The work described in this thesis has removed some of the major limitations that have
discouraged or prevented the routine use of 3D models for lung imaging. This thesis con-
cludes with the following recommendation for how to effectively collect and reconstruct 3D
EIT images of the lungs given the stated constraints on equipment and choice of electrodes
arranged in 2 planes.

8.1 Recommendation

We recommend the following system to obtain 3D EIT difference images of the lungs for
clinical applications. It is based on minimization of the non-linear optimization problem
3.7 which is reproduced below:

x̂ = arg min
x

{

‖Hx − z‖2 + λ2 ‖Rx‖2
}

(8.1)

This is solved using the MAP regularized framework of equation 3.22 again repeated below:

x̂ = (HTWH + λRTR)−1HTWz = B(λ)z (8.2)

where z = v2 − v1. The parameters of equation 8.2 are as follows:

1. The regularization hyperparameter λ, is selected using the BestRes method of chapter
4.

2. The norm of the prior is the 2-norm. Use of the 1-norm via the TV PD-IPM algorithm
for 3D requires further work to extend it to the nodal basis discussed in chapter 5.

3. The prior matrix, R, is the diagonal matrix used in the NOSER algorithm, R =
diag(HT H), due to its performance in 3D. The Gaussian prior performs slightly better
in 2D but does not have a suitable analog for 3D.

4. The data weighting matrix W is left as the identity matrix, and is therefore removed
from the algorithm. In the case that erroneous electrode data has been revealed
through a method such as that of Asfaw and Adler [7] the problem measurements can
be accounted for by zeroing each column of the Jacobian matrix H in equation 8.2.

5. The initial conductivity, σ0, is left at a homogenous value of 1.

6. The conductivity used to calculate the Jacobian, σ∗, is left at a homogenous value of
1.

7. Using the Nodal inverse solver requires that the FEM parameters include tetrahedral
meshes with linear conductivity on each element.

8. For pulmonary imaging we recommend the Planar Electrode Placement Strategy dis-
cussed in chapter 6. This is an adjacent current injection and measurement protocol.
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8.2 Future Work

There is always more work to do. With respect to the work of this thesis the following
subjects are promising areas of future development that could be undertaken to extend the
capabilities of the system described in section 8.1:

1. The work of chapter 6 is an initial investigation into the analysis of electrode place-
ments for the thorax. This work was constrained by the availability of 16 electrode
equipment and should be extended to consider newer equipment with more than 16
electrodes. Thus future work should systematically investigate potential performance
improvements available from electrode placement configurations using more than 16
electrodes arranged in two layers.

2. Clinical measurements to extend the conclusions of the chapter 6, Electrode Placement
Configurations for EIT, should be conducted

3. Develop a TV algorithm that uses the nodal inverse solver. The main problem here
will be to develop a nodal version of the TV prior matrix. Similar work has been
started in [96].

4. Investigate the number of electrodes required to obtain higher resolution reconstruc-
tions in 3D. There is speculation that 16 electrodes are not enough for 3D.

Finally, the ability of researchers to extend the contributions in any field of endeavour,
but especially fields reliant on software, is made much easier by the ready availability of the
software and data used in previously published work. To that end all software used in this
work that was developed using Matlab, the EIDORS2D [116] toolbox, and the EIDORS3D
[93] toolbox was re-contributed to the EIDORS3D project.
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Appendix:
Variability in EIT Images Of
Lungs: Effect of Image
Reconstruction Reference

Authors:
Bradley GRAHAM and Andy ADLER

In the course of completing this thesis several side problems, such as mesh generation,
mesh solution bias, and background conductivity effects were examined. These problems are
important but are not directly applicable to the aim of this thesis. Morover the the results
obtained from these side problems are not yet sufficient for publication. This appendix
serves as a means to document the observations made to date on some of the issues caused
by background conductivity effects in reconstruction algorithms.

Abstract

There is significant interest in Electrical Impedance Tomography for measurement of breath-
ing. However, Kunst et al [83] have shown that variability in parenchyma density (in emphy-
sema and haemodialysis patients compared to normals) had a large effect on the amplitude
of EIT images for the same inspired volume. We hypothesize that this effect is due to the
assumption made by EIT difference imaging that impedance changes occur relative to a
homogeneous conductivity distribution. To test this hypothesis, we developed a 3D finite
element model of the thorax, and simulated EIT measurements for a small tidal volume at
different levels of lung conductivity. Images were reconstructed using: 1) a homogeneous
model, 2) a model with physiologically realistic conductivity levels, and 3) a model with
conductivities matching the simulation model.

