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Security is “freedom from risk or danger”, while computer and data secu-
rity is “the ability of a system to protect information and system resources
with respect to confidentiality and integrity”. Defining biometrics system
security is difficult, because of the ways biometric systems differ from tradi-
tional computer and cryptographic security [40]. Implicit in all definitions is
the concept of an attacker; however, biometrics should always be assumed to
operate in an (at least somewhat) hostile environment — after all, why should
one test identity if all can be trusted? The ability of a biometric system
to stand up to “zero-effort” attackers is measured by the false accept rate
(FAR). Attackers may then change makeup, facial hair and glasses, or abrade
and cut fingerprints in order to avoid being recognized; attackers prepared
to try harder may use spoofing . This chapter deals with attacks which are
not spoofing, but those that target processing within the biometric system.

We define biometric system security by its absence. Since biometrics is
“automated recognition of individuals based on their behavioral and biolog-
ical characteristics”, a vulnerability in biometric security results in incorrect
recognition or failure to correctly recognize individuals. This definition in-
cludes methods to falsely accept an individual (template regeneration), im-
pact overall system performance (denial of service), or to attack another
system via leaked data (identity theft). Vulnerabilities are measured against
explicit or implicit design claims.

1 Biometrics Security Overview

The key design challenge for biometric algorithms is that people’s biometric
features vary, both with changes in features themselves (cuts to fingers, facial
wrinkles with age) and with the presentation and sensor environment (mois-
ture on fingerprints, illumination and rotation of a presented iris). A biometric
algorithm must reject “natural” and environmental changes to samples, while
focusing on those which differ between individuals. This chapter concentrates
on system vulnerabilities which are a consequence of this core biometric chal-
lenge. Since biometric systems are implemented on server computers, they are
vulnerable to all cryptographic, virus and other attacks which plague modern
computer systems [15]; we point out these issues, but do not cover them in
detail.
Maltoni et al. [27], classify biometric system vulnerabilities as follows:



e Circumvention is an attack which gains access to the protected resources
by a technical measure to subvert the biometric system. Such an attack
may subvert the underlying computer systems (overriding matcher de-
cisions, or replacing database templates) or may involve replay of valid
data.

o Covert acquisition (contamination) is use of biometric information cap-
tured from legitimate users to access a system. Examples are spoofing via
capture and playback of voice passwords, and lifting latent fingerprints
to construct a mold. This category can also be considered to cover regen-
erated biometric images (Sec. 3). For example, a fingerprint image can
be regenerated from the template stored in a database (and these data
can be captured covertly [16]). Covert acquisition is worrisome for cross-
application usage (eg. biometric records from a ticket for an amusement
park used to access bank accounts).

e Collusion and Coercion are biometric system vulnerabilities from legit-
imate system users. The distinction is that, in collusion, the legitimate
user is a willing (perhaps by bribe), while the coerced user is not (through
a physical threat or blackmail). Such vulnerabilities bypass the computer
security system, since the biometric features are legitimate. It may be
possible to mitigate such threats by automatically detecting the unusual
pattern of activity. Such attacks can be mounted from both administrator
and user accounts on such a system; attacks from user accounts would
first need to perform a privilege escalation attack [15].

e Denial of Service (DoS) is an attack which prevents legitimate use of
the biometric system. This can take the form of slowing or stopping the
system (via an overload of network requests) or by degrading perfor-
mance. An example of the latter would be enrolling many noisy samples
which can make a system automatically decrease its decision threshold
and thus increase the FAR. The goal of DoS is often to force a fall back
to another system (such as operator override) which can be more easily
circumvented, but DoS may be used for extortion or political reasons.

e Repudiation is the case where the attacker denies accessing the system.
A corrupt user may deny her actions by claiming that their biometric
data were “stolen” (by covert acquisition or circumvention) or that an
illegitimate user was able to perform the actions due to the biometric false
accept. Interestingly, biometric systems are often presented as a solution
to the repudiation problem in the computer security literature [15]. One
approach to help prevent repudiation would be to store presented images
for later forensic analysis, however, this need must be balanced against
user privacy concerns [7].

