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Abstract

In Electrical Impedance Tomography (EIT), electrical energy is applied and measured at the

boundary of a medium to produce an image of its internal conductivity distribution. When

imaging pulmonary ventilation, rib cage expansion and body posture introduce severe image

artefacts in the reconstructed images due to electrode position error.

This thesis proposes a method to reduce such artefacts by determining the net dis-

placement of electrodes between measurement frames, and effectively, adjusting the geometry

of the reconstruction model. A novel regularization method is proposed and validated using

data acquired from simulation, phantom, and human in vivo measurements.

The proposed method reduces artefacts by more than 70% in simulated reconstructions

and phantom experiments. The in vivo images reveal the various breathing manoeuvres and

thoracic movements recorded.

Furthermore, the displacement of each electrode is calculated, indicating the deformed

boundary shape. This thesis supports EIT for clinical diagnostics and monitoring of pul-

monary ventilation.
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Chapter 1

Introduction

Since the invention of the photograph, images have been employed to capture fractions of

reality in countless forms. Our interpretation of the physical world is mostly determined

by what we see around us. Consequently, one could say that imagery is the richest source

of information available to our senses. Science and medicine of the twenty-first century

use exotic forms of image acquisition to explore the frontiers of our known universe and to

confirm postulates that until today were only conceivable by the mind’s eye. The welfare of

human health in particular is perhaps the largest beneficiary of imagery since today, non-

invasive methods allow the physician to visualize fundamental mechanisms of the body that

are otherwise inaccessible.

A clearer understanding of the anatomy and function of our organism has improved

clinical diagnosis, disease prevention, and surgery efficacy—overall enhancing our quality of

life. However, this enlightenment has also unravelled the discovery of new phenomena, sug-

gesting an ever-more elaborate design of the human body. Thus, persistent efforts stimulate

the research and development of new tools, pacing forwards to reveal the portrait that nature

has set before us.

1
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1.1 Medical Imaging Applications

Modern applications of medical imaging are typically categorized as modalities, each of which

provide distinct information about the body being observed. All modalities, however, adhere

to the concept that the observed body is imaged by measuring the body’s response to some

form of energy. For example, in photography, light is reflected on the object, focused by the

camera lens, and captured by the photo-sensitive film or CCD array.

One of the oldest modalities in practice today is the radiograph, which uses emitted

20-150 keV X-ray photons that project the body’s skeletal structure and denser tissues onto

a detector. From this concept, Computed Tomography (CT) uses X-rays projected around a

single axis of rotation to calculate tomographic images of the body. CT is used to render 3D

anatomical maps for the diagnosis of many regions of the body. Typical modern performance

standards of CT are sub-millimeter resolution and an average 64 slice scan time of 10 seconds.

The dynamics of hydrogen nuclei in water under magnetic fields are useful to image

internal living tissues. This is possible by observing the magnetic resonance relaxation process

of polarized nuclei subjected to short radio frequency pulses. This modality was originally

named Nuclear Magnetic Resonance; however, it is typically called Magnetic Resonance

Imaging (MRI) due to the negative connotations with the word “Nuclear”. MRI also renders

3D anatomical maps, sensitive to different tissues and is capable of higher contrast resolution

than CT. An adapted functional imager called fMRI is capable of imaging perfusion and

diffusion of fluids, indirectly providing images of brain activity. The modern MRI instrument

operates over 1-3 Tesla magnetic flux density fields, with 3 mm resolution at an average 8

minute full body scan time.

Other nuclear phenomena have also lead to useful functional modalities that image

radioisotope-labelled nutrients consumed in metabolic processes of the body. Single Photon

Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) track

decaying isotopes to visualize the level of energy consumed by tissues. For example, PET

radioactive isotopes emit positrons e+ that eventually annihilate with electrons in the body.

The annihilation produces two oppositely propagating high energy photons that exit the
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body and are captured by an event detector. Unfortunately, only small doses of radioactive

material can be administered to limit patient exposure. In addition, fundamental physical

limits and very short flight times of emitted photons result in almost centimeter resolution.

Nonetheless, SPECT and PET are useful in oncology diagnostics and in assessing myocardium

viability in the treatment of coronary artery disease.

The focus of this thesis is a recent modality based on the propagative nature of electri-

cal current through a conductive medium. Electrical Impedance Tomography (EIT) refers to

medical instrumentation that images the conductivity distribution of a body using electrical

measurements made on the boundary. Analogous to CT, a sequence of excitation currents

is introduced via surface electrodes placed along the body perimeter. For each excitation

current, electric potential measurements are made on the surface and are used to reconstruct

the internal conductivity distribution satisfying those data. Thus, modern EIT instruments

are capable of monitoring flow and perfusion of internal fluids with a relatively fast temporal

resolution of on average 10 frames per second (Frerichs, 2000). The spatial resolution is,

however, low and on average can be estimated at 12% of the medium diameter (Metherall,

1998). Similar to fMRI or PET, EIT is considered a functional modality since the movement

of bodily fluids is indicative of physiological function. EIT is useful in cardiopulmonary,

encephalographic, and mammography diagnostic imaging.

Pioneer EIT implementations are accredited to David C. Barber and Brian H. Brown

of the United Kingdom in the late 1970’s (Barber & Brown, 1998). EIT is currently in the

late experimental stage as its challenges reside mostly in non-linear modelling and inverse

problems. Researchers in the United Kingdom, South Korea, the United States, Finland,

Germany and Canada are active in the development EIT.

1.2 Thesis Objectives

One major complication of EIT is the significant degradation of the conductivity image due

to changes in boundary shape and electrode position during measurement. Similar to other

modalities, EIT incurs artefacts in image reconstruction when patient movement disturbs
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the measurement environment. The occurrence of these errors leads to reduced repeatability

and reliability in diagnostic imaging, which is unacceptable for clinical use.

Boundary movement occurs mostly in thoracic measurement due to posture change

and respiration. The former causes a shifting of the rib cage under the skin, and the latter

causes the expansion and contraction. The difficulty arises since EIT measurements are pro-

jected onto a geometric reconstruction model that approximates the topology of the body

being observed. The displacement of electrodes reduces the accuracy of the reconstruction

model, producing misrepresentative images. Related are initial errors from inadequate ge-

ometric models and inconsistent electrode placement. These problems are well known in

the literature and have been addressed by Adler et al. (1996), Blott et al. (1998), Lionheart

(1998), and Kolehmainen et al. (2005).

This thesis synthesizes aspects of the literature pertaining to the fundamentals of EIT

and inverse problems. The objective is the assessment of solving the inverse conductivity

problem over a deformable boundary and the development of a solution to this problem. Such

a solution must then be validated across various types of measurement data and performance

ranked with appropriate figures of merit.

1.3 Thesis Contributions

The novel contributions of this thesis are as follows. An adaptable reconstruction model is de-

signed to accommodate boundary deformations and electrode displacement. This deformable

boundary model is cast into the regularization scheme to solve the inverse conductivity prob-

lem with variable electrode position. The algorithm is applied to 2D and 3D models subjected

to boundary deformation using simulation, phantom, and human in vivo acquired data. Per-

formance figures of merit are designed to quantify the image resolution, position accuracy,

and artefact presence. These measures are compared to a standard reconstruction algorithm

that is also subjected to boundary deformation.

These results have been published in one refereed journal from the Institute of Physics

on Physiological Measurement (Soleimani et al., 2006) , presented in the Institute of Electri-
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cal and Electronics Engineers (IEEE) proceedings of the Canadian Conference of Electrical

and Computer Engineering (Gómez-Laberge & Adler, 2006) and at the International Confer-

ence on Biomedical Applications of Electrical Impedance Tomography (McLeod et al., 2006).

The author has collaborated with scientists in the United Kingdom, at the universities of

Manchester and Oxford Brookes. Finally, the implementation of these algorithms, with

some acquired phantom and human in vivo data, have been contributed to the Electrical

Impedance and Diffuse Optics Reconstruction Software (EIDORS) collaboration (Adler &

Lionheart, 2006) under the GNU General Public License.



Chapter 2

Background

A review of topics, that are pertinent to this thesis, is presented here. The general electrical

properties of biological tissue and physiology are discussed with a primary concern for safety

and, secondly, as a basis for the interpretation of measurement data. The basic concepts of

EIT and some commercial instruments are described in terms of hardware and performance.

The chapter is closed with a review of recent applications of EIT described in the literature.

2.1 Electrical Properties of Human Physiology

The safety of the person being observed by any medical device is paramount to any clinical

study. Unfortunately, safety cannot be considered in absolute terms and the growing use

of medical devices results in a growing number of accidents. For example, it is reported

that about ten-thousand device-related patient injuries occur in the United States each year

(Webster, 1998). The World Health Organization’s guide on Medical Device Regulations

states that the clinical engineering community believes that at least half of medical device-

related injuries and deaths result from user error. Therefore, users must be aware of the

intended use and must also be responsible for the maintenance of certified medical devices

(WHO, 2003). Secondly, the interpretation of any electrical energy recovered from in vivo

measurement requires the understanding of the electrical properties of biological tissue and

human physiology.

6
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Frequency
Material Species 1 kHz 10 kHz 100 kHz 1 MHz 10 MHz
Brain (grey matter) B 0.1 0.13 0.15 0.2 0.3
Liver B 0.04 0.05 0.09 0.2 0.3
Kidney B 0.12 0.15 0.2 0.3 0.5
Muscle (across) B 0.3 0.35 0.4 0.5 0.6
Muscle (along) B 0.5 0.5 0.5 0.6 0.7
Lung (inflated) B 0.05 0.06 0.08 0.10 0.20
Uterus H 0.4 0.4 0.4 0.5 0.6
Skin† H 0.0007 0.004 0.06 0.3 0.4
Adipose H 0.022 0.023 0.023 0.24 0.25

Table 2.1: Conductivity (Sm) of in vitro biological tissues at various frequencies.
Species B and H refer to Bovine and Human tissues, respectively. †From in vivo

measurements (adapted from Metherall (1998)).

Human biological tissue consists primarily of water. Consequently, the human body

can be generally thought of as a conductive medium. Table 2.1, adapted from Metherall

(1998), shows in vitro conductivity of biological tissues, measured in Siemens (Sm), at various

current frequencies. Although some of the tissues used were not human, they had very similar

electrical characteristics. Another important observation is that tissues exhibit anisotropic

structural and electrical behaviour. For example, table 2.1 shows that skeletal muscle is more

conductive along the fibrous structure than perpendicularly to it. This provides the central

nervous system an efficient recruitment of myofibrils by propagating action potentials along

the conductive fibres. A similar anisotropic conductive material is the myocardium, which

propagates current in a specialized way to produce an efficient ejection of blood from the heart

into the circulatory system. These mechanisms are regulated by somatic and autonomous

processes in the brain that communicate with the body by electrical means. Hence, the body

consists of both electrically passive and active tissues. Therefore, any external electrical

energy source must, in no way, interfere with these sensitive processes.

The physiological effects of electricity can be deadly within seconds when vital pro-

cesses are disturbed or irreversibly damaged. The protection mechanism of the body is the

low conductivity of the skin, as seen in table 2.1. Nevertheless, once the body becomes part

of an electric circuit, several dangerous phenomena can immediately occur (Webster, 1998):

1. unregulated stimulation of active tissues (e.g., the nerves and muscle),
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Figure 2.1: Plot of Let-go current rms amplitude (mA) versus frequency (log Hz).
Percentile values represent the variability of let-go current among individuals (repro-
duced from Webster (1998)).

2. heating of tissues with high resistance (e.g., the skin), and

3. electrochemical burns and irreversible tissue damage.

The physiological effects worsen with increasing amplitude and frequency of the applied cur-

rent. Beyond the threshold of perception, the victim will experience involuntary contraction

of muscles and stimulation of nerves. If the current level is greater than 10 mA, the victim

may be incapable of voluntarily breaking the circuit, e.g., by dropping the wire or object

relaying the charge. This is referred to as the let-go current. At this stage, the victim may

also suffer respiratory paralysis, pain, and fatigue. Ventricular fibrillation may occur should
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the current path traverse the heart. This can cause death within seconds if the current is not

interrupted, and a regular heart beat is not re-initiated. Current levels greater than 1 A cause

sustained myocardial contraction, severe burns, and the physical disintegration of nervous

tissue and muscle (Webster, 1998). A current level beyond the threshold of perception is

considered dangerous in any diagnostic medical device; currents rendering the patient inca-

pable of movement are considered unacceptable (WHO, 2003). Figure 2.1, reproduced from

Webster (1998), plots the let-go current root-mean-square (rms) amplitude versus frequency.

The percentile values represent the variability of let-go current among individuals.

Medical EIT instruments operate with inperceivable currents on the order of 1–5

mA at frequencies of 15–50 kHz, which are well below the 0.5 percentile curve in figure

2.1. The Goe-MF II EIT instrument (Viasys Healthcare, Höchberg, Germany) in this study

uses currents of 5 mA (rms) at a frequency of 50 kHz and is certified by the Conformité

Européenne (CE) as a class IIa active medical device (Viasys Healthcare, 2004). Given the

above description of electrical properties and these design specifications, some considerations

during data interpretation must be made.

• Tissue exhibits an anisotropic conduction of current. Therefore, accurate conductivity

images require comprehensive information about the structure and location of all tissue

types. This has not been realized in EIT since these data are inaccessible without an

accurate anatomical modality.

• Physiological processes manifest electrical activity. Cardiac activity produces body

surface potentials in the order of 0.1 mV at 1–10 Hz. Myoelectrical activity produces

potentials with the same order of magnitude except at a higher and broader frequency

range, 50 Hz–5 kHz. Encephalic signals are smaller, in the order of 25–100 µV at fre-

quencies of 0.1–100 Hz (Webster, 1998). Hence, EIT equipment requires a narrowband

filter to block signals outside the instrument operating frequency. These processes can

still introduce variability in the filtered measurements.

Other considerations involve signal interference from power supplies and electronic equip-

ment, and the capacitive effects of the electrode-skin interface. In general, commercialized
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D a t a P r o c e s s i n gI m a g i n g T e r m i n a l
C u r r e n tD r i v e r

D a t aA c q u i s i t i o n
E I T S y s t e mH a r d w a r eM e d i u m w i t hS u r f a c e E l e c t r o d e s

Figure 2.2: Conceptual diagram of a typical EIT system. The three main compart-
ments are: (left) the patient connected by a network of electrodes, (middle) the EIT
hardware with driver and acquisition units, and (right) a data processing and imaging
terminal.

EIT instruments have integrated solutions for these issues and require little additional effort

from the user.

2.2 Electrical Impedance Tomography

An elaboration of the brief description and terminology of EIT in section 1.1 is given here.

Figure 2.2 is a diagram of a typical EIT setup. The patient is connected with the EIT

hardware via a series of Ag/AgCl electrodes such that the region of interest is contained

within the electrode grid. The EIT hardware consists mainly of a data acquisition unit, a

current driver unit, and a central processing unit. Together, the EIT instrument executes

the sequence of excitation currents and voltage measurements. For each excitation current,

a pair of electrodes is chosen as the anode and the cathode. Their relative position can

be adjacent, opposite, or of any other configuration. Simultaneously, the voltage difference
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between adjacent pairs of remaining electrodes is measured, amplified, and digitized. Note

that this implies the existence of some signal reference electrode, usually placed far from

the region of interest. All measurements are collected as a frame and transmitted in matrix

form to a data processing terminal which computes the conductivity images and displays

tomographic images.

The tomography term in EIT refers to a slice-wise collection of data. Hence, the

electrode grid is divided into electrode rings. Usually only intra-ring excitation currents and

voltage measurements are used to stimulate the body. Other configurations are possible;

although, rings are the most common (Graham & Adler, 2006a). Therefore, adjacent and

opposite excitation currents with Ne electrodes for each of the Nr electrode rings have a total

number of independent voltage difference measurements Nv, given by

Nv =











1
2
NeNr(NeNr − 3) (adjacent),

1
4
NeNr(NeNr − 4) (opposite).

(2.1)

We immediately see that Nv depends only on the product NeNr. Therefore, we need only

consider the total number of electrodes which we rewrite simply as Ne. Also note that 2Nv

measurements are possible with these patterns. However, only half of them are linearly

independent due to the reciprocity property (Geselowitz, 1971). In many EIT calculations,

all 2Nv voltage measurement data are used regardless of linear dependence. For example, our

studies use a 16-electrode EIT instrument (Viasys Healthcare, Höchberg, Germany). From

equation (2.1), adjacent and opposite excitation currents yield datasets of 208 and 96 voltage

measurements, respectively. Although adjacent excitation currents yield more than twice as

much data than opposite currents, some groups claim the latter is more representative of the

internal conductivity since currents must flow across the body. This is discussed by Metherall

(1998).

The EIT problem is satisfied by the solution of a partial differential equation with

boundary values. Consider the body Ω ⊂ R
3 with C2-smooth boundary ∂Ω. The conductivity

distribution σ = σ(x, y, z) and the electric potential distribution φ = φ(x, y, z) are defined
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over Ω. They must satisfy the generalized Laplace equation

∇ · σ∇φ = 0 (2.2)

where

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

is the vector differential operator. The boundary conditions represent the excitation currents

applied to electrodes placed on ∂Ω. The Complete Electrode Model (CEM) proposed by

Cheng et al. (1989) analytically models finite area electrodes Ei numbered i = 1, 2, · · · , Ne

with contact impedance zi such that, the excitation current Ii and corresponding voltage Vi

are given by

Ii =

∫

Ei

σ
∂φ

∂η
dS,

Vi = φ+ ziσ
∂φ

∂η
,

where η is the inward normal vector of the boundary ∂Ω. It is later shown, in chapter 4, that

equation (2.2) is derived from Maxwell’s equations of electromagnetism.

In order to solve equation (2.2) analytically, functions φ and σ are derived over the ge-

ometry of Ω. This can be analytically done for simple geometries such as spheres and cylinders

(Kleinermann et al., 2000). However, for arbitrary geometries this task becomes daunting

as closed form solutions are either enormous or non-existent. An approximate solution over

a discretized Ω can be readily computed in these cases using the Finite Element Method

(FEM) (Polydorides, 2002). The most commonly used discretizing elements are triangles

and tetrahedrons; however, quadrilaterals and hexahedrons are also used in implementations

by Blott et al. (1998), Cheney et al. (1999), Mueller et al. (2002), and Kolehmainen et al.

(2005). The approximate solution requires that σ and φ be defined discretely for each element

and each node, respectively. For example, the triangular elements shown in figure 2.3, taken

from Asfaw (2005), are used for 2D discretization. Each node has a linear basis function used
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Figure 2.3: The linear basis functions of a triangular element used to measure the
electric potential φ at each node and the conductivity σ for the element (reproduced
from Asfaw (2005)).

to measure the electric potential φ and interpolate the average conductivity value σ for the

enclosed element (Asfaw, 2005).

EIT instruments have been designed and built worldwide. Table 2.2 chronologically

lists various EIT instruments used in published studies. Most of these instruments are listed

in (Frerichs, 2000). This list is not exhaustive since some of these instruments have also been

commercialized and used in other applications of EIT.

2.3 Medical Applications of EIT

A common medical application of EIT is the study of pulmonary function. Frerichs (2000)

reviews most of these studies which were concerned with lung pathologies such as chronic

obstructive pulmonary disease, bronchial carcinoma, plural effusions, embolism, pneumoth-

orax, emphysema, sarcoidosis, atelectasis, and pneumonia. Other studies of lung function,

such as plethysmography and regional lung perfusion, were researched by Adler et al. (1996),

Kunst et al. (1998), and Frerichs et al. (2002). Figure 2.4 shows lung perfusion images us-

ing a conductive contrast in a normal bovine subject. Images are compared with electron
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Model Used Principle Publication Sampling Multi-
Investigator(s) Year rate† (Hz) frequency

Sheffield APT Mk 1 Brown and Seagar 1987 10 no
Rensselaer ACT 2 Newell 1988 ? no
Sheffield APT Mk 2 Smith 1990 25 no
Sheffield APT DAS-01P Brown 1990 1 no
Montréal EIT Guardo 1991 5 no
Cardiff EIT Griffiths 1992 ? no
Göttingen EITS Osypka 1993 s.m. yes
Sheffield EITS Brown 1994 33 yes
Rensselaer ACT 3 Cook 1994 ? no
Moscow EIT Cherepin 1995 3.3 no
Stuttgart EIT Li 1996 10 no
Keele Mk 1b Taktak 1996 10 no
PulmoTrace-CardioInspect Zlochiver 2005 20 no
Goe-MF II EIT Adler 2006 12.5 no

Table 2.2: List of EIT instruments used in published EIT studies. †The ‘Sampling
rate’ column refers to the data acquisition rate reported in studies published using this
instrument (s.m. = single measurements). The ‘Multi-frequency’ column indicates
whether the instrument is capable of generating multi-frequency excitation currents.

Figure 2.4: Lung perfusion imaging using a conductive contrast in normal bovine
subject. Left : Sketch of perfusion catheter location. Centre: EIT images showing
conductive contrast in white. Right : Electron beam CT with arrows indicating region
of contrast injection (reproduced from Frerichs et al. (2002)).
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Figure 2.5: Estimation of stroke volume by measuring resistivity change in region
of interest. EIT measurements were gated with an ECG and compared with MRI
(reproduced from Patterson et al. (2001)).

beam CT (Frerichs et al., 2002). Other EIT applications are mammography by Cherepenin

et al. (2002), heart function by Patterson et al. (2001) (figure 2.5) and Zlochiver et al. (2006)

Ongoing encephalography work by the London EIT group, supervised by Dr. D. Holder, is

shown in figure 2.6.

