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A NODAL JACOBIAN INVERSE SOLVER FOR REDUCED

COMPLEXITY EIT RECONSTRUCTIONS

B M GRAHAM AND A ADLER

Abstract. Electrical impedance tomography (EIT) uses surface electrodes

to make measurements from which an image of the conductivity distribution

within some medium is calculated. Calculation of conductivity solutions re-

quires inverting large linear systems that have to date restricted reconstructions

to 2D or coarse 3D domains. This paper presents a Nodal Jacobian Inverse

Solver that scales with the number of nodes in a finite element mesh rather

than with the number of elements. For the example used in this paper the size

of the linear system is reduced by a factor of 26. We validate the algorithm by

comparing its performance to traditional 2D Elemental Jacobian algorithms.

We then analyze its performance with a 21504 element 3D mesh that is too

large to be solved with linear algebra systems based on 32 bit pointers (such

as is available in current versions of Matlab). Finally, we demonstrate the

applicability of the algorithm for clinical use by reconstructing experimentally

measured human lung data.
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1. Introduction

Electrical Impedance Tomography (EIT) uses body surface electrodes to make
measurements from which an image of the conductivity distribution within some
medium is calculated. Calculation of conductivity solutions using one of the New-
ton type methods requires inverting large linear systems derived from finite element
models of the medium under analysis. The Hessian matrix in these linear systems
scale with the square of number of elements in the model and the square of the
number of measurements used in the reconstruction. Almost all EIT algorithms
use a piecewise constant conductivity model, in which the conductivity is consid-
ered to be constant over an element. The large number of elements required and
large number of measurements available for 3D reconstructions have to date re-
stricted 3D reconstructions to coarse, low resolution models. Complex, accurate
geometries, a priori structures, the increased number of measurements possible
with newer machines and the desire for improved resolution in the third dimension
leads to a requirement to solve large 3D models. Such reconstructions are beyond
the capability of contemporary computers such as the AMD Athlon 64 3000+, 2GB
RAM computers used in our lab. Thus the development of algorithms that can ef-
ficiently calculate full 3D solutions over dense finite element models with many
measurements is required.

In this paper we present and evaluate a Nodal Jacobian Inverse Solver algorithm
that reduces the execution time and memory required to calculate reconstructions.
In addition to gains in reconstruction efficiency, the extraction and display of data
stored in the nodal format is much quicker than for data stored in the elemental
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format. Moreover, nodal solutions are easily processed using pixel based filtering
algorithms similar to those used in image processing work.

The finite element model used in this work includes a mesh that has a simple
cylindrical geometry but is comprised of over 20,000 elements. This high mesh
density is not warranted for a 16 electrode-208 measurement protocol, however
it is used in this work to show the performance improvement possible using the
proposed solver. It is expected that applications that use many electrodes or require
huge numbers of elements to model complex geometries will be able exploit the
performance benefits of the proposed algorithm.

2. Methods

This paper introduces the Nodal Jacobian Inverse Solver as follows. In the meth-
ods section we describe the traditional family of EIT reconstruction algorithms used
in our research, describe the Nodal Jacobian variation of this family of algorithms,
and describe the evaluation procedure. In the results we describe the effectiveness
of the new family of algorithms compared to the traditional algorithms. In the
discussion we consider some additional observations of this work and conclude with
a recommendation of the proposed algorithm.

2.1. Data Acquisition. Lab data used in this paper was obtained using a 16
electrode adjacent drive EIT machine (the Goe-MF II type tomography system,
Viasys Healthcare, Höchberg, Germany) designed for use with 2D reconstruction
algorithms based on data from electrodes placed in a planar section of the medium
as shown in figure 1(a). Adjacent current stimulation is used with adjacent voltage
measurement at all remaining electrodes except the driven electrode pair. The gen-
eral formula for the number of measurements obtained using this type of injection-
measurement protocol is M = (Nel − 3)/Nel where Nel is the number of electrodes.
For 16 electrodes, 208 measurements are available per frame, while for a 32 electrode
system the number of available measurements is 928. Although the 16 injection-
measurement patterns are obtained over a finite time interval, 80ms for the Goe-MF
II, the entire vector of 208 measurements is treated as representing the boundary
voltages at a single instant in time and is considered a frame of data.