Another class of biometric vulnerabilities are those faced by the system
user, which impact the user’s privacy and can lead to identity theft or system
compromise [33].



e Biometrics are not secret: Technology is readily available to image faces,
fingerprints, irises and make recordings of voice or signature — without
subject consent or knowledge [40][23]. From this perspective, biometrics
are not secret. On the other hand, from a cryptography [6] or privacy [7]
perspective, biometric data are often considered to be private and secret.
This distinction is important, as our understanding of computer and net-
work security is centered around the use of secret codes and tokens [15].
For this reason, cryptographic protocols which are not robust against
disclosure of biometric samples are flawed. One proposed solution is re-
vocable biometrics (Sec 4.1), although the vulnerability of such systems
is not well understood.

e Biometrics cannot be revoked: A biometric feature is permanently associ-
ated with an individual, and a compromised biometric sample will com-
promise all applications that use that biometric. Such compromise may
prevent a user from re-enrolling [40]. Note, however, that this concern
implies that biometrics are secret, contradicting the previous considera-
tion.

e Biometrics have secondary uses: If an individual uses the same biomet-
ric feature in multiple applications, then the user can be tracked if the
organizations share biometric data. Another aspect to this problem is sec-
ondary use of ID cards. For example, a driver’s license is designed with
the requirements to prove identity and driver certification to a police of-
ficer, but it is used to prove age, name and even citizenship. Similarly,
biometric applications will be designed with a narrow range of security
concerns, but may be used in very different threat environments.

Biometric systems form part of larger security systems and their risks
and vulnerabilities must be understood in the context of the larger system
requirements. An excellent review of the security of biometric authentication
systems is [23]. Each assurance level from “passwords and PINs” to “Hard
crypto token” is analyzed to determine which biometric devices are suitable.

2  Vulnerabilities in Biometric Systems

In order to classify biometric security vulnerabilities, it is typical to study
each subsystem and interconnection in a system diagram (Fig. 1). Early work
is presented in [34], with later contributions comming from [9][44][46]. We
consider each system module in turn:

2.1 Identity Claim (A):

Identity claims are not biometric properties, but form an essential part of
most biometric security systems An example of an exception is in verifying a
season ticket holder; the person’s identity doesn’t matter, and long as he is
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Fig. 1. Biometric System Block Diagram (from [24]). Steps A — H are analyzed in
sec. 2. Each presented sample (B) is acquired by a sensor (C) processed via segmen-
tation (D) and feature extraction (D) algorithms. If available, a sample quality (E)
assessment algorithm is used to indicate a need to reacquire the sample. Biometric
features are encoded into a template, which is stored (H) in a database, on an iden-
tity card or in secure hardware. For biometric encryption (Sec. 4.2) systems, a code
or token is combined with the biometric features in the template. During enroll-
ment, biometric samples are linked to a claimed identity (A), and during subsequent
verification or identification, samples are tested against enrolled samples, using a
matching algorithm (1) and an identity decision (J) is made, either automatically,
or by a human agent reviewing biometric system outputs.

the one who paid. Identity claims are primarily based on links to government
issued identity documents, and are thus vulnerable to all forms of fraud of
such documents. This is a problem even for highly secure documents, such as
passports, which are often issued on the basis of less secure “breeder docu-
ments” [37] such as birth certificates issued by local government, hospital or
even religious authorities.

2.2 Presentation (B):

An attacks on the biometric sensor provides false biometric sample into the
system. Such attacks are designed to either avoid detection (false negative)
or masquerade as another (false positive). The latter attack is typically called
spoofing. Clearly, avoiding detection is easier than masquerading, since fea-



tures simply need to be changed enough to confuse the segmentation or fea-
ture extraction module. Changing makeup, facial hair and glasses or abrading
or wetting fingers is often successful; although recent progress in biomet-
ric algorithms has dramatically reduced the effectiveness of such techniques.
Knowledge of the details of algorithms can make such attacks easier; for ex-
ample, rotating the head will confuse many iris algorithms that do not expect
image rotation of more than a few degrees.

2.3 Sensor (C):

Attacks on the biometric sensor include any technique which subverts or
replaces the sensor hardware. In some cases subverting the sensor allows
complete bypassing of the biometric system. For example, in some biometric
door locks, the sensor module includes the entire biometric system including
a Wiegand output or relay output to activate the solenoid in a door lock. Sub-
verting such a system may be as simple as physically bypassing the biometric
system.

In many cases, an attack on the sensor would take the form of a replay.
The connection between the biometric sensor and the biometric system is
subverted to allow input of arbitrary signals, and images from legitimate users
are input into the system. In order to obtain the signals, several strategies
may be employed. Eavesdropping requires hiding the recording instruments
and wiring of the sensor. For biometrics using contactless smart cards such
eavesdropping becomes more feasible (see [16]). Another approach is to record
signals from a sensor under the control of the attacker.

2.4 Segmentation (D):

Biometric segmentation extracts the image or signal of interest from the
background, and a failure to segment means the system does not detect the
presence of the appropriate biometric feature. Segmentation attacks may be
used to escape surveillance or to generate a denial of service (DoS) attack. For
example, consider a surveillance system in which the face detection algorithm
assumes faces have two eyes. By covering an eye, a person is not detected in
the biometric system. Another example would be where parts of a fingerprint
core are damaged to cause a particular algorithm to mis-locate the core.
Since the damaged area is small, it would not arouse the suspicion of an
agent reviewing the images.

