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ABSTRACT

This paper discusses the implementation of the sparse ma-
trix support with Octave. It address the algorithms that
have been used, their implementation, including examples
of using sparse matrices in scripts and in dynamically linked
code. The octave sparse functions the compared with their
equivalent functions withMatlab, and benchmark timings
are calculated.

1. INTRODUCTION

The size of mathematical problems that can be treated at any
particular time is generally limited by the available comput-
ing resources. Both the speed of the computer and its avail-
able memory place limitations on the problem size.

There are many classes of mathematical problems which
give rise to matrices, where a large number of the elements
are zero. In this case it makes sense to have a special ma-
trix type to handle this class of problems where only the
non-zero elements of the matrix are stored. Not only does
this reduce the amount of memory to store the matrix, but
it also means that operations on this type of matrix can take
advantage of the a-priori knowledge of the positions of the
non-zero elements to accelerate their calculations. A ma-
trix type that stores only the non-zero elements is generally
called sparse.

This article address the implementation of sparse ma-
trices withinOctave[1, 2], including their storage, creation,
fundamental algorithms used, their implementations and the
basic operations and functions implemented for sparse ma-
trices. Benchmarking ofOctave’s implementation of sparse
operations compared to their equivalent inMatlab [3] are

given and their implications discussed. Furthermore, the
method of using sparse matrices withOctave oct-filesis dis-
cussed.

In order to motivate this use of sparse matrices, con-
sider the image of an automobile crash simulation as shown
in Figure 1. This image is generated based on ideas of DIF-
FCrash [4] – a software package for the stability analysis
of crash simulations. Physical bifurcations in automobile
design and numerical instabilities in simulation packages
often cause extremely sensitive dependencies of simulation
results on even the smallest model changes. Here, a pro-
totypic extension of DIFFCrash uses octave’s sparse matrix
functions (and large computers with lots of memory) to pro-
duce these results.

2. BASICS

2.1. Storage of Sparse Matrices

It is not strictly speaking necessary for the user to under-
stand how sparse matrices are stored. However, such an
understanding will help to get an understanding of the size
of sparse matrices. Understanding the storage technique is
also necessary for those users wishing to create their own
oct-files.

There are many different means of storing sparse matrix
data. What all of the methods have in common is that they
attempt to reduce the complexity and storage given a-priori
knowledge of the particular class of problems that will be
solved. A good summary of the available techniques for
storing sparse matrices is given by Saad [5]. With full ma-
trices, knowledge of the point of an element of the matrix
within the matrix is implied by its position in the computers



Fig. 1. Image of automobile crash simulation, blue regions
indicate rigid-body behaviour. Image courtesy of BMW and
Fraunhofer Institute SCAI.

memory. However, this is not the case for sparse matrices,
and so the positions of the non-zero elements of the matrix
must equally be stored.

An obvious way to do this is by storing the elements of
the matrix as triplets, with two elements being their position
in the array (rows and column) and the third being the data
itself. This is conceptually easy to grasp, but requires more
storage than is strictly needed.

The storage technique used within Octave is the com-
pressed column format. In this format the position of each
element in a row and the data are stored as previously. How-
ever, if we assume that all elements in the same column are
stored adjacent in the computers memory, then we only need
to store information on the number of non-zero elements in
each column, rather than their positions. Thus assuming
that the matrix has more non-zero elements than there are
columns in the matrix, we win in terms of the amount of
memory used.

In fact, the column index contains one more element
than the number of columns, with the first element always
being zero. The advantage of this is a simplication in the
code, in that their is no special case for the first or last
columns. A short example, demonstrating this in C is.

f o r ( j = 0 ; j < nc ; j ++)
f o r ( i = c i dx ( j ) ; i < c idx ( j + 1 ) ; i ++)

p r i n t f ( ” E lement (%i ,% i ) i s %d\n ” ,
r i d x ( i ) , j , d a t a ( i ) ) ;

A clear understanding might be had by considering an
example of how the above applies to an example matrix.
Consider the matrix

1 2 0 0
0 0 0 3
0 0 0 4

The non-zero elements of this matrix are

(1, 1) = 1

(1, 2) = 2

(2, 4) = 3

(3, 4) = 4

This will be stored as three vectorscidx, ridx anddata,
representing the column indexing, row indexing and data re-
spectively. The contents of these three vectors for the above
matrix will be

cidx = [0, 1, 2, 2, 4]

ridx = [0, 0, 1, 2]

data = [1, 2, 3, 4]

Note that this is the representation of these elements
with the first row and column assumed to start at zero, while
in Octaveitself the row and column indexing starts at one.
With the above representation, the number of elements in
theith column is given bycidx(i + 1) − cidx(i).

AlthoughOctaveuses a compressed column format, it
should be noted that compressed row formats are equally
possible. However,in the context of mixed operations be-
tween mixed sparse and dense matrices, it makes sense that
the elements of the sparse matrices are in the same order as
the dense matrices.Octavestores dense matrices in column
major ordering, and so sparse matrices are equally stored in
this manner.

A further constraint on the sparse matrix storage used
by Octaveis that all elements in the column are stored in
increasing order of their row index, which makes certain
operations faster. However, it imposes the need to sort the
elements on the creation of sparse matrices. Having un-
ordered elements is potentially an advantage in that it makes
operations such as concatenating two sparse matrices to-
gether easier and faster, however it adds complexity and
speed problems elsewhere.

2.2. Creating Sparse Matrices

There are several means to create sparse matrices

• Returned from a function: There are many functions
that directly return sparse matrices. These includesp-
eye, sprand, spdiag, etc.



• Constructed from matrices or vectors: The function
sparseallows a sparse matrix to be constructed from
three vectors representing the row, column and data.
Alternatively, the functionspconvertuses a three col-
umn matrix format to allow easy importation of data
from elsewhere.

• Created and then filled: The functionsparseor spal-
loc can be used to create an empty matrix that is then
filled by the user

• From a user binary program: The user can directly
create the sparse matrix within anoct-file.

There are several functions that return specific sparse
matrices. For example the sparse identity matrix is often
needed. It therefore has its own function to create it as
speye(n) or speye(r, c), which creates ann-by-n or r-by-
c sparse identity matrix.

Another typical sparse matrix that is often needed is
a random distribution of random elements. The functions
sprandandsprandnperform this for uniform and normal
random distributions of elements. They have exactly the
same calling convention, wheresprand(r, c, d), creates an
r-by-c sparse matrix with a density of filled elements ofd.

Other functions of interest that directly creates a sparse
matrices, arespdiagor its generalizationspdiags, that can
take the definition of the diagonals of the matrix and create
the sparse matrix that corresponds to this. For example

s = s p d i a g ( s p a r s e ( randn ( 1 , n ) ) ,−1) ;

creates a sparse(n + 1)-by-(n + 1) sparse matrix with
a single diagonal defined.

The recommended way for the user to create a sparse
matrix, is to create two vectors containing the row and col-
umn index of the data and a third vector of the same size
containing the data to be stored. For example

f u n c t i o n x = foo ( r , j )
i dx = randperm ( r ) ;
x = ( [ z e ro s ( r−2 ,1) ; rand ( 2 , 1 ) ] ) ( i dx ) ;

e n d f u n c t i o n

r i = [ ] ;
c i = [ ] ;
d = [ ] ;

f o r j =1: c
dtmp = foo ( r , j ) ;
i dx = f i n d ( dtmp != 0 . ) ;
r i = [ r i ; i dx ] ;
c i = [ c i ; j ∗ones ( l e n g t h ( i dx ) , 1 ) ] ;
d = [ d ; dtmp ( i dx ) ] ;

e n d f o r
s = s p a r s e ( r i , c i , d , r , c ) ;

creates anr-by-c sparse matrix with a random distribu-
tion of 2 elements per row. The elements of the vectors do
not need to be sorted in any particular order asOctavewill
sort them prior to storing the data. However, pre-sorting the
data will make the creation of the sparse matrix faster.

The functionspconverttakes a three or four column real
matrix. The first two columns represent the row and column
index, respectively, and the third and four columns, the real
and imaginary parts of the sparse matrix. The matrix can
contain zero elements and the elements can be sorted in any
order. Adding zero elements is a convenient way to define
the size of the sparse matrix. For example

s = s p c o n v e r t ( [ 1 2 3 4 ; 1 3 4 4 ; 1 2 3 0 ] ’ )
Compressed Column S parse ( rows =4 , . . .

c o l s =4 , nnz =3)
(1 , 1) −> 1
(2 , 3) −> 2
(3 , 4) −> 3

An example of creating and filling a matrix might be

k = 5 ;
nz = r ∗ k ;
s = s p a l l o c ( r , c , nz )
f o r j = 1 : c

i dx = randperm ( r ) ;
s ( : , j ) = [ z e ro s ( r − k , 1 ) ; . . .

rand ( k , 1 ) ] ( i dx ) ;
e n d f o r

It should be noted, that due to the way that theOctave
assignment functions are written that the assignment will
reallocate the memory used by the sparse matrix at each it-
eration of the above loop. Therefore thespalloc function
ignores thenz argument and does not preassign the mem-
ory for the matrix. Therefore, code using the above struc-
ture should be vectorized to minimize the number of assign-
ments and reduce the number of memory allocations.

The above problem can be avoided inoct-files. How-
ever, the construction of a sparse matrix from anoct-file is
more complex than can be discussed in this brief introduc-
tion, and you are referred to section 6, to have a full descrip-
tion of the techniques involved.

2.3. Sparse Functions in Octave

An important consideration in the use of the sparse func-
tions ofOctaveis that many of the internal functions ofOc-
tave, such asdiag, can not accept sparse matrices as an in-
put. The sparse implementation inOctavetherefore uses the
dispatchfunction to overload the normalOctavefunctions
with equivalent functions that work with sparse matrices.
However, at any time the sparse matrix specific version of
the function can be used by explicitly calling its function
name.



The table below lists all of the sparse functions ofOc-
tavetogether (with possible future extensions that are cur-
rently unimplemented, listed last). Note that in this specific
sparse forms of the functions are typically the same as the
general versions with aspprefix. In the table below, and the
rest of this article the specific sparse versions of the func-
tions are used.

• Generate sparse matrices:spalloc, spdiags, speye, sp-
rand, sprandn, sprandsym

• Sparse matrix conversion:full, sparse, spconvert, sp-
find

• Manipulate sparse matricesissparse, nnz, nonzeros,
nzmax, spfun, spones, spy,

• Graph Theory:etree, etreeplot, gplot, treeplot, (tree-
layout)

• Sparse matrix reordering:ccolamd, colamd, colperm,
csymamd, symamd, randperm, dmperm, (symrcm)

• Linear algebra:matrix type, spchol, spcholinv, sp-
chol2inv,spdet, spinv, spkron, splchol, splu, spqr, (con-
dest, eigs, normest, sprank, svds, spaugment)

• Iterative techniques:luinc, (bicg, bicgstab, cholinc,
cgs, gmres, lsqr, minres, pcg, pcr, qmr, symmlq)

• Miscellaneous:spparms, symbfact, spstats, spprod,
spcumsum, spsum, spsumsq, spmin, spmax, spatan2,
spdiag

In addition all of the standardOctavemapper functions
(ie. basic math functions that take a single argument) such
asabs, etc can accept sparse matrices. The reader is referred
to the documentation supplied with these functions within
Octaveitself for further details.

2.4. Sparse Return Types

The two basic reasons to use sparse matrices are to reduce
the memory usage and to not have to do calculations on zero
elements. The two are closely related and the computation
time might be proportional to the number of non-zero ele-
ments or a power of the number of non-zero elements de-
pending on the operator or function involved.