Data obtained from a 2D electrode placement such as in figure (1(a)) is most
often used to calculate a 2D estimate of the conductivity although a 3D recon-
struction algorithm could use these data. By placing the electrodes in multiple
planes 2D equipment can be used to acquire data that are better suited for 3D
reconstructions. One such method is the hybrid electrode placement strategy [8]
shown in figure 1(b) in which electrodes are placed in two axially aligned planes
with the 16 electrodes connected sequentially as shown by the numbers in the fig-
ure. This arrangement will result in an inter-plane injection-measurements between
electrodes 8 and 9 as well as 16 and 1. This strategy is used in this work in order
to validate some of the simulated results with lab data collected using the Goe-MF
II. The EIDORS v3 suite [2], using the Complete Electrode Model, was extended
to perform the work in this paper.

2.2. EIT Modeling. We consider EIT difference imaging, which is widely under-
stood to improve reconstructed image stability in the presence of problems such as
unknown contact impedance, inaccurate electrode positions, non linearity, and the
use of 2D approximations for 3D electrical fields when reconstructing in 2D [3] [10].
We address the class of one-step linearized reconstruction algorithms that calculate
the change in a finite element conductivity distribution x = σ2−σ1 due to a change
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Figure 1. Data Acquisition Setup. 28 Layer Reconstruction
Mesh, 21504 Elements, 4205 Nodes. Electrodes are arranged in
two layers of 8 electrodes.

in difference signal, z = v2 − v1, over a time interval (t1, t2). By convention we
consider the signal at t1 to be the reference frame and the signal at t2 to be the
data frame. Since we do not know σ1, x is interpreted as the change in conductivity
with respect to the unknown initial conductivity x = ∆σ.

A forward model is required when one wants to solve the non-linear problem,
generate simulated data or calculate the Jacobian using the efficient method de-
scribed in [13] that requires calculation of the electric fields in the interior of the
object. Using the finite element method (FEM), the voltage distribution at E
electrodes is simulated by current injection into the medium with a conductivity
distribution discretized on N finite elements. This model of the forward problem
accepts a vector of conductivity values and calculates the voltage Vij at each node
i for each current injection pattern j through the linear equation

(1) V = Y(σ)−1I

where Y(σ) is the admittance matrix of the FEM and Iij is the current at each node
i during current injection pattern j. With the point electrode model each electrode
is modeled as a single boundary node, thus the columns of I have only two non-zero
entries corresponding to the current injected at the two electrodes. Calculation of
the vector v of M voltage differences is represented by v = T [V(σ)]. For instance
if v9 is defined to correspond to the voltage difference between electrodes 4 and 5
during injection pattern 2, then the operator T will give T [V ]9 = V42 − V52.

The most accurate mathematical model for EIT is the complete electrode model
(CEM)

(2)

[

AM + AZ AW

AT
W AM

] [

Φ
V

]

=

[
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I

]

where AM , AW , and AZ represent the CEM boundary conditions. In this paper
we use the point electrode model for the 2D experiments and the CEM for the 3D
experiments. A complete derivation of the CEM can be found in [14] however the
salient point is that in (1) and (2) AM = Y is the N by N symmetric admittance
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matrix given by

(3) Yij =

∫

Ω

σ∇wi·∇wjdΩ

where wi is a linear basis function with value 1 on ith node and 0 elsewhere. In
the usual case σ is considered constant on each element (piecewise constant) which
allows σ to be brought outside the integral in (3)

(4) Yij =

N
∑

k=1

σk

∫

Ωk

∇wi·∇wjdΩk

The integral in (4) is calculated analytically for each element with each element
contributing 9 (for a triangle) or 16 (for a tetrahedron) entries to the master ad-
mittance matrix Y.

For small changes around a background conductivity the relationship between x

and z may be linearized as

(5) z = Hx + n

where H is the Jacobian or sensitivity matrix and n is the measurement system
noise, assumed to be uncorrelated additive white Gaussian (AWGN).

For piecewise constant conductivity models, each element i, j, of H is defined

as Hij = ∂zi

∂xj

∣

∣

∣

σ0

and relates a small change in the ith difference measurement to

a small change in the conductivity of jth element with respect to a background
conductivity vector, σ0. H is a function of the FEM, the current injection pattern,
the measurement pattern, and the background conductivity. We use the adjacent
current injection pattern and a homogenous background conductivity with σ0 = 1
for each of the elements. H is a matrix comprised of E columns of length M where
E is the number of elements in the finite element model and M is the number of
measurements per frame. Thus the ith column represents the change in the M
boundary measurements due to a change in the conductivity of the ith element.
There are several ways to calculate the Jacobian; the EIDORS2D toolset [15] uses
the Standard Method [14][18] whereas the EIDORS3D toolset [12] uses a more
efficient method involving the dot products of the interior electric fields.