As mentioned in section 1.3, a recurrent problem in medical EIT applications is the

degradation of reconstructed images during measurement due to boundary deformation and

poorly known electrode position. The following chapters describe EIT from a theoretical

framework and address the problem of imaging deformable media.
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Figure 2.6: A visual evoked response of a neonate. Activity is reported as due to
changes in blood flow (reproduced from the London EIT group website, 2006).



Chapter 3

Inverse Problem Theory

This chapter presents the mathematical theory that underlies EIT. We begin with some

basic notations and definitions necessary to discuss the inversion of non-trivial systems. The

second section formulates the general solution of an inverse problem using the Bayesian

statistics of random variables. Although this probabilistic formulation does not directly

provide applicable solutions, the insight from this paradigm is important in understanding

the nature of all inverse problems. The final section presents some practical regularization

methods used in discrete linear inverse problems. This material is used in next chapter to

formally define EIT as an inverse problem.

3.1 Notations and Definitions

The branch of applied mathematics called “inverse problem theory” deals with interpreting

observations from a poorly understood physical system to gain information about the system

state. Specifically, an inverse problem infers the set of model parameters {m1, m2, · · · , mn}

that describe the system from acquired set of observation data {d1, d2, · · · , dn}. Figure 3.1

illustrates in an abstract sense the components of the inverse problem according to Tarantola

(2005). The model parameters can be thought of as the coordinates of points on an abstract

space termed the model manifold M. Hence, we only assume that M is a collection of

points M = M(m1, m2, · · · , mn), but its structure can be otherwise arbitrary. Similarly,

17



CHAPTER 3. INVERSE PROBLEM THEORY 18

M D
Figure 3.1: Abstract components of the inverse problem. Model parameters in the
manifold M are mapped by the operator G to observation data in the manifold D.

the observation data are coordinates of points D belonging to the observation manifold D.

A particular value M ∈ M is mapped by the operator G to the corresponding D ∈ D.

Therefore, G : M 7→ D and D = G(M) is termed the forward problem; it represents the

physical system that realizes the observable data. The general solution to the inverse problem

is to find the operator G−1 such that G−1(G(M)) = M for all M ∈ M. Typically, “inverse

problems” consist of the systems where finding G−1 is not trivial. Jacques Hadamard, in

1902, defined these cases as being ill-posed by the following.

Definition 1 (Hadamard). Consider the operator system

G(M) = D, M ∈ M, D ∈ D (3.1)

where M and D are manifolds. The system is said to be well-posed if the following three

conditions hold:

1. for each D ∈ D there exists a solution M ∈ M,

2. for each D ∈ D there is a unique solution M ∈ M, and

3. the operator G−1 is defined over D and is continuous. Therefore, the solution is stable

under perturbations of the right-hand side of equation (3.1).

If the system is not well-posed then it is ill-posed.
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Figure 3.2: The axial projection process of the Radon transform (Unser & Alroubi,
1996).

In general, recasting an ill-posed problem into a well-posed representation is known as a

regularization of the problem.

A further division is made on the linearity of G. Linear inverse problems can be

formulated in terms of Hilbert space rather than manifolds. The system can be digitized and

expressed in matrix form; and the problem can be solved with linear algebra. A very common

example of a linear inverse problem is the Radon transform used in Computed Tomography

imaging, which consists of an integral function over the set of all lines on a plane. The Radon

transform is used to produce a collection of axial tomographic projections of a body f(x, y)

as shown in figure 3.2 taken from Unser & Alroubi (1996).

Consider a compact and bounded function f(x, y) defined in R
2. The Radon transform

of f(x, y) is given by

Rθ[f ](t) =

∫ ∞

−∞

f(t cos θ − ξ sin θ, t sin θ + ξ cos θ) dξ.

Then, f(x, y) is represented by the projected data Rθ[f ] for θ ∈ [0, π).

The inverse problem consists of inferring f(x, y) from Rθ[f ]. In this example, f(x, y) is

chosen to be two rectangular objects of high contrast on a circular background. This image

is shown on the left hand side of figure 3.3. The problem is discretized by taking twelve

axial projections of this function, each separated by π/12 radians. The system matrix A ∈

R
492×1681 approximates the Radon transform as a weighted projection mask with a bilinear
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Figure 3.3: Numerical example of the Radon inverse problem. Twelve evenly spaced
axial projections are taken forming the ill-conditioned system matrix A. Left: the
original image f(x, y). Right: the inverse image inferred from A−1 illustrated in a
blue-white-red spectrum.

interpolation of pixels adjacent to the projection rays. The system matrix is underdetermined

and is called ill-conditioned. When inverted, it produces the reconstructed image shown on

the right hand side of figure 3.3.

Although the main features of the original are recovered in example 1, streaking

artefacts due to the back-projection effect and smeared edges have deteriorated the recon-

struction. These effects, as suggested in the third condition of the Hadamard definition, are

due to the instability of the inverse problem. The system matrix A is rank-deficient and has

some numerically linear-dependent rows. In order to remove these instabilities, well-known

discrete regularization techniques, discussed later in section 3.3, can be used.

Non-linear inverse problems are considerably more complex. In this class of problems,

the operator G is non-linear and obviously cannot be modelled with linear algebra. Since

no general regularization techniques exist for this class, each problem must be individually

studied. First, the Hadamard conditions must be theoretically examined, and only later can

specific regularization methods be developed to solve the problem.

Other complicating effects arise when a system responds in a non-local or an acausal

manner. Non-local means that the value of the function being inferred depends not only on

the operator and its derivatives at that point, but rather depends from many points. Acausal
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means that the occurrence of events depend not only on previous and current events, but

also future ones. Physical inverse problems involving time always suffer from acausality. An

illustrative example of this is heat diffusion in some material. Small changes in the initial heat

distribution are smeared out in time over the entire body, having a very small influence on

the final temperature. Trying to recover the initial distribution for measurements of the final

temperature, i.e., the acausal direction, is more likely influenced by the resolution limits of

the thermometer than the small changes in the initial heat distribution (Kaipio & Somersalo,

2005).

The following section provides insight into the nature of inverse problems. Next, a

probabilistic model is formulated based on the ideas discussed.

3.2 Statistical Inversion

The objective of approaching the problem from a statistical paradigm is to extract informa-

tion from observable quantities and assess their uncertainty using i) knowledge about the

measurement process, ii) a physical model of the system, and iii) a priori knowledge about

the solution.

The principles of statistical inversion can be summarized into three items (Kaipio &

Somersalo, 2005):

1. the model parameters are considered random variables,

2. the randomness of each parameter reflects our confidence concerning their realizations,

and

3. the solution of the inverse problem is the posterior probability distribution.

Consider the system model from equation (3.1) where we treat both M and D as random
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vectors1 X ∈ R
n, and Y ∈ R

m. Then we write

Y = G(X), (3.2)

where G : R
n → R

m is some forward operator.

Suppose the joint probability density of X and Y, written as fXY(x, y), is obtained

from analysis of the system and measurement process. That is, fXY(x, y) can be constructed

using experimental information obtained from many forward problem simulations. Then the

information that we can gather about the realizations of X, in the inverse problem, can be

expressed as a probability density.

Definition 2 (Prior density). Given the joint probability fXY(x, y) for X and Y in equation

(3.2), the a priori probability density is defined as

ρprior(x) =

∫

Rm

fXY(x, y) dy. (3.3)

Equation (3.3) quantifies which model parameters are most probable from the real-

izations of G−1(Y). Practically speaking, ρprior(x) may also be empirical knowledge about

the problem. For example, if M represents some sort of image, then a priori information

may be available describing the structure of the image, its smoothness, and how it changes

in time. From our Radon transform example in section 3.1, ρprior(x) gives us insight about

the projection data Rθ[f ]. For example, the projection data cannot be negative, the data

variation for small θ will also be small, and Rθ[f ] is periodic for θ + kπ, k ∈ Z.

Similarly, another probability density which can be constructed from experiment is

the likelihood function, defined as follows.

Definition 3 (Likelihood function). Given the joint probability fXY(x, y) and a realization

1In general, M and D are sets of random variables and not vectors since M and D are not to be thought
of as linear spaces. This terminology is used for convenience.
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X = x, the likelihood function is defined as

ρ(y | x) =
fXY(x, y)

ρprior(x)
, if ρprior(x) 6= 0. (3.4)

From the forward problem, equation (3.4) represents what realizations of Y are most likely

to be generated from G(X).

From these definitions, the relation between the posterior probability, the a priori

knowledge, and the likelihood function is stated in Bayes’ theorem (Kaipio & Somersalo,

2005).

Theorem 1 (Bayes). Assume that the random vector X ∈ R
n has a known a priori probability

density ρprior(x) and the data consist of the realization Y = y of an observable random vector

Y ∈ R
m such that

ρ(y) =

∫

Rn

fXY(x, y) dx > 0.

Then, the posterior probability distribution of X, given the data Y = y, is

ρpost(x) = ρ(x | y) =
ρprior(x) ρ(y | x)

ρ(y)
. (3.5)

Tarantola (2005) states that equation (3.5) is the complete solution to the inverse

problem. The function ρpost(x) considers all M in M and contains information about the

most probable solution, the confidence we have about that solution, the effect of errors due to

poorly understood factors (i.e., noise), the measurement instrument’s accuracy and precision,

and its resolution limitations. In order to produce an actual set of model parameters M from

ρpost(x), an estimator is needed to quantitatively choose a specific solution.

The four estimators considered here answer distinct probabilistic questions. The real-

ization of X which is most probable of being obtained, given Y = y is termed the maximum

a posteriori (MAP) estimator.

Definition 4 (Maximum a posteriori). Given the posterior probability density ρpost(x) of the
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random vector X ∈ R
n, the maximum a posteriori estimate xMAP satisfies

xMAP = arg max
x∈Rn

ρpost(x), (3.6)

provided such a maximum exists.

Finding the MAP estimator is in itself an optimization problem and can also be challenging

if ρpost(x) is not smooth.

The mean value of X conditioned on our observation data Y = y is termed the

conditional mean (CM) estimator.

Definition 5 (Conditional mean). Given the posterior probability density ρpost(x) = ρ(x | y)

of the random vector X ∈ R
n and a realization Y = y of the random vector Y ∈ R

m, the

conditional mean estimate is defined as

xCM =

∫

Rn

xρ(x | y) dx,

provided that the integral converges.

The CM estimator is an integration problem since ρpost(x) is usually defined over a high

dimensional space. In statistical terms, the conditional mean is the expectation E{x | y}.

Using the CM estimator, the second conditional moment can be calculated to estimate

the “spread” of the posterior probability density about xCM.

Definition 6 (Conditional covariance). Given the posterior probability density ρpost(x) =

ρ(x | y) and the conditional mean xCM, the conditional covariance is defined as

cov(x | y) =

∫

Rn

(x− xCM)(x− xCM)Tρ(x | y) dx,

provided that the integral converges.

Similar to the CM estimator, this is an integration problem over R
n.



CHAPTER 3. INVERSE PROBLEM THEORY 25

Another common statistical estimator is the maximum likelihood. However, we exclude

it from inverse problem theory as it corresponds to an unregularized solution.

These estimators allow us to extract important features of the posterior probability

density function. Furthermore, in simpler cases when the randomness of X and Y is Gaussian,

the calculation of these estimators can be done without optimization or integration. A direct

analysis of ρpost(x) is usually impractical since it is defined over a high dimensional space.

Monte Carlo sampling methods exist, e.g., based on the Metropolis-Hastings and Gibbs

sampling algorithms, that efficiently represent the posterior density with fewest sample points

(West et al., 2004). These methods are useful in studying particular inverse problems or their

statistics in depth.

3.3 Discrete Regularization Methods

Suppose the system from equation (3.1) is linear and discretized so that

Ax = y, x ∈ R
n, y ∈ R

m, (3.7)

and A ∈ R
m×n is a linear operator representing G. The matrix A can be decomposed by two

orthonormal bases where each base vector is scaled by the singular values of A. Then the

singular value decomposition (SVD) of A ∈ R
m×n is written as

A = UΣV T =
n

∑

i=1

uiσiv
T
i

where

U = (u1, u2, · · · , un) ∈ R
m×n,

V = (v1, v2, · · · , vn) ∈ R
n×n,

Σ = diag(σ1, σ2, · · · , σn).
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The sequence of singular values {σi}n
1 is monotonic, non-negative, non-increasing, and con-

verge to zero absolutely. The measure of numerical tractability of a linear system is given

by its condition number, denoted by κ(·). The full rank matrix A ∈ R
m×n has a condition

number given by κ(A) = ‖A‖ ‖A−1‖ if A−1 exists. In general κ(·) can be computed by using

the so-called pseudoinverse A†

κ(A) = ‖A‖ ‖A†‖ =
σ1

σrank(A)

(3.8)

where A† is the Moore-Penrose generalized inverse

A† =

rank(A)
∑

i=1

viσ
−1
i uT

i .

Note that the condition number is the ratio of the maximum, i.e., the first, singular value

and the singular value corresponding to the numerical rank index. Ill-conditioned matrices

have a correspondingly high condition number. The condition number is essentially the error

amplification factor applied to y in equation (3.7).

The ill-conditioned system matrix will inherit the behaviour of two types of problems

according to Hansen (1998).

1. Rank-deficient problems exhibit a redundancy of information by having numerically

linear-dependent rows of A. The SVD of A reveals a cluster of small singular values

separated by a distinct gap from the larger singular values. These problems can be reg-

ularized by extracting the linearly independent information to yield a well-conditioned,

full rank matrix.

2. Discrete ill-posed problems arise when the original problem in equation (3.1) is ill-posed.

The numerical rank equals the number of columns of A and no gap is visible in the

singular value spectrum. These problems may be regularized if an equilibrium exists

between the residual norm ‖y −Ax‖ and the observed solution ‖y‖.

The inverse of A cannot be directly computed since the small singular values grow without
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bound, amplifying the noise components of the solution associated with the numerical null

space of A. Equivalently, small measurement perturbations y ≈ y+ǫ produce large variations

in x such that the 2-norm residual error
∥

∥Ax− y
∥

∥

2
is unbounded.

To address these issues, a regularization of the problem can be applied. Many tech-

niques are proposed mainly in a heuristic framework. Andrey Nikolayevich Tikhonov origi-

nally proposed the minimization of a constrained least-squares functional by ad hoc variation

of a single regularization parameter, termed the hyperparameter λ

xλ = arg min
λ

{

∥

∥Ax− y
∥

∥

2

2
+ λW (x)

}

, (3.9)

whereW (x) is some penalty function also referred to as the regularization error. From this, di-

rect methods have emerged such as Total Variation, Modified Singular Value Decomposition,

and Maximum Entropy. Iterative methods such as Conjugate Gradient, Bidiagonalization,

and the ν-Method are worthy alternatives to direct methods when dealing with large systems

that are too time consuming to factorize (Hansen, 1998).

Since the regularization parameter is heuristically selected in direct methods, selection

criteria are designed to provide the optimal solution. Four such criteria are the discrepancy

principle, generalized cross-validation, quasi-optimality, and the L-curve presented by Hansen

(1998). These attempt to incorporate whatever prior knowledge is available about the system

to discriminate against parameter values that produce meaningless solutions. In the best

situation, the error residual is well known and its mean can easily be calculated a priori.

Unfortunately, this is seldom the case and little is known about the sources of error that are

often collectively referred to as noise.

Recall the Radon transform example in section 3.1. The system matrix is ill-

conditioned and has a condition number given by equation (3.8) of κ(A) = 419.17. Its

singular value spectrum, shown in figure 3.4, shows a distinct gap in singular values be-

yond σ462, corresponding to the numerical rank of A. This problem is regularized using the

Tikhonov method where the error function is based on the identity matrix W (x) = ‖Inx‖.
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Figure 3.4: The singular value spectrum of the Radon transform example in section
3.1. A distinct gap is visible after the σ462, which corresponds to the numerical rank
of A. The condition number of A is κ(A) = 419.17.

In matrix form, equation (3.9) becomes

xλ = (ATA+ λIn)−1ATy.

The optimal value for the hyperparameter corresponds to the minimum total error ‖Ax −

y‖ + ‖Iny‖ and is found to be λ ≈ 0.066 in this case. This method is yet another way of

finding a good value for the hyperparameter apart from those mentioned above by Hansen

(1998). Figure 3.5 shows the regularized image to the right of the unfiltered one, originally

shown in figure 3.3. The streaking artefacts and blurring of edges are reduced at the expense

of introducing some background noise. The resulting image from unfiltered backprojection

can also be achieved by Tikhonov regularization using a very large hyperparameter, in this

case λ > 1.

Regularization must be carefully used since it creates bias based on the a priori

information given. In computed simulations, particularly, it is easy to introduce practically

inaccessible a priori information which renders the inverse solution unrealistically accurate.

This is referred in the literature as the inverse crime and is documented and discussed in



CHAPTER 3. INVERSE PROBLEM THEORY 29

Figure 3.5: Revisited numerical example of the Radon inverse problem. Twelve
evenly spaced axial projections are taken forming the ill-conditioned system matrix A.
Left: The unfiltered image reconstruction from A−1. Right: The Tikhonov regularized
image reconstruction with λ = 0.066.

depth, along with other forms of misinterpretation of data, by Adler & Lionheart (2006).



Chapter 4

Electrical Impedance Tomography

This chapter formally introduces EIT as an inverse problem. The formulation derived here is

the foundation of EIT and serves as the basis for the study of the deformable media problem.

The first section defines the EIT inverse problem in terms of the physical laws of electro-

magnetics. The second section formulates the linearization of EIT using the Finite Element

Method (FEM) and defines the linear systems implemented for the forward and inverse prob-

lems. The final section describes the image reconstruction algorithms used to obtain images

from frames of measurement data acquired over time. The problem is considered in 3D and

the 2D problem can be derived as its subset.

4.1 The EIT Inverse Problem

The partial differential equation (2.2) governing the electrodynamics of the EIT problem

is derived from Maxwell’s equations based on three major assumptions about the medium

under investigation. Consider the medium Ω ⊂ R
3 with C2-smooth boundary ∂Ω with the

following properties.

1. Isotropic conductor : the admittivity γ(x) for x ∈ Ω is a scalar function

γ(x) = σ(x) + jωǫ(x).

30
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2. Quasi-static: the excitation current frequency ω is low enough to allow the medium

to return to equilibrium such that the induced electric displacement field D and the

magnetic flux density B are constant

∂D

∂t
=
∂B

∂t
= 0, (4.1)

and the reactive component of the material is negligible γ(x) ≈ σ(x).

3. Linear conductor : the current density field J is linearly related to the electric field E

such that

J = γE. (4.2)

Maxwell’s equations are

∇ · D = ρ

∇ · B = 0

∇×E = −∂B
∂t

(4.3)

∇×H =
∂D

∂t
+ J (4.4)

where H is the magnetic field. The divergence of Ampère’s law (4.4) under a quasi-static

system (4.1) yields the conservation of charge law such that ρ is constant.

∇ · J = ∇ · ∇ ×H = 0 (4.5)

Faraday’s law (4.3) under the quasi-static system (4.1) states that the electric field is irrota-

tional ∇× E = 0 and is, therefore, completely described by the electric potential gradient.

E = −∇φ (4.6)
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Our result is obtained by combining equations (4.5), (4.2) and (4.6).

∇ · J = ∇ · σE = ∇ · σ∇φ = 0 (4.7)

Equation (4.7) is a generalized form of Laplace’s equation, which governs the conduc-

tivity and electric potential quantities in the EIT problem. It is subject to mixed Dirichlet

and Neumann boundary conditions proposed by Cheney et al. (1999) in the Complete Elec-

trode Model (CEM). We require that the inward normal component of the current density

J ·η ∈ ∂Ω is non-zero only where the electrodes are attached. Hence, the Neumann condition

for equation (4.7) is

σ
∂φ

∂η
=











J on electrodes

0 elsewhere.

The excitation current Ii for each electrode {Ei | i = 1, · · · , Ne} is given by the surface

integral
∫

Ei

σ
∂φ

∂η
dS = Ii (4.8)

and the voltage Vi measured at each electrode is modelled by mixed Dirichlet and Neumann

conditions
(

φ+ ziσ
∂φ

∂η

)
∣

∣

∣

∣

Ei

= Vi. (4.9)

Equations (4.7), (4.8), and (4.9) are subject to Kirchoff’s current and voltage laws
∑Ne Ii =

∑Ne Vi = 0 and make up the CEM.

The existence of solutions with the CEM is proven by Somersalo et al. (1992). Unique-

ness questions are investigated by Lionheart (1997) and show that unique solutions exist

for both isotropic and anisotropic conductivities with restrictions on the latter. The third

Hadamard condition however is violated, classifying EIT as an ill-posed problem. The inverse

problem is the recovery of σ ∈ Ω given V = {Vi | 1, . . . , Nv}, where Nv is the number of in-

dependent measurements given by equation (2.1). This relation is governed by a non-linear,

ill-posed operator G−1 : V 7→ σ. This operator also has the property of being non-local,

i.e., σ(x) for a particular x ∈ Ω will significantly affect the measurements at most of the
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electrodes. Therefore, all measurements must be related to all x ∈ Ω and simultaneously

solved. In addition, the system is underdetermined since only a finite number of indepen-

dent measurements is available to solve an internal conductivity distribution of arbitrary

complexity. Without regularization, small changes in V produce large variations of σ and

unrecognizable image reconstructions. To rectify this instability, a priori information about

the system and the expected solution is introduced by regularizing the problem. The prob-

lem is, first, discretized using the FEM and, second, solved as a linear approximation. The

practical applications of EIT are implemented based on FEM techniques described in the

following section.

