
TellTable: open source editing 1/34

Running Head: TellTable: Open Source Editing

Title: TellTable: An open source collaborative editing system

Authors:
Andy Adler
School of Information Technology and Engineering, University of Ottawa,
161 Louis Pasteur, Ottawa, Ontario, Canada, K1N 6N5
Tel: (613) 562-5800 ext. 6218, Fax: (613) 562-5175, Email: adler@site.uottawa.ca

John C. Nash
School of Management, University of Ottawa, School of Management
136 Jean-Jacques Lussier Street, Ottawa, ON, K1N 6N5 Canada
Tel: (613) 562-5800 ext. 4796, Email: nashjc@uottawa.ca

Sylvie Noël
Communications Research Centre Canada
3701, Carling Ave. PO Box 11490, Station H, Ottawa, Ontario K2H 8S2, Canada
Tel: (613) 990-4675 Fax: (613) 998-9648, Email: sylvie.noel@crc.ca

TellTable: open source editing 2/34

TellTable: an open source collaborative editing system

Andy Adler, John C. Nash and Sylvie Noël

Abstract: TellTable is a Linux-based application server which allows collaborative

synchronous and asynchronous editing and viewing using single-user applications. Users

log into the system via an SSL-enabled and Java-enabled web browser. Files to edit or

view are opened in a VNC session on the server, the screen image is exported to a Java

client in the user's browser, and all keyboard and mouse activity is then transmitted to the

server. Editing conflicts are prevented using a locking protocol, but users may allow

others to synchronously edit a session. In principle, TellTable allows any single user

application to be managed this way; it has been tested using the Microsoft and

OpenOffice office suite and presentation software. Pilot tests show that TellTable is

usable over dial-up and high-latency Internet connections, but works best over higher

speed connections. This paper also describes the technical design of TellTable and the

networked interactions and security design of each component.

Keywords: collaborative editing, collaborative infrastructure, groupware, system design,

system security

1. INTRODUCTION

Many work environments require collaborative writing and editing of documents of all

TellTable: open source editing 3/34

types (we use the term document for general content files). In simple cases there is

essentially one author, with approvals and comments from others, while in other cases the

document is genuinely collaboratively authored (Posner and Baecker, 1993). Such

collaborative work can be asynchronous or synchronous (Kim and Severinson Eklundh,

1998). Technology (telephone, email, and web tools) has simplified such collaboration.

Currently, the typical way to collaboratively edit a document is to exchange draft

versions between authors via email (Noël and Robert, 2004). This means that control of

document versions must be done by all members of the team, and introduces a significant

additional burden on members, as well as the possibility of conflicting changes and

missed contributions. For example, one initial motivation for our work (Adler and Nash,

2004) that illustrates these difficulties is the common practice of managing course marks

by emailing spreadsheet files between the various teaching assistants. The principal

difficulty is that independent changes can be made to different versions, which must later

be reconciled manually. It is also difficult to determine when a change was made, and

why, and serious errors can be made easily.

Collaborative writing and editing solutions have been offered since the 1970s (see

Newman and Newman, 1992, for a presentation of some of these early group writing

systems, and Noël and Robert, 2002, 2003, for more recent systems), yet people prefer

using single-user applications and distributing copies through email (Noël and Robert,

2004). More recently, designers have chosen to take advantage of the Web's popularity in

the hopes of supplanting email's popularity. We see three writing and editing

collaboration models offered on the Web:

TellTable: open source editing 4/34

1. The upload/download model: A web server is used as a document repository. Group

members upland and download documents to this repository, but edit on their

personal computer, using a single-user application. One example of this approach is

BSCW1 (Bentley et al., 1997a,b), although that solution also now offers online editing.

2. The web native model: A special editor is built from scratch to work through a web

browser. Often (but not always) the resulting document is in HTML format. There are

numerous available examples of this approach, including wikis (Leuf and

Cunningham, 2001), SynchroEdit, Writely, WriteBoard, NumSum, iRows, and

gOffice.