2.5 Feature Extraction (E):

Attacks of the feature extraction module can be userd either to escape de-
tection or to create impostors. The first category is similar to those of Sec.
2.4. Knowledge of the feature extraction algorithms can be used to design
special features in presented biometric samples to cause incorrect features to
be calculated.



Characterizing feature extraction algorithms: In order to implement such an
attack, it is necessary to discover the characteristics of the feature extraction
algorithm. Are facial hair or glasses excluded (face recognition)? How are
the eyelid/eyelash regions detected and cropped (iris recognition)? Most cur-
rent high performing biometric recognition algorithms are proprietary, but
are often based on published scientific literature, which may provide such
information. Another approach is to obtain copies of the biometric software
and conduct offline experiments. Biometric algorithms are likely susceptible
to reverse engineering techniques. It would appear possible to automatically
conduct such reverse engineering, but we are not aware of any published
results.

Biometric “zo0”: There is great variability between individuals in terms of
the accuracy and reliability of their calculated biometric features. Dodding-
ton et al. developed a taxonomy for different user classes [14]. Sheep are the
dominant type, and biometric systems perform well for them. Goats are dif-
ficult to recognize. They adversely affect system performance, accounting for
a significant fraction of the FRR. Lambs are easy to imitate — a randomly
chosen individual is likely to be identified as a lamb. They account for a sig-
nificant fraction of the FAR. Wolves are more likely to be identified as other
individuals, and account for a large fraction of the FAR. The existence of
lambs and wolves represents a vulnerability to biometric systems. If wolves
can be identified, they may be recruited to defeat systems; similarly, if lambs
can be identified in the legitimate user population, either through correlation
or via directly observable characteristics, they may be targets of attacks.

2.6 Quality Control (F):

Evaluation of biometric sample quality is important to ensure low biometric
error rates. Most systems, especially during enrollment, verify the quality
(Chap. ?77?) of input images. Biometric quality assessment is an active area of
research, and current approaches are almost exclusively algorithm specific. If
the details of the quality assessment module can be measured (either though
trial and error or through off-line analysis) it may be possible to create specific
image features which force classification in either category. Quality assesment
algorithms often look for high frequency noise content in images as evidence
of poor quality, while line structures in images indicate higher quality. Attacks
on the quality control algorithm are of two types: classifying a good image
as poor, and classifying a low quality image as good. In the former case, the
goal of the attack would be to evade detection, since poor images will not
be used for matching. In the latter case, low quality images will be enrolled.
Such images may force internal match thresholds to be lowered (either for
that image, or in some cases, globally). Such a scenario will create “lambs”
in the database and increase system FAR.



2.7 Template Creation (G):

Biometric features are encoded into a template, a (proprietary or standards-
conforming) compact digital representation of the essential features of the
sample image. One common claim is that, since template creation is a one-
way function, it is impossible or infeasible to regenerate the image from the
templates [20]. Recent research has shown regeneration of biometric samples
from images to be feasible (see Sec. 3).

Interoperability: Government applications of biometrics need to be concerned
with interoperability. Biometric samples enrolled on one system must be us-
able on other vendor systems if a government is to allow cross-jurisdictional
use, and to avoid vendor lock-in. However, recent work on interoperability has
revealed it to be difficult, even when all vendors are conform to standards.
Tests of the International Labour Organization seafarer’s ID card [22] showed
incompatibilities with the use of the minutiae type “other” and incompatible
ways to quantize minutiae angles. Such interoperability difficulties present
biometric system vulnerabilities, which could be used to increase FRR or for
a DoS attack.

2.8 Data Storage (H):

Enrolled biometric templates are stored for future verification or identifi-
cation. Vulnerabilities of template storage concern modifying the storage
(adding, modifying or removing templates), copying template data for sec-
ondary uses (identity theft), or modifying the identity to which the biometric
is assigned.

Storage may take many forms, including databases (local or distributed),
on ID documents (into a smart card [16] or 2D barcode [22]) or on electronic
devices (a hardened token [23], laptop, mobile telephone, or door access mod-
ule). Template data may be in plaintext, encrypted or digitally signed. In
many government applications, it may be necessary to provide public infor-
mation on the template format and encryption used, in order to reassure
citizens about the nature of the data stored on their ID cards, but this may
also increase the possibility of identity theft. Vulnerabilities of template stor-
age are primarily those of the underlying computer infrastructure, and are
not dealt with in detail here.