Therefore, there is a certain density of non-zero ele-
ments of a matrix where it no longer makes sense to store
it as a sparse matrix, but rather as a full matrix. For this
reason operators and functions that have a high probability
of returning a full matrix will always return one. For exam-
ple adding a scalar constant to a sparse matrix will almost
always make it a full matrix, and so the example

speye ( 3 ) + 0
1 0 0
0 1 0
0 0 1

returns a full matrix as can be seen. Additionally all
sparse functions test the amount of memory occupied by the
sparse matrix to see if the amount of storage used is larger
than the amount used by the full equivalent. Thereforesp-
eye(2) * 1will return a full matrix as the memory used is
smaller for the full version than the sparse version.

As all of the mixed operators and functions between full
and sparse matrices exist, in general this does not cause any
problems. However, one area where it does cause a problem
is where a sparse matrix is promoted to a full matrix, where
subsequent operations would re-sparsify the matrix. Such
cases are rare, but can be artificially created, for example
(fliplr(speye(3)) + speye(3)) - speye(3)gives a full matrix
when it should give a sparse one. In general, where such
cases occur, they impose only a small memory penalty.

There is however one known case where this behavior
of Octave’s sparse matrices will cause a problem. That is
in the handling of thespdiagfunction. Whetherspdiagre-
turns a sparse or full matrix depends on the type of its input
arguments. So

a = d iag ( s p a r s e ( [ 1 , 2 , 3 ] ) ,−1);

should return a sparse matrix. To ensure this actually
happens, thesparsefunction, and other functions based on it
like speye, always returns a sparse matrix, even if the mem-
ory used will be larger than its full representation.

2.5. Finding out Information about Sparse Matrices

There are a number of functions that allow information con-
cerning sparse matrices to be obtained. The most basic of
these isissparsethat identifies whether a particularOctave
object is in fact a sparse matrix.

Another very basic function isnnzthat returns the num-
ber of non-zero entries there are in a sparse matrix, while
the functionnzmaxreturns the amount of storage allocated
to the sparse matrix. Note thatOctavetends to crop unused
memory at the first opportunity for sparse objects. There are
some cases of user created sparse objects where the value re-
turned bynzmazwill not be the same asnnz, but in general
they will give the same result. The functionspstatsreturns
some basic statistics on the columns of a sparse matrix in-
cluding the number of elements, the mean and the variance
of each column.

When solving linear equations involving sparse matrices
Octavedetermines the means to solve the equation based
on the type of the matrix as discussed in section 3.Octave
probes the matrix type when the div (/) or ldiv (\) opera-
tor is first used with the matrix and then caches the type.
However thematrix typefunction can be used to determine



the type of the sparse matrix prior to use of the div or ldiv
operators. For example

a = t r i l ( sp randn (1024 , 1024 , 0 . 0 2 ) ,−1) . . .
+ speye ( 1 0 2 4 ) ;

m a t r i x t y p e ( a ) ;
ans = Lower

show thatOctavecorrectly determines the matrix type
for lower triangular matrices.matrix typecan also be used
to force the type of a matrix to be a particular type. For
example

a = m a t r i x t y p e ( t r i l ( sp randn (1024 , . . .
1024 , 0 . 0 2 ) , −1) + speye ( 1 0 2 4 ) , ’ Lower ’ ) ;

This allows the cost of determining the matrix type to be
avoided. However, incorrectly defining the matrix type will
result in incorrect results from solutions of linear equations,
and so it is entirely the responsibility of the user to correctly
identify the matrix type

There are several graphical means of finding out infor-
mation about sparse matrices. The first is thespycommand,
which displays the structure of the non-zero elements of the
matrix, as can be seen in Figure 4. More advanced graphical
information can be obtained with thetreeplot, etreeplotand
gplot commands.

One use of sparse matrices is in graph theory, where the
interconnections between nodes is represented as an adja-
cency matrix [6]. That is, if thei-th node in a graph is con-
nected to thej-th node. Then theij-th node (and in the case
of undirected graphs theji-th node) of the sparse adjacency
matrix is non-zero. If each node is then associated with a
set of co-ordinates, then thegplot command can be used to
graphically display the interconnections between nodes.

As a trivial example of the use ofgplot, consider the
example

A = s p a r s e ( [ 2 , 6 , 1 , 3 , 2 , 4 , 3 , 5 , 4 , 6 , 1 , 5 ] ,
[ 1 , 1 , 2 , 2 , 3 , 3 , 4 , 4 , 5 , 5 , 6 , 6 ] , 1 , 6 , 6 ) ;

xy = [ 0 , 4 , 8 , 6 , 4 , 2 ; 5 , 0 , 5 , 7 , 5 , 7 ] ’ ;
g p l o t (A, xy )

which creates an adjacency matrixA where node 1 is
connected to nodes 2 and 6, node 2 with nodes 1 and 3, etc.
The co-ordinates of the nodes is given in then-by-2 matrix
xy. The output of thegplotcommand can be seen in Figure 2

The dependences between the nodes of a Cholesky fac-
torization can be calculated in linear time without explicitly
needing to calculate the Cholesky factorization by theetree
command. This command returns the elimination tree of
the matrix and can be displayed grapically by the command
treeplot(etree(A))if A is symmetric ortreeplot(etree(A+A’))
otherwise.
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Fig. 2. Simple use of thegplot command as discussed in
Section 2.5.

2.6. Mathematical Considerations

The attempt has been made to make sparse matrices behave
in exactly the same manner as their full counterparts. How-
ever, there are certain differences between full and sparse
behavior and with the sparse implementations in other soft-
ware tools.

Firstly, the./ and.∧ operators must be used with care.
Consider what the examples

s = speye(4);

a1 = s.∧2;

a2 = s.∧s;

a3 = s.∧ − 2;

a4 = s./2;

a5 = 2./s;

a6 = s./s;

will give. The first example ofs raised to the power of
2 causes no problems. Howevers raised element-wise to
itself involves a a large number of terms0 .∧ 0 which is 1.
Therefores .∧ s is a full matrix.

Likewises .∧ -2 involves terms terms like0 .∧ -2 which
is infinity, and sos .∧ -2 is equally a full matrix.

For the./ operators ./ 2has no problems, but2 ./ s in-
volves a large number of infinity terms as well and is equally
a full matrix. The case ofs ./ s involves terms like0 ./ 0
which is aNaN and so this is equally a full matrix with the
zero elements ofs filled with NaN values. The above be-
havior is consistent with full matrices, but is not consistent
with sparse implementations inMatlab [7]. If the user re-



quires the same behavior as inMatlab then for example for
the case of2 ./ sthen appropriate code is

f u n c t i o n z = f ( x ) , z = 2 . / x ; e n d f u n c t i o n
sp fun (@f , s ) ;

and the other examples above can be implemented sim-
ilarly.

A particular problem of sparse matrices comes about
due to the fact that as the zeros are not stored, the sign-
bit of these zeros is equally not stored. In certain cases the
sign-bit of zero is important [8]. For example

a = 0 . / [−1 , 1 ; 1 , −1];
b = 1 . / a

− I n f I n f
I n f − I n f

c = 1 . / s p a r s e ( a )
I n f I n f
I n f I n f

To correct this behavior would mean that zero elements
with a negative sign-bit would need to be stored in the ma-
trix to ensure that their sign-bit was respected. This is not
done at this time, for reasons of efficiency, and so the user
is warned that calculations where the sign-bit of zero is im-
portant must not be done using sparse matrices.

In general any function or operator used on a sparse ma-
trix will result in a sparse matrix with the same or a larger
number of non-zero elements than the original matrix. This
is particularly true for the important case of sparse matrix
factorizations. The usual way to address this is to reorder
the matrix, such that its factorization is sparser than the fac-
torization of the original matrix. That is the factorization of
LU = PSQ has sparser termsL andU than the equivalent
factorizationLU = S.

Several functions are available to reorder depending on
the type of the matrix to be factorized. If the matrix is sym-
metric positive-definite, thensymamdor csymamdshould
be used. Otherwisecolamdor ccolamdshould be used. For
completeness the reordering functionscolpermand rand-
permare also available.

As an example, consider the ball model which is given
as an example in the EIDORS project [9, 10], as shown in
Figure 3. The structure of the original matrix derived from
this problem can be seen with the commandspy(A), as seen
in Figure 4.

The standard LU factorization of this matrix, with row
pivoting can be obtained by the same command that would
be used for a full matrix. This can be visualized with the
command[l, u, p] = lu(A); spy(l+u); as seen in Figure 5.
The original matrix had 17825 non-zero terms, while this
LU factorization has 531544 non-zero terms, which is a sig-
nificant level of fill in of the factorization and represents a
large overhead in working with this matrix.

The appropriate sparsity preserving permutation of the
original matrix is given bycolamdand the factorization us-
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Fig. 3. Geometry of FEM model of phantom ball model
from EIDORS project [9, 10]

Fig. 4. Structure of the sparse matrix derived from EIDORS
phantom ball model [9, 10]



Fig. 5. Structure of the un-permuted LU factorization of
EIDORS ball problem

ing this reordering can be visualized using the commandq
= colamd(A); [l, u, p] = lu(A(:,q)); spy(l+u). This gives
212044 non-zero terms which is a significant improvement.

Furthermore, the underlying factorization software up-
dates its estimate of the optimal sparsity preserving reorder-
ing of the matrix during the factorization, so can return an
even sparser factorization. In the case of the LU factoriza-
tion this might be obtained with a fourth return argument as
[l, u, p, q] = lu(A); spy(l+u). This factorization has 143491
non-zero terms, and its structure can be seen in Figure 6.

Finally, Octaveimplicitly reorders the matrix when us-
ing the div (/) and ldiv (\) operators, and so no the user
does not need to explicitly reorder the matrix to maximize
performance.

3. LINEAR ALGEBRA ON SPARSE MATRICES

Octaveincludes a polymorphic solver for sparse matrices,
where the exact solver used to factorize the matrix, depends
on the properties of the sparse matrix itself. Generally, the
cost of determining the matrix type is small relative to the
cost of factorizing the matrix itself, but in any case the ma-
trix type is cached once it is calculated, so that it is not re-
determined each time it is used in a linear equation.

Linear equations are solved using the following selec-
tion tree

1. if the matrix is diagonal, solve directly and goto 8

Fig. 6. Structure of the permuted LU factorization of EI-
DORS ball problem

2. If the matrix is a permuted diagonal, solve directly
taking into account the permutations. Go to 8

3. If the matrix is square, banded and if the band den-
sity is less than that given byspparms (”bandden”)
continue, else go to 4.

(a) If the matrix is tridiagonal and the right-hand
side is not sparse continue, else go to 3b.

i. If the matrix is hermitian, with a positive
real diagonal, attempt Cholesky factoriza-
tion usingLapackxPTSV.

ii. If the above failed, or the matrix is not her-
mitian, use Gaussian elimination with piv-
oting usingLapackxGTSV, and go to 8.

(b) If the matrix is hermitian with a positive real di-
agonal, attempt a Cholesky factorization using
LapackxPBTRF.

(c) if the above failed or the matrix is not hermi-
tian with a positive real diagonal use Gaussian
elimination with pivoting usingLapack xGB-
TRF, and go to 8.

4. If the matrix is upper or lower triangular perform a
sparse forward or backward substitution, and go to 8

5. If the matrix is a upper triangular matrix with col-
umn permutations or lower triangular matrix with row



permutations, perform a sparse forward or backward
substitution, and go to 8

6. If the matrix is square hermitian with a real positive
diagonal, attempt a sparse Cholesky factorization us-
ing CHOLMOD.