2.3. Image Reconstruction. In order to overcome the ill-conditioning of H we
solve (5) using the following regularized inverse originally described in [1]

(6) x̂ = (HT WH + λ2R)−1HTWz = Bz

where x̂ is an estimate of the true change in conductivity, R is a regularization
matrix, λ is a scalar hyper parameter that controls the amount of regularization,
and W models the system noise. We calculate λ using the BestRes algorithm
described in [7]. Noise is modeled as uncorrelated with conductivity changes and
among measurement channels; thus, W is a diagonal matrix with Wi,i = 1/σ2

i where
σ2

i is the noise variance for measurement i. W can also be modified to account for
variable gain settings on each tomograph channel. With R = I (labeled RTik)
equation (6) is the 0th order Tikhonov algorithm. With R = diag(HTH) (labeled
Rdiag) equation (6) is the regularization matrix used in the NOSER algorithm [5].
In [1] R is a model of the inverse a priori image covariance. EIT has the potential
for only a relatively few independent measurements. As a direct consequence there
will be limited high spatial frequency content, or low spatial resolution, associated
with any reconstructed image. This implies that the elements with a separation less
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than the minimum recoverable spatial period (EIT resolution) are highly correlated.
Consequently Adler and Guardo [1] model R as a spatially invariant Gaussian high
pass filter (labeled RHPF ) with a cut-off frequency selected so the spatial period is
a given fraction of the medium diameter. In two dimensions a Gaussian high pass
filter of spatial frequency ω0 has the form

(7) F(u, v) = 1 − e−ω0(u
2+v2)

In the spatial domain the convolution kernel is

(8) f(x, y) = δ(x, y) −
π

ω2
0

e−(π2/ω2

0)(x2+y2)

where δ(x, y) is the Dirac delta function. The filtering matrix F multiplies an image
vector x to give a filtered image Fx. Fij is calculated by centering the high pass
filter in element i and integrating across element j

(9) Fij =

∫

Ej

[

δ (x − xi, y − yi) −
π

ω2
0

e−(π2/ω2

0)((x−xi)
2+(y−yi)

2)
]

dxdy

This integration is performed numerically on a mesh of 512× 512 points superim-
posed over the 2D FEM. We define this as an integration density of 512 points per
linear unit or 5122 points per square unit. The filter cut-off frequency is expressed
in terms of the percentage of the diameter. Using a mesh of Np points

(10) (% diameter) =
Np

2πω0

The regularization matrix is calculated as RHPF = FTF. This filter could be
extended to 3D by including the z component in equation (9) and integrating
numerically over a mesh of integration density 5123 points per cubic unit; however
we do not use a 3D version of the Gaussian filter in this paper.

Although all three of these priors are smoothing filters which attenuate the con-
tribution of the high frequency components of the SVD of HTH, the Gaussian high
pass filter has the advantage of being mesh size and mesh shape independent in
that it is a function of the area weighted mesh inter-element correlations.

2.4. Nodal Jacobian. As the number of elements in a FEM increases, the time
and memory required to calculate the solution increases, such that solving problems
of useful resolution in 3D becomes difficult or impossible to perform. For exam-
ple the term HTWH, in equation (6) for the 21504 element FEM of figure 1(b))
produces a matrix of size 21504 × 21504 which exceeds the memory capabilities of
32-bit matrix indexing arithmetic, such as is currently available in Matlab software.

