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Abstract. Magnetic induction tomography (MIT) is a new technique to image the 

electromagnetic properties of an object by mutual induction data of pairs of excitation 

and sensing coils.   MIT has potential in visualization of metal flow for continuous 

casting mainly because of its potential to deliver images with high temporal resolution.   

A dynamic magnetic induction imaging technique is developed with the aid of a novel 

direct temporal imaging method. This paper proposes a new approach, which directly 

accounts for correlations between images in successive data frames. The forward problem 

in MIT is a general eddy current problem and is solved by an edge finite element method. 

The inverse problem is treated as a dynamical inverse problem, and the conductivity 

distribution is estimated with the aid of the direct temporal imaging method. 

Experimental tests illustrate the performances in the sense of spatio-temporal resolution 

using the real metal flow in continuous casting.  Results are compared with 

reconstruction algorithms based on independent frames. 

Index Terms: Electro-magnetic induction tomography, conductivity mapping, inverse 

problem, dynamic imaging, direct temporal imaging. 

 

 



 

1. INTRODUCTION 

Magnetic induction tomography (MIT) is a new modality for medical, industrial and 

geophysical imaging [1], [3], [10]. The measurement data are the mutual inductances 

between pairs of coils. The contact-less nature of this type of tomography makes the 

technique of interest for non-invasive and non-intrusive applications. The technique 

operates as follows. Passing an alternating current through the excitation coil(s) produces 

a primary magnetic field. When this magnetic field interacts with either a conductive 

and/or a magnetic object, a secondary magnetic field is created. The sensing coils can 

then detect this secondary field. As the secondary field depends on the materials present, 

the measured induced voltage is a non-linear function of their electrical properties, e.g., 

conductivity [11] and permeability [12].  

MIT has a potential to be used in many industrial applications [1]. This paper 

concentrates on imaging the molten steel flow, especially the on-line flow visualization 

approach. 

Online flow visualization often requires very fast tomography data. Among non-invasive 

imaging techniques, MIT has a much higher temporal resolution than others such as CT, 

etc. This makes MIT one of the best candidate, which is capable of long term monitering 

of fast-varying, dynamic flow.  However, the spatial resolution of MIT is low due to facts 

as: the measurement being effectively insensitive to deep internal conductivity changes; 

MIT reconstruction is severely ill-conditioned.  In order to solve the ill-conditionness of 

MIT, a priori knowledge of true images are necessary for regularization techniques.  a 



priori knowledge is interpreted as a regularized matrix which represents the underlying 

image probability distribution in Bayesian’s theory . 

Static MIT imaging techniques uses a single set of measurements for one image. Even if 

the measurements are fast compared to the changes in material properties, the static 

methods do not take into account the correlation between images of different frames. 

In order to enhance the temporal resolution a novel dynamic imaging techniques have 

been proposed. Most previous work in similar applications is using Kalman filters [4], [5] 

for situations where the conductivity distribution changes rapidly in the electrical 

tomography applications, [6], [7], [15].  This paper evaluates the new temporal imaging 

method using experimental test example from continuous casting. 

 

2 THEORETICAL METHOD  

A. Forward problem in MIT 

 

MIT is working based on eddy current concept [11]. By ignoring the wave propagation 

effect in Maxwell’s equation and by taking *
AiE ω−= , AA −*  formulation can be 

used to solve the forward problem in MIT  [11] 
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where 0J  is the current density in the excitation coil, µ  is the permeability, σ  is the 

conductivity, A  is the magnetic vector potential in free space and *A is the magnetic 

vector potential in the conducting region, which includes the gradient of scalar field.  

The edge FEM has some advantages over other conventional nodal FEM and has been 

implemented for solving the forward problem in MIT [11]. The degrees of freedom are 



the line integrals of the vector quantities along the edges of a mesh. The interface 

condition between two elements is satisfied, so that the results from edge based finite 

elements are more accurate than those from nodal elements. An incomplete Cholesky 

Conjugate Gradient (ICCG) approach has been applied to solve the linear system of 

equations arising form the edge FEM. Considering that iφ  is the nodal scalar basis 

function, in an edge FEM on a tetrahedral mesh a vector field is represented using a basis 

of vector valued functions, where ijN  associated with the edge between nodes ji, . 

ijjiNij φφφφ ∇−∇=                                                                        (2) 

Galerkin’s approximation using edge element basis functions yields 
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where N  is any linear combination of edge basis functions, Ω  is the entire region, eΩ  

the eddy current region, and cΩ  the current source region.  

The current source can be defined by the electric vector potential 00 TJ ×∇= , which 

clearly guarantees that 00 =⋅∇ J . This is important for the convergence of the linear 

system of equations arising from edge FEM [11], [12], [13]. 