7. If the sparse Cholesky factorization failed or the ma-
trix is not hermitian, and the matrix is square, perform
LU factorization using UMFPACK.

8. If the matrix is not square, or any of the previous
solvers flags a singular or near singular matrix, find
a minimum norm solution using CXSPARSE.

The band density is defined as the number of non-zero
values in the band divided by the number of values in the
band. The banded matrix solvers can be entirely disabled
by usingspparmsto setbanddento 1 (i.e.spparms (”band-
den”, 1)).

The QR solver factorizes the problem with a Dulmage-
Mendhelsohn [13], to seperate the problem into blocks that
can be treated as over-determined, multiple well determined
blocks, and a final over-determined block. For matrices with
blocks of strongly connectted nodes this is a big win as LU
decomposition can be used for many blocks. It also sig-
nificantly improves the chance of finding a solution to ill-
conditioned problems rather than just returning a vector of
NaN’s.

All of the solvers above, can calculate an estimate of the
condition number. This can be used to detect numerical sta-
bility problems in the solution and force a minimum norm
solution to be used. However, for narrow banded, triangular
or diagonal matrices, the cost of calculating the condition
number is significant, and can in fact exceed the cost of fac-
toring the matrix. Therefore the condition number is not
calculated in these case, and octave relies on simplier tech-
niques to detect sinular matrices or the underlying LAPACK
code in the case of banded matrices.

The user can force the type of the matrix with thema-
trix type function. This overcomes the cost of discovering
the type of the matrix. However, it should be noted incor-
rectly identifying the type of the matrix will lead to un-
predictable results, and somatrix typeshould be used with
care.

4. BENCHMARKING OF OCTAVE SPARSE
MATRIX IMPLEMENTATION

It is a truism that all benchmarks should be treated with care.
The speed of a software package is determined by a large
number of factors, including the particular problem treated
and the configuration of the machine on which the bench-
marks were run. Therefore the benchmarks presented here

should be treated as indicative of the speed a user might ex-
pect.

That being said we attempt to examine the speed of
several fundamental operators for use with sparse matrices.
These being the addition (+), multiplication (*) and left-
devision (\) operators. The basic test code used to perform
these tests is given by

t ime = 0 ;
n = 0 ;
wh i l e ( t ime < tmin | | n < nrun )

c l e a r a , b ;
a = sprand ( o rde r , o rde r , d e n s i t y ) ;
t = cput ime ( ) ;
b = a OP a ;
t ime = t ime + cput ime ( )− t ;
n = n + 1 ;

end
t ime = t ime / n ;

wherenrunwas 5,tminwas 1 second andOPwas either
+, or *. The left-division operator poses particular problems
for benchmarking that will be discussed later.

Although thecputimefunction only has a resolution of
0.01 seconds, running the command multiple times and lim-
ited by the minimum run time oftmin seconds allows this
precision to be extended. Running the above code for var-
ious matrix orders and densities results in the summary of
execution times as seen in Table 1.

The results for the small low density problems in Ta-
ble 1 are interesting (cf. Matrix order of 500, with densities
lower than 1e-03), as they seem to indicate that there is a
small incompressible execution time for bothMatlab and
Octave. This is probably due to the overhead associated
with the parsing of the language and the calling of the un-
derlying function responsible for the operator. On the test
machine this time was approximately 200µs forOctavefor
both operators, while forMatlab this appears to be 70 and
40µs for the * and + operators respectively. So in this class
of problemsMatlaboutperformsOctavefor both operators.
However, when the matrix order or density increases it can
be seen thatOctavesignificantly out-performsMatlab for
both operators.

When considering the left-division operator, we can not
use randomly created matrices. The reason is that the fill-
in, or rather the potential to reduce the fill-in with appropri-
ate matrix re-ordering, during matrix factorization is deter-
mined by the structure of the matrix imposed by the problem
it represents. As random matrices have no structure, factor-
ization of random matrices results in extremely large levels
of matrix fill-in, even with matrix re-ordering. Therefore,to
benchmark the left-division (\) operator, we have selected a
number of test matrices that are publicly available [14], and
modify the benchmark code as

t ime = 0 ;



Order Den- Execution Time for Operator (sec)
sity Matlab Octave

+ * + *
500 1e-02 0.00049 0.00250 0.00039 0.00170
500 1e-03 0.00008 0.00009 0.00022 0.00026
500 1e-04 0.00005 0.00007 0.00020 0.00024
500 1e-05 0.00004 0.00007 0.00021 0.00015
500 1e-06 0.00006 0.00007 0.00020 0.00021
1000 1e-02 0.00179 0.02273 0.00092 0.00990
1000 1e-03 0.00021 0.00027 0.00029 0.00042
1000 1e-04 0.00011 0.00013 0.00023 0.00026
1000 1e-05 0.00012 0.00011 0.00028 0.00023
1000 1e-06 0.00012 0.00010 0.00021 0.00022
2000 1e-02 0.00714 0.23000 0.00412 0.07049
2000 1e-03 0.00058 0.00165 0.00055 0.00135
2000 1e-04 0.00032 0.00026 0.00026 0.00033
2000 1e-05 0.00019 0.00020 0.00022 0.00026
2000 1e-06 0.00018 0.00018 0.00024 0.00023
5000 1e-02 0.05100 3.63200 0.02652 0.95326
5000 1e-03 0.00526 0.03000 0.00257 0.01896
5000 1e-04 0.00076 0.00083 0.00049 0.00074
5000 1e-05 0.00051 0.00051 0.00031 0.00043
5000 1e-06 0.00048 0.00055 0.00028 0.00026
10000 1e-02 0.22200 24.2700 0.10878 6.55060
10000 1e-03 0.02000 0.30000 0.01022 0.18597
10000 1e-04 0.00201 0.00269 0.00120 0.00252
10000 1e-05 0.00094 0.00094 0.00047 0.00074
10000 1e-06 0.00110 0.00098 0.00039 0.00055
20000 1e-03 0.08286 2.65000 0.04374 1.71874
20000 1e-04 0.00944 0.01923 0.00490 0.01500
20000 1e-05 0.00250 0.00258 0.00092 0.00149
20000 1e-06 0.00189 0.00161 0.00058 0.00121
50000 1e-04 0.05500 0.39400 0.02794 0.28076
50000 1e-05 0.00823 0.00877 0.00406 0.00767
50000 1e-06 0.00543 0.00610 0.00154 0.00332

Table 1. Benchmark of basic operators onMatlab R14sp2
againstOctave2.9.5, on a Pentium 4M 1.6GHz machine
with 1GB of memory.

n = 0 ;
wh i l e ( t ime < tmin | | n < nrun )

c l e a r a , b ;
l oad t e s t . mat % Get m a t r i x ’ a ’
x = ones ( o rde r , 1 ) ;
t = cput ime ( ) ;
b = a \ x ;
t ime = t ime + cput ime ( )− t ;
n = n + 1 ;

end
t ime = t ime / n ;

All the the matrices in the University of Florida Sparse
Matrix [14] that met the following criteria were used

• Has real or complex data available, and not just the
structure,

• Has between 10,000 and 1,000,000 non-zero element,

• Has equal number of rows and columns,

• The solution did not require more than 1GB of mem-
ory, to avoid issues with memory.

When comparing the benchmarks for the left-division
operator it must be considered that the matrices in the col-
lection used represent an arbitrary sampling of the available
sparse matrix problems. It is therefore difficult to treat the
data in aggregate, and so we present the raw data below so
that the reader might compare the benchmark for a particu-
lar matrix class that interests them.

The performance of theMatlabandOctaveleft-division
operators is affected by thespparmsfunction. In particu-
lar the density of terms in a banded matrix that is needed to
force the solver to use the LAPACK banded solvers rather
than the generic solvers is determined by the commandsp-
parms(’bandden’,val). The default density of 0.5 was used
for bothMatlabandOctave.

Five classes of problems were represented in the matri-
ces treated. These are

• Banded positive definite and factorized with the LA-
PACK xPBTRF function,

• General banded matrix and factorized with the LA-
PACK xGBTRF function,

• Positive definite and treated by the Cholesky solvers
of MatlabandOctave,

• Sparse LU decomposition with UMFPACK, and

• Singular matrices that were treated via QR decompo-
sition.



Also, it should be noted that the LAPACK solvers, and
dense BLAS kernels of the UMFPACK and CHOLMOD
solvers were accelerated using the ATLAS [15] versions of
the LAPACK and BLAS functions. The exact manner in
which the ATLAS library is compiled might have an affect
on the performance, and therefore the benchmarks might
measure the relative performance of the different versionsof
ATLAS rather than the performance ofOctaveandMatlab.
To avoid this issueOctavewas forced to use theMatlab
ATLAS libraries with the use of the Unix LDPRELOAD
command.

For the banded problems bothOctaveandMatlab per-
form similarly, with only minor differences, probably due
to the fact that the same ATLAS library was used.Mat-
lab is slightly faster for problems with very short run times,
probably for similar reasons as for small multiplications and
additions.

One class of problems where the speed ofOctavesignif-
icantly exceeds that ofMatlab are the positive definite ma-
trices that are not solved with the LAPACK banded solvers
(xPTSV or xPBTRF). This is due in large part to the use of
CHOLMOD [11]. Octave’s performance might be further
improved with the use of METIS [16] for the graph par-
titioning in conjuntion with CHOLMOD. As CHOLMOD
will become the sparse Cholesky solver in future versions
of Matlab 1 this situation is a temporary advantage forOc-
tave. The worst case for this is theAndrews/Andrewsma-
trix, whereMatlab did not complete the solution due to a
lack of memory. OnceMatlab uses CHOLMOD, it might
be expected that in this case as well similar speeds might be
expected.

The differences in the problems solved via LU decom-
position using UMFPACK are harder to explain. There are
a couple of very large discrepancies in the results, withOc-
tavewinning in some cases (cf.Hollinger/g7jac100) and
Matlab in others (cfZhao/Zhao2).

Both OctaveandMatlab use recent versions of UMF-
PACK, with Octaveusing a slightly newer version to allow
the use of C99 compatible complex numbers where the real
and imaginary parts are stored together. There are however
no changes between the versions of UMFPACK used that
would explain any performance differences.Octavehas a
slight advantage when the arguments are complex, due it is
use of C99 compatible complex as it is this format that is
used internally to UMFPACK. Another possible source of
differences is that UMFPACK calls internally a column re-
ordering routine, andOctaveuses this functionality Perhaps
Matlab attempts to independently guess an initial column
reordering. In any case, in 11 of the cases where UMF-

1Tim Davis has stated “CHOLMOD will become x=A\b in a future
release ofMatlab when A is symmetric and positive definite or Hermitian,
with a speedup of 5 (for small matrices) to 40 (for big ones), depending on
the matrix”

PACK was used the speed ofMatlabexceeded the speed of
Octave, while in 267 of the cases the speed ofOctaveex-
ceeded the speed ofMatlab, with the mean speed ofOctave
being 12% above that ofMatlab.

Finally, there are significant differences between the re-
sults forOctaveandMatlab for singular matrices. The ma-
jor difference is thatMatlabuses Given’s rotations whereas
Octaveuses Householder reflections. Given’s rotations of
Matlab allow row reordering to be performed to reduce the
amount of work to below that of a Householder transforma-
tion. However, the underlying code used inOctaveuses
Householder transformation to allow the eventual use of
multi-frontal techniques to the QR factorization, and so this
option is not available toOctavecurrently.

Furthermore,Octaveuses a Dulmage-Mendelsohn fac-
torization of the matrix to allow the problems to be solved
as a combination of over-determined, well-determined and
under-determined parts. The advantage of this is the po-
tential for significantly better performance and more sta-
ble results for over-determined problems. However, it is
possible that the Dulmage-Mehdelsohn factorization iden-
tifies no useful structure. A case where this occurs is the
GHS indef/dtocmatrix where 3 times the computation time
of a straight QR solution is needed.