Template transmission: The transmission medium between the template stor-
age and matcher is similarly vulnerable to the template storage. In many
cases, attacks against template data transmission may be easier than against
the template storage. This is especially the case for passive eavesdropping
and recording of data in transit for wireless transmission (such as contactless
ID cards). Encrypted transmission is essential, but may still be vulnerable to
key discovery [16].



2.9 Matching (I):

A biometric matcher calculates a similarity score related to the likelihood
that two biometrics samples are from the same individual. Attacks against
the matcher are somewhat obscure, but may be possible in certain cases. For
biometric fusion systems (Chap. ?77?) extreme scores in one biometric modality
may override the inputs from other modalities. Biometric matchers which are
based on Fisher discriminant strategies calculate global thresholds based on
the between class covariance, which may be modified by enrolling specifically
crafted biometric samples.

2.10 Decision (J):

Biometric decisions are often reviewed by a human operator (such as for most
government applications). Such operators are well known to be susceptible to
fatigue and boredom. One of the goals of DoS attacks can be to force operators
to abandon a biometric system, or to mistrust its output (by causing it to
produce a sufficiently large number of errors) [15].

2.11 Attack Trees

Complex systems are exposed to multiple possible vulnerabilities, and the
ability to exploit a given vulnerability is dependent on a chain of require-
ments. Vulnerabilities vary in severity, and may be protected against by var-
ious countermeasures, such as: supervision of enrollment or verification, live-
ness detection, template anonymization, cryptographic storage and transport,
and traditional network security measures. Countermeasures vary in matu-
rity, cost, and cost-effectiveness. In order to analyze such a complex scenario,
the factors may be organized into attack trees. This analysis methodology
was developed by Schneier [39] and formalized by Moore et al. [29]. In [39],
the example attack “Open Safe”, is analyzed to occur due to “Pick Lock”,
“Learn Combo”, “Cut Open Safe” or “Install Improperly”. “Learn Combo”
may, in turn, occur due to “Favesdrop”, “Bribe” or other reasons, which
in turn depend on further factors. The requirements for each factor can be
assessed (Eavesdropping requires a technical skill, while Bribing requires an
amount of money). Attack trees may be analyzed by assigning each node
with a feasibility, the requirement for special equipment, or cost.

Attack tree techniques for biometric system security have been developed
by Cukic and Barlow [9]. Figure 2 shows a fraction of the attack tree of [9]
for image regeneration from templates [46].

3 Biometric Template Security

Biometric templates carry the most important biometric information, and
thus present an important concern for privacy and security of systems. The
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Fig. 2. Attack tree fraction adapted from [9] (dotted blocks represent removed tree
portions) to implement the template regeneration attack of [46]. AND/OR nodes
indicate that all/ one of the sub-blocks are/is required, Further analysis of the attack
tree may be performed by assigning each block a parameter (feasibility, required
technical skill, expense) and calculating the cost for the overall attack.

basic concern is that templates may be used to spoof the owner of the doc-
ument, or for identity theft to another system. Biometric algorithm vendors
have largely claimed that it is impossible or infeasible to regenerate the image
from the templates [20]; thus biometric templates are sometimes considered to
be effectively non-identifiable data, much like a password hash. These claims
are supported by: 1) the template records features (such as fingerprint minu-
tiae) and not image primitives, 2) templates are typically calculated using
only a small portion of the image, 3) templates are small — a few hundred
bytes — much smaller than the sample image, and 4) the proprietary nature
of the storage format makes templates infeasible to “hack”. In this section,
we consider two pathways to regenerate images from templates: 1) from the
template directly, based on a knowledge of the features, and 2) from match
score values from a biometric algorithm.

3.1 Image Regeneration from Templates

The goal of image regeneration from a biometric template is to compute an
image which best matches the feature values in the template. In order to
regenerate images in this way, it is necessary for templates to be available in
unencrypted form. Thus, encryption of template data storage does impede
this vulnerability; however, templates must be available in unencrypted form
to perform matching, and are vulnerable at that point.

Published work on image regeneration from templates is for fingerprints,
for the reason that regeneration is trivial for most iris and face recognition
templates, in which the template features are based on subspace image trans-
forms. If feature vector, y, is computed from an image, X using a transform
that can be approximated by y = Hx for a convolution matrix, H, then a re-
constructed image, X, can be computed from % = H'y using a pseudo-inverse
Hf.



Hill [19] developed an ad-hoc approach to calculate an image from the
template of an unspecified fingerprint system vendor. Software was designed
to create line pattern images which had a sufficient resemblance to the un-
derlying ridge pattern to be verified by the match software. This work also
devised a simple scheme to predict the shape (class) of the fingerprint using
the minutiae template. The algorithm iterated over each orientation, core
and delta position keeping the image with the best match score. It is worth
noting the line patterns do not visually resemble a fingerprint, although these
images could be easily improved manually or automatically.