With the AA −*  formulation and using edge FEM, the sensitivity to change in 

conductivity of the conducting area can be calculated using the dot product of two 

electric fields [2],[8],[12],[13]. Considering *
AiE ω−= , where the integral becomes the 

inner product of A  fields, the Jacobian can be calculated by performing the integration 

for a chosen basis for the conductivity perturbation δσ . Using the matrix of shape 



function in each element }{ eN  the potential *A  inside each element can be expressed as 

}{}{*

ee ANA ⋅= , where }{ eA is defined along edges. The sensitivity term for each 

element is  
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This expression gives the sensitivity of the pair of coils ji,  with an induced voltage to an 

element. Here, mΩ  is the volume of element number m , and iI  and jI  are excitation 

currents into the coils.  

B.  Static imaging 

In image reconstruction linear algorithms are considered, the linear model nJxz += .  

The linearized inverse problem is based on Tikhonov regularization, which is to seek the 

minimum of  

               
22

xJxz λ+−                          (5) 

where x is the image pixel vector, which is an image of change in conductivity, z is the 

measurement vector,    which is voltage differences between simulated induced voltages 

from the forward solution and the measured ones, n is the noise in measured data,  J is 

the sensitivity matrix (Jacobian matrix), and λ  is a regularization parameter. Note 

that ∑=
k

kbb
2 . The minimum of equation (5) is found to be  

          zJIJJx TT 1)( −+= λ                            (6) 

where I is an identity matrix, λ  is regularization parameter (hyperparameter). This is a 

single step Gauss-Newton (GN) solution for the static inverse problem. In this single-step 

algorithm, sensitivity matrix J was obtained with a direct measurement method [9], [14]. 



C: Temporal imaging 

Instead of calculating an image based on the sequence of past frames, we propose a 

temporal image reconstruction algorithm which uses a set of data frames nearby in time 

[12]. The data frame sequence is treated as a single inverse problem, with regularization 

prior to account for both spatial and temporal correlations between image elements. 

Given a vertically concatenated sequence of measurements frames 

[ ]dd zzzz ;;;;~
0 KK−= and the corresponding concatenated 

images [ ]dd xxxx ;;;;~
0 KK−= , the direct temporal forward model  nJxz +=  is rewritten 

as 
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and also as 

                  nnnn~~~~ += xJz                                                                                  (8) 

where [ ]dd nnnnnnnnnnnnnnnn ;;;;
~

0 KK−=  is the noise in measured data. We assume J  to be 

constant, although this formulation could be modified to account for a time varying J . 

Based on this approximation JJ ⊗= IIII~
, where the identity IIII  has size 2d+1, and ⊗  is the 

Kronecker product. 

The correlation of corresponding elements between adjacent frames (delay t=1) can be 

evaluated by an inter-frame correlation γ , which has value between 0 (independent) and 

1 (fully dependent). As frames become separated in time, the inter-frame correlation 

decreases; for an inter-frame separation t, the inter-frame correlation is tγ . Frames with 



large time lag, |t|>d, can be considered independent. Image reconstruction is then defined 

in terms of minimizing the augmented expression: 
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and the inversion can be written as 
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where WWWWIIIIWWWW ⊗=
~

. WWWW~  is diagonal since measurement noise is uncorrelated between 

frames. RΓR ⊗= -1~
where Γ  is the temporal weight matrix of an image sequence x~  and 

is defined to have the form as 
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From (10) and (11), 
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(6) is rewritten as 
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Although this estimate is an augmented image sequence, we are typically only interested 

in the current image 0x̂ . It is calculated by yyyyBBBB ~~
ˆ

0 0=x  where  0BBBB~  is the rows 

1)(dn1dn MM ++ K  of BBBB~ . 

 

3 METHOD – DATA 

A. MIT system 

In this study an MIT sensor as shown in Figure 1 is used to generate data for image 

reconstruction [9]. A system consists of sensor array, data acquisition instrumentation 

and a PC.  The sensor array consists of 8 coils for excitation and detection. The inner 

diameter of the coils is 4 cm, the outer diameter is 5 cm and the length is 2 cm. The coils 

are arranged in a circular ring surrounding an object to be imaged. The distance between 

the centres of two opposite coils is 16 cm. The excitation frequency is 5kHZ.  
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Fig. 1: Block diagram of data acquisition system and 8-coil sensor array, with the object space  

 

B. Continuous casting 

Continuous casting, see figure 2, is a key process by which molten steel is formed into 

semi- finished billets, blooms and slabs. Liquid steel from basic oxygen steelmaking 

(BOS) or electric arc furnace (EAF) processes and subsequent secondary steelmaking is 



transferred from a ladle, via a refractory shroud, into the tundish. The tundish acts as a 

reservoir, both for liquid steel delivery and removal of oxide inclusions. A stopper rod or 

sliding gate liquid (not shown) is used to control the steel flow rate into the mould 

through a submerged entry nozzle (SEN). The SEN distributes the steel within the mould, 

shrouds the liquid steel from the surrounding environment, and reduces air entrainment 

thus preventing re-oxidation, and maintaining steel cleanliness. Primary solidification 

takes place in the water-cooled copper mould and casting powder is used on the surface 

to protect against re-oxidation and serve as a lubricant in the passage of the strand 

through the mould. Exiting the mould, the strand consists of a solid outer shell 

surrounding a liquid core. 