The Dulmage-Mendelsohn solver can be bypassed with
code like

[ c , r ] = qr ( a , b ) ;
x = r \c ;

It should be noted that bothOctaveandMatlab use ac-
celerated algorithms for the left-division operator for trian-
gular, permuted triangular and tridiagonal matrices, as dis-
cussed in section 3, and that these cases are not treated in the
matrices from the University of Florida collection used here.
These are trivial cases, but important in that they should not
be solved with generic code.

5. USE OF OCTAVE SPARSE MATRICES IN REAL
LIFE EXAMPLE

A common application for sparse matrices is in the solution
of Finite Element Models. Finite element models allow nu-
merical solution of partial differential equations that donot
have closed form solutions, typically because of the com-
plex shape of the domain.

In order to motivate this application, we consider the
boundary value Laplace equation. This system can model
scalar potential fields, such as heat or electrical potential.
Given a mediumΩ with boundary∂Ω. At all points on
the∂Ω the boundary conditions are known, and we wish to
calculate the potential inΩ. Boundary conditions may spec-
ify the potential (Dirichlet boundary condition), its normal
derivative across the boundary (Neumann boundary condi-



Matrix Order NNZ S† Execution Time Matrix Order NNZ S† Execution Time
for Operator (sec) for Operator (sec)

Matlab Octave Matlab Octave
Bai/dw1024 2048 10114 8 0.05000 0.03585 HB/nos3 960 15844 7 0.04417 0.01050

Boeing/bcsstm38 8032 10485 9 0.04333 0.02490 Bai/rbsa480 480 17088 8 0.05000 0.02905
Zitney/extr1 2837 10967 8 0.03846 0.02052 Bai/rbsb480 480 17088 8 0.04545 0.02575

vanHeukelum/cage8 1015 11003 8 0.07714 0.05039 Hollinger/g7jac010 2880 18229 8 0.18000 0.13538
FIDAP/ex32 1159 11047 8 0.04333 0.02354 Hollinger/g7jac010sc 2880 18229 8 0.15600 0.13778

Sandia/adderdcop 05 1813 11097 8 0.03000 0.01693 Mallya/lhr01 1477 18427 8 0.05667 0.02982
Sandia/adderdcop 04 1813 11107 8 0.02889 0.01680 HB/bcsstk09 1083 18437 7 0.05778 0.02012
Sandia/adderdcop 03 1813 11148 8 0.03059 0.01690 FIDAP/ex21 656 18964 8 0.03846 0.02390
Sandia/adderdcop 01 1813 11156 8 0.02941 0.01670 Wang/wang1 2903 19093 8 0.23400 0.14818

Sandia/initadder1 1813 11156 8 0.02889 0.01667 Wang/wang2 2903 19093 8 0.22800 0.14798
Sandia/adderdcop 06 1813 11224 8 0.02833 0.01693 Brethour/coater1 1348 19457 9 0.19000 0.07413
Sandia/adderdcop 07 1813 11226 8 0.02889 0.01670 HB/bcsstm12 1473 19659 7 0.07000 0.01037
Sandia/adderdcop 10 1813 11232 8 0.03000 0.01670 Hamm/add32 4960 19848 8 0.06500 0.03869
Sandia/adderdcop 09 1813 11239 8 0.02889 0.01706 Bai/olm5000 5000 19996 4d 0.00463 0.00546
Sandia/adderdcop 08 1813 11242 8 0.03118 0.01696 Gset/G57 5000 20000 8 0.15800 0.09332
Sandia/adderdcop 11 1813 11243 8 0.02889 0.01693 HB/sherman3 5005 20033 8 0.12200 0.07285
Sandia/adderdcop 13 1813 11245 8 0.02889 0.01751 Shyy/shyy41 4720 20042 8 0.08833 0.05149
Sandia/adderdcop 19 1813 11245 8 0.02889 0.01693 Bai/rw5151 5151 20199 8 0.21600 0.13078
Sandia/adderdcop 44 1813 11245 8 0.02889 0.01713 Oberwolfach/t3dle 20360 20360 4c 0.00105 0.00327
Sandia/adderdcop 02 1813 11246 8 0.03059 0.01769 Boeing/bcsstm35 30237 20619 9 0.09333 0.05429
Sandia/adderdcop 12 1813 11246 8 0.02889 0.01606 Grund/bayer08 3008 20698 8 0.09667 0.05766
Sandia/adderdcop 14 1813 11246 8 0.02889 0.01683 Grund/bayer05 3268 20712 8 0.02125 0.00998
Sandia/adderdcop 15 1813 11246 8 0.02833 0.01676 Grund/bayer06 3008 20715 8 0.10000 0.05799
Sandia/adderdcop 16 1813 11246 8 0.02778 0.01683 HB/sherman5 3312 20793 8 0.09333 0.05259
Sandia/adderdcop 17 1813 11246 8 0.02889 0.01727 Wang/swang1 3169 20841 8 0.08500 0.04817
Sandia/adderdcop 18 1813 11246 8 0.02889 0.01703 Wang/swang2 3169 20841 8 0.08500 0.04808
Sandia/adderdcop 20 1813 11246 8 0.02889 0.01680 Grund/bayer07 3268 20963 8 0.01923 0.01010
Sandia/adderdcop 21 1813 11246 8 0.02778 0.01686 HB/bcsstm13 2003 21181 9 0.10200 0.06949
Sandia/adderdcop 22 1813 11246 8 0.03000 0.01700 Bomhof/circuit2 4510 21199 8 0.04250 0.02395
Sandia/adderdcop 23 1813 11246 8 0.03059 0.01690 Boeing/bcsstk34 588 21418 7 0.09333 0.01539
Sandia/adderdcop 24 1813 11246 8 0.02889 0.01727 TOKAMAK/utm1700b 1700 21509 8 0.08143 0.05009
Sandia/adderdcop 25 1813 11246 8 0.03000 0.01693 HB/bcsstk10 1086 22070 7 0.11800 0.00826
Sandia/adderdcop 26 1813 11246 8 0.03000 0.01700 HB/bcsstm10 1086 22092 8 0.14000 0.02008
Sandia/adderdcop 27 1813 11246 8 0.02889 0.01713 Hamrle/Hamrle2 5952 22162 8 0.11000 0.06299
Sandia/adderdcop 28 1813 11246 8 0.02889 0.01680 FIDAP/ex33 1733 22189 7 0.06875 0.01205
Sandia/adderdcop 29 1813 11246 8 0.02789 0.01680 HB/saylr4 3564 22316 8 0.18000 0.11338
Sandia/adderdcop 30 1813 11246 8 0.02889 0.01680 FIDAP/ex22 839 22460 8 0.04154 0.02234
Sandia/adderdcop 31 1813 11246 8 0.02889 0.01693 Zitney/hydr1 5308 22680 8 0.09000 0.04972
Sandia/adderdcop 32 1813 11246 8 0.02941 0.01693 HB/sherman2 1080 23094 8 0.08500 0.05379
Sandia/adderdcop 33 1813 11246 8 0.02833 0.01710 Gset/G40 2000 23532 8 1.05000 0.90126
Sandia/adderdcop 34 1813 11246 8 0.02833 0.01690 Gset/G39 2000 23556 8 1.03400 0.82907
Sandia/adderdcop 35 1813 11246 8 0.02889 0.01693 Gset/G42 2000 23558 8 1.06200 0.85347
Sandia/adderdcop 36 1813 11246 8 0.02889 0.01683 Gset/G41 2000 23570 8 0.99200 0.83307
Sandia/adderdcop 37 1813 11246 8 0.03000 0.01693 FIDAP/ex29 2870 23754 8 0.08143 0.04754
Sandia/adderdcop 38 1813 11246 8 0.02737 0.01703 Boeing/bcsstm34 588 24270 8 0.05556 0.06349
Sandia/adderdcop 39 1813 11246 8 0.02778 0.01789 FIDAP/ex25 848 24369 8 0.05000 0.02679
Sandia/adderdcop 40 1813 11246 8 0.02889 0.01738 HB/mcfe 765 24382 8 0.06500 0.03473
Sandia/adderdcop 41 1813 11246 8 0.02941 0.01686 Gset/G56 5000 24996 9 4.56000 5.42238
Sandia/adderdcop 42 1813 11246 8 0.03059 0.01693 Shen/shermanACa 3432 25220 8 0.14200 0.11558
Sandia/adderdcop 43 1813 11246 8 0.03118 0.01696 Grund/meg4 5860 25258 8 0.09667 0.05359
Sandia/adderdcop 45 1813 11246 8 0.02941 0.01713 HB/lns 3937 3937 25407 8 0.18800 0.12218
Sandia/adderdcop 46 1813 11246 8 0.02889 0.01700 HB/lnsp3937 3937 25407 8 0.19800 0.12238
Sandia/adderdcop 47 1813 11246 8 0.02833 0.01713 Boeing/msc01050 1050 26198 7 0.09167 0.01307
Sandia/adderdcop 48 1813 11246 8 0.02889 0.01703 HB/bcsstk21 3600 26600 7 0.10800 0.03778
Sandia/adderdcop 49 1813 11246 8 0.02941 0.01713 Bai/qc324 324 26730 4d 0.02125 0.02182
Sandia/adderdcop 50 1813 11246 8 0.02889 0.01670 FIDAP/ex2 441 26839 8 0.02889 0.01900
Sandia/adderdcop 51 1813 11246 8 0.02889 0.01670 Gset/G62 7000 28000 8 0.24600 0.15178
Sandia/adderdcop 52 1813 11246 8 0.02833 0.01673 Hohn/fd12 7500 28462 8 0.21600 0.14018
Sandia/adderdcop 53 1813 11246 8 0.02889 0.01693 Grund/bayer03 6747 29195 8 0.12600 0.07170
Sandia/adderdcop 54 1813 11246 8 0.02833 0.01683 Bai/rdb5000 5000 29600 8 0.18400 0.11418
Sandia/adderdcop 55 1813 11246 8 0.02889 0.01693 DRIVCAV/cavity06 1182 29675 8 0.05667 0.03111
Sandia/adderdcop 56 1813 11246 8 0.02889 0.01686 DRIVCAV/cavity08 1182 29675 8 0.05778 0.02982
Sandia/adderdcop 57 1813 11246 8 0.02941 0.01673 Lucifora/cell1 7055 30082 8 0.20000 0.11298
Sandia/adderdcop 58 1813 11246 8 0.02889 0.01686 Lucifora/cell2 7055 30082 8 0.20000 0.11338
Sandia/adderdcop 59 1813 11246 8 0.02833 0.01686 HB/bcsstk26 1922 30336 7 0.13600 0.01638
Sandia/adderdcop 60 1813 11246 8 0.03000 0.01690 FIDAP/ex4 1601 31849 8 0.09333 0.05009
Sandia/adderdcop 61 1813 11246 8 0.02889 0.01696 Gset/G65 8000 32000 8 0.28600 0.18157
Sandia/adderdcop 62 1813 11246 8 0.02889 0.01676 HB/plat1919 1919 32399 7 0.12800 0.02359
Sandia/adderdcop 63 1813 11246 8 0.02889 0.01686 DRIVCAV/cavity05 1182 32632 8 0.06500 0.03433
Sandia/adderdcop 64 1813 11246 8 0.02889 0.01686 Rajat/rajat03 7602 32653 8 0.16800 0.09932
Sandia/adderdcop 65 1813 11246 8 0.02889 0.01683 DRIVCAV/cavity07 1182 32702 8 0.05778 0.03206
Sandia/adderdcop 66 1813 11246 8 0.02889 0.01696 DRIVCAV/cavity09 1182 32702 8 0.06111 0.03206
Sandia/adderdcop 67 1813 11246 8 0.02833 0.01670 Grund/poli large 15575 33033 8 0.04333 0.02625
Sandia/adderdcop 68 1813 11246 8 0.02889 0.01686 HB/gemat12 4929 33044 8 0.09167 0.05109
Sandia/adderdcop 69 1813 11246 8 0.02941 0.01676 HB/gemat11 4929 33108 8 0.09333 0.05099