3. The hybrid model: A normally single-user application (e.g., OpenOffice, MS Office) is

adapted to work through a web browser. Examples of this include our own TellTable

(Adler and Nash, 2004; Adler, Nash and Noel, 2004, in print; Nash, Smith and Adler,

2003, 2004), coWord (Xia et al., 2004a), coPowerPoint(Xia et al. 2004b) and

coStarOffce (Shen, Cheong and Sun, 2004).

Other non-web-based collaborative editing models include peer-to-peer and client-server

models (e.g., MoonEdit, SubEthaEdit, Groove Networks). For more information on how

TellTable compares to some of these other collaboration systems, see Adler, Nash and

Noël (in print).

TellTable allows single-user productivity applications to be managed in a collaborative

way. The underlying single-user software runs on a server; users log in with an Internet

TellTable: open source editing 5/34

browser and view and interact with the software via a browser plug-in. This approach

provides an easy migration path to users familiar with single-user applications, while

benefiting from the significant development work in such productivity applications,

because it runs those applications on a server that “wraps” the application in a

collaboration environment. This is consistent with our philosophy that the principal

challenge with the design of collaborative systems is ease of use − participants in a hard-

to-use collaborative system will tend to resort to emailing private documents between

each other.

TellTable was initiated in 2002 as an approach for spreadsheet audit; by running software

on the server, all user interactions could be captured and centrally managed.

Subsequently, TellTable was expanded into a framework for a general collaborative

system. So others can use, distribute, and modify TellTable, the server component of the

project was licensed under the GNU Lesser General Public License (Free Software

Foundation, 1999) in March 2004, and is distributed from

http://telltable-s.sf.net. We are currently pursuing various enhancements

to its functionality, and are actively interested in collaborating with others on its further

development.

The rest of this paper describes the technical aspects of the TellTable software

framework, including its interaction with each of the underlying software components.

We review security issues in its implementation, and discuss tests of performance.

TellTable: open source editing 6/34

2. OPERATION

For the user, TellTable functions like a web application. The user enters the URL into an

Internet browser, and is presented with a login page. After entering a username and

password combination, the user is presented with a screen showing the current status of

all files to which they have access (Fig. 1). At the lowest level of privilege, a user will be

shown the file name, latest version number, and date/time and user name of the last file

edit. If the file is not in use, it will have a status "normal". If another user is currently

editing the file, it will be marked as "Locked", unless the user has chosen to share the

session in which case it will be marked as "Shared". A user may choose to "Edit", "View"

or "Download" a file (Edit is disallowed if the file is locked). However, if the editing user

chooses to "Share" a file, then the options available become "Shared-Edit" and "Shared-

View". User privilege levels may be set to allow other functions such as "Audit", or to

allow access to the version history of files. Figure 1 shows a view of the file access

screen.

- INSERT FIGURE 1 APPROXIMATELY HERE -

The "Download" option will cause the browser to download the selected file to the local

machine. That file can then be manipulated locally, as desired, but such changes occur

outside of the TellTable framework, and cannot be re-inserted into the file version history

(without administrative privilege). "Download" is a more or less traditional browser

function, and similar "buttons" can be added to TellTable. The other selections, namely

"Edit" and "View", send the browser to the application screen, which contains a Java

VNC viewer applet. This applet connects to a VNC server that is running the appropriate

TellTable: open source editing 7/34

software to implement the chosen function. For example, a choice of "Edit" results in the

screen shown in Figure 2.

The selected file in Figure 1 is opened with the appropriate application running on the

server, and all keyboard and mouse activity from the user in the applet window is sent via

the Java VNC client to the server and then to the software. The software interacts with

user input and updates its screen output, which is then sent to the browser. Since most

users are familiar with such software, they typically find using TellTable running such

software within a browser window to be familiar (Adler and Nash, 2004).

Upon selecting "Edit" or "View" in Figure 1, the selected file is opened with the

appropriate application running on the server, and all keyboard and mouse activity from

the user in the applet window is sent via the Java VNC client to the server and then to the

software. The software interacts with user input and updates its screen output, which is

then sent to the browser. For example, a choice of "Edit" on the bottom file of Figure 1

results in the screen shown in Figure 2, where the file is opened by OpenOffice write.