4.2 Finite Element Method

A discretized version of the medium is represented using the FEM such that Ω is partitioned

into a mesh of Nk tetrahedral elements and Np nodes representing the element vertices. The

FEM meshes are computed using NETGEN (Schöberl, 1997) using the EIDORS suite. Figure

4.1 shows two FEM mesh types used to discretize cylindrical and circular media. The left

side shows a 828 tetrahedral element mesh with 252 nodes and the right side shows a 576

triangular element mesh with 313 nodes.

In the FEM model, nodes are associated with the electric potential value φ = φ(x)

corresponding to a point x ∈ Ω. In matrix form, the node potentials are written as the column

vector Φ = (φ1, φ2, · · · , φNp
)T ∈ R

Np. Similarly, the electrode voltages are also written as a

column vector V ∈ R
Ne and are defined by equation (4.9). The EIT forward problem is to

calculate V given the internal conductivity distribution, which is also represented in vector

form as σ = (σ1, σ2, · · · , σNk
)T ∈ R

Nk . The forward problem is stated in another way as

to include the complete excitation current pattern and the FEM mesh structure into the

problem.
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Figure 4.1: FEM meshes generated using EIDORS. Left : cylindrical mesh of 828
elements and 252 nodes. Right : circular mesh of 576 elements and 313 nodes.

4.2.1 The Forward Problem

The above formulations, including equations (4.8) and (4.9), are described in the context

of a single excitation current. However, in the general problem, we consider the complete

excitation pattern that produces a frame of measurement data at a particular time. Hence,

we consider the complete set of independent voltage measurements expressed in matrix form

as V ∈ R
Ne×Ne , containing exactly Nv independent measurements. Correspondingly, the

pattern of excitation currents is given by the matrix I ∈ R
Ne×Ne . Thus, each column of V

corresponds with a single excitation current.

The FEM model requires a linear operator A to map the node potentials Φ and the

electrode voltages V to the excitation currents I. This is accomplished by solving equation

(4.7) in a weaker form due to the introduction of node basis functions that are not differ-

entiable. The calculations are done by Polydorides (2002) and implement the CEM using

an augmented conductivity matrix A; it is obtained from the FEM node basis functions
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{ψ1, · · · , ψNp
} such that ψi is unity for node i and zero elsewhere.







Aα + Aβ Aγ

AT
γ Aδ













Φ

V






=







0

I






(4.10)

The submatrices are numerically calculated from the weak solution of equation (4.7):

Aα(i, j) = σ

∫

Ω

∇ψi · ∇ψj dV, i, j = 1, . . . , Np.

Aβ(i, j) =

Ne
∑

k=1

1

zk

∫

Ek

ψiψj dS, for nodes i, j on Ek.

Aγ(i, j) = − 1

zj

∫

Ej

ψi dS, for nodes i on Ej .

Aδ = diag

(

1

zk

∫

Ek

dS

)

, k = 1, . . . , Ne.

The CEM is implemented as Aβ , Aγ, and Aδ. Hence, these matrices are only computed over

the electrodes. The system matrix A is symmetric positive-definite and depends on σ and

the FEM mesh structure. Figure 4.2 shows a sparse plot of the system matrix A and its

components from equation (4.10). The forward problem is then







Φ

V






= A−1







0

I







and is efficiently computed using a Cholesky factorization of A.

4.2.2 The Inverse Problem

The forward problem establishes the ohmic relationship between the currents and the po-

tentials in the system. The inverse problem is the one encountered in applications of EIT

where the conductivity distribution σ and the internal electric potentials Φ are unknown. A

general solution of the ill-posed non-linear operator G−1 : V 7→ σ remains unresolved in the

literature. However, Siltanen et al. (2000) have solved the 2D problem. A linearization of



CHAPTER 4. ELECTRICAL IMPEDANCE TOMOGRAPHY 36

0 50 100 150 200 250

0

50

100

150

200

250

System matrix A for n
K
=828 and n

P
=252

Aγ

Aα+Aβ

Aδ
Aγ
T

Figure 4.2: Sparse plot of the 284× 284 system matrix A and its submatrices from
EIDORS. The FEM model is cylindrical with 828 elements, 252 nodes and two 16-
electrode rings. The excitation currents use the adjacent protocol and the condition
number is κ(A) = 15, 876.

the problem is implemented by computing the Jacobian of G, assuming that the operator is

differentiable over σ. Since the Jacobian is the matrix-equivalent to the derivative of a scalar

function, then J is the best linear approximation near a point σ0

G(σ) ≈ J(σ − σ0). (4.11)

Hence, for G : R
Nk → R

Nv , there are Nv functions of the form Vi = Vi(σ1, · · · , σNk
). There-

fore, the Jacobian J of G is

J =













∂V1

∂σ1

· · · ∂V1

∂σNk

...
. . .

...

∂VNv

∂σ1

· · · ∂VNv

∂σNk













. (4.12)

The Jacobian also quantifies the sensitivity of V with respect to σ and is calculated based

on marginal changes of φ→ φ+ δφ, V → V + δV , and σ → σ+ δσ in equation (4.7). This is

termed the perturbation method of calculating the Jacobian. Each member [J ]ij is computed
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Figure 4.3: The singular value spectrum of the 928 × 828 Jacobian matrix J of
the system, shown in figure 4.2. A distinct gap occurs after σ765 corresponding to
the numerical rank. The condition number is κ(J) = 4.24 × 108. Only every eighth
singular value σi is shown.

by integrating over element Ωj for each independent measurement i = (d,m) from electrode

Em and excitation current Id (Polydorides, 2002)

∂Vi

∂σj

=

∫

Ωj

∇φd · ∇ϕm dV. (4.13)

Here ϕm represents the electric potential calculated in terms of the voltage measurement at

electrode Em. The Jacobian is a very ill-conditioned matrix and requires regularization to

solve the inverse problem. For example, the Jacobian matrix calculated from the 284 × 284

system matrix A shown in figure 4.2 is a 928 × 828 matrix. The Jacobian has a rank of 765

and, therefore, is rank deficient. Its condition number, given by (3.8), is κ(J) = 4.24 × 108.

As expected, the singular value spectrum of J reveals a gap after the 765th singular value in

figure 4.3. In order to solve the inverse problem, we require the inverse of JTJ to obtain the

desired conductivity distribution σ ∈ R
Nk . In the final section of this chapter, the EIT inverse

problem is solved by the maximum a posteriori (MAP) regularization technique formulated

in section 3.2.
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4.3 MAP Image Reconstruction Algorithm

The MAP solution is derived for the EIT model parameters in terms of the inverse problem

theory from chapter 3. In the simplest case, when a Gaussian a priori density ρprior(σ) is

used, the corresponding Gaussian posterior distribution ρpost(σ) can be analytically calculated

in closed form. These matching distributions are termed Bayesian conjugates, and such a

situation can occur when system parameters describe some combination of many smaller

random variables. It becomes very difficult (perhaps impossible) to express these parameters

analytically with a probability density function. However, the central limit theorem states

that as the number of random factors affecting the variable becomes large, its distribution

becomes Gaussian. Therefore, the posterior distribution can be written in analytic form.

Consider the linearized EIT problem from equation (4.12) in the presence of an addi-

tive noise vector n ∈ R
Nv affecting each measurement

V = Jσ + n. (4.14)

Since J is not necessarily a square matrix, we must use the least-squares form to solve for

the conductivity distribution such that our estimate σLS is

σ = (JTJ)−1J
(

V − n
)

.

Regularization is required to obtain an accurate estimate of σ since J and, therefore, JTJ

are ill-conditioned. We assume as a priori information that σ is characterized by a Gaussian

probability density

ρprior(σ) ∝ exp

(

−1

2
(σ − σprior)

T Σ−1
σ (σ − σprior)

)

where σprior and Σσ are the a priori value and covariance matrix of σ, respectively. In the

simplest form, we choose σprior = E{σ}. We further assume that n = V − Jσ is additive
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Gaussian noise with covariance Σn such that the likelihood function is

ρ(V | σ) ∝ exp

(

−1

2
(V − Jσ)T Σn

−1(V − Jσ)

)

.

Then, from the MAP estimate equation (3.6),

σMAP = arg max
σ

{k ρprior(σ)ρ(V | σ)}

= arg max
σ

{

exp

(

−1

2

[

(V − Jσ)T Σn
−1(V − Jσ) + (σ − σprior)

T Σσ
−1(σ − σprior)

]

)}

where k is a constant. The maximum is obtained by minimizing the exponential term in a

quadratic form

arg min
σ

{

(V − Jσ)T Σn
−1(V − Jσ) + (σ − σprior)

T Σσ
−1(σ − σprior)

}

=⇒ 0 = (JT Σn
−1J + Σσ

−1)σ − (JT Σn
−1V + Σσ

−1σprior)

Therefore the MAP estimate of the conductivity is given by

σMAP = (JT Σn
−1J + Σσ

−1)−1(JT Σn
−1V + Σσ

−1σprior). (4.15)

It has been shown by Aster et al. (2005) that equations of the form (4.15) reduce to another

standard linear least-squares problem

σMAP = arg min
σ

∥

∥

∥

∥

[

J/
√

Σn

1/
√

Σσ

]

σ −
[

(V − Jσ)/
√

Σn

σprior/
√

Σσ

]
∥

∥

∥

∥

2

. (4.16)

Note that equations (4.15) and (4.16), when coupled with a broad or zero prior, produces the

unregularized least-squares or maximum likelihood solution. The prior information creates

a bias on each parameter element such that a particular solution seems more attractive

than another mathematically admissible solution. Hence, the desired information from the

regularized solution should be emphasized by the prior selected.

Another interesting perspective of the MAP solution is from signal filter theory in
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H D R
σ σ̂σWF

Figure 4.4: Block diagram of the Wiener filter applied to the EIT problem. The
blocks HD and HR are the degradation and reconstruction processes, respectively.

electrical engineering. The Wiener filter is often used in image processing applications when

the original image is degraded by some process. The essential concept is to use a recon-

struction process to block the frequency spectrum of the noise and a degradation process

to recover a reasonable estimate of the original image. Figure 4.4 shows a block diagram

of the filter applied to the EIT problem. σ is the original image, n is additive noise, and

the blocks HD and HR are the degradation and reconstruction processes, respectively. The

Wiener filter estimate σWF is formulated in terms of HD, HR, and the signal-to-noise ratio

(SNR). The SNR is equal to the ratio of power spectrum densities of the noise Sn and image

Sσ, respectively

HR =
H∗

D

HDH
∗
D + Sn/Sσ

.

In signal processing terms, HD and HR are the Fourier domain transfer functions of the

degradation and reconstruction processes. That is,

HD = F{hD} =⇒ σ ∗ hD = Jσ

HR = F{hR} =⇒ (V + n) ∗ hR = L(V + n)

where L is the matrix form of the reconstruction process. To find L, we minimize the square

error term ǫ2 = ‖σ − σWF‖2 over σWF. Since the reconstruction process operates on the
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arbitrary input V , we also require that E{ǫ2} be minimized.

E{ǫ2} = E{(σ − σWF)(σ − σWF)T}

= E{σσT − 2σσWF
T + σWFσWF

T}

= Σσ − 2E{σ(σTJTLT + nTLT )} + E{L
(

Jσ(Jσ)T + n(Jσ)T + JσnT + nnT
)

LT}

= Σσ − 2ΣσJ
TLT + L(JΣσJ

T + Σn)LT

This quadratic form has the single minimum

∂

∂L
E{ǫ2} = 0 ⇐⇒ L = ΣσJ

T (JΣσJ
T + Σn)−1.

The above expression for L can be rewritten in the form of the MAP regularization factor

on V of equation (4.15).

L = (JT Σn
−1J + Σσ

−1)−1(JT Σn
−1J + Σσ

−1) · ΣσJ
T (JΣσJ

T + Σn)−1

= (JT Σn
−1J + Σσ

−1)−1JT Σn
−1

Therefore, the Wiener filter also selectively blocks components of the degraded noisy signal

based on a priori information Σσ and Σn. To show that, indeed, the MAP estimator and

the Wiener filter are equivalent regularization techniques, one can derive HR from equation

(4.15) in the discrete Fourier domain assuming that J is a circulant matrix.

This chapter is closed with the Tikhonov form of the MAP solution from equation

(4.15). This form is the basis used to solve the boundary motion and electrode movement

problem discussed in the next chapter. Consider the inverse covariances in equation (4.15)

written in a weighted matrix form

Σσ
−1 =

1

w2
σ

R, Σn
−1 =

1

w2
n

W. (4.17)
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Substituting these into the MAP estimate yields

σMAP = (JT 1

w2
n

WJ +
1

w2
σ

R)−1(JT 1

w2
n

WV +
1

w2
σ

Rσprior)

= (JTWJ +

(

wn

wσ

)2

R)−1(JTWV +

(

wn

wσ

)2

Rσprior)

The matrix R is weighted by the positive quantity λ2 = (wn/wσ)
2, and they are termed the

regularization matrix and hyperparameter, respectively. The Tikhonov MAP regularization

solves the EIT inverse problem (4.14) yielding the estimate σMAP. This solution is regularized

by: i) the conductivity distribution a priori R and σprior and ii) the noise a priori W . The

conductivity distribution a priori are scaled by the hyperparameter λ, and the estimate is

written as

σMAP = (JTWJ + λ2R)−1(JTWV + λ2Rσprior). (4.18)



Chapter 5

Image Variability from Boundary

Deformation

The variability in EIT images due to the deformation of the medium boundary was simulated

and analysed as part of this thesis. A discussion of EIT applications prone to boundary

deformation is presented first, with references to the challenges reported in the literature.

The second section presents the methods used to simulate and quantify this effect. The third

section illustrates and quantifies the simulated effects of deformation on the reconstruction

model. Finally, an analysis of the results is discussed in the fourth section.

5.1 Cause and Effect of Boundary Deformation

The literature of medical EIT applications documents the negative effects of reconstructing

conductivity distribution imagery with poorly known electrode position. These shortcomings

are virtually inevitable when the medium boundary deforms during measurement. In this

case, the reconstruction model used to display images roughly approximates the medium

boundary and the position of the electrodes.

During the early days of EIT research, it was observed that electrode movement is a

significant source of errors and artefacts in images. In order to partially address this issue,

EIT difference imaging was proposed to reconstruct changes in the conductivity distribution

43
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due to changes in subsequent measurements. Barber & Brown (1998) showed that difference

imaging is less sensitive to electrode position uncertainty when the electrodes do not move

between measurements. Unfortunately, for medical applications of EIT, the electrodes do

move. For example, electrode movement due to chest expansion during breathing and to

changes in posture has a significant affect on measurements (Harris et al., 1988), (Adler

et al., 1996), (Patterson et al., 2001), and (Coulombe et al., 2005).

The effect of postural changes on EIT measurements has been studied by Harris et al.

(1988), Lozano et al. (1995), and Coulombe et al. (2005). In each study, participants were

asked to assume different postures between measurements and, consequently, significant dif-

ferences in EIT images were observed. It was found that, for EIT images of the thorax, the

primary cause of electrode movement was due to posture changes and breathing. Frerichs

(2000) reported that electrode movement during breathing is caused primarily by the expan-

sion of the rib cage. Simulation studies of this effect were conducted by Adler et al. (1996)

and by Patterson et al. (2001). Finite Element Method (FEM) models of the chest were

constructed, and EIT measurements were simulated due to changes in lung conductivity and

electrode movement with breathing. Both studies reported a broad central image artefact

whose amplitude was proportional to the EIT image due to the conductivity change.

5.2 Simulation Methods

The EIDORS suite was used in the Matlab (v.14 sp.3) environment on a 32-bit SuSE

Linux platform. This section includes the description of the forward and inverse models,

the implementation methods of boundary deformation, and the formulation of an image

variability figure of merit.

5.2.1 Forward and Inverse Models

The forward model is implemented as an elliptical FEM model with an axis ratio of 1.2 and

a 30 cm major axis. The forward model, seen on left side of figures 5.1–5.5, is constructed
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Figure 5.1: Left: the 2304 element forward model; a 30 cm major-axis ellipse with
1.2 major/minor axis ratio. Right : the reference reconstruction σref computed over an
inverse model of same boundary and electrode position with 1600 elements (λ = 0.06).

from 2304 triangular elements. Sixteen nodes on the boundary are selected to represent

electrodes with a contact impedance of 200 Ω. The elements are associated with a normalized

conductivity value; the nodes are associated with voltages referenced to a signal ground (not

shown in figures).

The conductivity values are shown as normalized values with respect to the back-

ground conductivity, which is set to zero. Inhomogeneities are designed to resemble a typical

thoracic measurement. Certain elements are selected to represent lung tissue, shown in blue

with normalized conductivity of −0.5. Other elements represent heart tissue, shown in red

with normalized conductivity of +0.5. Two inverse models, each with 1600 elements, are

used.

1. A 30 cm diameter, circular boundary model with evenly spaced electrodes.

2. An 30 cm major axis, elliptical boundary model with unevenly spaced electrodes.
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Both models have their inter-element connectivity pattern rotated by 45◦ compared to the

forward model. Inverse models with a different element layout than the forward model are

chosen to avoid the inverse crime.

All image reconstructions are computed using the maximum a posteriori regularized

inverse in equation (4.18) and the forward measurement data. Additive white Gaussian noise

(AWGN) is injected in the measurement data and modelled by W . The prior σprior is taken

as the mean of the conductivity distribution, and the solution is regularized based on the

Laplacian smoothness constraints in R.

5.2.2 Boundary Deformation and Electrode Displacement

The effect of boundary deformation is simulated by using an inverse model with a different

boundary than in the forward model. Displaced electrodes are simulated by a tangential

translation along the inverse model’s boundary, of each electrode.

The simulations test the reconstruction fidelity to the forward model distribution when

incorrect inverse models are used. That is, when either boundary deformation or electrode

displacement is present.

One reconstruction is made with the first circular inverse model described above, and

shown in figure 5.2. In this case, the boundary shape is wrong at the upper and lower

ends of the model, but the electrodes are evenly placed, as in the forward problem. The

remaining reconstructions are made with the second elliptical inverse model. Reconstructions

are calculated with electrode displacements of four size categories: 0.75, 1.50, 2.25 and 3.00

cm. For each category, the selected electrodes are shifted along the boundary with the

constraint that they do not cross over neighbouring electrodes, as this would be readily

noticeable in practice. Selected electrodes are displaced according to three patterns:

1. a custom pattern where the size and direction of displacement, as well as the number

of electrodes selected, are chosen by the user,

2. an anterior-posterior pattern where all electrodes on the anterior and posterior semi-

circles migrate towards the y-axis, and
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3. a left-right pattern where all electrodes on the left and right semicircles migrate towards

the x-axis.

These erroneous reconstructions are compared to reconstructions made with a correct inverse

model, consistent in boundary and electrode position with the forward model.

5.2.3 Analysis of Conductivity Variability

The simulations are analysed numerically and by visual inspection. All reconstructed images

are plotted along with the forward model and a normalized conductivity scale. Highly con-

ductive elements are shown in red, while poorly conductive elements are shown in blue. The

position of each electrode is shown by a small green disc. The first electrode at the top of

the model is shown in a lighter shade of green to track electrodes after large displacements;

the other electrodes are numbered clockwise.

Reconstructions are analysed numerically by calculating a global measure of variation

in conductivity, relative to the correct inverse model reconstruction. The variation between

the incorrectly reconstructed image, with conductivity vector σer, and the correct reconstruc-

tion, with conductivity vector σref , is given by the expression

νσ =

Nk
∑

i=1

∣

∣σ[i]
er − σ

[i]
ref

∣

∣

Nk
∑

i=1

∣

∣σ
[i]
ref

∣

∣

where the denominator does not vanish. The braced superscripts represent the element index,

and all Nk elements are summed. The νσ score is always a non-negative number. Images

that resemble each other will have a smaller νσ value than those will less resemblance. This

score is used to compare the variation of conductivity distributions resultant from different

severities of electrode displacement.
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Figure 5.2: Circular, 30 cm diameter, inverse model reconstruction with no electrode
displacement (λ = 0.06).

5.3 Image Reconstructions

The simulation results are illustrated and described below. Figures 5.1, 5.2, and 5.3 are

regularized with hyperparameter λ = 0.06, while figures 5.4 and 5.5 use λ = 0.03 to com-

pensate for severe distortions due to displacements. The reference reconstruction, computed

over a correct inverse model, is shown in figure 5.1. The lung tissue appears to have a larger

conductivity magnitude than the heart tissue, since the regularization algorithm gives more

significance to larger inhomogeneities.

Figure 5.2 shows a reconstruction over the circular inverse model. The image appears

to be stretched along the y-axis, and several small positive artefacts emerge in the posterior,

subject-left, and subject-right boundary regions. Also, two pairs of negative artefacts appear

to have disjoined the anterior and posterior extremities of the lung tissue and remain near the

boundary. The electrodes have not been displaced relative to the FEM structure; however,

the circular medium’s elements have a slightly different shape than those of the elliptical
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Figure 5.3: Elliptical boundary reconstruction with electrodes 2 and 8 displaced
counter clockwise by 2.25 cm (λ = 0.03).

medium. The resulting conductivity distribution broadens with a larger statistical variance

of 0.1362 compared to the reference distribution 0.1088, an increase of approximately 25%.

The following three figures are reconstructions over an inverse model with the correct

boundary, but with displaced electrodes. Figure 5.3 shows the effect of two severely misplaced

electrodes in the inverse model. Electrodes 2 and 8 are moved by 2.25 cm counter clockwise,

and severely affect the reconstruction. The left lungs anterior lobe has strongly deteriorated.

Large, positive artefacts appear in the posterior and subject-left boundaries; small, but

strong, negative artefacts appear adjacent to the displaced electrodes. The subject-right

semicircle remains relatively unaffected by these displacements.