Results show that the reconstructed image amplitude of the homogeneous model varies
strongly with lung conductivity. The magnitude of the variations is compatible with the data
of Kunst et al. The physiologically realistic model showed a slightly less, but insignificantly
so, variation. The matched conductivity model showed much more uniform amplitude
response but depended on the area of the inhomogenous region used in construction of the
Jacobian.

These results suggest that the variability in EIT image amplitude of the lungs is due to
the assumption of homogeneity made by difference EIT image reconstruction algorithms.

Keywords: Electrical Impedance Tomography, Lung Function, Image Reconstruction
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A.1 Introduction

One of the most promising applications of Electrical Impedance Tomography (EIT) is for
monitoring lung function [50] such as measuring the amount and distribution of inspired air.
EIT images of the lung benefit from its large size and large conductivity contrast to other
body tissues. Moreover there is a linear relationship between the measured tidal volume and
the amplitude of EIT difference images (e.g. [94]). However, the constant of proportionality
varies dramatically between subjects.

Kunst et al [83] studied the variation in EIT image amplitude between subjects. Images
of a given tidal volume1 were compared between normals and groups with high parenchyma
density (haemodialysis patients) and low parenchyma density (emphysema patients). Re-
sults were measured in terms of the sum of image pixels per litre of tidal volume. The emphy-
sema group had significantly lower impedance change (11.6±6.4) than normals (18.6±4.2),
while the haemodialysis group showed a significantly larger impedance change (30.5±13.1).
Furthermore, during dialysis, the latter group showed impedance changes much closer to
the normals (21.4± 8.6). These results show EIT in poor light: not only can measurements
of the same tidal volume vary by a factor of three between patient groups, but even if
calibration is performed, the calibration factor can undergo large changes rapidly.

We are interested in understanding the cause of and compensating for this variability
in image amplitude. In this paper we deal with the cause. Future work will look at
compensation. In this paper, we propose that this effect is mainly caused by the assumption
of homogeneity made in the formulation of difference images in EIT via the Jacobian matrix.
In order to explore this effect, a finite element model of the thorax was constructed, and
simulation data at different baseline lung conductivities generated. Subsequently, images
were reconstructed from these data under different difference imaging assumptions, and
compared to the results of Kunst et al [83].

A.2 Methods

A.2.1 Image Reconstruction

We consider EIT difference imaging, which is widely understood to improve reconstructed
image stability in the presence of problems such as unknown contact impedance, inaccurate
electrode positions, non linearity, and in the 2D case, the use of 2D approximations for 3D
electrical fields [17][87]. We address the class of normalized one-step linearized reconstruc-
tion algorithms that calculate the normalized change in finite element conductivity distri-
bution, x, due to a change in normalized difference signal, z, over a time interval (t1, t2).

Here x is defined as xi =
length(x)
∑

i
(σ2,i − σ1,i) /σ1,i with σ1,i and σ2,i being the ith elements

of the vectors σ1 and σ2 respectively, and z is defined as zi =
length(v)
∑

i
(v2,i − v1,i) /v1,i with

v1,i and v2,i being the ith elements of the vectors v1 and v2 respectively. By convention we
consider the signal at t1 to be the reference frame and the signal at t2 to be the data frame.

For small changes around a background conductivity the relationship between x and z

may be linearized as

z = Hx + n (A.3)

1Tidal Volume is the amount of air inhaled and exhaled during normal breathing, normally about between
500 and 1000ml.
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where H is the Jacobian or sensitivity matrix calculated from a FEM (F (σ)), and n is the
measurement system noise, assumed to be uncorrelated additive white Gaussian (AWGN).

Each element i, j, of H is calculated as Hij = ∂zi
∂xj

∣

∣

∣

σ0

and relates a small change in the

ith difference measurement to a small change in the conductivity of jth element. H is a
function of the FEM, the current injection pattern, and the background conductivity, σ0.
Here σ0 is a vector containing the conductivity of each element of the mesh.