By default, a user editing a file has exclusive write access to the file; this corresponds to

an asynchronous workflow. In order to allow synchronous editing, a user editing a file

may click "Share File" (Figure 2, top left). This will allow other users, with permissions

to edit or view the file, the ability to simultaneously access the document. Since the

underlying application is single-user, all TellTable users will see the same view of the

document, and will have their keyboard and mouse interactions combined to the

application. This means there is only one cursor so people must take turns to enter data.

TellTable: open source editing 8/34

While synchronous editing with shared input may appear to be a source of conflict, our

experience is that such editing is normally done in conjunction with a conference call

between participants. The group tends naturally to nominate one user to make the

changes, while others watch and comment.

-INSERT FIGURE 2 APPROXIMATELY HERE-

Because of the constraints of the Java applet security model (Sun Microsystems, 2004),

some operations function differently from their counterparts on a client workstation. First,

the user needs to quit both the office software and the browser window. If the user closes

only the browser window, the application is left running, and the user can access the

application by logging back in. This can be useful, if a user wishes to switch the machine

she is using, but can also allow an edit session to be abandoned. Abandoned sessions

need to be detected (via an appropriate timeout) and automatically closed. Second, the

implementation of copy-and-paste requires that we work around Java applet security that

prevents applets from interacting directly with the clipboard of the client machine. The

designers of VNC provided a special pop-up window function to circumvent this problem

(Richardson, 1998). A user will paste clipboard content from the client machine into the

Java applet pop-up window, which will then send its contents to the server, where the X

clipboard is populated with its contents. We have chosen not to use this approach

because: 1) it only works well with "traditional" X windows applications which function

with the traditional X windows clipboard; advanced applications such as OpenOffice

which maintain their own clipboards have difficulties interacting consistently with the X

windows clipboard; and 2) the pop-up clipboard requires an extra (and somewhat

TellTable: open source editing 9/34

unnatural) step to be taken. We felt that as long as we required an extra step, it should be

possible to provide significantly enhanced functionality. Our design for cut-and-paste

places HTML input boxes, and allows input from three sources of data: clipboard text,

local files, and server files. In each case, the new data is copied to a read-only file on the

server, and opened as a sub-window into the OpenOffice document. This allows the user

to select text from the uploaded document and paste it into the working document as

required.

3. TECHNICAL IMPLEMENTATION

In this section, we describe the technical implementation of the TellTable server. A block

diagram of the intercommunicating components of the server and a client computer is

shown in Figure 3. A brief note on terminology: there is a semantic difficulty with the

term "server" with X windows systems; the computer with the screen is the X server,

while the application software runs on the X client. VNC (Richardson, 1998), while

building on top of X windows, reverses the semantics to the common usage: the VNC

server is where the application runs. In this paper, we use these (familiar) semantics: the

server runs the application to which the client PC (and screen) connects.

- INSERT FIGURE 3 APPROXIMATELY HERE -

3.1 Client PC and Browser

TellTable is designed to offer cross platform support for client machines; tests have been

successfully performed with Windows 98/2000/XP, Linux, and Mac OS X clients

TellTable: open source editing 10/34

machines, using Internet Explorer 5.0+, Mozilla 1.4+, Firefox and Opera browsers. The

client PC must have a graphical Internet browser with support for the HTTPS protocol

and Java applets (Java version � 1.0). The size of the VNC applet is configurable at

install time, and is currently set to 900×550 pixels. This selection works well with screen

resolutions of 1024×768 or larger, but can be a little inconvenient to use for a PC with a

smaller screen resolution setting.

3.2 VNC Server

The core of the TellTable server is a pool of VNC server processes, which may be

distributed across several physical servers. Each server process runs under a different

low-privilege user id; since there is no connection between VNC userids and TellTable

client userids, we refer to these as pseudo−uids or psuids. VNC servers are initialized at

system boot time from a script telltable-server residing in /etc/init.d. Each

VNC server has an associated X windows session and a server port for VNC protocol

access. At server startup, the VNC server also initiates a custom TellTable perl program

xstartup. This program performs an initialization of the TellTable environment

(verifying the existence of required files and directories), and then initializes a server to

accept and process commands from the TellTable server. Thus psuid number 2 will have

an X windows DISPLAY=:2, a VNC protocol server on port 5902 and TellTable server

port on 5702. The firewall (described in more detail in section 4.2) only allows access on

the VNC port.