In figures 5.4 and 5.5, all electrodes migrate by 1.50 cm towards the left-right and

anterior-posterior directions, respectively. Both reconstructions exhibit severe deformations

of the conductivity distribution. Strong contrasts in conductivity concentrate near the poles

of migration; whereas, light contrasts in conductivity appear between the largest electrode
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Figure 5.4: Elliptical boundary reconstruction with a 1.50 cm left-right migration
of all electrodes (λ = 0.03).

gaps.

The global variation of the conductivity distribution for a series of reconstructions

of electrode displacements is plotted in figure 5.6. A random permutation is made to se-

lect which electrodes are to be displaced clockwise. For each size category of displacements

(i.e., 0.75, 1.50, 2.25, and 3.00 cm), sixteen reconstructions are calculated, each containing

a different number of displaced electrodes. The plot reveals a positive, linear relationship

between contrast variation and displacement size. The largest variation occurs in each cate-

gory when five electrodes are displaced. Variability increases sharply as one to five electrodes

are displaced. Beyond five electrodes, the variability steadily decreases towards zero. This is

because selected electrodes are displaced by the same quantity in the same direction; thus, as

more electrodes are moved together, the global variation returns towards zero and a rotated

version of the reconstruction results.

Variations below 5% occur for displacements smaller than 0.75 cm of any number
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Figure 5.5: Elliptical boundary reconstruction with a 1.50 cm anterior-posterior
migration of all electrodes (λ = 0.03).

of electrodes. The largest variations, of over 20%, occur when four to eight electrodes are

displaced by more than 3.00 cm.

5.4 Discussion

Several important observations can be made based on these simulations. First, the effect

of incorrect or unknown electrode position in the inverse model negatively influences the

reconstructed conductivity distribution. By visual inspection, the effects cause a deterioration

of true conductive regions and also produce false conductivity artefacts near the displaced

electrodes. Second, the deterioration of these regions depends strongly on the proximity of

the displaced electrodes to the inhomogeneous tissue. Electrodes near homogeneous tissue

produce fewer artefacts, since only small changes in the potential measurements occur. A

further investigation of a local measure of variability around each electrode would explain

this effect further.
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Figure 5.6: Conductivity variation νσ versus number of displaced electrodes plot-
ted for four size categories of displacements: 0.75 cm (blue ◦), 1.50 cm (green ×),
2.25 cm (red �) and 3.00 cm (grey ⋄). All reconstructions used a regularization
hyperparameter of λ = 0.03.

In medical applications involving the EIT of soft tissue, the movement of electrodes

during measurement is inevitable due to somatic and involuntary patient motion. Further-

more, the inverse models used in image reconstruction are typically simplified versions of

the actual body being measured. Hence, the model only approximates the true electrode

positions. Finally, it is expected that the placement of electrodes on the patient is subject to

human error. In simulation, we observed that errors between 0.75 cm and 3.00 cm are capa-

ble of creating significant variability in the conductivity distribution that can lead to poorly

understood images. Interestingly, Harris et al. (1988) suggested that image deterioration

may be due to changes in distribution of ventilation with posture. The effect of ventilation

distribution changes is not refuted in this thesis; however, the simulation results suggest that

electrode movement produces a more significant effect.

Electrode movement is also the predominant factor in recent stimulation studies by
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Zhang & Patterson (2005). Gersing et al. (1996) measured the effect of changes in medium

geometry on EIT measurements. Kolehmainen et al. (1997) simulated the effect of errors in

the boundary model for static imaging using an elliptical deformation of a circular boundary

and showed significant errors for boundary model deformation magnitudes of 1% of the

medium diameter.

The evidence from the literature strongly indicates significant EIT image reconstruc-

tion degradation from boundary deformation and electrode displacement. The simulations

computed here confirm this degradation effect by showing that displacements as small as

0.75 cm can produce variations of approximately 5%, and that displacements larger than

1.50 cm introduce variations larger than 10%. These variations are mainly contrasting arte-

facts near the displaced electrodes and distortions of the conductivity distribution. The fol-

lowing chapter introduces a regularization method developed for this thesis, that augments

the standard maximum a posteriori solution with electrode position data, to compensate for

inter-measurement boundary deformations.



Chapter 6

Electrode Displacement

Regularization

This chapter is the core work of this thesis and builds on all previous material. The thesis

objective, addressed in this chapter, is to implement a solution of the deformable media

problem of EIT. A Tikhonov regularized, electrode displacement, maximum a posteriori

(MAP) algorithm that was developed during this research is formulated here; it is referred

to as the proposed algorithm. A performance analysis of the proposed algorithm is given in

the second section, and discussion of the synthesis from this chapter forms the final section.

6.1 Electrode Displacement MAP Algorithm

In a situation where electrodes move, it would be possible to calculate both the conductivity

change image and the electrode displacement. Lionheart (1998) showed that, for isotropic

conductivity images in three dimensions, such a calculation is theoretically possible. Sev-

eral groups have proposed algorithms to reconstruct electrode locations or boundary shape

(Blott et al., 1998), (Kiber et al., 1990), and (Kolehmainen et al., 2005). These approaches

model the boundary in two dimensions, and iteratively fit the model parameters to the mea-

surement data. This section develops a new algorithm to reconstruct both the conductivity

change image and the electrode displacement from difference EIT measurement data. The

54
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reconstruction problem is formulated in terms of a regularized inverse, in which an augmented

Jacobian, sensitive to conductivity variation and electrode position, is computed.

6.1.1 System model

The algorithm is based on a Finite Element Method (FEM) model of a conductive medium

discretized into Nk elements onto which Ne electrodes are attached on the FEM boundary. An

adjacent excitation current and voltage difference measurement protocol is applied to obtain

Nv independent measurements forming each frame. For difference EIT, voltage measurements

Vt1 and Vt2 , each of length [Nv], are acquired at frames t1 and t2, respectively. Based on these

frames, the difference measurement data are calculated and represented by a vector v such

that

vt1 = Vt2 − Vt1 .

Using this notation, we have Nk elements with conductivity vectors σt1 and σt2 of length [Nk]

taken at frames t1 and t2, respectively. We write the conductivity change image ∆σ as

∆σt1 = σt2 − σt1 .

In this model, it is assumed that the difference measurement data vti depends only on the

conductivity change image ∆σti of the current frame. The Complete Electrode Model (CEM)

is used for many-node electrodes in 3D models, and the point electrode model (PEM) is used

for single-node electrodes in 2D models. In each case, the electrodes are represented by

nodes on the FEM boundary. The displacement of electrode Ej between frames t1 and t2 is

described by the position vector

r
j
t1

= i(xj
t2
− xj

t1
) + j(yj

t2
− yj

t1
) + k(zj

t2
− zj

t1
)

where (xj , yj, zj) represents the node coordinates of electrode Ej at the given frame. Based

on the difference measurement data v, we attempt to reconstruct an image written as the
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FEM model Nk Np Ne Nv system matrix
Planar 576 313 16 104 Aα

Volumetric 828 252 32 464 A

Table 6.1: Finite element model parameters used in the forward problem.

vector x = [σ r]T of length [Nk + 3Ne], which represents the conductivity change image

and the electrode displacement between successive frames. Note that this requires that we

rewrite r as a single column vector of length [3Ne] rather than in the triplet form. The first

Nk entries represent the conductivity change image ∆σ for each element. The remaining 3Ne

entries represent the displacement r for each electrode. In two dimensions, there are only

two Cartesian axes; therefore, x has length [Nk + 2Ne]. In general, given the dimension Nd

of the FEM, x has length [Nk +NdNe].

6.1.2 Forward calculations

We represent the forward solution as the computation of difference measurement data v,

from the conductivity change image and the electrode displacement x. This is modelled by

the EIT difference operator G based on the FEM and relative to a homogeneous conductivity

image σh at t1. This is represented as

v = G(x)
∣

∣

σh
.

The FEM model parameters used in the forward problem are described in table 6.1. The

system matrices are implemented based on equation (4.10) for the CEM, and by the PEM

model used by Adler & Guardo (1996). The forward calculations are computed based on the

following pseudocode algorithm using EIDORS:

1. Create the EIDORS forward model object

f_obj = eidors_obj();

2. Solve homogeneous forward problem

sigma(:) = 1;

vh = fwd_solve( f_obj, sigma );
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3. Simulate node movements from boundary deformation

new_node_coord = old_node_coord + move;

4. Solve inhomogeneous forward problem

sigma = conduct_image;

vi = fwd_solve( f_obj, sigma, new_node_coord );

5. Simulate additive noise

vi = vi + noise;

6. Take voltage difference

dv = vi - vh;

6.1.3 Inverse calculations

The inverse solution is derived from the regularized MAP framework using the Gaussian

priors in equation (4.15). The inverse calculations are modified to account for electrode

displacement. The Jacobian of G is assembled as two submatrices such that

J = [Jσ JE ] (6.1)

where Jσ, of size [Nv × Nk], is calculated by the perturbation method based on equations

(4.12) and (4.13) for 3D models. The submatrix JE , of size [Nv × NdNe], is the sensitivity

from electrode displacement, and written as

JE =













∂V1

∂E1

· · · ∂V1

∂ENdNe

...
...

...

∂VNv

∂E1

· · · ∂VNv

∂ENdNe













where ∂ENdNe
represents an infinitesimal movement of electrode Ne along dimension Nd.

Each element [JE]ij represents the ratio of a change in measurement i for a small change in

finite element j. This portion of the Jacobian is calculated using the simpler perturbation

method based on r → r+∆r. In 2D models, the Jacobian is calculated from the perturbation
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of the image x → x + ∆x, where ∆x is chosen to be sufficiently large to avoid numerical

errors, but small enough that it accurately approximates the Jacobian. Thus, each element

[J ]ij is formulated by the forward problem taken from measurement i on element j such that

[J ]ij =
Gi (xj + ∆xj)

∆xj

.

In order to validate the choice of ∆x, the change in the Jacobian as a function of ∆x is

evaluated. For calculations with double precision arithmetic, the relative variation is less

than 10−6 for ∆x = 10−6. The Jacobian is used as the linear approximation from equation

(4.11); except we augment σ → x.

The regularized MAP framework using Gaussian priors from equation (4.15) is written

here as

xMAP = (JT Σn
−1J + Σ

x

−1)−1(JT Σn
−1V + Σ

x

−1xprior). (6.2)

The conductivity change image and the electrode displacement are assumed to be as likely

positive or negative. Therefore, we choose to provide no a priori bias, i.e., xprior is set to 0.

The matrices Σ
x

and Σn are the a priori covariance estimates of the image and measurement

noise, respectively. The a priori noise is assumed to be an additive white Gaussian (AWGN)

process. This assumption is made to simplify the analysis; it is the ideal case where electrode

signals are independent. Furthermore, choosing a constant weight wn means that the noise

amplitude is equal across channels. Therefore, the noise vector n ∈ R
Nv has the statistical

properties that E{n} = 0 and E{nnT} = Σn = wnI, where Σn is the covariance matrix of n,

wn is a scaling factor of the noise amplitude, and I is the identity matrix. Thus, the a priori

image and noise covariances are modelled such that

Σ
x

= E{x2}, Σn = wnI.

Hence, [Σn]ii can be thought of as the relative noise power for measurement i. Unnecessary

computation is avoided by computing matrices R and W to represent Σ
x

−1 and Σn
−1, re-

spectively. Similar to the Jacobian in equation (6.1), the a priori image R is formed by two
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submatrices such that

R =







R′
σ 0

0 R′
E






(6.3)

where R′
σ, of size [Nk × Nk], is the conductivity change image covariance, and R′

E , of size

[NdNe×NdNe], is the electrode displacement covariance. The conductivity and displacement

components are assumed to be uncorrelated; therefore, the cross-covariance of σ and r is

zero. For specific applications of EIT, such as for lung imaging, the conductivity change

image may be correlated to the electrode displacements. However, in general, to impose such

a priori information on the algorithm may introduce image artefacts when such correlations

do not hold. Since this algorithm is not only applied to breathing data, uncorrelated priors

is a reasonable choice. Based on these assumptions, the image covariance is modelled as

Σ
x

−1 =
1

w2
σ

Rσ +
1

w2
E

RE

where wσ and wE represent the a priori amplitude of conductivity change image and electrode

displacement, respectively. Note that Rσ and RE are padded by zeros such that they both

have size [(Nk +NdNe)× (Nk +NdNe)] and can be added to achieve equation (6.3). That is,

Rσ =







R′
σ 0

0 0






, RE =







0 0

0 R′
E






.

In order to model the expected smoothness of actual conductivity change images, R′
σ

should be a spatial high pass filter (Adler & Guardo, 1996). The inter-element conductivity

correlation is modelled using a discrete Laplacian filter, so that the diagonal elements [R′
σ]ii =

Nd + 1. The off-diagonal elements [R′
σ]ij are set to −1 if finite elements i and j are adjacent,

i.e., share at least Nd nodes, and are otherwise set to zero. Within the electrode displacement

model R′
E , it is again reasonable to expect a non-zero inter-element correlation; because as

the boundary deforms smoothly, the adjacent electrodes may be expected to move similarly.

The inter-element displacement correlation is also modelled using a discrete Laplacian filter,
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with the diagonal elements [R′
E ]ii set to 2.1. Hence, the off-diagonal elements [R′

E ]ij are

set to −1 for adjacent electrodes i and j. In order to impose a non-zero penalty for global

displacement of all electrodes, [R′
E ]ii = 2.1 is chosen rather than 2 . Since the a priori

amplitudes wσ and wE are measured in different units, they may be of different orders

of magnitude. Consequently, µ = wσ/wE is defined as the displacement hyperparameter

to represent the compromise between model fidelity to the conductivity change image or

electrode displacement.

The Tikhonov regularized MAP solution from equation (4.18) is implemented by ap-

plying the model formulated above in equations (6.1) and (6.3) to the MAP expression in

equation (6.2).

xMAP =

(

JT 1

w2
n

WJ +
1

w2
σ

Rσ +
1

w2
E

RE

)−1

JT 1

w2
n

Wv (6.4)

The regularization matrix Rµ is defined in terms of µ2 as

Rµ = Rσ + µ2RE . (6.5)

Now equation (6.4) can be rewritten in terms of the Tikhonov hyperparameter λ2 = w2
n/w

2
E

and the displacement hyperparameter µ2 = w2
σ/w

2
E. From equations (6.1) and (6.3), an aug-

mented linear inverse solution for the conductivity change image and electrode displacement

xλµ is obtained using the hyperparameters λ and µ. Given the measurement data v, the

inverse solution of the proposed algorithm is

xλµ =

(

JTWJ +
w2

n

w2
σ

Rσ +
w2

n

w2
E

RE

)−1

JTWv

=
(

JTJ + λ2(Rσ + µ2RE)
)−1

JTv

=
(

JTJ + λ2Rµ

)−1
JT v. (6.6)

From equation (6.5), the regularization matrix Rµ is defined element-wise in terms of the
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Figure 6.1: The regularization matrix R is assembled from two sub-matrices quan-
tifying the inter-element conductivity correlation, or the inter-electrode displacement
correlation. The electrode displacement correlation sub-matrix is scaled by the dis-
placement hyperparameter µ2. The Jacobian matrix J is assembled similarly from
sub-matrices quantifying the boundary voltage v versus the conductivity distribution
σ and the electrode displacements r.

displacement hyperparameter µ as follows

[Rµ]ij =















































Nd + 1 if i = j, and i ≤ Nk

−1 if element i is adjacent to j, and i ≤ Nk

2.1µ2 if i = j, and i > Nk

−µ2 if electrode i is adjacent to j, and i > Nk

0 otherwise.

Figure 6.1 illustrates how R and J were implemented in the algorithm. The regularization

matrix is composed of two sub-matrices. The upper-left sub-matrix quantifies the correla-

tion between neighbouring elements, and the lower-right sub-matrix correlates neighbouring

electrodes and is scaled by the displacement hyperparameter. Since no element-electrode

correlations are modelled, the off-diagonal sub-matrices are zero. The Jacobian is also com-

posed of two sub-matrices, each quantifying the boundary voltage sensitivity. Each element

of the left sub-matrix is the change of a particular measurement v for a small change of

conductivity σ in a particular element. The right sub-matrix is the change in v for a small

displacement of an electrode along one of the axes. These sensitivities are calculated by

using a homogeneous conductivity distribution σh and by perturbing either the element or

the electrode corresponding to the matrix element value that is to be calculated.
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6.1.4 Artefact amplitude measure

The reconstruction algorithm from equation (4.18), which does not calculate electrode dis-

placement is referred as the standard algorithm. Images reconstructed with electrode move-

ment compensated by the proposed algorithm appear to show reduced artefacts resulting

from boundary deformation in comparison with the standard algorithm. To measure this

effect, a measure of reconstruction artefact amplitude (AAM) is defined as follows. A re-

construction artefact is defined to be an element of non-zero conductivity variation, which is

known a priori from the physical or simulation model. The AAM is defined by the expression

AAM ,

√

∑

i∈L Ωix
2
i

∑

i∈L Ωi

where Ωi ⊂ Ω is the volume or area of element i, and L is a subset of elements selected. For

simulated results, L includes all elements which do not overlap with any contrast element in

the forward model. For phantom measurement data, L is defined to include elements in the

two rings of finite elements closest to the boundary because this is the typical region where

deformation artefacts occur.

6.2 Performance Analysis

The performance of the standard and the proposed algorithms is measured using three figures

of merit that consider the image characteristics of the reconstructed conductivity change

image. These are applied to a 2D, unit radius, circular FEM model containing a single

conductivity contrast whose position varies radially inside the medium. The key functions of

the software code used to generate these figures and results is printed in the second section

of appendix C entitled “Performance Analysis”.

1. The position error measures the discrepancy of the contrast centre between the forward

model and the inverse model images. This determines whether the algorithm shifts or

warps the geometry of the conductivity change image. The position error was defined
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by Adler & Guardo (1996).

2. The blur radius measures the radius of the disk, centred on the contrast, that encircles

elements containing half of the total image intensity. The blur radius was defined

by Adler & Guardo (1996). An overview of methods for the measurement of spatial

resolution in 2D circular EIT images was presented by Wheeler et al. (2002).

3. The artefact amplitude measure, defined in section 6.1.4, is also used on the single

contrast model after applying an elliptical deformation to the circular boundary.

The performance analysis routine begins with a contrast in the centre of the medium,

corresponding to origin of the medium radius. The three figures of merit are applied and

the analysis is repeated with the contrast repositioned at every 0.10 unit increments of the

medium radius until the boundary is reached. This routine is repeated for hyperparame-

ter values of λ ∈ {10−6, 10−5, . . . , 10−1} and µ ∈ {1, 10}. Both algorithms produce nearly

identical position error values. Results are only slightly affected by varying the contrast ra-

dial position; hence, the following figures show results for a fixed contrast placed along the

0.50 radial position. It is observed that image properties only vary slightly in function of

µ, since these figures of merit examine the conductivity change image and not the electrode

movements. Hence, the fixed value µ = 1 is used for the following figures.

A comparison of blur radius results is shown in figure 6.2. The blur radius for differ-

ent deformation magnitudes between 0–1% of the medium diameter are computed using the

proposed algorithm. The standard algorithm could not reproduce the contrast due to strong

deformation artefacts. Without deformation, the standard and proposed algorithms have

the same blur radius. As deformation is introduced, the proposed algorithm’s blur radius

steadily increases until it can no longer reconstruct the contrast. Figure 6.3 illustrates the

results comparing the standard (solid curve) and the proposed movement (dash-dot curve)

algorithms for two cases of regularization. The left plot shows the slightly under-regularized

case, using hyperparameter λ = 5 ∗ 10−4, where both algorithms behave similarly and incur

large artefacts as the deformation progresses beyond 1–2%. The proposed algorithm always
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Figure 6.2: Plot of the blur radius, for deformations ranging between 0–1% of
medium diameter, versus hyperparameter λ ∈ {5 ∗ 10−3, . . . , 10−1} with the proposed
algorithm. The forward problem is a small contrast half way along the radius of a
circular model.

has a marginally lower AAM. The right plot shows the AAM results corresponding to a rea-

sonably regularized image using hyperparameter λ = 10−2. The proposed algorithm is more

tolerant to boundary deformations and has a much lower AAM than the standard algorithm.

The convexity of the proposed curve indicates that its AAM value begins to rise quickly

beyond 10% deformations. Figure 6.4 illustrates the AAM gain factor. This represents the

reduction of the proposed algorithm’s AAM, relative to the standard algorithm’s AAM. For

example, at 5% deformation the proposed algorithm’s AAM is approximately 0.6 the value of

the standard algorithm’s AAM. The gain factor is given by the ratio (AAMs−AAMp)/AAMs

where s and p refer to the standard and the proposed algorithms, respectively. It is calculated

for each hyperparameter value {10−6, . . . , 10−1} and the average gain is plotted versus the

deformation magnitude. This figure shows that the proposed algorithm performs best over
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Figure 6.3: AAM plots versus deformation for standard (solid) and proposed (dash-
dot) algorithms. Both plots use µ = 1 and show AAM for deformations ranging from
0.5–10% of medium diameter. The forward problem is a small contrast half way along
the radius of a circular model. Left: under-regularized solution with λ = 5 ∗ 10−4.
Right: reasonably regularized solution with λ = 10−2.

the standard algorithm in terms of artefact reduction.