In order to overcome the ill-conditioning of H we solve A.3 using the following regularized
inverse

x̂ = (HTWH + λ2RTR)−1HTWz = Bz (A.4)

where x̂ is an estimate of the true change in conductivity distribution, R is a regular-
ization matrix, λ is a scalar hyperparameter that controls the amount of regularization,
and W models the system noise. The regularization matrix, R, is the spatially invariant
Gaussian high pass filter of [4] with a cut-off frequency of 10% of the medium diameter.
Hyperparameter selection was performed using the BestRes method [52].

Reconstruction algorithms for EIT difference images often assume that the background
conductivity, σ0, of the region being imaged is homogeneous, and conductivity changes
occur with respect to this baseline value. This assumption is clearly unwarranted for imaging
of the thorax, where the lungs are significantly less conductive than other tissue. In order
to modify the assumption of a homogeneous background conductivity, σ0 can be altered to
account for the conductivity of the various tissues in the thorax. The sensitivity matrix, H,
is then constructed from the modified σ0 and used to calculate the reconstructed image.

A.2.2 Simulated Data

Simulated data was generated using the 3D finite element mesh of figure 8.1(b) with the
conductive properties of the thorax. This finite element mesh is an extrusion of the 2D
mesh of figure 8.1(a). The FEM uses 10368 tetrahedral elements and covers a region 15cm
vertically centered on the heart. The sixteen electrodes were spaced equally around the
thorax at the level of the centre of the heart. Background conductivity was held constant

(a) 2D horizontal slice through 3D thorax
mesh of figure 8.1(b).

(b) 3D Finite Element mesh of thorax used
for simulated data.

Figure A.1: Finite Element Mesh for generating simulated data. σ0 is the vector containing
the conductivity of each element, σL is a scalar value of the conductivity of elements of the
lung tissue.
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while the lung conductivity (σL) was varied. Simulation data were calculated to model the
EIT difference measurements due to introduction of a small tidal volume (∆V ) at different
levels of baseline σL. Since the relationship between σL and lung volume (VL) is not precisely
known in vivo [94], we model lung conductivity as inversely proportional to VL. For a small
∆V we make the following approximation:

σ =
σL

1 + ∆V/VL

≈ σLe
−∆V/VL

Using this approximation, tidal volume, ∆V , constitutes a constant decrease in log conduc-
tivity. Difference measurements are simulated for inspiration and expiration as:

vinsp = F (σLe
−

∆V/VL )
vexp i = F (σL)

Simulations were conducted for ∆V/VL = 10% over a range of 20 values from 5 mS/m to
2000 mS/m. This large non-physiological range was simulated in order to clarify the trend
of the results. The reference frame was taken at the background lung conductivity.

A.2.3 Evaluation Procedure

Six sets of reconstructions were calculated using a 1968 element 2D finite element model.
Images were reconstructed from the simulated data and using three different reconstruction
algorithms: 1) using a homogeneous σ0, 2) using σ0 with physiological values and σ0 at its
inspiration value (60 mS/m) (∆VEIT,Inspi), and 3) using σ0 with physiological values and
σL matching σL that was used to simulate the data ∆VEIT,Simul. In the third algorithm
the area of the non-homogenous region, AσL

of the FEM was varied; thus four sets of
reconstructions were calculated with areas of AσL

= 33%, AσL
= 51%, AσL

= 73%, and
AσL

= 86% as shown in figure A.2. Thus the single set of 20 simulated measurements was
used to reconstruct six sets of 20 images.

An EIT estimate of tidal volume, ∆VEIT , was then calculated by summing all pixels of

the 2D FEM weighted by the pixel’s area. ∆VEIT =
E
∑

i=1
Aiσi where Ai is the area/volume

of element i and σi is the conductivity of element i.

A.3 Results

Figure A.3 shows four plots of image amplitude vs baseline lung conductivity, σL, for each
algorithm. The different subplots correspond to non-homogenous Jacobians of differing
area. The two curves for the homogenous Jacobian algorithms (blue and black lines) are
the same in each of the subplots.

