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Abstract

This paper addresses the issue of the information content of a biomet-
ric image or system. We define biometric information as the decrease
in uncertainty about the identity of a person due to a set of biometric
measurements. We then show that the biometric information for a
person may be calculated by the relative entropy D(p‖q) between the
population feature distribution q and the person’s feature distribution
p. The biometric information for a system is the mean D(p‖q) for
all persons in the population. In order to practically measure D(p‖q)
with limited data samples, we introduce an algorithm which regular-
izes a Gaussian model of the feature covariances. An example of this
method is shown for PCA and ICA based face recognition, with bio-
metric information calculated to be 45.0 bits (PCA), 39.0 bits (ICA)
and 46.9 bits (fusion of PCA and ICA features). Finally, we discuss
general applications of this measure.

Keywords— Biometric features, Relative entropy, Face
recognition, Information content.

1 Introduction

How much information is there in a face, or a fingerprint?
This question is related to many issues in biometric tech-
nology. For example, one of the most common biometric
questions is that of uniqueness, eg. to what extent are fin-
gerprints unique? From the point of view of identifiability,
one may be interested in how much identifying information
is available from a given technology, such as video surveil-
lance. In the context of biometric fusion [10] one would
like to be able to quantify the biometric information in
each system individually, and the potential gain from fus-
ing the systems. Additionally, such a measure is relevant
to biometric cryptosystems and privacy measures. Several
authors have presented approaches relevant to this ques-
tion ([1], [12], [6], [10]). However, none of these methods
directly address the measurement of information content of
biometric data. In this paper we elaborate an approach to
address this question based on definitions from information
theory [2]. We define the term “biometric information” as
follows:

biometric information: the decrease in uncertainty about
the identity of a person due to a set of biometric

measurements

In order to interpret this definition, we refer to two instants:
1) before a biometric measurement, t0, at which time we
only know a person p is part of a population q, which may
be the whole planet; and 2) after receiving a set of measure-
ments, t1, we have more information and less uncertainty
about the person’s identity. Based on the definition we in-
troduced, this paper develops a mathematical framework to

measure biometric information for a given system and set
of biometric features. In practice, there are limited num-
bers of samples of each person, which makes our measure
ill-conditioned. In order to address this issue, we develop
a stable algorithm based on a distribution modeling and
regularization. We then use this algorithm to analyze the
biometric information content of two different face recogni-
tion algorithms.

2 Methods

In this section we develop an algorithm to calculate bio-
metric information based on a set of features, using the
relative entropy measure [5]. We explain our method in
the following steps: A) measure requirements, B) relative
entropy of biometric features, C) Gaussian models for bio-
metric features and relative entropy calculations, D) regu-
larization methods for degenerate features, E) regulariza-
tion methods for insufficient data.

2.1 Measure requirements

In order to elaborate the requirements that a good mea-
sure of biometric information measure must have, we con-
sider system that measures height and weight. These values
differ within the global population, but also vary for a given
individual, both due to variations in the features themselves
and to measurement inaccuracies. We now wish to consider
the properties a measure of biometric information should
have:
1. If an intra-person distribution p is exactly equal to the
inter-person q distribution, then there is no information to
distinguish a person, and biometric information is zero.
2. As the feature measurement becomes more accurate (less
variability), then it is easier to distinguish someone in the
population and the biometric information increases.
3. If a person has unusual feature values (i.e. far from the
population mean), they become more distinguishable, and
their biometric information will be larger.
4. The biometric information of uncorrelated features
should be the sum of the biometric information of each
individual feature.
5. Features that are unrelated to identity should not in-
crease biometric information. For example, if a biometric
system accurately measured the direction a person was fac-
ing, information on identity would be unchanged.
6. Correlated features such as height and weight are less
informative. In an extreme example consider the height in
inches and in cm. Clearly, these two features are no more
informative than a single value.