More recently, Ross et al. [36] have demonstrated a technique to recon-
struct fingerprint images from a minutiae description, without using match
score values. First, the orientation map and the class are inferred based on
analysis of local minutiae triplets and a nearest neighbor classifier, trained
with feature exemplars. Then, Gabor-like filters were used to reconstruct fin-
gerprints using the orientation information. Correct classification of finger-
print class was obtained in 82% of cases, and regenerated images resembled
the overall structure of the original, although the images were visually clearly
synthetic and had gaps in regions which lacked minutiae. Another valuable
contribution of this work is calculation of the probability density fields of
minutiae; such information could be used to attack fingerprint based biomet-
ric encryption schemes (Sec. 4.2).

3.2 Image Regeneration from Match Scores

Image regeneration from match score values does not require access to the
template, and, therefore, template encryption is not a countermeasure. In-
stead, the requirements are: the ability to present arbitrary images for match-
ing against a target, and access to calculated match scores. The goal is to: 1)
determine an image which matches against the target for the specific biomet-
ric algorithm, and 2) determine a good estimate of the original image. Clearly,
if one can test arbitrary images, one could mount a brute force attack. Given
a biometric database of sufficient quality and variety, it should be possible to
attain the first goal in approximately 1/FAR attempts. A brute-force attack
would be guaranteed to succeed in the second goal, but the size of image
space is extremely large.

Brute force searches would only be necessary if biometric image space
were random, and nothing could be learned from the output of previous
tests. Soutar et al. [41] first proposed the possibility of “hill-climbing” in
order to practically regenerate images from match score data. A hill-climbing
algorithm functions as follows:

1. Initial image selection: Choose an initial image estimate (IM). Typically,
a sample of initial biometric patterns are tested and the one with the
largest match score, MS, is selected.

2. Iterative estimate improvement:



(a) Modify IM (to get IMes:) in a random, but biometrically reasonable
way (details below).

(b) Calculate MSiest for IM sest.

(¢) If MSiesr > MS, set IM = IMyesy and MS = MSyes.

(d) End iterations if MS is no longer increasing.

The only difficulty to a practical implementation of this algorithm is to
implement “biometrically reasonable” modifications. For face images, Adler
[4] added a small factor times a PCA (eigenface) component to the face
image. For fingerprint minutiae, Uludag and Jain [46] made modifications
to perturb, add, replace, or delete an existing minutiae point at each step.
The key constraint is that such modifications attempt to maintain “biometric
feasibility” in the search space. Other image modifications, such as changing
random pixels in the image, do not converge under hill-climbing.
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Fig. 3. Regenerated images using hill climbing techniques. A — B: Regenerated
fingerprint minutiae (from [46]). The target fingerprint with labeled minutiae (A),
and regenerated minutiae positions (B). C — E: Regenerated face images (from [4]).
The target face image (C); the initial selected image for hill climbing (D), and
regenerated face image (E).

In fact, “hill-climbing” algorithms are simply one type of multi-dimensional
optimization algorithm. Other methods for unconstrained minimization (or
maximization) such as the Nelder-Mead simplex perform equally or better
than hill-climbing (unpublished observations).

In order to protect against regeneration of biometric images, Soutar et al. [41]
suggested that match score output be quantized to a limited set of levels. The
idea is that small image modifications are unlikely to push the MS up by one
quantum, so that the hill-climbing algorithm will not see the effect of its
changes. This recommendation is maintained in the BioAPI specification [5].
However, by an appropriate modification of the algorithm, Adler showed that
hill-climbing could still function [3]. Each hill-climbing iteration is applied to
a quadrant of IM. Before each calculation, noise is added to the image in the
opposite quadrant, in order to force the match score to a value just below the
quantization threshold. This means that the quantized match score is brought
into a range where it provides useful information. Images were successfully
regenerated for quantization levels equal to a 10% change in FAR.



These results suggest that biometric images can generally be regenerated
if: 1) arbitrary images can be input into the biometric system, and 2) raw
or quantized match score values are output. The images calculated are of
sufficient quality to masquerade to the algorithm as the target, and give a
good visual impression of the biometric characteristics. In order to prevent
this attack, it is necessary to either limit image input, or to provide only
Match/Non-match decisions.