The ratio of nodes to elements can be up to a factor of two for 2D FEM meshes;
the sum of angles in a triangle is 180, a point has 360 degrees, thus a dense mesh
will tend to have an element to node ratio of two. In 3D a point has a solid angle
of 4π, six tetrahedra fit into a cube (solid angle of 4π); a tetrahedron therefore has
solid angle of 4π/6. Thus a dense mesh will tend to have an element to node ratio
of six although practical meshes will have a lower ratio; the 3D mesh used in this
paper has an element to node ratio of 5.1. The incentive to develop an algorithm
that scales with the number of nodes rather than the number of elements is the fact
that the size of the Hessian matrix will be reduced by the square of the element
to node ratio. Thus the Hessian matrix for the 3D mesh used in this paper will
be reduced by a factor of 26 which is sufficient to allow it to be formed within the
32-bit matrix indexing environment of Matlab.
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The construction of a Nodal Jacobian is based on the development of a nodal
finite element model. In [9] Kaipo et al introduce a 2D finite element model based
on a piecewise linear discretization of the conductivity in which the conductivity of
an element is linearly interpolated throughout its volume based on the conductivity
values at its vertices. The adoption of piecewise linear conductivity on each element
means that the conductivity cannot be brought outside the integral in equation (3)
thus equation (4) cannot be used to calculate the admittance matrix rather we must
solve

(11) Yij =

N
∑

k=1

∫

Ωk

σk(~r)∇wi·∇wjdΩk

where ~r is a position vector within element k. For an inhomogenous isotropic
material σk(r̃) is a conductivity tensor of the form σk(r̃) = σk(r̃)I where r̃ is a
scalar function of the conductivity and I is the identity matrix.

In [9] Kaipo et al use the same linear basis functions, wi, for σ as are used for the
potential. In [9] the authors do not discuss or exploit the complexity improvement
associated with using the nodal basis. Their use of piecewise linear conductivity
was motivated by a requirement to calculate the gradient of the conductivity within
each element for the purposes of incorporating a structural prior into their recon-
structions. By using a piecewise linear conductivity model the gradient over each
element is a constant. An implementation of the piecewise linear element is avail-
able in the EIDORS2D toolset [15] in which Y is calculated from equation (11).
Also provided is a function to calculate the corresponding Nodal Jacobian using
the Standard Method.

EIDORS3D [12] calculates an Elemental Jacobian using the NSHI (nullspace
scaled hybrid isotropic) algorithm described in [16]. The NSHI algorithm is over
60 times faster than the Standard Method for the example cited in [13] but requires
components calculated from an element based master matrix. Thus in order to
retain the speed advantage of the NSHI algorithm, we adapted the EIDORS2D
nodal master matrix construction algorithm to construct a Nodal Jacobian, HN ,
from the elemental Jacobian, HE , as follows:

1 d = 3 for triangles, d = 4 for tetrahedrons
2 for each node, n, in the mesh
3 elems=list of elements using node n
4 HN

:,n =
∑

i∈elems

1/dHE
:,i where H:,i means the ith column of matrix H

5 end for each node

Intuitively this can thought of as having each element contribute an equal propor-
tion of its sensitivity to each of its three or four contained vertices.

When using the Nodal Jacobian in the regularized inverse (6) the resulting solu-
tion will be in the nodal basis. It is possible to convert the nodal solution back to
a piecewise constant element basis where it is determined by E parameters. Con-
version back to an elemental basis can be done by setting the conductivity value
for each element to an average of the conductivity values of its enclosing vertices.
This has the advantage of being simple to implement and works well for meshes
constructed of regularly spaced nodes. It is also possible to weigh the average as a
function of subtended angle or Voronoi cell area. In either case the conversion to
an elemental solution will introduce additional smoothing through local averaging
which may or may not be desirable. In this paper we maintain solutions in the
nodal basis.
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Two advantages of the nodal basis are the ability to store the solution in a smaller
number of parameters, and the ability to rapidly extract and render graphical
displays of solutions using a function such as Matlab’s built-in trisurf function.
The trisurf function takes as input a list of vertices and associated values at each
vertex. No explicit knowledge of the geometry is required, such as an element list
providing connectedness between nodes, in order to display cut planes of coplanar
nodes. For example the 3D model of figure (1(a)) has coplanar nodes at each of its
29 nodal layers as well as coplanar nodes at vertical slices such as x = 0 and y = 0
and other angles. Figure (7(a)) shows three multiplane conductivity representations
of (1(a)) that were rendered by trisurf in real time (60ms each).