HB/watt 1 1856 11360 8 0.06000 0.03649 Hollinger/jan99jac020 6774 33744 8 0.24200 0.15978
HB/watt 2 1856 11550 8 0.07000 0.04015 Hollinger/jan99jac020sc 6774 33744 8 0.24800 0.16877

Grund/bayer09 3083 11767 8 0.03714 0.01969 HB/bcsstk11 1473 34241 7 0.11000 0.01710
Bai/rdb2048 2048 12032 8 0.05889 0.03486 HB/bcsstk12 1473 34241 7 0.11200 0.01716
Rajat/rajat12 1879 12818 8 0.03125 0.01726 Gset/G61 7000 34296 9 11.28600 13.77691
HB/bcsstk08 1074 12960 7 0.05556 0.01723 Boeing/msc00726 726 34518 7 0.19200 0.05269

MathWorks/Pd 8081 13036 8 0.01786 0.00994 Bomhof/circuit1 2624 35823 8 0.11200 0.05309
Hamm/add20 2395 13151 8 0.04500 0.02485 Gset/G66 9000 36000 8 0.33000 0.21097
Zitney/radfr1 1048 13299 8 0.02684 0.01375 Mallya/lhr02 2954 36875 8 0.11800 0.06399
HB/orsreg1 2205 14133 8 0.10000 0.05932 Oberwolfach/t2dala 4257 37465 8 0.13800 0.09099

Sandia/addertrans01 1814 14579 8 0.03643 0.02104 FIDAP/ex27 974 37652 8 0.07143 0.03814
Sandia/addertrans02 1814 14579 8 0.03400 0.02000 Gset/G10 800 38352 8 0.53800 0.42993

Bai/pde2961 2961 14585 8 0.07000 0.03807 Gset/G6 800 38352 8 0.53600 0.42454
HB/bcsstm25 15439 15439 4c 0.00075 0.00248 Gset/G7 800 38352 8 0.54600 0.44433

Boeing/bcsstm37 25503 15525 9 0.06875 0.02833 Gset/G8 800 38352 8 0.60000 0.42714

Table 2. Benchmark of left-division operator onMatlab R14sp2 againstOctave2.9.5, on a Pentium 4M 1.6GHz machine
with 1GB of memory.† The solver used for the problem, as given in section 3



Matrix Order NNZ S† Execution Time Matrix Order NNZ S† Execution Time
for Operator (sec) for Operator (sec)

Matlab Octave Matlab Octave
Gset/G9 800 38352 8 0.61400 0.42054 Zitney/rdist1 4134 94408 8 0.16600 0.08565

Boeing/nasa1824 1824 39208 8 0.21000 0.06166 Averous/epb1 14734 95053 8 0.56600 0.34515
Nasa/nasa1824 1824 39208 7 0.16000 0.02590 GHS indef/linverse 11999 95977 4d 0.01378 0.01686

Gset/G27 2000 39980 8 2.88000 2.85177 IBM Austin/coupled 11341 97193 8 0.44000 0.23836
Gset/G28 2000 39980 8 3.33200 3.14972 Langemyr/comsol 1500 97645 8 0.15200 0.08449
Gset/G29 2000 39980 8 2.76000 3.07973 Boeing/msc04515 4515 97707 7 0.53200 0.07527
Gset/G30 2000 39980 8 3.07600 3.08493 FIDAP/ex15 6867 98671 7 0.32800 0.07899
Gset/G31 2000 39980 8 3.58000 3.06333 Hamm/memplus 17758 99147 8 0.74200 0.38054
Gset/G67 10000 40000 8 0.38200 0.25376 FIDAP/ex9 3363 99471 7 0.21800 0.04690

HB/mbeause 496 41063 9 0.20000 0.20537 Nasa/nasa4704 4704 104756 7 0.65000 0.10938
vanHeukelum/cage9 3534 41594 8 0.89800 0.69909 Boeing/crystm01 4875 105339 7 0.62800 0.11798

Bai/dw4096 8192 41746 8 0.34400 0.89946 Hollinger/mark3jac040 18289 106803 8 14.30200 7.98099
TOKAMAK/utm3060 3060 42211 8 0.17000 0.13018 Hollinger/mark3jac040sc 18289 106803 8 68.61400 8.17816

Hollinger/g7jac020 5850 42568 8 0.65800 0.55212 Hollinger/g7jac040 11790 107383 8 22.41200 3.04114
Hollinger/g7jac020sc 5850 42568 8 0.67800 0.56011 Hollinger/g7jac040sc 11790 107383 8 23.25000 3.05234

Alemdar/Alemdar 6245 42581 8 0.31400 0.23416 Hollinger/jan99jac060 20614 111903 8 6.11600 1.06424
FIDAP/ex23 1409 42760 8 0.08500 0.04745 Hollinger/jan99jac060sc 20614 111903 8 6.38000 1.09163
Hohn/fd15 11532 44206 8 0.39200 0.26476 HB/bcsstk15 3948 117816 7 7.43600 0.27576

Boeing/msc01440 1440 44998 7 0.17600 0.03992 Pothen/bodyy4 17546 121550 7 3.64800 0.22437
HB/bcsstk23 3134 45178 7 1.09800 0.22817 Okunbor/aft01 8205 125567 9 1.91600 0.31035
FIDAP/ex7 1633 46626 8 0.15600 0.08449 Okunbor/aft02 8184 127762 8 3.32000 0.54072

Boeing/bcsstm39 46772 46772 4c 0.00269 0.00723 GHS indef/aug3dcqp 35543 128115 8 12.09600 7.07892
FIDAP/ex24 2283 47901 8 0.11800 0.07086 Pothen/bodyy5 18589 128853 7 0.78400 0.24776

Bomhof/circuit3 12127 48137 8 0.15200 0.08749 Simon/raefsky6 3402 130371 8 0.01667 0.03353
Rajat/rajat13 7598 48762 8 0.11400 0.06874 SchenkISEI/igbt3 10938 130500 8 0.66000 0.44173
FIDAP/ex6 1651 49062 9 0.15400 0.08899 DRIVCAV/cavity17 4562 131735 8 0.32400 0.18137

GHS indef/tuma2 12992 49365 8 0.48000 0.33155 DRIVCAV/cavity19 4562 131735 8 0.32400 0.18177
HB/mbeacxc 496 49920 9 0.24400 0.29795 DRIVCAV/cavity21 4562 131735 8 0.32600 0.18097
HB/mbeaflw 496 49920 9 0.26000 0.29715 DRIVCAV/cavity23 4562 131735 8 0.32600 0.18137
FIDAP/ex3 1821 52685 7 0.11200 0.02291 DRIVCAV/cavity25 4562 131735 8 0.32600 0.18157

Hollinger/mark3jac020 9129 52883 8 1.68600 1.53417 Pothen/bodyy6 19366 134208 7 0.78800 0.26776
Hollinger/mark3jac020sc 9129 52883 8 1.73200 1.57276 DRIVCAV/cavity16 4562 137887 8 0.32400 0.17857

FIDAP/ex36 3079 53099 8 0.13800 0.07727 DRIVCAV/cavity18 4562 138040 8 0.33000 0.18337
Shen/shermanACd 6136 53329 8 0.40000 0.21697 DRIVCAV/cavity20 4562 138040 8 0.33000 0.18337

GHS indef/ncvxqp9 16554 54040 8 0.53400 0.35535 DRIVCAV/cavity22 4562 138040 8 0.33000 0.18337
FIDAP/ex10 2410 54840 7 0.11200 0.01973 DRIVCAV/cavity24 4562 138040 8 0.33000 0.18377
HB/bcsstk27 1224 56126 7 0.14200 0.01996 DRIVCAV/cavity26 4562 138040 8 0.32800 0.18337
HB/bcsstm27 1224 56126 8 0.19400 0.08242 GHS indef/stokes64 12546 140034 9 2.61000 1.72634
Zitney/rdist2 3198 56834 8 0.10000 0.04981 GHS indef/stokes64s 12546 140034 8 1.25600 0.97105

FIDAP/ex10hs 2548 57308 7 0.14400 0.02171 Cote/mplate 5962 142190 8 40.58600 42.15619
Grund/meg1 2904 58142 8 0.09333 0.04549 Shen/shermanACb 18510 145149 8 0.78200 0.53212

Gset/G59 5000 59140 8 11.19600 10.23964 Hollinger/g7jac050sc 14760 145157 8 6.51400 6.19726
GHS indef/sit100 10262 61046 8 1.49000 1.36959 HB/bcsstk18 11948 149090 7 2.42600 0.32115

Zitney/rdist3a 2398 61896 8 0.10000 0.05229 GHS indef/bloweya 30004 150009 8 1.96200 0.85407
Grund/bayer02 13935 63307 8 0.31200 0.18137 vanHeukelum/cage10 11397 150645 8 33.07600 29.87406

Hohn/fd18 16428 63406 8 0.61800 0.45653 Hollinger/jan99jac080 27534 151063 8 1.85400 1.49017
HB/bcsstk14 1806 63454 7 0.24600 0.03861 Hollinger/jan99jac080sc 27534 151063 8 2.07400 1.63735

LiuWenzhuo/powersim 15838 64424 8 0.19200 0.12058 Mallya/lhr07 7337 154660 8 0.52600 0.28616
FIDAP/ex14 3251 65875 8 0.31600 0.24336 Mallya/lhr07c 7337 156508 8 0.51600 0.27816

Brunetiere/thermal 3456 66528 8 0.17800 0.10398 HB/bcsstk24 3562 159910 7 0.97600 0.10058
FIDAP/ex37 3565 67591 8 0.13800 0.08127 Hollinger/mark3jac060 27449 160723 8 17.15400 16.08276
FIDAP/ex20 2203 67830 8 0.15800 0.16557 Hollinger/mark3jac060sc 27449 160723 8 18.11400 16.52869

GHS indef/dtoc 24993 69972 9 0.09500 5.36218 Zhao/Zhao1 33861 166453 8 6.74400 5.26940
GHS indef/aug3d 24300 69984 9 0.09667 64.24463 Zhao/Zhao2 33861 166453 8 9.35200 159.26146
Gaertner/nopoly 10774 70842 8 0.44800 0.16218 Simon/raefsky5 6316 167178 8 0.18400 0.04908
Grund/bayer10 13436 71594 8 0.34800 0.20257 GHS indef/bratu3d 27792 173796 8 36.78000 45.28932

DRIVCAV/cavity11 2597 71601 8 0.16800 0.09015 Nasa/nasa2910 2910 174296 7 0.62800 0.08749
DRIVCAV/cavity13 2597 71601 8 0.16800 0.08982 Averous/epb2 25228 175027 8 1.64800 1.02364
DRIVCAV/cavity15 2597 71601 8 0.16600 0.08999 Oberwolfach/t2daha 11445 176117 8 0.62800 0.39514

FIDAP/ex18 5773 71701 8 0.22200 0.13758 Oberwolfach/t2dahe 11445 176117 7 0.80800 0.18037
Nasa/nasa2146 2146 72250 7 0.23000 0.04572 Wang/wang3 26064 177168 8 15.15800 11.87799