6.3 Discussion

One of the main challenges in applications of EIT is compensating for image artefacts due to

the uncertainty of electrode position. This chapter proposes a Tikhonov regularized, electrode

displacement MAP algorithm to reconstruct both the conductivity change image and elec-

trode displacement from difference EIT measurement data. Several groups have attempted to

model the boundary shape from EIT measurements. Kiber et al. (1990) showed a way to es-

timate the shape of the boundary from electrical data using a two-dimensional model. Good

results were reported for an elliptical tank and some success on data from a thorax. Blott

et al. (1998) and Kolehmainen et al. (2005) developed algorithms to compensate for electrode
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Figure 6.4: AAM gain factor averaged over hyperparameter values λ ∈
{10−6, . . . , 10−1} and plotted versus deformation. The forward problem is a small
contrast half way along the radius of a circular model.

position variations based on a perturbation of the Jacobian similar to that presented here. A

regularized expression was developed and iteratively solved for the conductivity changes and

electrode movements. This work differs from the algorithm proposed here, in that electrode

displacement was not directly modelled as spatial coordinates, and only 2D simulations were

presented.

The performance analysis, comparing the proposed and the standard algorithms, show

that the proposed algorithm is better equipped to image deformable media. Even in the

under-regularized case, the proposed algorithm maintains a lower AAM value. In this anal-

ysis, the proposed algorithm’s AAM is 50–80% smaller than the standard algorithm’s AAM

for deformations between 0.5–10% of the medium diameter. Also, the proposed algorithm

also produces a marginally smaller blur radius. The calculations require 10 ms per frame

after the Jacobian is precalculated. Hence, the system described is suitable for real-time EIT
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imaging of processes up to a highest frequency component of 500 Hz.

An important theoretical result was given by Lionheart (1998) who showed that, if the

boundary shape is wrong in a 3D model, there will not generally be an isotropic conductivity

which will fit the measured boundary data. Recall that anisotropic conductivity violates one

of the main assumptions of the EIT inverse problem in section 4.1. Thus, in theory, both

conductivity and correct boundary shape can be calculated from EIT measurement data. For

2D models, isotropic conductivity and boundary shape can be recovered up to a conformal

mapping relation, i.e., only a smaller set of deformations can be correctly recovered.

The proposed algorithm, however, imposes limitations to the results. This study uses

fixed electrode models, in which all nodes for each electrode translate uniformly, without

distortion or rotation. However, real electrode displacements are far more complex. The

electrode will turn as it moves, the skin under it will buckle, and the electrode itself may

deform. Perhaps the performance differences observed from simulations and from phantom

data are partially a result of this simplification. Moreover, boundary deformation is modelled

by node displacement in the FEM. Thus, as the boundary is deformed, the element structure

of the FEM changes and also modifies the measurement data. In this study, deformations

on the order of 0.5–10% of the medium diameter are considered. However, for larger de-

formations, this model is expected to incur FEM-related artefacts. Finally, the result by

Lionheart (1998) applied to this study is limited by the fact that difference measurement

data are considered, and a limited number of electrode displacements, rather than complete

boundary data, are available.

In addition to boundary deformation and electrode displacement, changes of electrode

contact impedance are a significant issue in EIT applications, especially for monitoring ap-

plications (Lozano, 1997). While this is not considered here, it is interesting to note the

approach taken by Heikkinen et al. (2002) that executed simultaneous reconstructions of

the conductivity change image and electrode contact impedances. Similar to this work, a

composite Jacobian was calculated based on changes in both parameters. Perhaps an im-

provement to the proposed algorithm would be the modelling of electrode impedance in this
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way. Additionally, it may be possible to reconstruct the overall distortion of the boundary

as well as the displacement of the electrodes.

Another valuable study is the development of equipment-specific noise models. This

work models the noise as an AWGN process that has equal gain and SNR across electrode

channels. EIT equipment, in general, may however produce correlated noise signals across

channels, each with different gain and SNR. Moreover, the noise may not be ergodic. Such

generalizations would complicate the calculation of the MAP solution, since equation (6.2)

would not be valid and more effort would be required to calculate the posterior probability

distribution.

Electrode displacement is a difficult problem to simulate. Since the discretization of

the physical problem introduces assumptions and limits the validity of this model, the author

feels that a demonstration of experimental results is also necessary to ensure this method

is not only applicable to simulated data. Hence, this method is also tested on simulated,

phantom, and in vivo measurement data for 2D and 3D media.



Chapter 7

Imaging of Deformable Media

This chapter presents the data acquired during this research and applies the proposed al-

gorithm developed in this thesis. The first section describes the acquired EIT measurement

data from simulation, phantom, and in vivo experiments. The second section presents the re-

constructed conductivity change images of these data. The final section discusses the results

concerning the material from this chapter.

7.1 Acquired EIT Data

EIT measurement data were acquired by numerical simulation, phantom experiments using

a saline tank, and in vivo experiment. The measurement data from physical experiments

were acquired by the Goe-MF II EIT instrument (Viasys Healthcare, Höchberg, Germany).

A complete record of these experiments is found in appendix A.

Numerical simulations were conducted using 2D and 3D Finite Element Method

(FEM) models in EIDORS, described in table 6.1. The methods of generating the mea-

surement data are outlined in the forward calculations in section 6.1.2. The measurement

data Vt1 are calculated for a homogeneous circular medium with conductivity σh, and Vt2

are calculated for a medium with two small inhomogeneities of conductivity 1.2 × σh and

0.8 × σh. Between frames t1 and t2 the boundary is distorted into an elliptical shape with a

1% elongation vertically and a 1% compression horizontally. Additive white Gaussian noise

69
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(AWGN) is added to measurements to give a signal-to-noise ratio (SNR) of 20 dB, with the

signal defined as ‖v‖2.

Saline phantom measurement data were acquired from a 30 cm diameter, 30 cm tall,

cylindrical phantom, filled with 0.9% saline solution to the 20 cm mark. A similar phantom is

shown in figure 7.1. Sixteen stainless steel electrodes were placed, equally spaced, around the

circumference at a vertical position of 10 cm above the base of the tank. EIT measurement

data were acquired using the adjacent excitation and measurement protocol. Measurement

data vh from a homogeneous conductivity image were first acquired, and subsequently, small

non-conductive spherical objects, of 2 cm radius, were introduced in the plane of the elec-

trodes at various positions along the x and y axes. Electrode displacement was simulated

by applying an elliptical deformation to the phantom such that the diameter of the top of

the phantom on the x-axis was reduced by 5 cm. The electrode channel impedances were

measured between 200–400 Ω according to the system’s calibration test, which considered

these within the system’s acceptable limits.

The in vivo measurement data were acquired from one normal male subject. Research

ethics approval was obtained (University of Ottawa research ethics certification file H 05-04-

02 ). Seventeen (16 signal + 1 ground) Ag/AgCl ECG electrodes (Blue Sensor, Ambu+,

Denmark) were placed on the thorax after the skin was prepped with isopropanol. All

measurements were taken while the subject was supine. Two electrode placement strategies

were used where the reference electrode was placed on the right side of the subject’s waist

line.

1. Single plane, 16 electrodes aligned with the fifth rib directly below the nipple. Electrode

1 is in the centre of the sternum. The other electrodes are labelled moving towards the

subject’s right side so that electrode 5 is under the right armpit, electrode 9 is on the

spine, and electrode 13 is under the left armpit.

2. Two planes of 8 electrodes each. The upper plane is vertically aligned with the fifth

rib directly below the nipple and the lower plane with the seventh rib directly below

the nipple. Electrode 1 is on the upper plane in the centre of the sternum. Electrode 2
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Figure 7.1: Saline plastic phantom (30 cm diameter; 30 cm height) with sixteen
electrodes over two rings.
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is on the lower plane but shifted to the right by half the inter-electrode distance of the

upper plane. The other electrodes are labelled in a zigzag pattern, moving towards the

subject’s right side.

For each strategy, three breathing patterns were measured: tidal breathing, residual capacity

to total lung capacity (TLC/RC), and paradoxical breathing. Tidal breathing are relaxed,

normal breaths. The residual and total lung capacities are the minimum and maximum

quantities of air the subject can contain in the lungs. Paradoxical breathing is when a fixed

quantity of air is moved from the upper-thorax (by rib expansion) to the lower-thorax (by

diaphragm yield), i.e, the subject is not really breathing. These patterns were repeated for

the subject in a rest state (heart rate ≈ 60 bpm) and a stress state (heart rate ≈ 90 bpm).

7.2 Reconstructed Conductivity Images

Conductivity change images from the standard and the proposed algorithms are reconstructed

in this section. The reconstructions are implemented in Matlab (v.14 SP3) and tested using

a Linux computer equipped with a 2.60 GHz, 32-bit AMD Opteron CPU. The calculation of

the complete reconstruction of the 3D problem took 25.2 seconds, while the computation of an

inverse solution required approximately 10 milliseconds. The key functions of the software

code used to generate these results are printed in the first section of appendix C entitled

“Electrode Displacement”.

7.2.1 Simulated Reconstructions

Simulated 2D measurement data are generated using the circular FEM model shown in the

top left part of figure 7.2. The conductivity change image is coloured with the blue-red

spectrum shown to the right of the image. Each electrode is indicated by a green disk at

the centre of the electrode position. Arrows indicate each electrode’s displacement, and are

scaled by 20. The top right part of figure 7.2 is an image reconstructed from these measure-

ment data using the standard method with λ = 10−2. The images reconstructed using the



CHAPTER 7. IMAGING OF DEFORMABLE MEDIA 73

 

 

−0.2

0

0.2

 

 

−0.08

0

0.08

 

 

−0.04

0

0.04

 

 

−0.04

0

0.04

Figure 7.2: Simulated images of reconstructed conductivity change image and elec-
trode displacement. Arrows indicate each electrode’s displacement, and are scaled
by 20. Top left : 2D FEM (Nk = 576) for simulation of conductivity change im-
age and electrode displacement from an elliptical deformation of 1% of medium
diameter. AWGN of 20 dB SNR is added to simulated measurement data. Top

right : reconstructed image (Nk = 256) using the standard algorithm with λ = 10−2

(AAM = 0.0616). Bottom left : reconstructed image using the proposed algorithm
with λ = 10−2 and µ = 1 (AAM = 0.0116). Bottom right : reconstructed image using
the proposed algorithm using λ = 10−2 and µ = 20 (AAM = 0.0135).

standard method show a large level of artefacts around the medium boundary, as well as an

incorrect position for the reconstructed contrasts, which appear to be pushed in the direction

of boundary movement. Images reconstructed using the proposed algorithm, in the bottom

row of figure 7.2, show dramatically reduced artefacts as well as more accurate contrast po-

sition. When µ is small, the penalty for movements is low, and the algorithm is able to make

arbitrary electrode movements to satisfy the conductivity change constraints. This is ob-

served in the bottom-left corner of figure 7.2 where µ = 1. For this simulation, conductivity

change images are expected to vary on the order of 1.0 × σh. Electrode displacements have
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Figure 7.3: 3D FEM (Nk = 828) with two rings of 16 electrodes shown in green. The
FEM incurs a geometrical distortion (exaggerated 10 times to clarify the geometry).
Blue and red regions indicate contrasts being less conductive and more conductive,
respectively, than the surrounding medium.

a magnitude of 5% of the medium diameter. Therefore, an estimate of µ = 1/0.05 = 20 is

reasonable. Using this value, µ = 20, the image in the bottom-right corner of figure 7.2 shows

a better reconstruction of conductivity and displacement. The Artefact Amplitude Measure

(AAM) of the proposed algorithm with µ = 20 is reduced by 78% compared to the standard

algorithm. Note however, for specific experimental measurements, estimating µ correctly

requires a priori knowledge of expected conductivity variations and boundary deformation.

An analytical selection criterion, based on the work by Graham & Adler (2006b), for this

parameter would be a useful improvement.

In order to test this method on 3D reconstructions, simulations are calculated using

the cylindrical FEM model shown in figure 7.3. Difference measurement data are calculated

due to the introduction of conductive and non-conductive contrasts and a complex 3D distor-

tion. Reconstructed conductivity change images and electrode displacement are shown from
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Figure 7.4: Reconstructed images and electrode displacement from simulated 3D
measurement data with 20 dB SNR noise, using hyperparameters λ = 3 × 10−3

and µ = 20. Each column shows three horizontal slices of the reconstructed image
on a volumetric FEM (Nk = 828; top: z = 0.167; middle: z = 0.500; bottom:
z = 0.833). Electrodes are indicated by green disks at the centre of their positions.
Arrows indicate each electrode’s displacement, and are scaled by 10. Left : simulated
inhomogeneities and electrode displacement. Middle: reconstructed image using the
standard algorithm (AAM = 0.0708). Right : reconstructed image using the proposed
algorithm (AAM = 0.0190).

simulated 3D measurement data with 20 dB SNR noise, using hyperparameters λ = 3×10−3

and µ = 20. The figure is divided into three columns. Each column shows a slice of the

medium parallel to the z-axis. Conductivity change images and electrode displacement are

represented as in figure 7.2, except that arrows are scaled by 10. The forward model, the

standard algorithm result, and the proposed algorithm result are shown in the left, middle,

and right columns, respectively. Images reconstructed from this FEM are shown in figure

7.4, using the standard algorithm and the proposed algorithm. The proposed algorithm is

able to calculate electrode displacement, and it is also able to significantly reduce the level
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Figure 7.5: Reconstructed images (Nk = 256) for phantom measurement data with
two non-conductive objects: one on the positive x-axis, the other on the negative
y-axis. Arrows indicate each electrode’s movement, and are scaled by 10. Left :
reconstructed image with standard algorithm using λ = 10−2 (AAM = 0.134). Right :
reconstructed image with the proposed algorithm using λ = 10−2 and µ = 10 (AAM =
0.0273).

of image reconstruction artefacts. The proposed algorithm’s AAM is 73% smaller than the

standard algorithm’s AAM.

7.2.2 Phantom Reconstructions

Reconstructed images for phantom measurement data are shown in figure 7.5. The phantom

contained two non-conductive objects: one on the positive x-axis, the other on the negative

y-axis. The phantom was compressed along the x-axis by 5 cm at the top of the tank. Since

electrodes were placed at 1/3 of the tank height, each electrode moved by 6.7% of the tank

radius. The calculated displacements shown in figure 7.5, however, indicate the distortion was

2/3 smaller. The contrasts are reconstructed at the correct locations in both the proposed and

the standard algorithms, although artefacts in the standard algorithm are significantly larger.

The proposed algorithm’s AAM is 80% smaller than the standard algorithm’s AAM. The used

EIT instrument is capable of capturing 750 frames per second. The algorithm is applied to a

breathing simulation of 60 seconds during which a series of elliptical boundary deformations

were progressively introduced and relaxed as per experimental records in appendix A. Two

contrasts were located inside the phantom at the positive x and negative y axes. Figure 7.6
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Figure 7.6: Reconstructed images (Nk = 256) for phantom measurement data with
two non-conductive objects on the positive x and negative y axes. Arrows indicate
each electrode’s movement, and are scaled by 10. Frames shown are sampled in
6 second intervals. The phantom is progressively deformed and relaxed ten times
sequentially over 60 seconds.
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shows six reconstructed frames, beginning at 0.08 seconds in increments of 6.00 seconds, of

simulated breathing deformations. Electrode displacements are correctly recovered using a

single hyperparameter pair λ = 10−2 and µ = 20.

7.2.3 In Vivo Reconstructions

The three in vivo breathing patterns are imaged (Nk = 256) over 60 second measurement

intervals for the rest and stress states. The details of the experiment are recorded in the

second section of appendix A entitled “In Vivo Experiment”. All reconstructed images have

a scaling factor of 20 on electrode displacement arrows. Figure 7.7 shows a time series,

in increments of 0.56 seconds, of tidal breathing in the rest state. The top, bottom, left,

and right of each image corresponds to the anterior, posterior, subject-left, and subject-

right. This applies to all in vivo reconstructions presented. The hyperparameters chosen

are λ = 3 × 10−2 and µ = 5. Since the breathing is quiet, boundary deformation and

conductivity changes are both small. Consequently, a small displacement hyperparameter

leads to reasonable electrode displacements. The conductivity change image is difficult to

interpret and the lung regions are not very clear. However, breathing patters are visible, since

a rhythmic alternation of blue patterns (i.e., inspiration) and red patterns (i.e., expiration) are

observed. Also, the reconstructed electrode displacements agree with the recorded respiration

frequency and with the “inspiration at start of measurement” convention. Figure 7.8 shows a

similar time series, also in increments of 0.56 seconds, of the repeated measurement while the

subject is in a stress state. The same hyperparameters are used to reconstruct the EIT data.

The image reconstructions show higher conductivity changes and electrode displacement,

indicating the heavier breathing of the subject. The time series of images also show the

accelerated respiratory rate. The lung regions are visible, particularly during inspiration

where the right lung, i.e., the larger lung, is best recognized. Electrode displacements are

reconstructed with reasonable direction; however, adjacent electrode displacements appear

to have significantly differing magnitudes. This is visible in the inspiration frames.

The TLC/RC and paradoxical breathing patterns exhibit larger electrode displace-
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Figure 7.7: Tidal breathing in rest state. Time series of 16 images with 0.56 second
increments. The hyperparameters used are λ = 3 × 10−2 and µ = 5. Electrode
displacements are scaled by 20×.
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Figure 7.8: Tidal breathing in stress state. Time series of 16 images with 0.56
second increments. The hyperparameters used are λ = 3×10−2 and µ = 5. Electrode
displacements are scaled by 20.
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ments than tidal breathing due to the maximum voluntary rib cage expansion by the sub-

ject. Correspondingly, reconstructions are shown with a larger displacement hyperparameter

of µ = 40 for TLC/RC and µ = 20 for paradoxical breathing. Figures 7.9 and 7.10 show

a time series, in increments of 1.20 seconds, for TLC/RC in the rest and stress states, re-

spectively. The breathing patterns and lung regions are clearly recognized, and few artefacts

are visible. The electrode displacements are also well structured and correspond with the

recorded respiration frequency and conventions used in the experiment. Perhaps these indi-

cate the performance limits of the algorithm when facing large deformations as those shown

in figure 6.3. It is interesting to note the better performance of the proposed algorithm using

TLC/RC data. Perhaps the weaker conductivity and displacement fluctuations seen in the

tidal breathing data indicate the equipment’s sensitivity limitations. Figures 7.11 and 7.12

show a time series, also in increments of 1.20 seconds, for paradoxical breathing in the rest

and stress states, respectively. The conductivity change images and electrode displacements

illustrate this different breathing pattern. Large electrode displacements are observed during

rib cage expansion and contraction that correspond to the recorded respiratory frequency

in experiment. However, the conductivity changes during inspiration are located in central

region of the medium, rather than in the expected anterior region. Furthermore, the increas-

ing conductivity pattern, usually seen during expiration, is not consistent between different

phases of the series. This may be indicative of the non-communicating air held in the lungs

while the rib cage and the diaphragm deform. Perhaps this variability suggests the difficulty

of breathing this way; the subject was not able to perform this manoeuvre consistently.

7.3 Discussion

The proposed algorithm demonstrates the ability to reconstruct conductivity change images

and electrode displacement in simulation, phantom, and in vivo experiment. Furthermore,

the artefacts due to boundary deformation are significantly reduced in all cases. Simulated

2D and 3D data reconstructions performed best, since the data and the injected noise was

well known. The algorithm demonstrates the ability to accurately reconstruct images in all
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Figure 7.9: TLC/RC in rest state. Time series of 16 images with 1.20 second
increments. The hyperparameters used are λ = 5 × 10−2 and µ = 40. Electrode
displacements are scaled by 20.
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Figure 7.10: TLC/RC in stress state. Time series of 16 images with 1.20 second
increments. The hyperparameters used are λ = 5 × 10−2 and µ = 40. Electrode
displacements are scaled by 20.
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Figure 7.11: Paradoxical breathing in rest state. Time series of 16 images with
1.20 second increments. The hyperparameters used are λ = 5 × 10−2 and µ = 20.
Electrode displacements are scaled by 20.
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Figure 7.12: Paradoxical breathing in stress state. Time series of 16 images with
1.20 second increments. The hyperparameters used are λ = 5 × 10−2 and µ = 20.
Electrode displacements are scaled by 20.
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simulations with reasonable electrode displacement results. In the worst case for simulated

data, the proposed algorithm’s AAM was 73% smaller than the standard algorithm’s AAM.

The phantom 2D data were correctly reconstructed; however, inconclusive results were ob-

served for 3D data. The 2D data are reconstructed with acceptable noise reduction, due

to boundary deformation, and produce reasonable electrode displacement results. The algo-

rithm is also capable of reconstructing a time series of deformations, simulating those from

breathing without the need of hyperparameter adjustment. In the worst case for phantom

data, the proposed algorithm’s AAM was 80% smaller than the standard algorithm’s AAM.

The in vivo 2D data were reasonably reconstructed, but showed limitations in tidal breath-

ing. Respiration and rib cage deformations are recognizable in all three breathing patterns

using the time series of 2D data. The patterns observed in the time series correspond well

with the recorded respiration frequencies and conventions used in the experiments. The in

vivo 3D data produced inconclusive results. Perhaps this was due to the lack of measurement

data available from 16 electrodes, and the lower resolution in the z dimension since inter-ring

excitations were not used.

In hindsight of the reconstructions from these acquired data, further limitations of

the experiments and the proposed algorithm are considered. More independent measure-

ment data are required when imaging complex volumetric media. Many irregularities are

introduced in the acquired data since the fundamental EIT assumptions made in chapters

2 and 4 do not hold, but rather approximate the medium’s true properties. That is, in

vivo media is not linear, isotropic conductors, and the human body is an electrically active

medium that can at best be approximated using a quasi-static system. Furthermore, since

current diffusion is a non-local process, electrical energy off-plane of the electrode rings will

contribute to the measurement data. This effect appears to reduce spatial resolution in the z

dimension. These irregularities can possibly be identified and compensated by acquiring more

measurement data per frame. This can be accomplished by using more electrodes, safely ap-

plying multi-frequency and multi-amplitude excitation currents, and applying different inter-

and intra-ring excitation patterns per frame.
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Addressing these limitations would likely improve the proposed algorithm’s perfor-

mance. However, the algorithm, “as is”, is capable of reconstructing data from various

sources. This demonstrates the proof-of-concept that the regularization of deformable media

is realistic. The final chapter concludes the thesis by summarizing the results of the research

presented, and by briefly discussing the pertinent directions for future work.