4 Encoded Biometric Schemes

Classical biometric systems require access to enrolled templates in uncoded
form. This differs from traditional computer security systems, where a raw
password need never be stored. Instead, a cryptographic hash (one-way func-
tion) of the password is stored, and each new test password is hashed and
compared to the stored version. Since such cryptographic techniques provide
important protections, there is great incentive to develop analogous methods
for biometric systems. Encoded encryption techniques are designed to avoid
these problems by embedding the secret code into the template, in a way
that can be decrypted only with an image of the enrolled individual [11][42].
Since the code is bound to the biometric template, an attacker should not
be able to determine either the enrolled biometric image or secret code, even
if they have access to the biometric software and hardware. Such technology
would enable enhanced privacy protection, primarily against secondary use
of biometric images [7][45]. It would also reduce the vulnerability of network
protocols based on biometrics [23]. Biometrically enabled computers and mo-
bile phones currently must hide passwords and keys in software; biometric
encryption would protect against this vulnerability. Another interesting ap-
plication is for control of access to digital content with the aim of preventing
copyright infringement. Biometrically encoded digital documents are subject
to attacks, especially since both the documents and the software to access
them will be widely distributed [21]. Currently, to the best of our knowledge,
biometric encryption systems are not widely deployed; research systems still
suffer from high error rates and slow processing speed. However, such systems
offer some compelling benefits for many applications, and research is active
(eg. [47] [18] [26] [33] [38]).

4.1 Revocable Biometrics

Revocable biometrics are encoded with a distortion scheme that varies for
each application. The concept was developed by Ratha et al. [35] (and clari-
fied in [34][33]), to address the privacy and security concerns that biometrics
are not secret and cannot be canceled. During enrollment, the input biomet-
ric image is subjected to a known distortion (Fig. 4) controlled by a set of
distortion parameters. The distorted biometric sample can then be processed



with standard biometrics algorithms, which are unaware that the features
presented to them are distorted. During matching, the live biometric sample
must be distorted in exactly the same way, otherwise it cannot match the
enrolled sample. This distortion must also satisfy the constraint that multi-
ple different distortion profiles cannot match. Thus, the revocable nature of
this scheme is provided by the distortion, in that it is not the user’s “actual”
biometric which is stored, but simply one of an arbitrarily large number of
possible permutations. One key advantage of this scheme is that it is inde-
pendent of the biometrics matching algorithm.

Fig. 4. Distortions of images to implement revocable biometrics. Left: a distorted
face image centered at the eyes (from [34]), and Right: a fingerprint minutiae set
distorted spatially and in minutiae angle (from [33]).

For faces, the distortion takes place in the raw image space [34], since face
recognition feature sets are not standardized. This places tight constraints
on the nature of the distortion, since severely distorted faces will not be
recognized and properly encoded by the algorithms (note that the face image
in Fig. 4 was not part of an implemented system). A different approach is
taken by Savvides et al. [38] in which the revocable distortion is tied to a
face recognition algorithm based on correlation filters. Enrolled and test face
images are distorted with a random kernel calculated from a key to generate
an encrypted correlation filter. Since the same convolution kernel is present
for both images, its effect is mathematically canceled in the correlation filter.
This scheme is somewhat similar to the biometric encryption approach of
Soutar et al. [42].

A theoretical approach to revocable biometrics uses shielding functions
[26], to allow a verifier to check the authenticity of a prover (user wanting
to be verified) without learning any biometric information, using proposed
d-contracting and e-revealing functions. The proposed system was based on
simple Gaussian noise models and not tested with an actual biometric sys-
tem. Unfortunately, it is unclear how practical functions can be found which
account for the inherent biometric feature variability.

The cancellable fingerprint templates of [33] use the minutiae rather than
the raw image, since this allows both minutiae position and angle to be
permuted (increasing the degrees of freedom of the transformation), and since
distortion will interfere with the feature extraction process. The distortion is
modeled on the electric field distribution for random charges. Results show



a small impact on biometric errors (5% increase in FRR) over undistorted
features.

While revocable biometrics represent a promising approach to address
biometric security and privacy vulnerabilities, we are unaware of security
analyses of such schemes, so the security strength of such a transformation
is unclear. More significantly, it appears trivial to “undistort” the template
given knowledge of the distortion key. Since such keys will presumably not be
much better protected than current passwords and PINs, in many application
scenarios there is no security advantage of such revocable schemes over an
encrypted traditional template.

4.2 Biometrics Encryption

Biometric encryption seeks to use the biometric sample as a key to conduct
cryptographic protocols. Normally the biometric template is bound to a secret
key which is designed to only be recoverable with a biometric image from the
enrolled individual. The primary difficulty in designing biometric encryption
systems is the variability in the biometric image between measurements [13].
This means that the presented biometric image cannot itself be treated as a
code, since it varies with each presentation. For biometric encryption systems,
this variability becomes especially difficult. An algorithm must be designed
which allows an image from the enrolled person, with significant differences
from the original, to decode the complete secret code. At the same time, an
image from another person — which may only be slightly more different from
the enrolled image — must not only not decode the secret, it must not be
allowed to decode (or “leak”) any information at all.