2.5. Nodal Gaussian Filter. The Gaussian High Pass filter, RHPF , of [1] can
be extended to work over the nodes of the mesh as opposed to the elements. The
regularization matrix is RHPF = FTF where Fij is calculated by centering the high
pass filter at node i and integrating across the Voronoi cell of node j in accordance
with eq (9). As with equation (9) the filter cut-off frequency is expressed in terms
of the percentage of the diameter in accordance with equation (10). This filter is
extended to 3D by including the z component in equation (9) and integrating over
the Voronoi polyhedra of node j. A Voronoi cell is polygon (polyhedra in 3D) whose
interior consists of all points in the plane (hyper plane in 3D) which are closer to a
particular node than to any other. Figure 2(b) shows part of a Voronoi diagram for
a 64 element, 41 node FEM of figure 2(a). Note that there are no closed Voronoi
cells for the nodes located on the boundary since they are by definition unbounded
and extend to infinity. To overcome this problem for the 2D mesh, we add a set of
auxiliary nodes by replicating the boundary nodes but located radially offset from
the original location by a small distance (0.00001 was used for a mesh of diameter
1). Figure 2(c) is for illustrative purposes and shows the auxiliary nodes at an
exaggerated stand off distance resulting in additional closed Voronoi cells. Figure
2(d) shows the auxiliary nodes located almost coincident with the boundary nodes
which brings the outer Voronoi cell edge close to the boundary of the original mesh.
The Voronoi cells, including the cells added through the auxiliary nodes, are used
as the domain of integration for the Gaussian filter calculations. Note that it would
also be possible to integrate each element in F over the basis function of each FEM
node.

(a) (b) (c) (d)

Figure 2. One quarter of a 2D FEM showing development of
Voronoi Cells for boundary nodes.

The 3D models used in this work are constructed by using layers of nodes that
are replicated and shifted versions of the nodes of an initial 2D mesh. The 3D
Voronoi cell for such a mesh is an extruded version of the 2D Voronoi cell. This
permits the numerical integration of the 3D Gaussian filter using equation (9). We
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use equation (9) and integrate with an integration density of 5123 points per cubic
unit.

2.6. Laplacian Mask Filter. A further advantage of a nodal basis is that it
facilitates the use of filters derived from pixel oriented domains such as found in
the image processing literature. Rather than develop a low pass filter and then
invert it, we follow the method of [1] and develop a high pass filter directly (based
on the Laplacian mask described in [6] labeled RLap that is subsequently inverted
in equation (6). We define the region of support for the Laplacian as nodes located
with in a radius of some percentage of medium diameter. In this work we use 10%,
a number arrived at through experience. The filtered value for node i is calculated
as follows

(12) x̂′(i) = (1 − x̂(i))
∑

n∈Ωi

x̂(n)(r/dn)

where x̂(i) is the prior value of node i, r is the radius of the neighborhood, d is
distance between node i and node n. Ωi represents the radial neighborhood of
node i; members of the set Ω are nodes that are located within a distance r of node
i. n ∈ Ωi means that n belongs to the radial neighborhood of node i. r/dn is a
weighing of the nodal value. This formulation for a Laplacian filter is mesh size
independent which is different from the discrete Laplacian filters used in [12] and
[4].

2.7. Smoothing Mask Filter. In addition to the filters used directly in the reg-
ularized inverse it is also possible to apply a spatial smoothing filter, RLP , to the
nodal solutions of equation (6) by multiplying the solution with the low pass filter.
This can be treated as a post processing step that increases the signal-to-noise ratio
(SNR) of the solution. This filter is implemented through matrix multiplication as
x̂′ = Rk

LP x̂. The exponent k indicates that this filter can be applied multiple times.
In this paper we use k = 1 but other values are possible. RLP calculates a filtered
value for node i as follows

(13) x̂′(i) =
∑

n∈Ωi

x̂(n)/‖Ωi‖

where n ∈ Ωi means that n is a member of the radial neighborhood of node i
including node i and ‖Ωi‖ means the number of members of Ωi. We incorporate
RLP into equation (6) before hyperparameter selection. Thus equation (6) with
W = I is restated as

(14) x̂ = Rk
LP (HTH + λ2R)−1HT z

with hyperparameter selected using the BestRes algorithm described in [7]. The
complete algorithm can then be performed with any z

2.8. Evaluation Procedure. In order to evaluate the performance of this algo-
rithm, the following test procedures were conducted.

(1) Initially we validate the performance of the new algorithm by comparing its
performance to the traditional algorithm for 2D reconstructions using tank
data of an impulse phantom. Comparisons are made between the nodal
and elemental Jacobians using the RTik, Rdiag, RHPF and RLap priors.

(2) We validate the 2D hyperparameter selection method, BestRes, [7] for 3D
reconstructions.