Chapter 8

Conclusion

In EIT, electrical energy is applied and measured at the boundary of a medium to produce

an image of its internal conductivity distribution. The resulting image is obtained by the

solution of a generalized Laplace partial differential equation. One of the most researched

application of EIT is clinical diagnosis as a non-invasive functional imaging modality.

One major complication of EIT is the significant degradation of the conductivity

distribution due to changes in boundary shape and, hence, electrode position during mea-

surement. Similar to other modalities, EIT incurs artefacts in reconstructed images when

patient movement disturbs the measurement environment. The occurrence of these errors

leads to reduced repeatability and reliability in diagnostic imaging, which is unacceptable for

clinical use.

In the examination of pulmonary ventilation, the expansion of the patient’s rib cage

is known to introduce severe artefacts in the reconstructed images. These are due to spatial

inaccuracies in electrode position by consequence of breathing and change in body posture.

Furthermore, the artefacts manifested by electrode position error are escalated due to the

inherent non-linear inverse problem of EIT. The difficulty arises, since EIT measurements are

projected onto a geometric reconstruction model that approximates the shape of the body

being imaged. The displacement of the electrodes reduces the accuracy of the reconstruction

model, producing misrepresentative images.

88
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8.1 EIT for Deformable Media

This thesis synthesized aspects of the literature pertaining to the fundamentals of EIT and

inverse problems. The objective was the assessment of solving the inverse conductivity prob-

lem over a deformable boundary, and the development of an implemented solution. Such a

solution was then to be validated across various types of measurement data and performance-

ranked with appropriate figures of merit (i.e., position error, blur radius, and artefact ampli-

tude).

A study of image variability from boundary deformation positively verified that in-

correct or unknown electrode position in the inverse model negatively influences the recon-

structed conductivity distribution. These effects manifest deteriorations of true conductive

regions and also produce false conductivity artefacts near the displacement electrodes. In

simulation, we observed that errors between 0.75 cm and 3.00 cm are capable of creating

significant variability from 5% to over 10% in the conductivity distribution that can lead to

misunderstood images. Such error margins can materialize from three factors: i) boundary

deformation due to involuntary patient motion and breathing, ii) the simplified geometry

of inverse models used in image reconstruction, and iii) human error in electrode placement

during clinical trials.

This thesis proposes a maximum a posteriori regularization algorithm that recon-

structs the conductivity change image and electrode displacements as a solution of the EIT

problem for deformable media. The problem is approached in terms of a regularized inverse,

using an augmented Jacobian, sensitive to conductivity change and electrode displacement.

A reconstruction a priori term is designed to impose a smoothness constraint on the con-

ductivity spatial distribution and the electrode displacements. Then, a Tikhonov regularized

algorithm is implemented based on the augmented Jacobian and the smoothness constraint.

Performance figures of merit are applied to quantify the image resolution, the position accu-

racy, and the presence of artefacts. These measures were compared to a standard reconstruc-

tion algorithm subject to boundary deformation. The algorithm is applied to 2D and 3D

models, subjected to boundary deformation using simulation, phantom, and in vivo acquired
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data.

Results show good reconstructions for simulated, phantom, and in vivo measurements.

The electrode displacement is faithfully reconstructed, and the conductivity change image

shows dramatically less artefacts than the standard algorithm. The average image recon-

struction artefact amplitude is reduced by more than 70% in both simulated and phantom

data reconstructions. Moreover, the algorithm requires little additional computational time

over the standard algorithm, once pre-calculations are done. Thus, the proposed algorithm

is suitable for real-time monitoring. The implemented software code and standardized ex-

perimental data used in this study was contributed to the GNU public-licensed EIDORS

collaboration. In conclusion, the results from this study support the feasibility of EIT for

clinical diagnostics in presence of patient movement commonly observed during extended

periods of monitoring. The author further anticipates that the techniques developed in this

thesis will be useful to increase the accuracy and reliability of EIT in various clinical and

experimental applications involving deformable media.

8.2 Future Directions

Many avenues of research have presented themselves during the study related to this thesis.

Despite that most of these are mentioned throughout this thesis and directly applicable to

the problem of deformable media, only the most significant issues concerning this research

are suggested here for further study.

• Further development of volumetric imaging of experimental phantom and in vivo data.

Since EIT has excellent temporal resolution, the development of volumetric imaging

will provide the capability of measuring volume and flow of internal fluids. This would

be particularly useful in medical applications, since these data are typically used in

clinical diagnostics. The research and development of excitation patterns and electrode

configurations that yield more independent measurement data per frame would be a

good initial study.
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• The development of complimentary instruments for the external acquisition of boundary

geometry data.

This information would drastically improve image reconstruction, since an accurate

geometrical inverse model can be designed. Given these data, boundary deformation

could be for the most part accounted prior to solving the inverse problem. The design

of an EIT instrument with integrated machine vision equipment is needed to realize

this.

• The research and development of a reconstruction scheme with temporal modelling.

Since EIT is a functional modality capable of monitoring physiological processes, a

stronger temporal framework would be useful in the study of physiological processes

in the time and frequency domains. This consists of the study of the dynamic gener-

alized Laplace equation, if necessary without quasi-static EM field assumptions, and

the development of temporal a priori models. Phantom experiments must be designed

to analyse the temporal performance of the EIT instrument and the reconstruction

algorithm quantitatively.
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Schöberl, J. (1997). An advancing front 2D/3D-mesh generator based on abstract rules.

Comput. Visual. Sci , 41–52.

Siltanen, S., Mueller, J. & Isaacson, D. (2000). An implementation of the reconstruction

algorithm of A Nachman for the 2D inverse conductivity problem. Inv. Prob., 16, 681–699.
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Appendix A

Data Acquisition Records

This appendix contains the records taken during data acquisition in EIT experiment using
the Goe-MF II EIT instrument (Viasys Healthcare, Höchberg, Germany). The first section
contains the details of the saline phantom experiments, and the second section presents the
details of the human in vivo experiments. These were carried out along the regulations of
the Human Ethics body of the University of Ottawa under the certification file H 05-04-02.

A.1 Phantom Experiment

% ************************************

% Electrical Impedance Tomography

% VIASYS invitro data

% University of Ottawa

% Department of Electrical Engineering

% Date: October 14, 2005

% Author: Camille Gomez-Laberge

% ************************************

This README file is the documentation that accompanies the data collected in

these directories: ph1t1/ ph2t1/ ph3t1/ ph3t2/

% ****************************

% THE EXPERIMENT

% ****************************

Experimenter: Camille Gomez-Laberge

Date Collected: October 4, 2005

Locale: Research laboratory, University of Ottawa

Equipment: EIT Viasys / University of Gottingen

Phantoms: All phantoms used are polyethylene pails 30 cm in height and

diameter.

Electrodes: See individual phantom descriptions in each part of the

experiment.

Electrolytic solution: 0.9% saline solution

Objects: 2 golf balls (non-conductive) 2 cm radius spheres suspended in
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solution with 2.7 kg tension fishing line (nylon).

Measurement Procedure: Ambient temperature in room is 25 degrees Celsius.

Details for each part of the experiment follow:

PART I:

Directory: ph1t1/

Phantom description: Phantom 1 - Uses brass plated, steel thumb-tacs as

electrodes. They are arranged in a 16 electrode plane 13 cm above the phantom

bottom. The ground electrode is placed in the centre of the bottom. The

solution is filled to the 26 cm mark. With time these electrodes became very

corroded. The coordinate system to define the object positions in the phantom

use the ground electrode as the origin. The x-axis is aligned with electrode 1

and the y-axis with electrode 5. The z-axis is aligned upwards.

Procedure: There are 5 different measurement setups. Each setup was measured 5

times. Objects are placed at the electrode plane level (i.e. we only vary the

x and y coordinates).

Setup 1: No objects in phantom (just solution)

Data files: vitro200905_ph1t1_001.get - vitro200905_ph1t1_005.get

Setup 2: Object 1 in centre of electrode ring (0,0) cm

Data files: vitro200905_ph1t1_006.get - vitro200905_ph1t1_010.get

Setup 3: Object 1 at (0,7) cm

Data files: vitro200905_ph1t1_011.get - vitro200905_ph1t1_015.get

Setup 4: Object 1 at (0,7) cm and object 2 at (7,0) cm

Data files: vitro200905_ph1t1_016.get - vitro200905_ph1t1_020.get

Setup 5: Object 1 at (0,7) cm and object 2 at (7,0) cm and phantom is distored

into an elliptical shape by compressing the walls in the y-axis direction

until the short axis measures 25 cm across.

Initially the phantom is circular, during the first 6 seconds it is gradually

compressed into the elliptical shape and held like so for the remainder of the

measurement.

Data files: vitro200905_ph1t1_021.get - vitro200905_ph1t1_025.get

Note: Object positions were measured before distorting the phantom.

Averaged data: The five measurements in each setup (1-4 only) have been read

into Matlab and avereaged. The average data is stored in the avgdata_ph1t1.mat

file.

PART II:

Directory: ph2t1/

Phantom description: Phantom 2 - Uses brass plated, steel thumb-tacs as

electrodes. They are arranged in two 8 electrode planes. The lower is at z =

10 cm level and the upper at z = 20 cm. The upper ring is offset by a small
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rotation so that the electrodes between both planes form a zig-zag pattern

(e.g. Charlie Brown’s sweater). The ground electrode is placed in the centre

of the bottom (0,0,0). The solution is filled to the 30 cm mark. With time

these electrodes became very corroded. The coordinate system to define the

object positions in the phantom use the ground electrode as the origin. The x-

axis is aligned with electrode 1 (upper plane) and the y-axis with electrode 5

(upper). The upper plane has all odd numbered electrodes. The z-axis is

aligned upwards.

Procedure: There are 6 different measurement setups. Each setup was measured 5

times. Objects are placed using (x,y,z) coordinates.

Setup 1: No objects in phantom (just solution)

Data files: vitro200905_ph2t1_002.get - vitro200905_ph2t1_006.get

Note: Measurement 001.get was discarded.

Setup 2: Object 1 in centre of electrode ring (0,0,15) cm

Data files: vitro200905_ph2t1_007.get - vitro200905_ph2t1_011.get

Setup 3: Object 1 at (0,7,10) cm; object 2 (0,7,20) cm

Data files: vitro200905_ph1t1_012.get - vitro200905_ph1t1_016.get

Setup 4: Object 1 at (7,0,10) cm and object 2 at (0,7,10) cm

Data files: vitro200905_ph2t1_017.get - vitro200905_ph2t1_021.get

Setup 5: Object 1 at (7,0,10) cm and object 2 at (0,7,20) cm

Data files: vitro200905_ph2t1_022.get - vitro200905_ph2t1_026.get

Setup 6: Object 1 at (7,0,10) cm and object 2 at (0,7,20) cm and phantom is

distored into an elliptical shape by compression. See PART I setup 5.

Data files: vitro200905_ph2t1_027.get - vitro200905_ph2t1_031.get

Note: Object positions were measured before distorting the phantom.

Averaged data: The five measurements in each setup (1-5 only) have been read

into Matlab and avereaged. The average data is stored in the avgdata_p2t1.mat

file.

PART III:

Directory: ph3t1/

Phantom description: Phantom 3 - Uses stainless-steel screws as electrodes.

They are arranged in two 16 electrode planes. The lower is at z = 10 cm level

and the upper at z = 20 cm. The electrodes between rings are aligned

vertically. The ground electrode is placed in the centre of the bottom

(0,0,0). The solution is filled to the 30 cm mark. The coordinate system to

define the object positions in the phantom use the ground electrode as the

origin. The x-axis is aligned with electrode 1 (upper plane) and the y-axis

with electrode 5 (upper). The upper plane has electrodes 1-16 and lower 17-32.

The z-axis is aligned upwards.
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Procedure: Only 16 electrodes were used (the entire bottom ring).

There is only one measurement here as it was used as a proof of concept test.

The single object is moved around in a circular motion during the entire

measurement.

Data file: vitro200905_ph3t1_001.get

Note: Electrodes were found to have varying impedances between 200 and 400

Ohms according to the system’s calibration test. These values are all within

the system’s acceptable limits.

PART IV:

Directory: ph3t2/

Phantom description: Phantom 3 - see PART III.

Procedure: Only 16 electrodes were used (the entire bottom ring).

The first 5 setups are almost as in PART I. A sixth setup is also added.

Setup 1: No objects in phantom (just solution)

Data files: vitro200905_ph3t2_001.get - vitro200905_ph3t2_005.get

Setup 2: Object 1 in centre of electrode ring (0,0) cm

Data files: vitro200905_ph3t2_006.get - vitro200905_ph3t2_010.get

Setup 3: Object 1 at (0,7) cm

Data files: vitro200905_ph3t2_011.get - vitro200905_ph3t2_015.get

Setup 4: Object 1 at (0,7) cm and object 2 at (-7,0) cm

Data files: vitro200905_ph3t2_016.get - vitro200905_ph3t2_020.get

Setup 5: Object 1 at (0,7) cm and object 2 at (7,0) cm and phantom is distored

into an elliptical shape by compression. See PART I setup 5.

Data files: vitro200905_ph1t1_021.get - vitro200905_ph1t1_025.get

Note: Object positions were measured before distorting the phantom.

Setup 6: Object 1 at (0,7) cm and object 2 at (-7,0) cm and phantom is

distored into an elliptical shape by compressing the walls in the y-axis

direction until the short axis measures 25 cm across.

Initially the phantom is circular, during the first 6 seconds it is gradually

compressed into the elliptical shape. Then for the next 6 seconds it is slowly

restored to original shape. This is repeated to simulate periodic motion (as

in chest wall expansion during breathing) until measurement is complete (60

seconds).

Data files: vitro200905_ph3t2_026.get

Note: Object positions were measured before distorting the phantom.

Averaged data: The five measurements in each setup (1-4 only) have been read

into Matlab and avereaged. The average data is stored in the avgdata_p3t2.mat

file.

% END OF EXPERIMENT
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A.2 In Vivo Experiment

% ************************************

% Electrical Impendance Tomography

% VIASYS invivo data

% University of Ottawa

% Department of Electrical Engineering

% Date: September 21, 2005

% Author: Camille Gomez-Laberge

% ************************************

This README file is the documentation that accompanies the data collected in

these directories: cgomez-1pl/ cgomez-2pl/

The rest and stress directories contain the actual measurement data

corresponding to each sample taken.

% ****************************

% THE EXPERIMENT

% ****************************

Male subject

Age: 25

Health: Normal

Experimenter: Li Peng Xie

Date Collected: September 15, 2005

Locale: Research laboratory

Equipment: EIT Viasys / University of Gottingen

Electrodes: 17 EKG Blue Sensor Ag/Ag-Cl electrodes (16 + reference)

Skin Preparation: Rubbing alcohol

Measurement Procedure: All measurements are taken while the subject is supine.

Ambient temperature in room is 25 degrees Celcius. Details for each part of

the experiment follow.

PART I:

Directory: cgomez-1pl/

Placement: Single plane 16 electrodes aligned with the fifth rib directly

below the nipple. Electrode 1 is in the centre of the sternum. The other

electrodes are labelled moving towards the subject’s right side so that

electrode 5 in under the right armpit, electrode 9 on the spine and electrode

13 under the left armpit. The reference electrode is placed on the right side

of the subject’s waist line.

Subject is rested - in normal state

1. Tidal breathing

Heart rate: 62 bpm

Data file: vivo150905_t1_001.get
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Note: Measurement begins when lungs are at functional residual capacity.

2. Total Lung Capacity - Residual Capacity (TLC-RC)

Heart rate: 62 bpm

Data file: vivo150905_t1_002.get

Note: Measurement begins when lungs are at residual capacity.

3. Volume transfer

Heart rate: 62 bpm

Data file: vivo150905_t1_003.get

Note: Subject is holding breath and transfering air across thorax by expanding

the rib cage and then expanding the abdomen. This is repeated every 5 seconds

for the duration of the sample.

Subject induces stress on the cardiovascular system by lower-body excercise

(e.g running, climbing stairs).

Subject ran until heartrate exceeded 90 bpm (approx. 6 minutes in this case).

NOTE: The electrodes are not removed during excercise.

4. Tidal breathing

Heart rate: 92 bpm

Data file: vivo150905_t1_004.get

Note: Measurement begins when lungs are at functional residual capacity.

5. TLC-RC

Heart rate: 90 bpm

Data file: vivo150905_t1_005.get

Note: Measurement begins when lungs are at residual capacity.

6. Volume transfer

Heart rate: 84 bpm

Data file: vivo150905_t1_006.get

Note: Subject is holding breath and transfering air across thorax by expanding

the rib cage and then expanding the abdomen. This is repeated every 5 seconds

for the duration of the sample.

PART II:

Directory: cgomez-2pl/

Placement: Two planes of 8 electrodes each. The upper plane is vertically

aligned with the fifth (5) rib directly below the nipple and the lower plane

with the seventh (7) rib directly below the nipple. Electrode 1 is on the

upper plane in the centre of the sternum. Electrode 2 is on the lower plane

but shifted to the right by half the inter-electrode distance on the upper

plane. The other electrodes are labelled in a zig-zag pattern, moving towards

the subject’s right side. The reference electrode is placed on the right side

of the subject’s waist line.
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Subject is rested - in normal state

1. Tidal breathing

Heart rate: 58 bpm

Data file: vivo150905_t2_001.get

Note: Measurement begins when lungs are at functional residual capacity.

2. Total Lung Capacity - Residual Capacity (TLC-RC)

Heart rate: 64 bpm

Data file: vivo150905_t2_002.get

Note: Measurement begins when lungs are at residual capacity.

3. Volume transfer

Heart rate: 60 bpm

Data file: vivo150905_t2_003.get

Note: Subject is holding breath and transfering air across thorax by expanding

the rib cage and then expanding the abdomen. This is repeated every 5 seconds

for the duration of the sample. Measurement begins with abdomen expanded.

Subject induces stress on the cardiovascular system by lower-body excercise

(e.g running, climbing stairs).

Subject ran until heartrate exceeded 90 bpm (approx. 6 minutes in this case).

NOTE: The electrodes are not removed during excercise.

4. Tidal breathing

Heart rate: 102 bpm

Data file: vivo150905_t2_004.get

Note: Measurement begins when lungs are at functional residual capacity.

5. TLC-RC

Heart rate: 96 bpm

Data file: vivo150905_t2_005.get

Note: Measurement begins when lungs are at residual capacity.

6. Volume transfer

Heart rate: 76 bpm

Data file: vivo150905_t2_006.get

Note: Subject is holding breath and transfering air across thorax by expanding

the rib cage and then expanding the abdomen. This is repeated every 5 seconds

for the duration of the sample. Measurement begins with abdomen expanded.

% END OF EXPERIMENT
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Underdamped Reconstruction

Artefact

Another important characteristic of the regularization algorithm is the artefact introduced by
consequence of regularization of the conductivity change image. This artefact is systematic
and can be seen as the characteristic “footprint” of the inverted operator G−1. In image
processing, the blur effect observed by passing a single point image through a degradation
process is modelled as the point spread function (PSF). This function uniquely characterizes
any linear space-invariant process and therefore is a useful representation. Recall that section
4.3 establishes the duality between the maximum a posteriori regularization algorithm and
the Wiener filter. From this duality, it is reasonable to expect that this regularization process
can be modelled as some sort of degradation process (i.e. a filter). Indeed, when a forward
model with a single contrast in the centre of the medium is used to reconstruct the inverse
solution conductivity change image, an underdamped sinusoidal response is observed and
shown in figure B.2. This figure shows the forward model on the left with a single contrast.
The right side of the figure shows the reconstructed image, which was chromatically adjusted
to illustrate the undulations propagating radially away from the contrast position. Without
image enhancement, the undulations appear fainter since they are smaller than the central
contrast.

The single contrast forward model is reconstructed with several hyperparameter values
λ = {10−1, 10−2, . . . , 10−8} and is fitted to the underdamped second order function

y(x) =
e−ζωnx

√

1 − ζ2
sin

(

√

1 − ζ2ωnx+ θ
)

(B.1)

where ωn and ζ are the natural frequency and damping ratio parameters, respectively. Figure
B.2 shows four plots of the normalized reconstructed image versus the medium’s radial axis.
Superimposed is the second order function y(x) that is fitted using the “multidimensional
unconstrained non-linear minimization algorithm” implemented as the fminsearch function
in Matlab. The plots are shown, as indicated in the figure, for hyperparameter λ set to
10−2, 10−5, 10−7, and 10−8. We observe the trend of decreasing ωn and increasing ζ with
increasing λ. That is, as more regularization is applied, the solution becomes blurred and
smooth. The familiar Gibbs phenomenon, particular to cut-off filters, is also observed here.

The fitted parameters ωn (solid blue curve) and ζ (dotted red curve) are plotted versus
the hyperparameter λ in figure B.3. This graph reveals the logarithmic proportionality of
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Figure B.1: Illustration of the underdamped artefact during image reconstruction.
Left : The forward model with a single contrast. Right : The standard reconstructed
image with λ = 10−6. The image was chromatically adjusted to accentuate the
undulations.