The results for ∆VEIT−Homo (black curve) are consistent with those of Kunst et al
[83]. Image amplitude for the same proportional volume change increases dramatically with
increasing baseline (starting/initial) lung conductivity; there is a large increase in image
amplitude as σL increases from 60 mS/m to 120 mS/m. Use of constant but physiologically
realistic values reduces the dependence only slightly (blue curve). The use of parameters
that match the simulation (red curve) results in significant decrease in the dependence on
σL. However the effect is strongly dependent on the area of the inhomogeneity of the recon-
struction mesh used to calculate the Jacobian. Figure 8.3(a), in which the inhomogeneous
area, Aσ

L̂
is 33%, shows a strong dependence on σL for σL < 120 mS/m but becomes
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(a) Aσ
L̂

= 33% (b) Aσ
L̂

= 51% (c) Aσ
L̂

= 74%

(d) Aσ
L̂

= 86%

Figure A.2: Meshes used for non-homogenous Jacobian construction. Dark elements are
the inhomogenous regions of the matched algorithm.

independent after. The most stable response occurs with Aσ
L̂

= 73% which is almost flat
throughout the range of σL. All three of the curves from Aσ

L̂
≥ 51% to Aσ

L̂
≤ 86% have

improved independence of σL. Figures A.4 and A.5 are 2D reconstructions for the two
homogenous algorithms. These images clearly show the increasing image amplitude as σL

increase from 5mS/m to 2000mS/m. Figures A.6 and A.7 are images from two of the
inhomogeneous algorithms. They show that the variability in image amplitude over the
range of σL is considerably reduced compared to the two homogenous models.

A.4 Conclusion

It is desired that a given proportional lung volume/conductivity change always produce the
same proportional signal. We show that this is not possible using a homogenous recon-
struction model. However analysis of the experimental data suggest a method to reduce
the magnitude of this variability. By incorporating an inhomogenous region in the centre
of the reconstruction mesh used to construct the Jacobian and setting the inhomogenous
to the matched conductivity of σL, the variability of the amplitude of the reconstructed
image can be reduced. Of course this is impossible in practice since we cannot know σL of
the patient. However, these results suggest method to reduce the variability if an estimate
of the background conductivity could be obtained perhaps through a crude two parameter
estimate of the static conductivity of the patient.

Our motivation for this study is to understand the causes of the results of Kunst et
al [83] in which different baseline lung conductivity levels introduced a dramatic difference
in the magnitude of EIT images of the same tidal volumes. We have developed a rough
simulation model of the effect of the assumption of homogeneous baseline lung conductivity
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Figure A.3: EIT difference image amplitude due to a small tidal volume as a function of
baseline lung conductivity (σL) (mS/m). Image amplitude is normalized to a value of 1.0
when lung conductivity matches expiration (120 mS/m). Black curve: images reconstructed
with homogeneous background, Blue curve: images reconstructed with lung region conduc-
tivity of 60 mS/m, Red curve: images reconstructed with lung region conductivity equal to
the simulation model value (on horizontal axis).

on EIT images, which is able to account for the magnitude of the observed effect. This
result suggests that the variability observed could possibly be eliminated by enhancements
to EIT image reconstruction algorithms. On the other hand, many other factors could
contribute to the observed effect, such as:

1. breathing pattern differences (abdominal versus thoracic breathing),

2. size of thorax,

3. nonlinear relationship of conductivity change to inspired volume,

4. movement of the chest with breathing,

5. changes in Cole-Cole parameters of lung tissue in patients with haemodialysis and
emphysema.

We postulate that the baseline conductivity effect is dominant, as most of the other
factors would appear to be significantly smaller than the observed variability. For example,
a simulation study of the movement of the chest with breathing showed changes due to
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Figure A.4: Reconstructions with homogenous Jacobian: σ0 = 1mS.

movement of approximately 20% [5]. Modifications in baseline conductivity may also explain
the variability in EIT images with changes in posture [66].

In conclusion, these results suggest that an important contribution to variability in the
amplitude of EIT difference images of the lungs is the assumption of homogeneity of the
background conductivity in difference image reconstruction; furthermore, modifications to
image reconstruction algorithms may be able to reduce the magnitude of the variability.
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Figure A.5: Reconstructions with physiologically realistic homogenous Jacobian: σ0 =
480mS.

Figure A.6: Reconstructions with non-homogenous Jacobian with Aσ
L̂

= 73%.
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Figure A.7: Reconstructions with non-homogenous Jacobian with Aσ
L̂

= 86%.
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[46] Eyüboglu BM, Brown BH, Barber DC, In vivo imaging of cardiac related impedance
changes, IEEE Eng Med Biol Mag, 1989, 8, 3945.
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