The earliest biometric encryption system was proposed by Soutar [42][43].
Enrollment requires several sample images and a secret code, and creates a
template binding the code to the images. During enrollment, an average image
fo is obtained (with 2D Fourier transform Fp) from multiple samples of the
input fingerprint, after suitable alignment. In order to encode the secret, a
random code is chosen and encoded as a phase-only function Ry. A Wiener
inverse filter is calculated, Hy = (F§Ry)/ (F§Fo+ N?), where N? is the
image noise power. As N increases, an image more dissimilar from the one
enrolled can decrypt the code, at the expense of a smaller secret (in bits). In
order for biometric encryption to allow for variability in the input image, the
secret code must be robustly encoded, using an error correcting code (ECC);
[42] uses Hamming distances and majority decision. During key release, a
new image, f1, is acquired. This image is deconvolved with the filter Hy to
calculate Ry = sign(imag(HyF1)), an estimate of Ry. If F is from the same
individual as Fy, then R; should be a good estimate of Ry; but since Ry # Ry,
some phase elements will be incorrect. However, if R; is sufficiently close, the
ECC should allow the correct value of the secret to be obtained.

A somewhat similar scheme was proposed for voice passwords by Monrose
et al. [28], in which a vector of features is calculated. From this vector each



value is used to select a fraction of the key bits from a table. A correct feature
value during key release will select correct key bits while an incorrect value
will select a table entry with random data. For features determined to be less
reliable, correct key bits are put in all table positions. Reported error rates
were FRR = 20%; however, it would seem that such a scheme could make
better use of an ECC, since a single feature error will prevent code release.

Hao et al. recently proposed a biometric encryption scheme for Iris images
based on similar techniques [18]. During enrollment, an encoded key is XORed
with the 2048 bit iris code to produce an encrypted code. Variability in the
iris is due to background random errors, and to burst errors from undetected
eyelashes and specular reflections. The key is encoded with a Hadamard code
to protect against background errors, and with a Reed-Solomon code to pro-
tect against burst errors. During key release, the encrypted code is XORed
with a new iris code sample, and Hadamard and Reed-Solomon decoding
are used to correct for errors in the key. Rotation of the iris is handled by
iteratively shifting the observed iris codes and attempting decoding. Results
show FRR = 0.47% for a key length of 140 bits. In terms of security, the
authors note that iris images have significant spatial correlations, which will
be preserved in such a linear cryptographic scheme.
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Fig. 5. Schematic diagram of the biometric encryption scheme of [8]. Left: a raw
fingerprint image is enrolled. Middle: minutiae points (circles) are used to encode
the value of a polynomial representing the secret. Right: chaff points (squares),
sufficiently far from minutiae, are used to encode random values of the polynomial.

More recent work in biometric encryption has been done in the cryptog-
raphy community, with much based on the fuzzy vault construction of Juels
and Sudan [25]. This scheme allows a cryptographic encoding with a variable
number of un-ordered data points, which makes it suitable for fingerprint
minutiae. This approach has been pursued by Dodis et al. [13], who develop
the concept of a fuzzy extractor which extracts uniformly random and error-
tolerant bits from its input, and a secure sketch which produces public output
that does not reveal the input. Boyen et al. [6] further develop this scheme
for secure remote authentication. Unfortunately, neither work clarifies how
to use these frameworks in a practical biometric application. Not all bio-
metric encryption schemes use a key; for example, in [10][11], the biometric



image forms a unique key, although the results of Linnartz et al. [26] suggest
encryption schemes based on the biometric only are inherently vulnerable.

Based on [25], Clancy et al. [8] designed a fingerprint algorithm which en-
codes the secret as the coefficients of a Galois field polynomial (Fig. 5). After
alignment, minutiae points are encoded as pairs (z;, y;) where z; is a minutiae
point, and y; is a point on the polynomial. Additionally, numerous “chaff”
points are encoded, in which the value of y; is random. During key release,
the minutiae of the new fingerprint image are calculated, and the points x;
closest to the minutiae are chosen. The y; corresponding to these points are
used to estimate the polynomial, using a Reed-Solomon ECC framework. If
enough legitimate points are identified (equal to the number selected at vault
design), the correct polynomial will be obtained and the correct secret de-
crypted. An interesting generalization of this scheme is given by the “secure
sketches” of [13].