Cannizzo/sts4098 4098 72356 7 0.39800 0.06010 Wang/wang4 26068 177196 8 14.13600 11.04592
Hollinger/jan99jac040 13694 72734 8 0.71600 0.57891 GHS indef/brainpc2 27607 179395 8 2.68000 1.11383

Hollinger/jan99jac040sc 13694 72734 8 0.77800 0.60211 Hollinger/g7jac060 17730 183325 8 10.86600 9.09742
GHS indef/ncvxqp1 12111 73963 8 17.04400 18.67276 Hollinger/g7jac060sc 17730 183325 8 9.77600 8.89745

FIDAP/ex26 2163 74464 8 0.26400 0.14978 Hollinger/jan99jac100 34454 190224 8 2.93600 2.18767
FIDAP/ex13 2568 75628 7 0.15600 0.03250 Hollinger/jan99jac100sc 34454 190224 8 2.97400 2.25206

DRIVCAV/cavity10 2597 76171 8 0.17200 0.09032 Sandia/multdcop 03 25187 193216 8 0.90600 0.49852
DRIVCAV/cavity12 2597 76258 8 0.17200 0.09165 Sandia/multdcop 01 25187 193276 8 1.15400 0.64150
DRIVCAV/cavity14 2597 76258 8 0.17200 0.09149 Sandia/multdcop 02 25187 193276 8 0.93800 0.50692
GHS indef/aug2d 29008 76832 9 0.11400 6.86396 GHS psdef/obstclae 40000 197608 7 1.42800 0.49213

FIDAP/ex28 2603 77031 8 0.16800 0.09832 GHS psdef/torsion1 40000 197608 7 1.45800 0.49013
FIDAP/ex12 3973 79077 9 0.34200 GHS psdef/jnlbrng1 40000 199200 7 1.57600 0.48233
Gaertner/pesa 11738 79566 8 0.35400 0.20497 GHS psdef/minsurfo 40806 203622 7 1.61200 0.50152

GHS indef/aug2dc 30200 80000 9 0.11800 7.55005 GHS indef/mario001 38434 204912 8 1.82400 1.20382
Mallya/lhr04 4101 81057 8 0.26400 0.13998 SchenkIBMSDS/2D 27628bjtcai 27628 206670 8 1.73400 1.25181
Mallya/lhr04c 4101 82682 8 0.27000 0.14638 Brethour/coater2 9540 207308 9 4.70200 13.37617

Gset/G64 7000 82918 8 26.86200 27.66939 Hollinger/mark3jac080 36609 214643 8 35.83200 33.37233
TOKAMAK/utm5940 5940 83842 8 0.42400 0.33275 Hollinger/mark3jac080sc 36609 214643 8 34.32800 32.84181

HB/bcsstk13 2003 83883 7 0.78600 0.12238 HB/bcsstk28 4410 219024 7 1.57000 0.12458
Garon/garon1 3175 84723 8 0.26400 0.14938 ATandT/onetone2 36057 222596 8 1.05600 0.69449

Norris/fv1 9604 85264 7 0.38000 0.11138 FIDAP/ex35 19716 227872 8 0.75400 0.48453
Grund/bayer04 20545 85537 9 0.64800 0.37454 Mallya/lhr10 10672 228395 8 0.78800 0.44173

Norris/fv2 9801 87025 7 0.51000 0.11518 Hollinger/jan99jac120 41374 229385 8 3.56400 3.27050
Norris/fv3 9801 87025 7 0.52400 0.11498 Hollinger/jan99jac120sc 41374 229385 8 3.80200 3.36849

GHS indef/tuma1 22967 87760 8 1.15000 0.93586 GHS indef/spmsrtls 29995 229947 4d 0.04167 0.04316
HB/orani678 2529 90158 8 0.15400 0.08242 Mallya/lhr11 10964 231806 9 1.31800 1.41498
FIDAP/ex8 3096 90841 8 0.30600 0.17917 Mallya/lhr10c 10672 232633 8 0.71400 0.43193
FIDAP/ex31 3909 91223 8 0.32400 0.17777 Mallya/lhr11c 10964 233741 8 0.80600 0.46233
Gaertner/big 13209 91465 8 0.44400 0.28516 SchenkISEI/nmos3 18588 237130 8 1.76200 1.25961

Table 3. Benchmark of left-division operator onMatlab R14sp2 againstOctave2.9.5, on a Pentium 4M 1.6GHz machine
with 1GB of memory.† The solver used for the problem, as given in section 3.



Matrix Order NNZ S† Execution Time Matrix Order NNZ S† Execution Time
for Operator (sec) for Operator (sec)

Matlab Octave Matlab Octave
HB/bcsstk25 15439 252241 7 4.33800 0.64130 Nemeth/nemeth12 9506 446818 4d 1.26000 0.12823

GHS indef/a5esindl 60008 255004 8 6.65000 2.84177 FIDAP/ex40 7740 456188 8 10.35600 1.55876
FIDAP/ex19 12005 259577 8 0.54000 0.31515 Bai/af23560 23560 460598 8 5.89000 4.56431

Hollinger/g7jac080 23670 259648 8 18.99200 18.32181 Bai/qc2534 2534 463360 4d 0.91600 0.93286
Hollinger/g7jac080sc 23670 259648 8 18.56000 18.23663 Averous/epb3 84617 463625 8 3.63400 2.49002

Hollinger/mark3jac100 45769 268563 8 36.84000 35.18085 GHS psdef/wathen100 30401 471601 7 3.16800 0.58271
Hollinger/mark3jac100sc 45769 268563 8 35.15400 33.50571 Nemeth/nemeth13 9506 474472 4d 0.13400 0.12898

Grund/bayer01 57735 275094 8 1.41000 0.85467 GHS indef/c-59 41282 480536 8 14.85000 20.50428
Hohn/sinc12 7500 283992 8 22.16000 21.10159 SchenkIBMSDS/2D 54019highK 54019 486129 8 5.37800 3.79222

SchenkIBMSDS/3D 28984Tetra 28984 285092 9 69.97200 231.32383 Hollinger/g7jac140 41490 488633 8 46.23200 45.04975
HB/bcsstk16 4884 290378 7 3.80600 0.36494 Hollinger/g7jac140sc 41490 488633 8 42.14800 42.86328

Simon/raefsky1 3242 293409 8 2.09000 1.61095 Norris/lung2 109460 492564 8 1.65200 1.12763
Simon/raefsky2 3242 293551 8 1.93600 1.55796 Nemeth/nemeth14 9506 496144 4d 0.10600 0.14248

GHS indef/dixmaanl 60000 299998 8 43.68600 2.24486 Oberwolfach/t3dla 20360 509866 8 38.20000 70.31051
Cote/vibrobox 12328 301700 9 65.21000 628.86960 GHS psdef/gridgena 48962 512084 7 5.88000 1.10463

FEMLAB/waveguide3D 21036 303468 8 7.07400 6.10327 Hamm/hcircuit 105676 513072 8 2.47333 1.55656
Mallya/lhr14 14270 305750 9 1.82400 2.11008 SchenkIBMNA/c-67 57975 530229 8 4.88333 2.67899

Bomhof/circuit4 80209 307604 8 6.63400 3.35369 SchenkIBMSDS/3D514483D 51448 537038 8 35.05333 30.47137
Mallya/lhr14c 14270 307858 8 1.03000 0.62830 SchenkIBMSDS/ibm matrix 2 51448 537038 8 35.02667 30.68494

Boeing/crystk01 4875 315891 8 4.25400 0.92006 Nemeth/nemeth15 9506 539802 4d 0.14250 0.17264
Boeing/bcsstm36 23052 320606 9 1.76000 1.40079 HB/psmigr2 3140 540022 8 15.96000 15.07951

Hollinger/mark3jac120 54929 322483 8 56.95800 58.56690 HB/psmigr1 3140 543160 8 13.55333 11.82780
Hollinger/mark3jac120sc 54929 322483 8 54.82000 49.60506 HB/psmigr3 3140 543160 8 13.55667 11.81980

Boeing/crystm02 13965 322905 7 7.49000 1.15942 Hohn/sinc15 11532 551184 8 74.47667 76.96890
Goodwin/goodwin 7320 324772 8 1.10400 1.82432 GHS indef/c-58 37595 552551 8 18.32333 17.36596

Shyy/shyy161 76480 329762 8 3.04600 1.86832 Shen/e40r0100 17281 553562 8 2.46333 1.90291
Graham/graham1 9035 335472 8 3.63400 1.21661 GHS indef/c-62ghs 41731 559339 8 118.40667 191.48309
ATandT/onetone1 36057 335552 8 4.42400 4.15777 GHS indef/k1 san 67759 559774 9 62.08000 203.85401

Hollinger/g7jac100 29610 335972 8 129.29400 26.32780 Hollinger/g7jac160 47430 564952 8 54.45333 54.55504
Hollinger/g7jac100sc 29610 335972 8 23.99000 24.64405 Hollinger/g7jac160sc 47430 564952 8 52.34667 50.83061
Oberwolfach/gyrom 17361 340431 7 1.74600 0.20337 GHS psdef/wathen120 36441 565761 7 3.65333 0.72822
GHS indef/a2nnsnsl 80016 347222 8 11.87000 5.25320 GHS indef/c-68 64810 565996 8 64.63667 105.85824
GHS indef/ncvxbqp1 50000 349968 8 14.00200 57.09932 Boeing/crystm03 24696 583770 7 15.32667 2.95222
GHS psdef/cvxbqp1 50000 349968 7 288.96000 1.81272 Nemeth/nemeth16 9506 587012 4d 0.15000 0.17631

FEMLAB/poisson3Da 13514 352762 8 9.34600 7.84581 Mulvey/finan512 74752 596992 7 60.97333 1.66041
GHS indef/a0nsdsil 80016 355034 8 11.69200 5.56075 GHS indef/c-69 67458 623914 8 20.12000 21.79102

Boeing/bcsstk38 8032 355460 7 4.43000 0.31395 Nemeth/nemeth17 9506 629620 4d 0.15750 0.17564
Garon/garon2 13535 373235 8 1.72400 1.19242 GHS indef/blockqp1 60012 640033 8 19.80667 7.89080
Hamm/bcircuit 68902 375558 8 1.68000 1.46478 Hollinger/g7jac180 53370 641290 8 69.42000 73.73179

Hollinger/mark3jac140 64089 376395 8 117.82000 117.09100 Hollinger/g7jac180sc 53370 641290 8 64.18667 67.95934
Hollinger/mark3jac140sc 64089 376395 8 221.90400 112.53149 GHS indef/c-70 68924 658986 8 21.58000 22.26295

Cunningham/k3plates 11107 378927 8 0.93400 0.60891 Norris/heart2 2339 680341 8 1.47667 1.05984
Mallya/lhr17 17576 379761 9 2.02800 2.72539 Norris/heart3 2339 680341 8 1.46333 1.05284

Sanghavi/ecl32 51993 380415 8 328.74800 282.02393 Nemeth/nemeth18 9506 695234 4d 0.21333 0.18231
Mallya/lhr17c 17576 381975 8 1.29800 0.81428 GHS indef/c-72 84064 707546 8 17.22667 19.39872