A NODAL JACOBIAN INVERSE SOLVER FOR REDUCED COMPLEXITY EIT RECONSTRUCTIONS9

(3) We quantify the performance of the 3D nodal algorithm using the RTik,
Rdiag, RHPF and RLap priors, with two sets of simulated impulse phantom
data. Both sets of simulated data were created by moving an impulse
contrast through 28 vertical positions of a 28 layer, 86016 element, 15805
node FEM that is similar to, but denser than the FEM of figure 1(b).
Reconstructions are made using the 21504 element mesh of figure (1(b))
One set of data had the impulse contrasts located at the axial center (r = 0),
the second set of data had the contrasts located halfway between the axial
center and the tank boundary (r/2).

(4) Finally we validate the Nodal Jacobian algorithm with some lab data of
human lungs.

Quantitative figures of merit are required in order to compare the accuracy of
the reconstructed images. Several figures of merit for EIT proposed in the literature
were reviewed in [17]. The primary figures of merit used in this work are resolution,
image energy, and signal to noise ratio of the reconstruction. We define resolution
in terms of blur radius (BR). BR calculates the area fraction of the elements that
contain the largest amplitude contributions to 50% of the total image amplitude
and is therefore a measure of the concentration of image amplitude. BR is defined
as BR = rz/r0 = 3

√

Vz/V0 for 3D, where r0 and V0 are the radius and volume
respectively of the entire medium and rz and Vz are the radius and volume of the
reconstructed contrast containing half the magnitude of the reconstructed image
[1]. In 2D, V represents area and a square root is taken. Image Energy, a global
measure, is defined as P =

∑

i

x̂2
i Vi. For elemental solutions x̂i is the solution

amplitude at element i, while for nodal solutions x̂i is the solution amplitude at
node i. Signal to Noise Ratio is defined as SNR = x̂V

/

σx̂V which is the volume
weighted, solution mean over the volume weighted, solution standard deviation).
Again area is used for 2D. For elemental solutions the area and volumes used are
those of the element triangles (2D) and tetrahedrons (3D), for nodal solutions the
Voronoi cell area is used in 2D while the extruded Voronoi cell is used for 3D.

3. Results

3.1. 2D Results. We initially validated the performance of the nodal algorithm by
calculating 2D reconstructions using data collected from a single plane of electrodes
arranged around the middle of a tank. This is 3D tank data reconstructed with
the assumption that the fields are confined in 2D. The phantom data used are
from a 2cm non-conductive sphere located at r/2 in a tank of diameter 29cm and
height 29cm. Data were collected using the Goe-MF II using the adjacent protocol
described in section (2.1). Figure 3 shows reconstructions made using the RTik,
Rdiag, and RHPF priors with the element based Jacobian. Figure 4 shows the
same data reconstructed over the same mesh using the nodal based Jacobian and
the RTik, Rdiag, RHPF and RLap priors. Resolution and signal to noise ratio are
indicated in the figures.

Figures 3 and 4 show reconstructions normalized so that the vertical axis and
color scales are maximized. The nodal algorithms produce much larger peak signals
than the corresponding elemental solutions; however, this can be compensated for
through normalization which is how the solutions of figures 3 and 4 are displayed.
Resolution and SNR are better discriminators between algorithms. The elemental
Jacobian algorithm with a Rdiag prior is the best all around reconstruction in terms
of resolution. The nodal algorithm with the Rdiag prior is competitive with its ele-
mental counterpart in terms of both resolution and SNR. Conversion from nodal to
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(a) RTik BR=.309,

SNR=.450

(b) Rdiag BR=.233,

SNR=.337

(c) RHPF BR=.279,

SNR=.444

Figure 3. Comparison of 2D Elemental reconstructions using
tank data for different filters and Jacobians using 1024 element
mesh. Reconstructions are normalized so that the vertical axis and
color scales are maximized.

(a) RTik BR=.328,

SNR=.462

(b) Rdiag BR=.236,

SNR=.332

(c) RHPF BR=.324,

SNR=.440

(d) RLap BR=.296,

SNR=.485

Figure 4. Comparison of 2D Nodal reconstructions using tank
data for different filters and Jacobians using 1024 element mesh.
Reconstructions are normalized so that the vertical axis and color
scales are maximized.

elemental basis, as described in section (2.4), imparts additional smoothing to the
elemental solutions. This effect is not quantified here, however the elemental solu-
tions do have the advantage of this additional smoothing. The solutions presented
in figures 3 and 4 are in the elemental basis.