The xstartup process running in each psuid accepts commands from the TellTable

TellTable: open source editing 11/34

server to run single-user multimedia software on specified files with specified options

(such as read-only). Before executing each command, xstartup will delete and reset

all software configuration files by unpacking them from a compressed archive. This

serves to remove lists of previously edited files, and other modifications to the GUI

menus from a previous editing session. Subsequently, xstartup listens for a command

of the following form on the TellTable server port:

 {AUTHENTICATION_CODE} {COMMAND_STRING} {ACTION_STRING} {USERID}

An example string is

{7yr9Im4zhONNmDP+Cc0SPbSYdUw} {OOFFICE_OPEN} {sample.sxc} {andy}

The AUTHENTICATION_CODE is a message authentication code (MAC) based on a

SHA1 (National Bureau of Standards, 1995) message digest of the command text and a

code known to the web server and VNC psuid. This code is randomly selected during

TellTable installation. The AUTHENTICATION_CODE serves to authenticate the

command string, and functions as a one-time password for the VNC server for the current

login session. USERID is the logged-in userid of the client. It is used to allow the editing

software to record changes and perform other customizations under the name of the user

logged in to TellTable. Modifying the userid is implemented for OpenOffice by editing

the appropriate XML configuration file within the psuid.

The COMMAND_STRING must match a predefined list of available commands. For

example, "OOFFICE_OPEN" instructs xstartup to look for a file, specified by

TellTable: open source editing 12/34

ACTION_STRING, in the input directory indir, move it to procdir and open it with

the OpenOffice software. When the OpenOffice session is closed by the user, the file is

moved to outdir (from which it is copied back to the repository as described below),

after which the server listens for the next connection. Other values of

COMMAND_STRING will open read-only clipboard contents into the currently open

OpenOffice session, or will open other software.

3.3 TellTable Server

TellTable runs under the Apache web server on Linux. The web server components are

primarily composed of CGI script components written in Perl. There are no dependencies

on advanced features of Apache. To protect the security and login information for the

VNC Java applet, TellTable must work with SSL encryption, such as (Apache-ssl) or the

(Mod-ssl) extension to Apache. TellTable maintains a database of system activity using

the BerkeleyDB format (Sleepycat Software). The database is stored as a file on the web

server, and is owned by the apache userid. Locking of the database between multiple CGI

script invocations is implemented using the UNIX flock mechanism as implemented by

the Perl module DB_File::Lock.

When a user logs into TellTable, the username and password presented are verified

against the hashed information recorded in the database. Subsequently, the file access

screen (Fig. 1) is presented to the user. The list of directories the user is permitted to

access is obtained from the database; the lists of files in each permitted directory, as well

as their current version, and the last user to edit them, are obtained from the CVS

TellTable: open source editing 13/34

repository. A user may also view the version history of a file, and may select "view" to

open a previous version read-only in the VNC server. When a user selects a file to edit, or

a previous version of file to view, the appropriate version is obtained from the CVS

repository and sent to the VNC server, as explained in the next section.

3.4 CVS repository

File versions are stored using CVS (Cederqvist, 2002), which stores information using

the RCS file format (Tichy, 1985). This format provides the capability to manage various

advanced features of file versions, though at this time they are not used by TellTable. For

example, CVS allows branching, merging, and file differencing. TellTable uses a simple

sequential progression of version numbers, and uses CVS to allow extraction of older

versions and to maintain descriptive text (logs) with each version. Because TellTable

manages conflicts using locking, CVS capabilities for branching and merging are not

required. Although file differencing would be of great benefit to users, the RCS file

format was designed for plain-text files, and multimedia and other office software files

are typically binary. This means that the "diff" functions of CVS (which calculate the

differences between versions of text files) do not work as expected. In general, a useful

presentation of document differences would need to be determined at the application

level, and some office software provides this function, but we are not working on

interfacing to this capability at the moment.