Nemeth/nemeth02 9506 394808 8 0.54600 0.32155 SchenkIBMNA/c-64 51035 707985 8 7.26667 4.05572
Nemeth/nemeth03 9506 394808 8 0.58000 0.32115 ACUSIM/PresPoisson 14822 715804 7 7.04667 1.13183
Nemeth/nemeth04 9506 394808 8 0.54800 0.34095 Hollinger/g7jac200 59310 717620 8 81.66000 82.95206
Nemeth/nemeth05 9506 394808 8 0.58200 0.32015 Hollinger/g7jac200sc 59310 717620 8 76.65333 78.69804
Nemeth/nemeth06 9506 394808 8 0.57800 0.33935 Nemeth/nemeth01 9506 725054 4d 0.24000 0.22097
Nemeth/nemeth07 9506 394812 8 0.58200 0.33715 GHS indef/olesnik0 88263 744216 8 42.14000 42.00061
Nemeth/nemeth08 9506 394816 8 0.58000 0.33455 Mallya/lhr34 35152 746972 9 3.12333 4.82847
Nemeth/nemeth09 9506 395506 8 0.57400 0.32995 GHS indef/copter2 55476 759952 8 37.76333 197.47398
Nemeth/nemeth10 9506 401448 8 0.56400 0.32135 Andrews/Andrews 60000 760154 7 NC 60.61812
GHS indef/c-55 32780 403450 8 55.78800 72.13503 Mallya/lhr34c 35152 764014 8 3.39000 1.81506

Nemeth/nemeth11 9506 408264 4d 0.56600 0.12723 Nemeth/nemeth19 9506 818302 4d 0.28333 0.20064
Hollinger/g7jac120 35550 412306 8 188.60800 50.74469 FEMLAB/sme3Da 12504 874887 8 2.57667 2.17434

Hollinger/g7jac120sc 35550 412306 8 46.90000 49.04154 SchenkIBMSDS/matrix-new3 125329 893984 8 65.39000 58.33580
GHS indef/ncvxqp5 62500 424966 8 537.44800 337.53729 Kim/kim1 38415 933195 8 15.63333 13.86589

GHS indef/helm3d01 32226 428444 8 25.22600 60.50040 Hohn/sinc18 16428 948696 8 580.02000 221.20670
HB/bcsstk17 10974 428650 7 5.04200 0.41694 Hamm/scircuit 170998 958936 8 6.67000 6.49701

GHS indef/c-63 44234 434704 8 9.09400 10.47781 Boeing/crystk02 13965 968583 8 36.66333 12.20081
GHS indef/cont-201 80595 438795 8 70.84000 11.44966 Nemeth/nemeth20 9506 971870 4d 0.27000 0.24696
SchenkIBMNA/c-66 49989 444853 8 51.27200 4.57051 GHS indef/cont-300 180895 988195 8 35.95333 34.57574

Table 4. Benchmark of left-division operator onMatlab R14sp2 againstOctave2.9.5, on a Pentium 4M 1.6GHz machine
with 1GB of memory.† The solver used for the problem, as given in section 3.



tion), or a weighted sum of the potential and its derivative
(Cauchy boundary condition).

In a thermal model, we want to calculate the temper-
ature inΩ and know the boundary temperature (Dirichlet
condition) or heat flux (from which we can calculate the
Neumann condition by dividing by the thermal conductiv-
ity at the boundary). Similarly, in an electrical model, we
want to calculate the voltage inΩ and know the boundary
voltage (Dirichlet) or current (Neumann condition after div-
ing by the electrical conductivity). In an electrical model, it
is common for much of the boundary to be electrically iso-
lated; this is a Neumann boundary condition with the cur-
rent equal to zero.

The simplest finite element models will divideΩ into
simplexes (triangles in 2D, pyramids in 3D). A 3D exam-
ple is shown in Figure 3, and represents a cylindrical liquid
filled tank with a small non-conductive ball [9, 10]. This
is model is designed to reflect an application of electrical
impedance tomography, where current patterns are applied
to such a tank in order to image the internal conductivity
distribution. In order to describe the FEM geometry, we
have a matrix of verticesnodes and simpliceselems.

The following example creates a simple rectangular 2D
electrically conductive medium with 10 V and 20 V im-
posed on opposite sides (Dirichlet boundary conditions).
All other edges are electrically isolated.

node y= [ 1 ; 1 . 2 ; 1 . 5 ; 1 . 8 ; 2 ]∗ ones ( 1 , 1 1 ) ;
node x= ones ( 5 , 1 )∗ [ 1 , 1 . 0 5 , 1 . 1 , 1 . 2 , . . .

1 . 3 , 1 . 5 , 1 . 7 , 1 . 8 , 1 . 9 , 1 . 9 5 , 2 ] ;
nodes = [ nodex ( : ) , node y ( : ) ] ;

[ h ,w]= s i z e ( nodex ) ;
e lems = [ ] ;
f o r i dx = 1 :w−1

widx= ( idx −1)∗h ;
elems = [ elems ; . . .

widx + [ ( 1 : h−1 ) ; ( 2 : h ) ; h + ( 1 : h−1) ] ’ ; . . .
widx + [ ( 2 : h ) ; h + ( 2 : h ) ; h + ( 1 : h−1)] ’ ] ;

e n d f o r

E= s i z e ( elems , 1 ) ; # No . o f s i m p l i c e s
N= s i z e ( nodes , 1 ) ; # No . o f v e r t i c e s
D= s i z e ( elems , 2 ) ; # d imens ions +1

This creates aN×2 matrixnodes and aE × 3 matrix
elems with values, which define finite element triangles:

nodes ( 1 : 7 , : ) ’
1 . 00 1 .00 1 .00 1 .00 1 .00 1 .05 1 .05 . . .
1 . 00 1 .20 1 .50 1 .80 2 .00 1 .00 1 .20 . . .

e lems ( 1 : 7 , : ) ’
1 2 3 4 2 3 4 . . .
2 3 4 5 7 8 9 . . .
6 7 8 9 6 7 8 . . .

Using a first order FEM, we approximate the electrical

conductivity distribution inΩ as constant on each simplex
(represented by the vectorconductivity). Based on the
finite element geometry, we first calculate a system (or stiff-
ness) matrix for each simplex (represented as3 × 3 ele-
ments on the diagonal of the element-wise system matrix
SE. Based onSE and aN×DE connectivity matrixC, rep-
resenting the connections between simplices and vectices,
the global connectivity matrixS is calculated.

# Element c o n d u c t i v i t y
c o n d u c t i v i t y = [1∗ ones ( 1 , 1 6 ) , . . .

2∗ ones ( 1 , 4 8 ) , 1∗ ones ( 1 , 1 6 ) ] ;

# C o n n e c t i v i t y m a t r i x
C = s p a r s e ( ( 1 :D∗E ) , r e s h a p e ( elems ’ , . . .

D∗E , 1 ) , 1 , D∗E , N) ;

# C a l c u l a t e sys tem m a t r i x
S i i d x = f l o o r ( [ 0 :D∗E−1] ’ /D) ∗ D ∗ . . .

ones ( 1 ,D) + ones (D∗E , 1 )∗ ( 1 :D) ;
S j i d x = [ 1 :D∗E] ’ ∗ ones ( 1 ,D ) ;
S da ta = z e ro s (D∗E ,D) ;
d f a c t = f a c t o r i a l (D−1);
f o r j =1:E

a = inv ( [ ones (D, 1 ) , . . .
nodes ( elems ( j , : ) , : ) ] ) ;

c o n s t = c o n d u c t i v i t y ( j ) ∗ 2 / . . .
d f a c t / abs ( d e t ( a ) ) ;

S da ta (D∗ ( j −1)+(1:D ) , : ) = c o n s t ∗ . . .
a ( 2 :D , : ) ’ ∗ a ( 2 :D , : ) ;

e n d f o r
# Element−wise sys tem m a t r i x
SE= s p a r s e ( S i idx , S j idx , S da ta ) ;
# Globa l sys tem m a t r i x
S= C’∗ SE ∗C;

The system matrix acts like the conductivityS in Ohm’s
law SV = I. Based on the Dirichlet and Neumann bound-
ary conditions, we are able to solve for the voltages at each
vertexV .

# D i r i c h l e t boundary c o n d i t i o n s
D nodes = [ 1 : 5 , 5 1 : 5 5 ] ;
D va lue =[10∗ ones ( 1 , 5 ) , 20∗ ones ( 1 , 5 ) ] ;

V= z e ro s (N, 1 ) ;
V( D nodes ) = D va lue ;
i dx = 1 :N; # v e r t i c e s w i t h o u t D i r i c h l e t

# boundary condns
idx ( D nodes ) = [ ] ;

# Neumann boundary c o n d i t i o n s . Note t h a t
# N va lue must be norma l i zed by t h e
# boundary l e n g t h and e lemen t c o n d u c t i v i t y
N nodes = [ ] ;
N va lue = [ ] ;

Q = z e ro s (N , 1 ) ;
Q( N nodes ) = N va lue ;
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Fig. 7. Example finite element model the showing triangu-
lar elements. The height of each vertex corresponds to the
solution value

V( idx ) = S ( idx , i dx ) \ ( Q( i dx ) − . . .
S ( idx , D nodes ) ∗ V( D nodes ) ) ;

Finally, in order to display the solution, we show each
solved voltage value in the z-axis for each simplex vertex in
Figure 7.

elemx = elems ( : , [ 1 , 2 , 3 , 1 ] ) ’ ;
xe lems = re s h a p e ( nodes ( elemx , 1 ) , 4 , E ) ;
yelems = re s h a p e ( nodes ( elemx , 2 ) , 4 , E ) ;
velems = re s h a p e (V( elemx ) , 4 , E ) ;
p l o t 3 ( xelems , yelems , velems , ’ k ’ ) ;
p r i n t ( ’ g r i d . eps ’ ) ;

6. USING SPARSE MATRICES IN OCT-FILES

An oct-file is a means of writing anOctavefunction in a
compilable language like C++, rather than as a script file.
This can result in a significant acceleration in the code. It
is not the purpose of this section to discuss how to write
anoct-file, or discuss what they are. Users wishing to find
out more aboutoct-filesthemselves are referred to the arti-
cles by Cristophe Spiel [17] and Paul Thomas [18]. Users
who are not familiar withoct-filesare urged to read these
references to fully understand this section. The examples
discussed here assume that theoct-file is written entirely in
C++.

There are three classes of sparse objects that are of in-
terest to the user.

• SparseMatrix - double precision sparse matrix class

• SparseComplexMatrix - Complex sparse matrix class

• SparseBoolMatrix - boolean sparse matrix class

All of these classes inherit from theSparse<T> tem-
plate class, and so all have similar capabilities and usage.
The Sparse<T> class was based onArray<T> class, and
so users familiar withOctave’s array classes will be com-
fortable with the use of the sparse classes.

The sparse classes will not be entirely described in this
section, due to their similar with the existing array classes.
However, there are a few differences due the different na-
ture of sparse objects, and these will be described. Firstly,
although it is fundamentally possible to have N-dimensional
sparse objects, theOctavesparse classes do not allow them
at this time. So all operations of the sparse classes must be
2-dimensional. This means that in factSparseMatrixis sim-
ilar to Octave’s Matrix class rather than itsNDArrayclass.

6.1. Differences between the Array and Sparse Classes

The number of elements in a sparse matrix is considered to
be the number of non-zero elements rather than the product
of the dimensions. Therefore

S parseMat r i x sm ;
. . .
i n t n e l = sm . nelem ( ) ;

returns the number of non-zero elements. If the user re-
ally requires the number of elements in the matrix, including
the non-zero elements, they should usenumelrather than
nelem. Note that for very large matrices, where the product
of the two dimensions is larger than the representation of
the anoctaveidx type, thennumelcan overflow. An exam-
ple isspeye(1e6)which will create a matrix with a million
rows and columns, but only a million non-zero elements.
Therefore the number of rows by the number of columns
in this case is more than two hundred times the maximum
value that can be represented by an unsigned int on a 32-
bit platform. The use ofnumelshould therefore be avoided
useless it is known it won’t overflow.