Based on this definition, the most appropriate information
theoretic measure for the biometric information is the rel-
ative entropy (D(p‖q)) [5] between the intra- (q(x)) and
inter-person (p(x)) biometric feature distributions. D(p‖q),
or the Kullback-Leibler distance, is defined to be the “extra
bits” of information needed to represent p(x) with respect
to q(x). D(p‖q) is defined to be

D(p‖q) =
∫
x

p(x)log2
p(x)
q(x)

dx (1)

where the integral is over all feature dimensions, x. p(x)
is the probability mass function or distribution of features
of an individual and q(x) is the overall population distri-
bution. A comment on notation: we use p to refer to both
an individual, and the distribution of the person’s features,
while q represents the population and the distribution of
its features. This measure can be motivated as follows: the
relative entropy, D(p‖q), is the extra information required
to describe a distribution p(x) based on an assumed dis-
tribution q(x) [5]. D(p‖q) differs from the entropy, H(p),
which is the information required, on average, to describe
features x distributed as p(x). H is not in itself an appro-
priate measure for biometric information, since it does not
account the extent to which each feature can identify a per-
son p in a population q. An example of a feature unrelated
to identity is the direction a person is facing. Measuring
this quantity will increase H of a feature set, but not in-
crease its ability to identify a person. The measure D(p‖q)
corresponds to the requirements: given a knowledge of the
population feature distribution q, the information in a bio-
metric feature set allows us to describe a particular person
p.

2.2 Distribution modeling

In a generic biometric system, F biometric features are
measured, to create a biometric feature vector x (F×1) for
each person. For person p, we have Np samples, while we
have Nq samples for the population. For convenience of
notation, we sort p’s measurements to be the first group-
ing of the population. Defining x as an instance of ran-
dom variable X , we calculate the population feature mean
µq = E

q
[X ] where the feature mean of person p, µp, is de-

fined analogously, replacing q by p. The population feature
covariance is Σq = E

q

[
(X − µq)t(X − µq)

]
. The individ-

ual’s feature covariance, Σp, is again defined analogously.
Features are calculated from a set of Nq images using dif-
ferent component analysis methods such as Principle Com-
ponent Analysis (PCA, also referred to as Eigenface fea-
tures) [8][11] and Independent Component Analysis (ICA)
[3][7][9]. µp and µq are F×1 vectors of the population and
individual mean distributions, while Σp and Σq are F×F
matrices of the individual and population covariance ma-
trices.

One important general difficulty with direct information
theoretic measures is that of data availability. Distributions

are difficult to estimate accurately, especially at the tails;
and yet log2 (p(x)/q(x)) will give large absolute values for
small p(x) or q(x). Instead, it is typical to fit data to a
model with a small number of parameters. The Gaussian
distribution is the most common model; it is often a good
reflection of the real world distributions, and is analytically
solvable in entropy integrals. Another important property
of the Gaussian is that it gives the maximum entropy for a
given standard deviation, allowing such models to be used
to give an upper bound to entropy values. Based on a
Gaussian model for p and q, D(p‖q)can be written as:

D(p‖q) = k
(
α + trace

(
(Σp + T)Σq

−1 − I
))

(2)

where α = ln
|Σq|
|Σp| , T = (µp−µq)t(µp−µq) and k = log2

√
e.

This expression calculates the relative entropy in bits for
Gaussian distributions p(x) and q(x). This expression cor-
responds to most of the desired requirements for a biometric
information measure introduced in the previous section:
1. If person’s feature distribution matches the population,
p = q; this yields D(p‖q) = 0, as required.
2. As feature measurements improve, the covariance values,
Σp, will decrease, resulting in a reduction in |Σp|, and an
increase in D(p‖q).
3. If a person has feature values far from the population
mean, T will be larger, resulting in a larger value of D(p‖q).
4. Combinations of uncorrelated feature vectors yield the
sum of the individual D(p‖q) measures. Thus, for un-
correlated features f1 and f2, where {f1, f2} represents
concatenation of the feature vectors, D(p(f1)‖q(f1)) +
D(p(f2)‖q(f2)) = D(p({f1, f2})‖q({f1, f2}))
5. Addition of features uncorrelated to identity will not
change D(p‖q). Such a feature will have an identical dis-
tribution in p and q. If U is the set of such uncorrelated
features, [Σp]ij = [Σq]ij = 0 for i or j ∈ U, and i �= j, while
[Σp]ii = [Σq]ii and [µq]i = [µp]i. Under these conditions,
D(p‖q) will be identical to its value when excluding the
features in U . One way to understand this criterion is that
if the distributions for q and p differ for features in U , then
those features can be used as a biometric to help identify a
person.
6. Correlated features are less informative than uncorre-
lated ones. Such features will increase the condition number
(and thus reduce the determinant) of both Σp and Σq. This
will decrease the accuracy of the measure D(p‖q). In the
extreme case of perfectly correlated features, Σp becomes
singular with a zero determinant and D(p‖q) is undefined.
Thus, our measure is inadequate in this case. In the next
section, we develop an algorithm to deal with this effect.