The TellTable web application interacts with the CVS repository to extract version

information, to check out versions to view or edit, and to check in (or 'commit' using CVS

TellTable: open source editing 14/34

terminology) newly edited versions. When a user chooses to edit a file, the Web server

will "check out" the latest version from the CVS repository, copy it to the indir of the

psuid, and send the appropriate command to the psuid's server, which then opens the

office software to edit or view the file. When the client quits the office software, the Web

server tests whether the file is in the outdir of the psuid, and commits it to the CVS

repository. CVS detects whether any modifications have been made, and, if so, adds the

new version to the repository and increments the version number.

4. SECURITY DESIGN

4.1 Security Threats

Collaborative work introduces many security concerns that do not exist for the individual

author. We categorize these as server vulnerabilities, client computer vulnerabilities,

access control and access level control.

Server vulnerabilities: collaborative systems require a networked server which, as a

minimum, maintains a repository of file versions. Such network servers are potentially

vulnerable to cracking through the applications running on the server. In more complex

applications, the server is required to perform more complex operations, exposing it to a

larger "pool" of possible attacks.

TellTable: open source editing 15/34

Client vulnerabilities: collaborative editing is not without risk to a client PC, even when

exchanging draft versions via email. Most sophisticated office suites support macro

languages, which are a popular vehicle for computer virus transmission. Since TellTable

runs such applications on the server, it is important to protect against such macro viruses.

Access control: typically collaborative endeavours have a well defined group of

participants. To ensure legitimate access, most current systems require a login with a

username and password. There are well known problems with password based systems,

largely from users forgetting passwords or inadvertently revealing them. This is a

significant concern in a web-based system, such as TellTable. Also, a user logging into

the system from an untrusted PC may inadvertently reveal access codes.

Access level control: group members often have different access privileges. For example,

documents may be available to certain people on a "view-only" basis. Errors in setting

access levels, especially in a complex system, can give users unwarranted additional

privileges.

In the next section, we describe the design of TellTable to protect against such security

vulnerabilities. We assume that regular security practices for an Internet accessible server

are in place.

4.2 TellTable Security Design

The TellTable server has a firewall configured such that only the HTTPS, and VNC

TellTable: open source editing 16/34

protocol ports (590x) can be accessed from the Internet and client machines. The firewall

also completely blocks outgoing network access from TellTable machines. Thus, users

and attackers will not have access to the X server or TellTable communication ports, or to

any other server software running on the TellTable servers.

At server initialization, the xstartup for each psuid has unique random code string

embedded into it and also stored into the Web server database. When issuing a command,

the TellTable server calculates a value AUTHENTICATION_CODE, a SHA1 based

message authentication code (MAC) based on the command text and the stored code.

This MAC is verified by xstartup before acting on any command. Commands with an

invalid AUTHENTICATION_CODE are ignored with an error. We note that the current

implementation is potentially vulnerable to a message replay attack; which could be

countered by using a challenge/response protocol. However, since the TellTable server

port is not accessible from outside, we consider this issue to have a lower priority.

The AUTHENTICATION_CODE also serves as a one-time password for the VNC server.

VNC authentication uses a challenge/response protocol based on the DES cipher. When a

new VNC client connects to the server, a password value is entered which is tested

against the value in the hashed password file .vncpasswd. When a command is sent to

xstartup, the value of .vncpasswd is modified based on the

AUTHENTICATION_CODE. At the same time, when the web server creates the HTML

page with the VNC applet, a corresponding password is created based on the code value.

This mechanism ensures that the user of a previous VNC session cannot eavesdrop on a

future session, since the authentication information will no longer be valid. One source of

TellTable: open source editing 17/34

some confusion to us was the fact that the VNC implementation of DES uses a permuted

byte order compared to the standard (National Bureau of Standards, 1977).

Each psuid runs as a member of the UNIX group tt-group and as a different low

privilege user, tt-uid####, where #### is the psuid number. Each psuid has

processing directories indir, procdir, and outdir. procdir has permissions set

to be private to the psuid, while the others can be read and written by tt-group. The

userid under which the web server runs is configured to also be a member of tt-group,

and is thus able to copy files to and from the psuids. For TellTable configurations using

separate computers for the web and VNC servers, the indir and outdir are shared

with the web server by a network file system.