It is possible to improve the signal to noise ratio while maintaining the peak
signal advantage of the nodal solutions by applying one or more stages of spatial
filter discussed in 2.7. As shown in figure (5) the results are substantive. Repeated
applications of the smoothing filter to the Rdiag solution increase the SNR at the
expense of peak amplitude and resolution. One or two passes of the filter can
improve the SNR by 50% for a small cost in resolution.

The 2D results validate the applicability of the Nodal Jacobian algorithms by
showing that for the configuration tested here, the nodal algorithm produces re-
constructions as good as the elemental algorithms in terms of resolution and SNR.
Moreover the nodal algorithms require less memory and run faster due to the smaller
linear system that must be solved. Although not important for 2D reconstructions
these speed and memory improvements allow the solution of larger systems inherent
to 3D applications.

3.2. Hyperparameter Selection. The BestRes method of hyperparameter se-
lection for 2D EIT is described in [7]. This method suggests selecting a hyperparam-
eter that results in a reconstruction that has maximum resolution for an impulse
contrast. The method was evaluated for 3D as follows. λBestRes was evaluated
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PSfrag

(a) Rdiag BR=.236,

SNR=.332

(b) Filtered Once

BR=.253, SNR=.444

(c) Filtered Twice

BR=.282, SNR=.546

(d) Filtered 3 times

BR=.318, SNR=.644

Figure 5. Spatial smoothing filter applied to nodal inverse solver
algorithm with Rdiag prior, 1024 element mesh. Reconstructions
are normalized so that the vertical axis and color scales are maxi-
mized.

as a function of radial position at the centre plane. For the Rdiag prior the curve
does not have a narrow minimum (is flat) for contrasts near the centre but becomes
stable with a pronounced minimum for contrasts located between 20 and 75% of
the radius from the centre. The curve becomes unstable for contrasts located at
85% radial position (close to the edge). The RTik curve remains flat for contrasts
located near the centre and is unreliable until the contrasts are at radial positions
between 30 and 65% to the edge. The resolution curve is very flat for the RLap prior
but has detectable minimums that allow selection of the hyperparameter when the
radial position of the target phantom is between 10% and 75%.

In [7] Graham and Adler recommend using λBestRes calculated for a contrast
located at r/2 for the 2D case. This suggestion is valid for the 3D case with
the added rule that the contrast be located halfway between the electrode planes.
Figure 6 shows resolution as a function of radial position and shows the effective
ranges of the BestRes algorithm for a given priors.
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Figure 6. Resolution vs Radial Position for RTik, Rdiag and
RLap Priors

3.3. 3D Simulation Results. Due to the excessive memory requirements it is
not possible to calculate elemental solutions of the 3D models using 32 bit Matlab.
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Consequently we do not evaluate the performance of the nodal 3D algorithm by
comparison with its elemental counterpart. Rather we report on the performance
of the nodal algorithms for 3D.

We calculated four sets of solutions, one for each prior, for each of the two data
sets (r = 0 and r/2) described in section (2.8). These data sets were reconstructed
using the FEM illustrated in figure (1(b)) and the hybrid adjacent protocol de-
scribed in section (2.1).

Some reconstructions from the r/2 data set are shown in figure 7. This figure
shows vertical slices through a one quarter section of the reconstructed tank for
3 different vertical positions of the impulse phantom. The leftmost column is the
RTik prior, the centre column is the Rdiag, the right most is the RLap prior. We
do not show the RHPF solutions as they were similar to the RTik results.

From a qualitative point of view the three priors provide similar reconstructions
in that none of them appears superior to the others in terms of a qualitative as-
sessment of figure 7. Analysis of the various plots of figure 8 show that the RTik is
inferior to the others in terms image energy while the Rdiag prior is slightly superior
in terms of resolution.

Figure 8(a) shows the resolution for all three priors for the two sets of simulated
data, r=0 and r/2. The resolution varies by 20% as a function of height. The best
resolution for each prior occurs near the electrode planes with the worse resolu-
tion occurring in the plane located halfway between the electrode planes. This is
expected as resolution or its counterpart, sensitivity, decreases as position moves
from current injecting or measuring electrodes. Thus resolution will be worse half
way between the electrode planes. Radial position error as shown in figure 8(b)
is lowest for contrasts at the centre of the tank and increases as contrasts move
radially outward. In general however, the radial position error is small.