 

                 

Fig. 2: Continuous casting and SEN 

C Experimental test:  

Here we use MIT data from a continuous citing unit.  Four frames of data were used and 

their correspondent MIT images were generated using static method as presented in our 

previous study [11].    Fig. 3 shows the movement of the actual flow and the movement 

of the metal flow. This shows that the MIT can generate an image that is roughly 

following the flow pattern. It is important to notice that for more accurate flow images 

using MIT, one need to use more sensors as well as multiple frequency system. The static 



image reconstruction doesn’t take into account any correlation between four frames of the 

MIT images.  For the rest of this paper we present a comparison between our new 

dynamic image methods with the static method.   We believe that use of the correlation 

between multiple image frames will make the dynamical method more reliable.  We add 

noise to already noisy measured data and compare the performance of two methods. 

  

 

Fig. 3: Four location of the actual flow in SEN and their corresponding static image 

The new temporal algorithm was compared to the original GN method with different 

noise to signal ration (NSR).  Different noise levels of NSR=0, 0.1, 0.2, 0.4 were tested. 

It is worth noticing that NSR=0 is actually the noisy measured data presented in [11], 

more noise was added to this data to hypothetically generate higher noise level so that the 

new temporal method compares could be compared with the existing static method.  

Same regularisation parameter was used for both methods 1e-4; for high noise, 1e-3). The 

regularization matrix is an identity matrix.  Temporal step is set to 1, so that only frame 2, 

3, 4 and 5 are reconstructed by using temporal solver because the data set has only 6 

frames. Temporal weight is chosen to be 0.8 heuristically, although it might have better 



choice. Fig. 3 shows the NRS=0, where two methods are producing similar results. Fig 4, 

5,6 shows the comparison between static method and new temporal method with 

increasing noise level. It can be seen that the reconstructed images by using temporal 

method are able to produce images closer to NRS=0 than the GN static method, 

especially for higher noise level.  In order to quantatively compare the performance of 

two methods we define a measure of the image artefact of 

)_(/)_(_ bxnormbxxnormerrim −= , where x is the image of the given error level and 

x_b corresponding static image for the case of noise free data (images of figure 3).  Table 

1 present the image error for various noise levels.  As it can be seen visually from higher 

noise images, the image artifact value is always higher using static method, meaning that 

the proposed dynamic method could work better in present of higher level of noise. 

 

 

 

 

 

 

 

 



(a) 

(b) 

( c ) 

(d) 

Fig. 4. NSR=0 ; λ =0.0001 ;temporal step is 1 ; temporal weight is 0.8 (left: GN; right: Temporal solver) 



 

 

(a) 

 (b) 

(c ) 

 (d) 

Fig.  5. NSR=0.1 ; λ =0.0001 ;temporal step is 1 ;temporal weight is 0.8 (left: GN; right: Temporal solver) 



 

 

(a) 

(b) 

( c) 

(d) 

Fig. 6.NSR=0.2 ; λ =0.001 ;temporal step is 1 ;temporal weight is 0.8 (left: GN; right: Temporal solver) 

 



 

(a) 

(b) 

(c ) 

(d) 

Fig. 7. NSR=0.4 ; λ =0.001 ;temporal step is 1 ;temporal weight is 0.8 (left: GN; right: Temporal solver) 

 

 

 



 

Table 1: Measure of artefact (im_err) for different noise levels 

NSR Frame 1 

 GN             Temp. 

Frame 2 

GN             Temp. 

Frame 3  

GN             Temp. 

Frame 4 

GN             Temp. 

0.1 1.2507 0.9734 0.9945 0.7608 0.3694 0.2840 0.3417 0.1753 

0.2 1.0657 0.8089 1.2356 0.9705 0.3549 0.3201 0.4059 0.2995 

0.4 1.9863 1.6124 2.1400 1.7553 0.6029 0.5200 0.6666 0.5033 

 

4 CONCLUSIONS 

In this study, the inverse problem of MIT was treated as a dynamical problem, and the 

state (conductivity distribution). Dynamic magnetic imaging of a molten metal flow was 

estimated with the aid of direct temporal imaging method.  Temporal solver can achieve 

better resolution than conventional GN method especially for high noise cases.   

The temporal solver could be implemented in MIT applications and it would have faster 

convergence, or make multi-objects become differentiable at earlier step.  The inter-

frame image correlation method enables us to generate images that are a psudo-

continuous conductivity map.   
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