Perhaps the most vulnerable aspect of TellTable is the VNC access to psuids given to

users. The concern is that users may be able to run arbitrary software as the psuid userid.

This exposes the following vulnerabilities: users may "snoop" on other TellTable users;

users may attempt to "hack" the server; or software may access the Internet to attack

other machines or to act as a proxy or mail relay. In order to defend against such

activities, TellTable has implemented three layers of defence. Firstly, we attempt to

prevent such access by careful configuration of the single-user software running on

TellTable; the options to browse the file system and run macros are disabled. However,

since modern applications are very complex and powerful, we acknowledge that it is

likely that bugs exist in such software which may permit users to circumvent these

options, and to perform arbitrary actions as the psuid user. Secondly, to prevent arbitrary

file system access, each psuid process is run within a file system compartment using the

TellTable: open source editing 18/34

UNIX chroot system call. This serves to isolate each psuid and the executable

programs it is allowed to run from the rest of the TellTable file system. This, in turn, will

help prevent "snooping" of the TellTable server and other TellTable users. Lastly, the

firewall is configured to block all outgoing Internet activity, and only to permit incoming

activity on VNC and HTTPS ports. This will help prevent use of TellTable for malicious

Internet activity.

When the CVS repository is on the same computer as the Web server, then file versions

are stored under the userid of the Web server. If the CVS repository is on a separate

machine, then CVS commands are transported via SSH encryption. SSH authentication

credentials are stored using the ssh-agent mechanism at Web server startup. This

way, the authentication information is not available to the Web server.

5. IMPLEMENTATION AND PERFORMANCE TESTS

Currently, TellTable is working on three different Linux servers running Debian based

Xandros Linux. It is being used by several workers at the University of Ottawa, the

Communications Research Centre of Canada, the University of Vienna, and by two

independent teams of two people linking Ottawa and Cardiff and Ottawa and Toronto.

Applications include collaborative authoring of scientific presentations and articles,

multimedia course material, and maintenance of course marks and documentation.

TellTable: open source editing 19/34

In the autumn of 2003, we performed our first pilot study of TellTable to manage

spreadsheet files, which are typically used to record course marks (Adler and Nash,

2004). Results showed that users were largely appreciative of the features of the system

(especially the ability to know one's changes would not be lost). Overall, usability was

good. One concern that we had was that responsiveness would suffer on slow Internet

connections with high latency, such as dial-up and connections from far away. We were

pleasantly surprised to find that, although slightly slower, TellTable was quite usable in

both situations. We attribute this to the efficiency of the VNC protocol design

(Richardson, 1998).

Some software bugs were triggered by patterns of usage of pilot users. For example, one

interesting bug, and possible security issue, affected a user who would use their email

account at hotmail.com to click on the link to the TellTable server that had been sent to

them. However, hotmail opens URLs within a frameset that uses javascript to rewrite

HTML to prevent "breaking out" of the hotmail frame. Generally, the hotmail rewriting

would incorrectly rewrite the VNC applet frame, rendering it non-functional. The

solution was to require logging into TellTable from a new browser window. This

example highlights the concern, however, that such a technique could be used to capture

passwords and other security information.

In terms of scalability, our tests show TellTable works quite well (Nash, Adler and Smith

2004). TellTable has the following memory requirements:

151 + 5.8×(available psuids) + 17.0×(used psuids) MB

TellTable: open source editing 20/34

using OpenOffice calc in each session. On top of this requirement is the memory required

for each open document. This result indicates that the server memory requirements are

relatively small compared to that required by the operating system and the spreadsheet

data itself. Performance was calculated by performing simultaneous complex spreadsheet

calculations in each psuid. Results show that the TellTable server evenly distributes

available computational resources with very little overhead (~1%). These results suggest

that a moderately sized server (1GB memory) should be able to support 10−20 psuids,

depending on the requirements of the users. Since most uses of Office applications make

sporadic use of computational power, it may be more efficient to use a powerful server

for TellTable with less powerful client PCs than individual powerful client machines.