Figure B.2: Superposition of normalized reconstructed images and second order
response plots for varying λ. Plots are shown for λ = 10−2, 10−5, 10−7, 10−8, as
indicated above each graph.
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Figure B.3: Semi-logarithmic plot of fitted second order function parameters ωn

(solid blue) and ζ (dotted red) from equation (B.1) vs. log λ.

these parameters to λ. This suggests that the reconstruction artefact observed is systematic
and can be modelled and accounted for during post-processing of images. Some limitations
however must be addressed in these results. First and foremost, the EIT inverse operator
G−1 is non-linear and space-variant. Therefore, G−1 cannot be completely characterized by
a single PSF as it will vary with contrast location and will violate the superposition principle
of linear systems. Second, the implementation of G−1 presented here is a linearization of
the problem and can at best approximate the actual solution. Hence, the underdamped
sinusoid response observed is a simplification of the actual response. A closer look at figure
B.2 reveals that equation (B.1) does not fit the reconstructed image response well. It is
found that the response is better described in two distinct parts which require different
parameter values. The first part is the initial descent of the curve and the second part is the
subsequent oscillations. The descent always has a larger damping ratio and smaller natural
frequency than the secondary oscillations. We hypothesize that factors that may cause this
behaviour are due to i) the approximation of point contrast using finite elements, and ii)
possible interference of the conductivity change image with the finite medium. Although a
systematic response is demonstrated here, a closer look at these factors is required to model
the reconstruction artefact further. The key functions of the software code used for this
analysis are printed in the third section of appendix C entitled “Artefact Analysis”.



Appendix C

Software Code

This appendix is a printout of the Matlab code used to implement and analyse the mate-
rial from this thesis. Unfortunately, only the key components of the code are printed since
the entire solution would require too much space. The appendix is divided into three sec-
tions. The first section shows the actual electrode displacement regularization code. The
second section shows the code written for the performance analysis of the image reconstruc-
tion algorithms. The third section shows the code written to research the conductivity and
displacement artefacts. All code from this appendix works in conjunction with the EIDORS
suite.

C.1 Electrode Displacement

function elect_move(fig_num)

% ELECT_MOVE Electrode movement mainline for Physiol. Meas. publication:

% Soleimani et al. 2005. Generates the paper’s results and plots its six

% figures.

% (C) 2006, Camille Gomez-Laberge & Andy Adler.

% Licenced under the GPL Version 2.

% $Id: elect_move.m,v 1.31 2006/05/29 18:11:11 cgomez Exp $

% Flag for printing EPS files (set to 1 for exporting results)

global PRINT_EPS

PRINT_EPS = 0;

% Add eidors3d/ to Matlab path if not present.

test_eidors_path();

% Set eidors default colours

calc_colours(’mapped_colour’,128);

calc_colours(’backgnd’,[.9,.9,.9]);

% Generate eidors planar finite element model

mdl2dim = mk_common_model(’b2c’);

% rotate mesh

rang= 45*pi/180; rotate= [cos(rang),-sin(rang);sin(rang),cos(rang)];

mdl2dim.fwd_model.nodes = (rotate*mdl2dim.fwd_model.nodes’)’;

mdl2dim.fwd_model.normalize_measurements= 0;

mdl2dim.fwd_model.electrode= mdl2dim.fwd_model.electrode([3:16,1,2]);

randn(’state’,2001); % use same noise for each try

clf;

switch fig_num

% Generate simulation data without noise and standard reconstruction

case 0

mysubplot(1,2,1);

[vh,vi] = sim_move_2d_data(0, 1);

mysubplot(1,2,2);

show_2d_stdsim(mdl2dim, 0.1, 0.01);

if PRINT_EPS printeps(’fig-simulation.eps’,1,2); end
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% Inverse solution of simulated movement data (mu is 10 and 20)

case 1

mysubplot(1,2,1);

show_2d_sim(mdl2dim, 0.1, 0.01, 1);

mysubplot(1,2,2);

show_2d_sim(mdl2dim, 0.1, 0.01, 20);

if PRINT_EPS

printeps(’fig-noise=20dB-hp=1e-2-mu=1-20.eps’,1,2);

end

% Same as case 1 except with other parameters (lambda is e-2 and e-3)

case 2

mysubplot(1,2,1);

show_2d_sim(mdl2dim, 0.1, 0.01, 15);

mysubplot(1,2,2);

show_2d_sim(mdl2dim, 0.1, 0.001, 15);

if PRINT_EPS

printeps(’fig-noise=20dB-hp=1em2-1em3-mu=15.eps’,1,2);

end

% Same as case 1 except with other parameters (noise is 0.1 0.5)

case 3

mysubplot(1,2,1);

show_2d_sim(mdl2dim, 0.1, 0.003, 10);

mysubplot(1,2,2);

show_2d_sim(mdl2dim, 0.2, 0.003, 10);

if PRINT_EPS

printeps(’fig-noise=20dB-40dB-hp=5em3-mu=10.eps’,1,2);

end

% Apply movement algorithms to experimental data

case 4

% Extract measurements from EIT data files and set parameters and

% movement penalty (symbol mu in Soleimani paper).

[vh,vi] = meas_move_data(...

’/home/cgomez/cvs-viva/data/eit/viasys/invitro/oct05/ph3t2/’,...

’vitro041005_ph3t2_001.get’, ’vitro041005_ph3t2_026.get’, 160);

hparameter = 1e-2;

move_vs_conduct = 20;

% Define a eidors_obj Movement model solved by electrode movement

% algorithms.

mdl2dim.hyperparameter.value= hparameter;

mdlM = mdl2dim;

mdlM.fwd_model.conductivity_jacobian = mdlM.fwd_model.jacobian;

mdlM.fwd_model.jacobian = ’aa_e_move_jacobian’;

mdlM.RtR_prior = ’aa_e_move_image_prior’;

mdlM.aa_e_move_image_prior.parameters = move_vs_conduct;

% Solve inverse problem for mdl2dim and mdlM eidors_obj models.

img2dim = inv_solve(mdl2dim, vi, vh); % solved no movement algorithms

imgM = inv_solve(mdlM, vi, vh); % solved with movement algorithms

ed= img2dim.elem_data;

lim= .37;

ed = ed.*(abs(ed)<=lim) + lim*sign(ed).*(abs(ed)>lim);

img2dim_scl= img2dim;

img2dim_scl.elem_data= ed;

mysubplot(1,2,1)

show_fem_move(img2dim_scl);

mysubplot(1,2,2)

show_fem_move(imgM, [], 10);

% Calculate artefact for each reconstruction

load ex_imask.mat;

e_space = calc_element_vol(img2dim);

artefacts = ~imask.*img2dim.elem_data;

amp = sqrt(sum( e_space.*artefacts.^2 ) / sum( e_space ));

fprintf(’Standard method artefact power = %f \n’,amp);

tmpM = imgM;

tmpM.elem_data = imgM.elem_data(1:256);
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artefacts = ~imask.*tmpM.elem_data;

amp = sqrt(sum( e_space.*artefacts.^2 ) / sum( e_space ));

fprintf(’Movement method artefact power = %f \n’,amp);

if PRINT_EPS printeps(’fig-tankdata2.eps’,1,2); end

% Generate 3D simulation data with forward solution, show FEM geometry

case 5

[mdl3dim, img3dim, vh, vi, move] = sim_move_3d_data(2, .1, 20, 1);

if PRINT_EPS printeps(’fig-3Dgeometry-10xExageration.eps’,2,2); end

% Inverse solution of 3D simulated data

case 6

% Generate 3D simulation data with forward solution

[mdl3dim, img3dim, vh,vi, move] = sim_move_3d_data(2, .1, -2, 0);

mdl3dim.RtR_prior = ’laplace_image_prior’;

mdl3dim.hyperparameter.value = 3e-3;

% Show slices of 3D model with true movement vectors

mysubplot(1,3,1);

img3dim.elem_data = img3dim.elem_data - 1;

show_slices_move( img3dim, move );

% Inverse solution of data without movement consideration

img3dim= inv_solve(mdl3dim, vi, vh);

mysubplot(1,3,2)

show_slices_move( img3dim );

% Inverse solution of data with movement consideration

move_vs_conduct = 20; % Movement penalty (symbol mu in paper)

% Define a eidglobalors_obj Movement model solved by electrode movement

% algorithms.

mdlM = mdl3dim;

mdlM.fwd_model.conductivity_jacobian = mdlM.fwd_model.jacobian;

mdlM.fwd_model.jacobian = ’aa_e_move_jacobian’;

mdlM.RtR_prior = ’aa_e_move_image_prior’;

mdlM.aa_e_move_image_prior.parameters = move_vs_conduct;

% Solve inversglobale problem and show slices

imgM = inv_solve(mdlM, vi, vh);

mysubplot(1,3,3)

show_slices_move( imgM );

% Calculate artefact for each reconstruction

load(’datacom.mat’,’A’,’B’);

imask = zeros(size(img3dim.elem_data));

imask(A(:)) = 1;

imask(B(:)) = 1;

artefacts = ~imask.*img3dim.elem_data;

e_space = calc_element_vol(img3dim);

amp = sqrt(sum(e_space.*artefacts.^2)/sum(e_space));

fprintf(’Standard method artefact power = %f \n’, amp);

tmpM = imgM;

tmpM.elem_data = imgM.elem_data(1:828);

artefacts = ~imask.*tmpM.elem_data;

amp = sqrt(sum(e_space.*artefacts.^2)/sum(e_space));

fprintf(’Movement method artefact power = %f \n’, amp);

if PRINT_EPS printeps(’fig-3D-noise=20dB-hp=3e-3.eps’,3,3); end

otherwise

error(’elect_move(): Invalid argument.’);

end

function [vh, vi, f_img, move]= sim_move_2d_data( noiselev, plot_out )

% SIM_MOVE_2D_DATA Forward problem simulation of electrode movement data.

% Args: noiselev - gain factor of normally distributed noise

% plot_out - set to 1 to plot or 0 not to plot output

% Returns: vh - voltage data for homogeneous conductivity

% vi - voltage data for inhomogeneous conductivity

% f_img - image object with forward problem parameters

% move - position vector difference of nodes after movement

% (C) 2006, Camille Gomez-Laberge & Andy Adler.
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% Licenced under the GPL Version 2.

% $Id: sim_move_2d_data.m,v 1.4 2006/02/16 22:04:18 cgomez Exp $

% Create circular FEM - creates a eidors_mdl type inv_model.

mdlc = mk_common_model(’c2c’);

% Instantiate a homogeneous forward model.

% ref_level is 1 since we use ones( ).

sigma = ones( size(mdlc.fwd_model.elems,1) ,1);

% Create the eidors_obj of type image.

f_img = eidors_obj(’image’, ’homogeneous image’, ...

’elem_data’, sigma, ...

’fwd_model’, mdlc.fwd_model,...

’ref_level’, 1);

% Solve homogeneous forward problem

vh = fwd_solve( f_img );

% Hard coded values here represent local inhomogeneities

sigma([75,93,94,113,114,136]) = 1.2;

sigma([105,125,126,149,150,174]) = 0.8;

f_img.elem_data = sigma;

% Simulate node movements - shrink x, stretch y

% node0 before, node1 after movement

movement = [0.99 0; 0 1.01];

%ff= .01/sqrt(2);

%movement = [1-ff, ff; ff, 1+ff];

node0 = f_img.fwd_model.nodes;

node1 = node0*movement;

f_img.fwd_model.nodes = node1;

% Solve inhomogeneous forward problem with movements and normal noise

vi = fwd_solve( f_img );

noise = noiselev*std( vh.meas - vi.meas )*randn( size(vi.meas) );

vi.meas = vi.meas + noise;

move = node1 - node0;

% Plot FEM with conductivities and movement vectors.

if plot_out

show_fem_move( f_img, move, 20, []);

end

function [mdl3dim, img, vh, vi, move]= sim_move_3d_data(move_geo, ...

noiselev, movement, plot_out)

% SIM_MOVE_3D_DATA Forward problem simulation of electrode movement data.

% Args: move_geo - boundary movement geometry (0, 1, 2)

% noiselev - gain factor of normally distributed noise

% movement - scale factor of movement of electrodes

% plot_out - set to 1 to plot or 0 not to plot output

% Returns: mdl3dim - eidors_obj 3D finite element model

% vh - voltage data for homogeneous conductivity

% vi - voltage data for inhomogeneous conductivity

% move - position vector difference of nodes after movement

% (C) 2006, Camille Gomez-Laberge & Andy Adler.

% Licenced under the GPL Version 2.

% $Id: sim_move_3d_data.m,v 1.2 2006/05/29 18:11:11 cgomez Exp $

% Generate eidors 3D finite element model

mdl3dim = mk_common_model( ’n3r2’ );

mdl3dim.fwd_model.nodes(:,3) = mdl3dim.fwd_model.nodes(:,3)/3;

% Instantiate a homogeneous forward model.

% ref_level is 1 since we use ones( ).

sigma = ones( size(mdl3dim.fwd_model.elems,1) ,1);

% Create eidors_obj type image

img = eidors_obj(’image’, ’homogeneous image’, ...

’elem_data’, sigma, ...

’fwd_model’, mdl3dim.fwd_model, ...

’ref_level’, 1);

% Solve the homogeneous forward problem

vh = fwd_solve( img );

% Set local inhomogeneites using eidors 3D model

load(’datacom.mat’,’A’,’B’);
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sigma(A) = 1.2;

sigma(B) = 0.8;

img.elem_data = sigma;

node0 = img.fwd_model.nodes; % Node variable before movement

node1 = node0; % Node variable after movement

z_axis = node1(:,3);

% Apply geometrical distortion of choice 0, 1 or 2 and scale by movement

% input parameter

switch move_geo

% Cases 0-2 are ’’twisted’’ elliptical deformations

case 0

node1(:,2) = node1(:,2).*(1 - 0.01*movement*z_axis);

node1(:,1) = node1(:,1).*(1 - 0.01*movement*(1-z_axis));

case 1

node1(:,1) = node1(:,1).*(1 + 0.01*movement*z_axis);

node1(:,2) = node1(:,2).*(1 + 0.01*movement*(1-z_axis));

case 2

node1(:,2) = node1(:,2).*(1 - 0.005*movement*z_axis) ...

.*(1 + 0.005*movement*(1-z_axis));

node1(:,1) = node1(:,1).*(1 - 0.005*movement*(1-z_axis)) ...

.*(1 + 0.005*movement*z_axis);

% Circular contraction along z-axis

case 3

node1(:,1) = node1(:,1).*(1 - 0.01*movement*z_axis);

node1(:,2) = node1(:,2).*(1 - 0.01*movement*z_axis);

case 4

node1(:,1) = node1(:,1).*(1 - 0.01*movement*(1-z_axis));

node1(:,2) = node1(:,2).*(1 - 0.01*movement*(1-z_axis));

% Circular dilation along z-axis

case 5

node1(:,1) = node1(:,1).*(1 + 0.01*movement*z_axis);

node1(:,2) = node1(:,2).*(1 + 0.01*movement*z_axis);

case 6

node1(:,1) = node1(:,1).*(1 + 0.01*movement*(1-z_axis));

node1(:,2) = node1(:,2).*(1 + 0.01*movement*(1-z_axis));

% Uniform contraction

case 7

node1 = node1.*(1 - 0.005*movement);

% Uniform dilation

case 8

node1 = node1.*(1 + 0.005*movement);

otherwise

error(’no movement specified’);

end

% Solve inhomogeneous forward problem with movements and normal noise.

img.fwd_model.nodes = node1;

vi = fwd_solve( img );

noise = noiselev*std( vh.meas - vi.meas )*randn( size(vi.meas) );

vi.meas = vi.meas + noise;

move = node1 - node0;

% Plot distorted 3D FEM with conductivities.

if plot_out

calc_colours(’ref_level’, img.ref_level);

show_fem( img );

xlabel(’x’);

ylabel(’y’);

view([ 1.4265 -1.4018 0 -0.0123;

0.5251 0.5344 0.9272 -0.9933;

1.2997 1.3226 -0.3746 13.8761;

0 0 0 1.0000]);

end

function show_2d_stdsim(mdl2dim, noise, hparam)

% SHOW_2D_STDSIM Standard inverse solution of planar simulated movement

% data.

% Args: mdl2dim - planar common FEM model

% noise - normalized gain factor of noise
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% hparam - regularization hyperparameter

% (C) 2006, Camille Gomez-Laberge & Andy Adler.

% Licenced under the GPL Version 2.

% $Id: show_2d_stdsim.m,v 1.3 2006/05/29 18:11:11 cgomez Exp $

% Flag for printing EPS files (initialized by elect_move).

global PRINT_EPS;

% Set DEBUG to 1 if artefact plots are to be shown.

DEBUG = 0;

% Set eidors_obj hyperparameter member.

mdl2dim.hyperparameter.value= hparam;

% Generate simulated forward problem movement data without plot.

[vh,vi,fwd_img]= sim_move_2d_data( noise, 0 );

% Solve inverse problem for mdl2dim eidors_obj model.

img2dim = inv_solve(mdl2dim, vi, vh);

ed= img2dim.elem_data;

lim= .088;

ed = ed.*(abs(ed)<=lim) + lim*sign(ed).*(abs(ed)>lim);

img2dim_scl= img2dim;

img2dim_scl.elem_data= ed;

% Plot results for each algorithm

calc_colours(’ref_level’, 0);

show_fem_move(img2dim_scl);

% Calculate standard artefact amplitude and plot its effects new figure

[art_img, amp] = calc_artefact( fwd_img, img2dim, [] );

if DEBUG

figure;

calc_colours();

show_fem(art_img);

axis(’off’); axis(’image’); axis(1.3*[-1,1,-1,1]);

title([’Standard Artefacts: ’, num2str(amp)]);

end

fprintf(’Standard method artefact power = %f \n’,amp);

function show_2d_sim(mdlM, noise, hparam, mv_conduct_ratio)

% SHOW_2D_SIM Inverse solution of planar simulated movement data.

% Args: mdl2dim - planar common FEM model

% noise - normalized gain factor of noise

% hparam - regularization hyperparameter

% mv_conduct_ratio - movement-conductance ratio

% (C) 2006, Camille Gomez-Laberge & Andy Adler.

% Licenced under the GPL Version 2.

% $Id: show_2d_sim.m,v 1.6 2006/02/13 15:44:48 cgomez Exp $

% Flag for printing EPS files (initialized by elect_move).

global PRINT_EPS;

% Set DEBUG to 1 if artefact plots are to be shown.

DEBUG = 0;

% Set eidors_obj hyperparameter member.

mdlM.hyperparameter.value= hparam;

% Place traditional jacobian in temporary member.

mdlM.fwd_model.conductivity_jacobian = mdlM.fwd_model.jacobian;

% Redefine jacobian member for movement & conductivity.

mdlM.fwd_model.jacobian = ’aa_e_move_jacobian’;

mdlM.RtR_prior = ’aa_e_move_image_prior’;

mdlM.aa_e_move_image_prior.parameters = mv_conduct_ratio;

% Generate simulated forward problem movement data without plot.

[vh,vi,fwd_img]= sim_move_2d_data( noise, 0 );

% Solve inverse problem for mdlM eidors_obj model.

imgM = inv_solve(mdlM, vi, vh);

% Plot results for each algorithm

show_fem_move(imgM);

% Calculate movement artefact amplitude and plot its effects new figure

[art_img, amp] = calc_artefact( fwd_img, imgM );
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if DEBUG

figure;

show_fem(art_img);

axis(’off’); axis(’image’); axis(1.3*[-1,1,-1,1]);

title([’Movement Artefacts: ’, num2str(amp)]);

end

fprintf(’Movement method artefact power = %f \n’,amp);

function [vh,vi]= meas_move_data(fpath, hfile, ifile, frame)

% MEAS_MOVE_DATA Forward problem for measured of electrode movement data

% (i.e. Experimentally aquired EIT data from VIVA lab).

% Args: fpath - full directory path (string)

% hfile - homogeneous (reference) data file (string)

% ifile - inhomogeneous (reference) data file (string)

% frame - EIT data frame number

% Returns: vh - voltage data for homogeneous conductivity

% vi - voltage data for inhomogeneous conductivity

% (C) 2006, Camille Gomez-Laberge & Andy Adler.

% Licenced under the GPL Version 2.

% $Id: meas_move_data.m,v 1.2 2006/05/29 18:11:11 cgomez Exp $

% Data is collected from a phantom filled with saline only - a homogeneous

% medium.

vvmeas = eidors_readdata([fpath, hfile]);

% Compute homogeneous measurements as the average over all frames.

vh = mean(vvmeas,2);

% Data is collected from a distorted phantom filled with saline and two

% suspended inhomogeneities - an inhomogeneous medium.

vmove= eidors_readdata([fpath, ifile]);

% A frame of maximum distortion (electrode movement) found by plotting all

% frames and choosing the ones which correspond to highest tank

% compression.

vi = vmove(:, frame);

C.2 Performance Analysis

% TESTSCRIPT Algorithm performance currently being used for electrode

% movement. Compares Standard reconstruction with movement algorithm.

% (C) 2006, Camille Gomez-Laberge.

% $Id: Testscript.m,v 1.2 2006/05/29 18:11:11 cgomez Exp $

% Plot results?

RESULTS = 1;

% Standard reconstruction?

STANDARD = 1;

% Dense meshes?