Extreme care must be taken with the elem method and
the () operator, which perform basically the same function.
The reason is that if a sparse object is non-const, thenOc-
tavewill assume that a request for a zero element in a sparse
matrix is in fact a request to create this element so it can be
filled. Therefore a piece of code like

S parseMat r i x sm ;
. . .
f o r ( i n t j = 0 ; j < nc ; j ++)

f o r ( i n t i = 0 ; i < nr ; i ++)
s t d : : c e r r << ” ( ” << i << ” , ”

<< j << ” ) : ” << sm ( i , j )
<< s t d : : end l ;

is a great way of turning the sparse matrix into a dense
one, and a very slow way at that since it reallocates the
sparse object at each zero element in the matrix.



An easy way of preventing the above from happening is
to create a temporary constant version of the sparse matrix.
Note that only the container for the sparse matrix will be
copied, while the actual representation of the data will be
shared between the two versions of the sparse matrix. So
this is not a costly operation. For example, the above would
become

S parseMat r i x sm ;
. . .
c o n s t S parseMat r i x tmp (sm ) ;
f o r ( i n t j = 0 ; j < nc ; j ++)

f o r ( i n t i = 0 ; i < nr ; i ++)
s t d : : c e r r << ” ( ” << i << ” , ”

<< j << ” ) : ” << tmp ( i , j )
<< s t d : : end l ;

Finally, as the sparse types aren’t just represented as a
contiguous block of memory, thefortran vecmethod of the
Array<T> class is not available. It is however replaced by
three separate methodsridx, cidx anddata, that access the
raw compressed column format that theOctavesparse ma-
trices are stored in. Additionally, these methods can be used
in a manner similar toelem, to allow the matrix to be ac-
cessed or filled. However, in that case it is up to the user
to respect the sparse matrix compressed column format dis-
cussed previous.

6.2. Creating Spare Matrices in Oct-Files

The user has several alternatives in how to create a sparse
matrix. They can first create the data as three vectors repre-
senting the row and column indexes and the data, and from
those create the matrix. Or alternatively, they can create a
sparse matrix with the appropriate amount of space and then
fill in the values. Both techniques have their advantages and
disadvantages.

An example of how to create a small sparse matrix with
the first technique might be seen the example

i n t nz = 4 , nr = 3 , nc = 4 ;
ColumnVector r i d x ( nz ) ;
ColumnVector c i dx ( nz ) ;
ColumnVector d a t a ( nz ) ;

r i d x ( 0 ) = 0 ; r i d x ( 1 ) = 0 ;
r i d x ( 2 ) = 1 ; r i d x ( 3 ) = 2 ;
c i dx ( 0 ) = 0 ; c i dx ( 1 ) = 1 ;
c i dx ( 2 ) = 3 ; c i dx ( 3 ) = 3 ;
d a t a ( 0 ) = 1 ; d a t a ( 1 ) = 2 ;
d a t a ( 2 ) = 3 ; d a t a ( 3 ) = 4 ;

S parseMat r i x sm ( data , r i dx , c idx , nr , nc ) ;

which creates the matrix given in section 2.1. Note that
the compressed matrix format is not used at the time of the
creation of the matrix itself, however it is used internally.

As previously mentioned, the values of the sparse matrix
are stored in increasing column-major ordering. Although
the data passed by the user does not need to respect this
requirement, the pre-sorting the data significantly speedsup
the creation of the sparse matrix.

The disadvantage of this technique of creating a sparse
matrix is that there is a brief time where two copies of the
data exists. Therefore for extremely memory constrained
problems this might not be the right technique to create the
sparse matrix.

The alternative is to first create the sparse matrix with
the desired number of non-zero elements and then later fill
those elements in. The easiest way to do this is

i n t nz = 4 , nr = 3 , nc = 4 ;
S parseMat r i x sm ( nr , nc , nz ) ;
sm ( 0 , 0 ) = 1 ; sm ( 0 , 1 ) = 2 ;
sm ( 1 , 3 ) = 3 ; sm ( 2 , 3 ) = 4 ;

That creates the same matrix as previously. Again, al-
though it is not strictly necessary, it is significantly faster if
the sparse matrix is created in this manner that the elements
are added in column-major ordering. The reason for this is
that if the elements are inserted at the end of the current list
of known elements then no element in the matrix needs to
be moved to allow the new element to be inserted. Only the
column indexes need to be updated.

There are a few further points to note about this tech-
nique of creating a sparse matrix. Firstly, it is not illegalto
create a sparse matrix with fewer elements than are actually
inserted in the matrix. Therefore

i n t nz = 4 , nr = 3 , nc = 4 ;
S parseMat r i x sm ( nr , nc , 0 ) ;
sm ( 0 , 0 ) = 1 ; sm ( 0 , 1 ) = 2 ;
sm ( 1 , 3 ) = 3 ; sm ( 2 , 3 ) = 4 ;

is perfectly legal, but will be very slow. The reason is
that as each new element is added to the sparse matrix the
space allocated to it is increased by reallocating the mem-
ory. This is an expensive operation, that will significantly
slow this means of creating a sparse matrix. Furthermore, it
is not illegal to create a sparse matrix with too much storage,
so havingnzabove equaling 6 is also legal. The disadvan-
tage is that the matrix occupies more memory than strictly
needed.

It is not always easy to know the number of non-zero
elements prior to filling a matrix. For this reason the ad-
ditional storage for the sparse matrix can be removed af-
ter its creation with themaybecompressfunction. Further-
more,maybecompresscan deallocate the unused storage,
but it can equally remove zero elements from the matrix.
The removal of zero elements from the matrix is controlled
by setting the argument of themaybecompressfunction to
be ’true’. However, the cost of removing the zeros is high
because it implies resorting the elements. Therefore, if pos-



sible it is better is the user doesn’t add the zeros in the first
place. An example of the use ofmaybecompressis

i n t nz = 6 , nr = 3 , nc = 4 ;
S parseMat r i x sm1 ( nr , nc , nz ) ;
sm1 ( 0 , 0 ) = 1 ; sm1 ( 0 , 1 ) = 2 ;
sm1 ( 1 , 3 ) = 3 ; sm1 ( 2 , 3 ) = 4 ;
/ / No ze ro e lemen ts were added
sm1 . maybecompress ( ) ;

S pa rseMat r i x sm2 ( nr , nc , nz ) ;
sm2 ( 0 , 0 ) = 1 ; sm2 ( 0 , 1 ) = 2 ;
sm2 ( 0 , 2 ) = 0 ; sm2 ( 1 , 2 ) = 0 ;
sm2 ( 1 , 3 ) = 3 ; sm2 ( 2 , 3 ) = 4 ;
/ / Zero e lemen ts were added
sm2 . maybecompress ( t r u e ) ;

Themaybecompressfunction should be avoided if pos-
sible, as it will slow the creation of the matrices.

A third means of creating a sparse matrix is to work di-
rectly with the data in compressed row format. An example
of this technique might be

o c t a v e v a l u e a rg ;
. . .

/ / Assume we know t h e max no nz
i n t nz = 6 , nr = 3 , nc = 4 ;
S parseMat r i x sm ( nr , nc , nz ) ;
Mat r i x m = arg . m a t r i x v a l u e ( ) ;

i n t i i = 0 ;
sm . c i dx ( 0 ) = 0 ;
f o r ( i n t j = 1 ; j < nc ; j ++)

{
f o r ( i n t i = 0 ; i < nr ; i ++)

{
double tmp = foo (m( i , j ) ) ;
i f ( tmp != 0 . )

{
sm . d a t a ( i i ) = tmp ;
sm . r i d x ( i i ) = i ;
i i ++;

}
}

sm . c i dx ( j +1) = i i ;
}

/ / Don ’ t know a−p r i o r i t h e f i n a l no of nz .
sm . maybecompress ( ) ;

which is probably the most efficient means of creating
the sparse matrix.

Finally, it might sometimes arise that the amount of stor-
age initially created is insufficient to completely store the
sparse matrix. Therefore, the methodchangecapacityex-
ists to reallocate the sparse memory. The above example
would then be modified as

o c t a v e v a l u e a rg ;
. . .

/ / Assume we know t h e max no nz
i n t nz = 6 , nr = 3 , nc = 4 ;
S parseMat r i x sm ( nr , nc , nz ) ;
Mat r i x m = arg . m a t r i x v a l u e ( ) ;

i n t i i = 0 ;
sm . c i dx ( 0 ) = 0 ;
f o r ( i n t j = 1 ; j < nc ; j ++)

{
f o r ( i n t i = 0 ; i < nr ; i ++)

{
double tmp = foo (m( i , j ) ) ;
i f ( tmp != 0 . )

{
i f ( i i == nz )

{
/ / Add 2 more e lemen ts
nz += 2 ;
sm . c h a n g ec a p a c i t y ( nz ) ;

}
sm . d a t a ( i i ) = tmp ;
sm . r i d x ( i i ) = i ;
i i ++;

}
}

sm . c i dx ( j +1) = i i ;
}

/ / Don ’ t know a−p r i o r i t h e f i n a l no of nz .
sm . maybecompress ( ) ;

Note that both increasing and decreasing the number of
non-zero elements in a sparse matrix is expensive, as it in-
volves memory reallocation. Also as parts of the matrix,
though not its entirety, exist as the old and new copy at the
same time, additional memory is needed. Therefore, if pos-
sible this should be avoided.

6.3. Using Sparse Matrices in Oct-Files

Most of the same operators and functions on sparse matrices
that are available from theOctaveare equally available with
oct-files. The basic means of extracting a sparse matrix from
anoctavevalueand returning them as anoctavevalue, can
be seen in the following example

o c t a v e v a l u e l i s t r e t v a l ;

S pa rseMat r i x sm =
a rg s ( 0 ) . s p a r s em a t r i x v a l u e ( ) ;

SparseComplexMat r i x scm =
a rg s ( 1 ) . s p a r s ec o m p l e x m a t r i x v a l u e ( ) ;

S pa rseB oo lMa t r i x sbm =
a rg s ( 2 ) . s p a r s eb o o l m a t r i x v a l u e ( ) ;

. . .

r e t v a l ( 2 ) = sbm ;
r e t v a l ( 1 ) = scm ;



r e t v a l ( 0 ) = sm ;

The conversion to an octave-value is automatically han-
dled by the sparseoctavevalueconstructors, and so no spe-
cial care is needed.

7. CONCLUSION

This paper has presented the implementation of sparse ma-
trices with recent versions of Octave. Their storage, cre-
ation, fundamental algorithms used, their implementations
and basic operations were also discussed. Important con-
siderations for the use of sparse matrices were discussed in-
clude efficient manners to create and use them as well as the
return types of several operatoons.

Furthermore, the Octave sparse matrix implementation
in Octaveversion 2.9.5 was compared againstMatlab ver-
sion R14sp2 for the fundamental addition, multiplication
adn left-division operators. It was found thatOctaveout-
performedMatlab in most cases, with the exceptions often
being for smaller, lower density problems. The efficiency
of the basicOctavesparse matrix implementation has there-
fore been demonstrated.

Furthermore, we discussed the use of theOctavesparse
matrix type in the context of a real finite element model.
The case of a boundary value Laplace equation, treating the
case of a 2D electrically conductive strip.

Finally, we discussed the use ofOctave’s sparse ma-
trices from withinOctave’s dynamically loadableoct-files.
The passing, means of creating, manipulating and returning
sparse matrices withinOctavewere discussed. The differ-
ences witheOctave’s Array<T> were discussed.
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