Little work has been done to attack biometric encryption schemes, and
their security is thus mostly unknown. In their analysis, Uludag et al. [47]
note that most proposed biometric encryption systems only appear to ac-
count for a “limited amount of variability in the biometric representation.”
In order to quantify this notion, experiments were conducted to estimate the
variability in fingerprint minutiae. Matched fingerprint pairs were imaged and
minutiae locations identified by a human expert, which was assumed to give
an upper bound on system performance. Using these data, the algorithm of
[8] was analyzed to estimate the ROC curve during key generation and key
release, with an equal error rate of approximately 6.3%. This suggests that
biometric encryption systems can be attacked simply via the FAR, by pre-
senting biometric samples from a representative population. A cryptographic
attack of biometric encryption was developed by Adler [2], based on using
any “leaked” information to attempt a “hill-climbing” of the biometric tem-
plate, using the quantized MS hill-climbing algorithm. This approach was
used to reconstruct a face image from a biometric encryption scheme based
on [42][43].

Based on the success of these early attacks, we feel that biometric en-
cryption schemes have significant remaining vulnerabilities. Although some
schemes offer security proofs (ie. [25][13]) these depend on invalid models of
the biometric data. Biometric data inherently has strong internal correlations,
many of which cover the entire image. Another important area for attack is
the requirement for segmentation and alignment of images before comparison
can take place. In a practical system, such as that of Uludag et al. [48], care-
fully selected data are made available to permit alignment with a minimum
of “leaked information”. Thus, we feel that, in general, current biometric
encryption schemes have unknown security value.



4.3 Measures of biometric information content

The information content of biometric samples (or biometric feature entropy)
is related to many issues in biometric technology. For example, one of the
most common biometric questions is that of uniqueness — “are fingerprints
unique?” [31] Such a measure is important for biometric system vulnerabili-
ties, especially as a measure of the strength of cryptosystems and for privacy
measures. It also is relevant for applications such as biometric fusion, where
one would like to quantify the biometric information in each system individ-
ually, and the potential gain from fusing the systems.

Several approaches have been taken to answer this question. Wayman [49]
introduced a statistical approach to measure the separability of Gaussian fea-
ture distributions using a “cotton ball model”. Daugman [12] developed the
“discrimination entropy” to measure the information content of iris images.
This value has the advantage that it is calculated directly from the match
score distributions, but it is unclear how it relates to traditional measures of
entropy. Golfarelli et al. [17] showed that the most commonly used feature
representations of hand geometry and face biometrics have a limited num-
ber of distinguishable patterns, on the order of 10° and 103, respectively, as
measured by a theoretical estimate of the equal error rate. Penev et al. [32]
determined that the dimentionalityh of the PCA subspace necessary to char-
acterize the identity information in faces is in the range 400-700. Biometric
encryption studies calculate 46 bits in spoken passwords [28], and 69 bits in
fingerprints [8]. Adler et al. [1] developed a measure of biometric informa-
tion in terms of the relative entropy D(p|lq) between the population (inter-
class) feature distribution ¢ and the individual (intra-class) distribution p,
and calculated an information content for various face recognition feature
representations to be between 37 and 45 bits. In this work, the term biomet-
ric information is defined as the “decrease in uncertainty about the identity
of a person due to a set of biometric measurements”. Biometric information
content is still an open field, with no consensus on techniques used. All cited
work measures the information content of a given feature representation, and
not that of the biometric sample itself.

5 Discussion

Our understanding of biometrics system security is in its early stages — much
more so than many aspects of biometric recognition algorithms. This is per-
haps to be expected; people needed to be convinced the technology would
work at all, before it was worth trying to understand when it failed.

It is also worth noting that many privacy issues associated with biometric
systems are closely related to the security vulnerabilities. Thus, according to
Cavoukian [7],

The threat to privacy arises not from the positive identification
that biometrics provide best, but the ability of third parties to access



this data in identifiable form and link it to other information, result-
ing in secondary uses of the information, without the consent of the
data subject.

Based on this understanding, a biometric requirement list was developed to
include: original biometric image must be destroyed, biometrics must be en-
crypted, biometrics used only for verification, fingerprint image cannot be
reconstructed, and finger cannot be used as a unique ID. The other signifi-
cant privacy concern is that “we only have 10 fingers” — biometric data loss
is catastrophic in the sense that it cannot be replaced [40]. While there are
many promising developments that address these issues, such as biometric
encryption (Sec. 4.2), revocable biometrics (Sec. 4.1), or work to de-identify
images [30], unfortunately, our analysis in this chapter suggests that currently
mature biometric technology is unable to properly address these privacy con-
cerns in the way they are stated.

At the same time, biometric systems are being used in many scenarios
with high security value. Vulnerabilities and attack scenarios have been care-
fully considered and well thought out recommendations are available (eg.
[23]). Recent work in standards bodies has given much thought to security
standards for biometrics (Chap. ??). In summary, biometrics system security
is challenged by many vulnerabilities, from the biometrics system, the com-
puter infrastructure which supports it, and the users it identifies. However,
biometrics can also provide (with careful use) the identity assurance that is
foundational to systems security.
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