2.3 Regularization for degenerate features

In order to guard against numerical instability in our
measures, we wish to extract a mutually independent set
of G “important” features (G ≤ F ). To do this, we use
the principal component analysis (PCA) [7][8] to generate



a mapping (Ut : X → Y ), from the original biometric fea-
tures X (F ×1) to a new feature space Y of size G×1. The
PCA may be calculated from a Singular Value Decomposi-
tion (SVD) of the feature covariance matrix, such that

USqUt = svd(cov(X)) = svd(Σq) (3)

Since Σq is positive definite, U is orthonormal and Sq is
diagonal. We choose to perform the PCA on the popula-
tion distribution q, rather than p, since q is based on far
more data, and is therefore likely to be a more reliable es-
timate. The values of Sq indicate the significance of each
feature in PCA space. A feature j, with small [Sq]j,j will
have very little effect on the overall biometric information.
We use this analysis, in order to regularize Σq, and to re-
ject degenerate features by truncating the SVD. We select
a truncation threshold of j where [Sq]j,j < 10−10[Sq]1,1.
Based on this threshold, Sq is truncated to be G × G, and
U is truncated to F ×G. Using the basis U calculated from
the population, we decompose the individual’s covariance
into feature space Y:

Sp = UtΣpU (4)

where Sp is not necessarily a diagonal matrix. However,
since p and q describe somewhat similar data, we expect
Sp to have a strong diagonal component.

Based on this regularization scheme, (2) may be rewritten
in the PCA space as:

D(p‖q) = k
(
β + trace U

(
(Sp + St)Sq

−1 − I
)
Ut

)
(5)

where β = ln
|Sq|
|Sp| and St = UtTU

2.4 Regularization for insufficient data

The expression developed in the previous section solves
the problem of ill-poseness of Σq. However, Σp may still
be singular in the common circumstance in which only a
small number of samples of each individual are available.
Given Np images of an individual from which G features are
calculated, Σp will be singular if G ≥ Np, which will result
in D(p‖q) diverging to ∞. In practice, this is a common
occurrence, since most biometric systems calculate many
hundreds of features, and there are only rarely more then
ten of samples of each person. In order to address this
issue, we develop an estimate which may act as a lower
bound using the following assumptions:
1. Estimates of feature variances are valid [Sp]i,i for all i.
2. Estimates of feature covariances [Sp]i,j for i �= j are only
valid for the most important L features, where L < Np.
Features which are not considered valid based on these as-
sumptions, are set to zero by multiplying Sq by a mask M,
where

M =
{

1, if i = j or (i < L and j < L);
0, otherwise (6)

Using (6), [Sp]i,j = (Mi,j)[UtΣpU]i,j . This expression
regularizes the intra-person covariance, Σp, and assures
that D(p‖q) does not diverge. To clarify the effect of this
regularization on D(p‖q), we note that intra-feature covari-
ances will decrease |Σp| toward zero, leading a differential
entropy estimate diverging to ∞. We thus consider this
regularization strategy to generate a lower bound on the
biometric information. The selection of L is a compromise
between using all available measurements (by using large
L) and avoiding numerical instability when Sp is close to
singular (by using small L).

2.5 Average information of a system

This section has developed a measure of biometric infor-
mation content of a biometric feature representation of a
single individual with respect to the feature distribution of
the population. The biometric information will vary be-
tween people; those with feature values further from the
mean have larger biometric information. Using this ap-
proach, the biometric information content of a biometric
system is calculated as the average information across all
people in the system at a specific L.

3 Face Recognition

Information in a feature representation of faces is calcu-
lated using our described method for different individuals.
Using the Aberdeen face database [4], we chose 18 frontal
images of 16 persons, from which we calculate the PCA
(eigenface) features using the algorithm of [8] and the ICA
face features components using the FastIca algorithm [9].
For PCA and ICA feature decompositions, 288 indepen-
dent vectors were computed, and the most significant 100
features used for subsequent analysis.