DENSE = 0;

% Add eidors3d/ to Matlab path if not present.

test_eidors_path();

eidors_msg(’log_level’,0); % Keep eidors quiet

% Set eidors default colours

calc_colours(’mapped_colour’,128);

calc_colours(’backgnd’,[.9,.9,.9]);

% Adjustible parameters

mv_conduct_ratio = 1;

hyperparam = [0.5e-3 1e-3 0.5e-2 1e-2 0.5e-1 1e-1];

radius_percent = 0.5; % between 0.00 and 0.90

move=[0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10];

% Generate eidors planar finite forward and inverse meshes.

if DENSE

fwd_mesh = mk_common_model(’d2c’); % 1024 elements

inv_mdl = mk_common_model(’c2c’); % 576 elements

else

fwd_mesh = mk_common_model(’c2c’); % 576 elements

inv_mdl = mk_common_model(’b2c’); % 256 elements
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end

% rotate mesh

rang= 45*pi/180; rotate= [cos(rang),-sin(rang);sin(rang),cos(rang)];

inv_mdl.fwd_model.nodes = (rotate*inv_mdl.fwd_model.nodes’)’;

inv_mdl.fwd_model.normalize_measurements= 0;

inv_mdl.fwd_model.electrode= inv_mdl.fwd_model.electrode([3:16,1,2]);

% Place traditional jacobian in temporary member.

inv_mdl.fwd_model.conductivity_jacobian = inv_mdl.fwd_model.jacobian;

% Redefine jacobian member for movement & conductivity.

inv_mdl.fwd_model.jacobian = ’aa_e_move_jacobian’;

inv_mdl.RtR_prior = ’aa_e_move_image_prior’;

inv_mdl.aa_e_move_image_prior.parameters = mv_conduct_ratio;

% Recreate mesh for standard model, with standard algs...

if DENSE

inv_mdl_std = mk_common_model(’c2c’); % 576 elements

else

inv_mdl_std = mk_common_model(’b2c’); % 256 elements

end

% Rotate inverse mesh as above in movement reconstruction

inv_mdl_std.fwd_model.nodes = (rotate*inv_mdl.fwd_model.nodes’)’;

inv_mdl_std.fwd_model.normalize_measurements= 0;

inv_mdl_std.fwd_model.electrode= inv_mdl_std.fwd_model.electrode([3:16,1,2]);

br = zeros(length(hyperparam),length(move));

amp = br;

% Calculate performance for various choices of hyperparameter

for i=1:length(hyperparam)

inv_mdl.hyperparameter.value = hyperparam(i);

inv_mdl_std.hyperparameter.value = hyperparam(i);

hyperparam(i)

% Collect measurements vs contrast radial position

for j=1:length(move)

% Get simulation model parameters

[f_img, fe_ctr, fe_con, i_img] = ...

get_model_params(fwd_mesh, inv_mdl, radius_percent, move(j));

% Measure blur radius

[br(i,j), b_elem] = meas_blur_radius(f_img, i_img, fe_con);

% Measure conductivity artefacts

[art_img, amp(i,j)] = calc_artefact(f_img, i_img, b_elem);

end

% Store movement results

br1_data(i,:) = br(i,:);

art1_data(i,:) = amp(i,:);

if STANDARD

% Redo simulation for standard reconstruction

% Collect measurements vs contrast radial position

for j=1:length(move)

% Get simulation model parameters

[f_img, fe_ctr, fe_con, i_img] = ...

get_model_params(fwd_mesh, inv_mdl_std, radius_percent, move(j));

% Measure blur radius

[br(i,j), b_elem] = meas_blur_radius(f_img, i_img, fe_con);

% Measure conductivity artefacts

[art_img, amp(i,j)] = calc_artefact(f_img, i_img, b_elem);

end

% Store standard results

br0_data(i,:) = br(i,:);

art0_data(i,:) = amp(i,:);

end

% Proposed AMM gain factor

pgain=(art0_data-art1_data)./art0_data;

end
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% Show results

if RESULTS

figure(’Name’,’AAM Plots’);

subplot(1,2,1);

plot(move, art0_data(1,:),’-r’,move, art1_data(1,:), ’-.b’);

xlim([0.5 10]);

xlabel(’Movement % of \partial\Omega Diameter’);

ylabel(’AAM’);

legend(’standard’,’movement’);

title([’AAM: Hyperparameters: \lambda = ’ , num2str(hyperparam(1)),’ ...

\mu = ’, num2str(mv_conduct_ratio)]);

subplot(1,2,2);

plot(move, art0_data(4,:),’-r’,move, art1_data(4,:), ’-.b’);

xlim([0.5 10]);

xlabel(’Movement % of \partial\Omega Diameter’);

ylabel(’AAM’);

legend(’standard’,’movement’);

title([’AAM: Hyperparameters: \lambda = ’ , num2str(hyperparam(4)),’ ...

\mu = ’, num2str(mv_conduct_ratio)]);

figure(’Name’,’Average Blur Radius over movement’);

hold on

semilogx(hyperparam,mean(br0_data,2),’-rs’);

semilogx(hyperparam,mean(br1_data,2),’-.bs’);

hold off

xlim([0.5e-3 1e-1]);

xlabel(’Hyperparameter log_{10}(\lambda)’);

ylabel(’Average Blur Radius’);

legend(’standard’,’movement’);

title([’Average Blur Radius over movement using \mu = ’, ...

num2str(mv_conduct_ratio)]);

figure(’Name’,’Average AAM Gain over lambda’);

plot(move,mean(pgain),’-k’);

ylim([0 1]);

xlim([0.5 10]);

xlabel(’Movement % of \partial\Omega Diameter’);

ylabel(’Average AAM Gain’);

title([’Average AAM Gain over \lambda using \mu = ’, ...

num2str(mv_conduct_ratio)]);

end

function [fwd_img, fwd_elem_ctr, fwd_cntrst, inv_img] = ...

get_model_params(fwd_mesh, inv_mdl, rad_posn, movep)

% GET_MODEL_PARAMS Simulates a single element contast model, calculates

% the difference inverse solution and returns model data and parameters.

% Args: fwd_mesh - the forward model mesh object.

% inv_mdl - the inverse model object set with reconstruction

% algorithms to be analyzed.

% rad_posn - the percentage of radial distance of the contrast

% centre.

% movep - movement in percentage of boundary diameter.

% Returns: fwd_img - the simulated forward problem eidors image object.

% fwd_elem_ctr - element-indexed coordinates of each element centre.

% fwd_cntrst - element index used as the contrast element.

% inv_img - the solved difference inverse problem eidors image

% object.

% (C) 2006, Camille Gomez-Laberge.

% $Id: get_model_params.m,v 1.6 2006/05/29 18:11:11 cgomez Exp $

% Debug variable

DEBUG = 1;

% Simulate movement

MOVE = 1;

% Scale standard alg images

STD_SCL = 0;

% Parameter used for movement artefact amplification

mm_scale = 100;

% Instantiate a homogeneous forward model (ref_level is 1)

sigma = ones( size(fwd_mesh.fwd_model.elems,1) ,1);
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% Create the eidors_obj of type image.

fwd_img = eidors_obj(’image’, ’homogeneous image’, ...

’elem_data’, sigma, ...

’fwd_model’, fwd_mesh.fwd_model,...

’ref_level’, 1);

vh = fwd_solve( fwd_img );

% Create a simulation object with single element contrast along 45 degree

fwd_elem_ctr = calc_element_centroid(fwd_img.fwd_model.elems, ...

fwd_img.fwd_model.nodes);

f_ctr_dist = fwd_elem_ctr - 0.7071*rad_posn;

dist = zeros(length(f_ctr_dist),1);

for i=1:length(dist)

dist(i) = norm(f_ctr_dist(i,:));

end

fwd_cntrst = find(dist == min(dist));

if length(fwd_cntrst) > 1

fwd_cntrst = fwd_cntrst(1);

end

% Intensity of contrast

sigma(fwd_cntrst) = 0.01;

fwd_img.elem_data = sigma;

% Simulate node movements - shrink x, stretch y

% node0 before, node1 after movement

move =[];

movep = movep/100;

if MOVE

movement = [1-movep 0; 0 1+movep]; % movement of 1%

node0 = fwd_img.fwd_model.nodes;

node1 = node0*movement;

fwd_img.fwd_model.nodes = node1;

end

% Solve inhomogeneous forward problem

vi = fwd_solve(fwd_img);

if MOVE

vi.meas = vi.meas;

move = node1 - node0;

end

if DEBUG

calc_colours(’ref_level’,1);

figure;

mysubplot(1,2,1);

show_fem_move(fwd_img, move);

end

% Create a reconstruction image object.

inv_img = inv_solve(inv_mdl, vi, vh);

% If standard algorithm is used, try scaling the result to see better.

if ~strcmp(inv_mdl.fwd_model.jacobian,’aa_e_move_jacobian’)*STD_SCL

ed= inv_img.elem_data;

lim= .08;

ed = ed.*(abs(ed)<=lim) + lim*sign(ed).*(abs(ed)>lim);

inv_img.elem_data= ed;

end

if DEBUG

calc_colours(’ref_level’,0);

mysubplot(1,2,2);

show_fem_move(inv_img,[],mm_scale);

end

function [art_img, amplitude] = calc_artefact( fwd_img, inv_img, blur_elem )

% CALC_ARTEFACT Calculates the amplitude of artefact effects in the

% conductivity distribution of a reconstructed model.

% Args: fwd_img - the forward problem as eidors_obj of type image

% inv_img - the inverse problem as eidors_obj of type image

% (blur_elem) - the indicies of elements in contrast blur area

% Returns: art_img - the inverse image corresponding to artefacts only

% amplitude - the total amplitude of the artefact conductivity
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% elements.

% (C) 2006, Camille Gomez-Laberge.

% $Id: calc_artefact.m,v 1.5 2006/05/29 18:11:11 cgomez Exp $

% Debug variable

DEBUG = 0;

% Handle fewer argument calls.

if nargin < 3

blur_elem = [];

end

% Define an eidors_obj image for artefacts only.

reference = fwd_img.ref_level;

% Determine whether inverse model has movment data.

n_inv_elem = size(inv_img.fwd_model.elems, 1);

if size(inv_img.elem_data, 1) > n_inv_elem

inv_img.elem_data = inv_img.elem_data(1 : n_inv_elem);

end

% Create a mask vector so that only inhomogeneous elements are 1.

fmask = zeros(size(fwd_img.elem_data));

fmask(find(fwd_img.elem_data ~= reference)) = 1; %forward mesh mask

% Compare forward mesh with inverse mesh.

elem_map = compare_fem( fwd_img.fwd_model, inv_img.fwd_model );

% inverse mesh mask of true inhomogeneities

imask = zeros(n_inv_elem,1);

imask( elem_map( find(fmask) ) ) = 1;

if ~isempty(blur_elem)

imask(blur_elem) = 1;

end

% Calculate artefact values of corresponding elements.

art_img = inv_img;

artefacts = ~imask.*inv_img.elem_data;

if DEBUG

avg_val = mean(artefacts)

artefacts(find(imask)) = avg_val;

end

art_img.elem_data = artefacts;

% Calculate area or volume of elements

e_space = calc_element_vol(inv_img);

% Calculate artefact signal power.

amplitude = sqrt(sum( e_space.*artefacts.^2 ) / sum( e_space ));

function [br, elem_idx] = meas_blur_radius(fwd_img, inv_img, fwd_cntrst)

% MEAS_BLUR_RADIUS Measures a resolution figure-of-merit called the

% blur radius from the single contrast element simulated eidors image

% objects FWD_IMG and INV_IMG solved by the algorithms to be analyzed.

% Args: fwd_img - the simulated forward problem eidors image object.

% inv_img - the solved difference inverse problem eidors image

% object.

% fwd_cntrst - the contrast element index.

% Returns: br - the blur radius (see reference)

% elem_idx - element indicies that are partof the blurred area

%

% REFERENCE: A Adler, R Guardo, "Electrical Impedance Tomography:

% Regularized Imaging and Contrast Detection", IEEE Trans. Med. Imaging,

% vol 15(2), 1996.

% (C) 2006, Camille Gomez-Laberge.

% $Id: meas_blur_radius.m,v 1.3 2006/02/16 22:54:22 cgomez Exp $

% Calculate inverse element total area.

elem_area = calc_element_vol(inv_img);

area0 = sum(elem_area);

% Calculate the 1/2 image magnitude area.

i_elem_data = inv_img.elem_data(1:length(elem_area));;

elem_nodes = inv_img.fwd_model.elems;

pwr0_half = sum(abs(i_elem_data))/4;
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elem_map = compare_fem(fwd_img.fwd_model, inv_img.fwd_model);

pwr_z = sum(abs(i_elem_data(elem_map(fwd_cntrst))));

elem_idx = elem_map(fwd_cntrst)’;

while pwr_z < pwr0_half

nhbrs = find_adjoin(elem_idx, elem_nodes’);

elem_idx = unique([elem_idx nhbrs]);

pwr_z = sum(abs(i_elem_data(elem_idx)));

end

area_z = sum(elem_area(elem_idx));

% Calculate the blur radius.

br = sqrt(area_z/area0);

C.3 Artefact Analysis

% SecondOrderAnalysis script fits a second order system response parameters

% to a reconstructed contrast distribution.

% (C) 2006, Camille Gomez-Laberge

% $Id: SecondOrderAnalysis.m,v 1.3 2006/04/05 14:46:53 cgomez Exp $

% Set PLOT=1 to see fitted curves

PLOT = 1;

TREND = 0;

METHOD = 2;

% The reconstruction parameters used in the analysis

meshsize = {’a2c’,’b2c’,’c2c’,’d2c’,’e2c’,’f2c’};

priortype = {’laplace_image_prior’, ’aa_calc_image_prior’};

hpvals = [1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8];

% The collected second order response best-fit estimates

estimates = cell(1,length(priortype));

fiterror = estimates;

% Add eidors3d/ to Matlab path if not present.

test_eidors_path();

eidors_msg(’log_level’,0); % Keep eidors quiet

% Set eidors default colours

calc_colours(’mapped_colour’,128);

calc_colours(’backgnd’,[.9,.9,.9]);

calc_colours(’ref_level’,0);

% Generate eidors planar finite forward and inverse meshes.

fwd_mesh = mk_common_model(meshsize{6});

inv_mdl = mk_common_model(meshsize{5});

% Set regularization prior, jacobian and hyperparameter

inv_mdl.fwd_model.jacobian = ’aa_calc_jacobian’;

for prior = 1 : length(priortype)

inv_mdl.RtR_prior = priortype{prior};

cumulest = [];

cumulerr = [];

for hp = 1 : length(hpvals)

inv_mdl.hyperparameter.value = hpvals(hp);

% Get simulation model parameters for-loop

[f_img, fe_ctr, fe_con, i_img] = ...

get_model_params(fwd_mesh, inv_mdl, 0, 0);

% Convert inverse solution into pixel image data

pi_img = cell2mat(show_slices(i_img));

pi_img(isnan(pi_img))=0;

% METHOD 1: Slice image along x-axis and model Edge Spread Function

if METHOD == 1

% Calculate image coordinates

pi_yctr = floor(size(pi_img,1)/2);

pi_xctr = floor(size(pi_img,2)/2);

pi_xmax = size(pi_img,2) - 1;

xdata = [0:pi_xctr-1];
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% Sample data reflected along x-axis and normalized

pi_data = -pi_img(pi_yctr, pi_xctr:pi_xmax);

pi_data = pi_data/max(pi_data);

% Find edge of step input

input = max(find(pi_data > 0.95));

% Fit image data to a second order response curve for

% underdamped systems

[epara, model] = fitmodeltodata([0:pi_xctr-input],...

pi_data(input:pi_xctr), [0.20, 0.4]);

% Store estimated parameters

cumulest = [cumulest; epara];

[error_val, model_curve] = model(epara);

cumulerr = [cumulerr; error_val];

% Plot results

if PLOT

figure;

plot(xdata, pi_data); hold on;

plot(xdata, [ones(1,input-1) model_curve], ’r’);

title({strcat(’RtR\_prior: ’, priortype{prior});...

strcat(’\lambda = ’, num2str(hpvals(hp)))});

end

elseif METHOD == 2

% Collect all pixel data

[px,py] = meshgrid(linspace(-1,1,size(pi_img,1)),...

linspace(-1,1,size(pi_img,2)));

% Convert data coords from rect to polar and build unit radius

% axis

[ptheta, prho] = cart2pol(px, py);

pr = unique(prho);

prmax_index = find(pr > 1,1);

pr = pr(1:prmax_index);

rlen = length(pr);

% Sum data as a function of radius

pr_data = zeros(rlen,1);

plen = length(pi_img);

for i = 1:rlen

ind = find(prho == pr(i));

pr_data(i) = trace( pi_img( mod(ind,plen)+1,...

ceil(ind/plen)))./length(ind);

end

pr_data = pr_data./min(pr_data);

% Fit image data to a second order response curve for underdamp

% system. Unlike METHOD 1, we model a Point Spread Function

[epara, model] = fitmodeltodata(pr, pr_data, [0.40, 25, 0.1]);

[error_val, model_curve, xshift] = model(epara);

% Second level or parameter fitting

% Store estimated parameters

cumulest = [cumulest; epara];

cumulerr = [cumulerr; error_val];

xratio = rlen/65;

curve_shift = floor(xshift/xratio);

curve_x = [0:1/64:1];

epara(2)./xratio;

model_curve = underdamp(curve_x, epara);

if curve_shift > 0

model_curve = [ones(1,curve_shift) ...

model_curve(1:65-curve_shift)];

else

model_curve = [model_curve(-curve_shift+1:65)...

zeros(1,-curve_shift)];

end

% Plot results
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if PLOT

figure;

plot(pr, pr_data); hold on;

plot(curve_x, model_curve, ’r’);

title({strcat(’RtR\_prior: ’, priortype{prior});...

strcat(’\lambda = ’,num2str(hpvals(hp)))});

end

else

% Collect all pixel data

[px,py] = meshgrid(linspace(-1,1,size(pi_img,1)),...

linspace(-1,1,size(pi_img,2)));

% Convert data coords from rect to polar and build unit radius

% axis

[ptheta, prho] = cart2pol(px, py);

pr = unique(prho);

prmax_index = find(pr > 1,1);

pr = pr(1:prmax_index);

rlen = length(pr);

% Sum data as a function of radius

pr_data = zeros(rlen,1);

plen = length(pi_img);

for i = 1:rlen

ind = find(prho == pr(i));

pr_data(i) = trace( pi_img( mod(ind,plen)+1,...

ceil(ind/plen)))./length(ind);

end

pr_data = pr_data./min(pr_data);

% sample data points

pr_data = pr_data(1:20:length(pr_data));

pr = pr(1:20:length(pr));

% Fit image data to a second order response curve for underdamp

% system.

[epara, model] = fitmodeltodata(pr, pr_data, [0.40, 25]);

cumulest = [cumulest; epara];

[error_val, model_curve, xshift] = model(epara);

cumulerr = [cumulerr; error_val];

% Plot results

if PLOT

figure;

plot(pr, pr_data); hold on;

plot(pr, model_curve, ’r’);

title({strcat(’RtR\_prior: ’, priortype{prior});...

strcat(’\lambda = ’,num2str(hpvals(hp)))});

end

end % End METHOD loop

end % End hpvals loop

estimates{1,prior} = cumulest;

fiterror{1,prior} = cumulerr;

% Plot parameter values versus the hyperparameter

if TREND

figure;

semilogx(hpvals,cumulest(:,1),’--rs’,’LineWidth’,2,...

’MarkerEdgeColor’,’k’,...

’MarkerFaceColor’,’g’,...

’MarkerSize’,10);

grid on;

hold on;

semilogx(hpvals,cumulest(:,2)./xratio,’--bs’,’LineWidth’,2,...

’MarkerEdgeColor’,’k’,...

’MarkerFaceColor’,’g’,...

’MarkerSize’,10);

title({’Second order parameters VS \lambda’;...

strcat(’RtR\_prior: ’, priortype{prior})});

legend(’damping ratio \zeta’,’natural freq. \omega_n’);

xlabel(’Hyperparamter log(\lambda)’);

end
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end % prior loop

function [mpara, mcurve] = fitmodeltodata(x, data, init)

% FITMODELTODATA fits a second order response model to data given.

% Args: x - the length of the curve along x-axis

% data - the data to fit response to

% init - initial values of parameters

% Returns: mpara - parameters for fitted model

% mcurve - the fitted model curve

% (C) 2006, Camille Gomez-Laberge.

% $Id: fitmodeltodata.m,v 1.3 2006/04/05 14:46:54 cgomez Exp $

mcurve = @second_order;

mpara = fminsearch(@second_order, init);

function [fiterror, y, xshift] = second_order(para)

% SECOND_ORDER plots the response curve of a second order system with

% step input.

% para(1) - eta damping ratio

% para(2) - nf natural frequency

% para(3) - x-shift

y = underdamp(x,para);

% ****** THIS BLOCK USED FOR METHOD 2 ONLY ******

[ymin, yindex] = min(y);

[datamin, dataindex] = min(data);

xshift = dataindex - yindex;

if xshift >= 0

y = [ones(xshift,1); y(1:length(y)-xshift)];

else

y = [y(-xshift+1:length(y)); zeros(-xshift,1)];

% fprintf(’WARNING: X-SHIFT WAS NEGATIVE: %d\n\n’,xshift);

end

% ****** THIS BLOCK USED FOR METHOD 2 ONLY ******

fiterror = norm(x.^2.*(data-y),1);

end % End of second_order subfunction

end % End of fitmodeltodata function

function y = underdamp(x,params)

% SECOND_ORDER plots the response curve of a second order system with step

% input.

% params(1) - eta damping ratio

% params(2) - nf natural frequency

% params(3) - x-shift

eta = params(1);

nf = params(2);

xshift = params(3);

s_eta = sqrt(1-eta^2);

y = exp(-eta*nf*(x-xshift))/s_eta.*sin(s_eta*nf*(x-xshift) + asin(s_eta));

y = x.^(0.333).*y;

end