6. DISCUSSION

We have described the TellTable collaborative authoring system in terms of its technical

design and security aspects. TellTable runs on a Linux server and supports clients using

most popular operating systems and Internet browsers. We believe that the TellTable

server is portable to other UNIX platforms, although we have no plans to do so. A port of

the server to Microsoft Windows would require a significant rewriting, as Windows does

not easily allow multiple graphical sessions to run under different userids, as is required

by TellTable. Perhaps the only advantage of the Windows platform is for running

applications such as Microsoft Office. However, it is now possible, using CodeWeavers

"Crossover Office" (ehttp://www.codeweavers.com), to run Microsoft Office software on

TellTable: open source editing 21/34

Linux. In preliminary tests, we were able to run Microsoft Powerpoint remotely with

TellTable; however, it is unclear whether such use could be permitted by the software

license.

We have considered using a faster framework for dynamic web content than CGI, such as

mod_perl (http://perl.apache.org). However our current tests show that for reasonable

loads (of up to ten simultaneous users) the speed of the web server does not significantly

degrade. Indeed, most delays in the web server are spent interacting with other system

tools, such as the CVS or VNC servers.

A possible annoyance with our design is the detection of "real" changes in files. For

example, in Microsoft Word, opening a document, scrolling through and saving it, may

result in a modified file. A version control system such as TellTable, will save these

"versions", unless software were written to detect such "unchanged" files. For the

moment we have chosen to wait and see if this is problematic.

Initially, we considered dynamically creating a new VNC session when requested by the

user. This approach proved infeasible because VNC servers require significant time to

start (5 sec.) resulting in additional delay for the user. Worse, when the VNC server shuts

down, its TCP/IP connection is left in the TIME_WAIT state and cannot be restarted for

up to two minutes. An approach based on dynamically started VNC sessions would need

to work around such timing considerations. Also, initiating VNC sessions for other

userids requires elevated privilege for the web server, which may introduce security

issues.

TellTable: open source editing 22/34

Another possible design approach considered was to maintain a VNC session for each

system user. This requires no psuids, making security analysis easier. Unfortunately, this

approach would require a large memory and processor capability to support a large

number of users. Furthermore, since each VNC server requires its own TCP port, it would

require many open ports. As currently implemented, a VNC server is limited to 99 open

sessions (ports 5901-5999). Load balancing with multiple servers is another difficulty. If

all logged on users happened to be allocated to the same VNC server computer, then

other machines would not be able to assist in supporting the computational load.

Our future technical work with TellTable involves improved usability and security

enhancements. One goal is to expand the set of applications we can launch and use with

the infrastructure. We are also exploring ways to integrate workflow capabilities into the

file-choice screen, since automation of the flow of files and information should enhance

the utility of the infrastructure.

In conclusion, TellTable is a workable framework allowing single user applications to be

used collaboratively. Moreover, this framework is open-source and runs on inexpensive

hardware. The TellTable approach benefits from considerable effort put into the

development of user-friendly features in large software packages. Its value is in making it

relatively easy to make such software function in a collaborative way. Pilot results show

that users are generally able to use their familiarity with such software packages to work

easily and effectively with TellTable.

TellTable: open source editing 23/34

Appendix A – URIs for the web-based collaborative writing and editing systems

Multi-function or office suite systems:

BSCW: http://www.bscw.de/index_en.html

coStarOffice: (no web site available)

gOffice: http://www.goffice.com/

Groove Networks: http://www.groove.net/home/index.cfm

TellTable:http://www.telltable.com/

Authoring/writing/editing systems:

coWord: http://www.cit.gu.edu.au/~scz/projects/coword/

MoonEdit: http://www.moonedit.com/

SubEthaEdit: http://www.codingmonkeys.de/subethaedit/

SynchroEdit: http://www.synchroedit.com/

Wiki Wiki Web: http://c2.com/cgi/wiki?WikiWikiWeb

Writeboard: http://www.writeboard.com/

Writely: http://www.writely.com/

Slide presentation editing systems:

coPowerPoint: http://www.cit.gu.edu.au/~scz/projects/coppt/

Spreadsheets:

iRows: http://www.irows.com/xo/Welcome.do

Num Sum: http://numsum.com/

TellTable: open source editing 24/34

7. REFERENCES

Adler, A. and Nash, J. C. (2004): Knowing what was done: uses of a spreadsheet log file.