3.1 Biometric information calculations

After fitting the distributions of p(x) and q(x) to a Gaus-
sian model, we initially analyze the biometric information
in each PCA and ICA feature separately. PCA features
are shown in Fig. 1A, and show a gradual decrease from an
initial peak at feature 2. The form of the curve can be un-
derstood from the nature of the PCA decomposition, which
tends to place higher frequency details in higher number
features. Since noise tends to increase with frequency, the
biometric information in these higher numbered PCA fea-
tures will be less. A sum of biometric information over the
first 100 PCA features gives 40.5 bits. On the other hand,
ICA features show no gradual decrease with feature num-
ber, as shown in Fig. 1B. Interestingly, ICA shows several
features with large peaks, suggesting that these features are
significantly more informative than the others. A sum of
biometric information over the first 100 ICA features gives
13.4 bits.

In order to calculate D(p‖q) for all features, we are lim-
ited by the available information. Since Np = 18 images
are used to calculate the covariances, attempts to calculate
D(p‖q) for more than 17 features will fail, because Σp is



singular. This effect is seen in the condition number (ra-
tio of the largest to the smallest singular value) which was
4.82×103 for Sq and 1.32×1020 for Sp. The relatively small
condition number of Sq indicates that no features are de-
generate for PCA and ICA face recognition features. How-
ever, Sp is severely ill-conditioned. To overcome this ill-
conditioning, we introduced a regularization scheme based
on a mask (equation 6) with a cut-off point L. This scheme
is motivated by the diagonal structure of Sp. To ensure
convergence, the mask size L is set to a value smaller than
Np. Results for D(p‖q) for PCA features for each person
as a function of L are shown in Fig. 2 for Np = 8, 12 and
18. In these curves, we observe a “hockey stick” shape.
The relative entropy measure remains stable when L < Np,
but if L ≥ Np, we observe a dramatic increase in D(p‖q)
as the algorithm approaches a singularity of Σp and the
ill-conditioning of Σq. In order to produce an unique and
stable estimate for D(p‖q), it is necessary to choose a com-
promise between having an under-estimated (L 	 Np) or
an over-estimated (L ≥ Np) solution. We therefore recom-
mend choosing L = 3

4Np, since a larger value of L puts
the estimate in an unstable region of Fig. 2. Using this al-
gorithm and value of L, we calculate the overall biometric
information for different face recognition algorithms. For
PCA features, the average D(p‖q) is 45.0 bits, and for ICA
features D(p‖q) is 39.0 bits. If PCA and ICA features are
combined (making 200 features in all), average D(p‖q) is
46.9 bits.
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Figure 1. Biometric information as a function of feature
number (circles) for (A) PCA (Eigenface) and (B)
ICA face feature decomposition. The standard devi-
ation for each value (line) is shown below the D(p‖q)
measure.
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Figure 2. D(p‖q) (y-axis) vs L (x-axis) for each person.
Each subfigure represents a different value of Np: (A)
8, (B) 12 and (C) 18. The curves show that D(p‖q)
diverges as Σp becomes singular (L ≥ Np).

4 Discussion

This paper has introduced a definition of biometric infor-
mation and an algorithm to measure it from a set of popu-
lation and individual biometric features, as measured by a
biometric algorithm under test. Examples of its application
were shown for two different face recognition algorithms
based on PCA (Eigenface) and ICA feature decompositions.
In a general biometric system, the following issues associ-
ated with biometric features must be considered: 1) Feature
distributions vary. Features, such as minutiae ridge angles
may be uniformly distributed over 0–2π, while other fea-
tures may be better modeled as Gaussian, 2) Raw sample
images need to be processed by alignment and scaling be-
fore features can be measured, 3) Feature dimensionality
may not be constant. While we have introduced a measure
in the context of face recognition, we anticipate that such
a measure may help address many questions in biometrics
technology, such as: uniqueness of biometric features, in-
herent limits to biometric template size requirements, fea-
sibility of biometric encryption, performance limits of bio-
metric matchers, biometric fusion and privacy protection.
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