Height error as shown in figure 8(c) is common for all priors. There is a general
tendency for contrasts to be reconstructed closer to the electrode planes than they
actually are.

Position error is shown in figure 8(d) is a combination of the radial and vertical
position errors and mainly indicates an asymmetry in the vertical axis. Figure 8(e)
shows the variability of image energy as a function of target height. The Rdiag

and RLap priors provides the largest image energy but are also the most variable
with respect to target vertical position. For example targets located in one of the
electrode planes result in reconstructions with four times as much energy as the
same target located at the extreme ends of the tank. Figure 8(f) shows the signal
to noise ratio of the reconstructed images.

Overall the Rdiag prior gives the best results however the difference between it
and the RLap prior is minor. No work was completed for this paper concerning the
effect of electrode plane separation on reconstruction performance.

3.4. Human Lung Data Results. The basic analysis of sections 3.1 and 3.3
are based on impulse contrasts which are not necessarily representative of complex
contrasts. In order to test the Nodal Jacobian Inverse Solver for complex contrasts
we reconstructed some lab data of human lungs using the Rdiag prior. Data were
measured from a human subject using the equipment and 3D protocol of section
(2.1). The reconstruction shown in figure 9 was calculated in 12s on an AMD Athlon
64 3000+ with 2GB RAM using 45 iterations of Matlab’s built-in preconditioned
conjugate gradient function. The image on the left of figure 9 shows vertical planes
of the 3D volume. The images on the right of figure 9 are two horizontal slices of
the 3D reconstruction model. The lungs are readily observed in the two horizontal
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(a) Target Height 23cm

(b) Target Height 19cm

(c) Target Height 15cm

Figure 7. Quarter section reconstructions of contrasts located at
radial offset of r/2. Left column is RTik prior, centre column is
Rdiag prior, right column is RLap prior. Two electrodes per layer
are shown

slices. The vertical slice on the left shows that the vertical extent of the lungs
does not extend to the vertical extremes of the 3D modeled volume. These results
suggest that the Nodal Jacobian algorithm can be used for clinical applications.
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Figure 8. Performance Measures for 3D Reconstructions of Two
Simulated Data Sets. Legend in figure (c) applies to all figures.
Electrode Planes are centered at heights of 8.5 and 19.5cm as in-
dicated in 8(d) and 8(f)

4. Discussion

This paper has presented a new family of algorithms for solving the inverse prob-
lem in EIT. The main advantage of the Nodal Jacobian algorithm is that it reduces
the size of the linear system that must be solved. This allows the reconstruction of
images from 3D models that are difficult or impossible to solve using element based
algorithms. 16 electrode protocols were used in this work. Existing and future 3D
EIT systems have 32, 64 or even 128 electrodes. The associated Jacobian will be
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Figure 9. Human Lung Data reconstructed using Nodal Jacobian
Algorithm with the Rdiag prior.

large but it is possible to construct an elemental Jacobian for meshes with up to
130,000 elements with the 32 bit computers used in our lab. However the corre-
sponding Hessian matrix will be too large to form, consequently such large models
will be unsolvable using the elemental Jacobian via equation (6). The algorithm
introduced in this paper reduces the computational requirements by a factor of up
to 36 (26 for this paper’s model) for dense 3D meshes and provides a promising
way to solve high density 3D models with many electrodes. A secondary advantage
of the nodal algorithm is the improvement in data extraction and rendering speeds
which allow the display of multiple reconstructed image slices in real time.

The Nodal Jacobian algorithm is not an element or mesh free method, since
the element based model is used to solve the forward problem and to calculate the
elemental Jacobian from which the Nodal Jacobian is calculated. Future work could
look at developing an algorithm to calculate a nodal Jacobian directly instead of
calculating it from the elemental Jacobian.

Although the motivation for this work was to solve 3D problems, the Nodal
Jacobian Inverse Solver algorithms produce solutions as good, in terms of resolution
and SNR, as traditional algorithms for 2D configurations. 3D reconstructions from
simulated data indicate that the Nodal Jacobian Inverse Solver with the Rdiag or
RLap prior is useful for imagining situations that have to date used an element
based Jacobian with a smoothing prior. Finally, the successful reconstruction of a
conductivity change image of human lungs from clinical data shows that the Nodal
Jacobian Inverse Solver algorithm has good potential for clinical use.
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