Spreadsheets in Education (eJSiE), vol. 1, no. 2, pp.118-130.

http://www.sie.bond.edu.au/articles/1.2/AdlerNash.pdf

Adler, A., Nash, J. and Noël, S. (2004): TellTable: A Server for Collaborative Office

Applications. In D.Li (ed.) Proceedings of the Sixth International Workshop on

Collaborative Editing Systems, Chicago, USA, November 6, 2004. Published online,

special issue of IEEE Distributed Systems Online

http://dsonline.computer.org/portal/site/dsonline/menuitem.9ed3d9924aeb0dcd82ccc67

16bbe36ec/index.jsp?&pName=dso_level1&path=dsonline/topics/collaborative/events/

iwces-

6&file=index.xml&xsl=article.xsl&;jsessionid=G82Zhlmn2yjY092TCYBLnmypqJqy

QXXXBTnnddV5BFTmNLdTk5SW!554494575

Adler, A., Nash, J. and Noël, S. (in print): Evaluating and implementing a collaborative

office document system. To appear in Interacting with Computers.

Apache-SSL, http://www.apache-ssl.org, Accessed: 2005-06-15

Bentley, R., Horstmann, T. and Trevor, J. (1997a): The World Wide Web as enabling

technology for CSCW: The case of BSCW. Computer Supported Cooperative Work:

The Journal of Collaborative Computing, vol. 6, issue 2-3, pp. 111-134.

Bentley, R., Appelt, W., Busbach, U., Hinrichs, E., Kerr, D., Sikkel, K., Trevor, J. and

Woetzel, G. (1997b): Basic support for cooperative work on the World Wide Web.

International Journal of Human Computer Sudies, vol. 46, issue 6, pp. 827-846.

Cederqvist, Per (2002): Version management with CVS, Bristol UK: Network Theory.

Free Software Foundation (1999): GNU Lesser General Public License version 2.1,

TellTable: open source editing 25/34

http://www.gnu.org/copyleft/lesser.html.

Kim, E. and Severinson Eklundh, K. (1998): How academics co-ordinate their

documentation work and communicate about reviewing in collaborative writing.

Report #TRITA-NA-P9815, IPLab-151. KTH-Sweden.

Leuf, B. and Cunnigham, W. (2001): The Wiki Way: Quick Collaboration. Addison-

Wesley.

Mod-SSL. http://www.mod-ssl.org Accessed: 2005-06-15

Nash, J.C., Smith, N. and Adler, A. (2003); Audit and change analysis of spread sheets.

In D. Chadwick and D. Ward (eds.): Proceedings of the 2003 EUSPRIG Conference

(European Spreadsheet Interest Group), , pp. 81−88.

Nash, J.C., Adler, A and Smith, N. (2004): TellTable Spreadsheet Audit: from technical

possibility to operating prototype. In D. Chadwick and D. Ward (eds.): Proceedings of

the 2004 EUSPRIG Conference (European Spreadsheet Interest Group), pp. 45-56.

National Bureau of Standards (1977): Data Encryption Standard, FIPS-Pub 46. National

Bureau of Standards, U.S. Department of Commerce.

National Bureau of Standards (1995): Secure Hash Standard, FIPS-Pub 180-1. National

Bureau of Standards, U.S. Department of Commerce.

Newman, J. and Newman, R. (1992): Three modes of collaborative authoring. In P.O.

Holt and N. Williams (Eds.), Computers and Writing: State of the Art. Oxford: Intellect

Books, pp. 20-28.

Noël, S. and Robert, J.-M. (2002): Assister l'écriture collective: Solutions sur réseaux

locaux ou étendus et sur le Web. Revue d'interactions homme-machine, vol. 3, no.

2,pp. 95-114.

Noël, S. and Robert, J.-M.(2003): How the Web is used to support collaborative writing.

TellTable: open source editing 26/34

Behaviour & Information Technology, vol. 22, no. 4, pp. 245-262.

Noël, S. and Robert, J.-M., (2004): Empirical Study on Collaborative Writing: What do

co-authors do, use, and like? Computer Supported Cooperative Work: The Journal of

Collaborative Computing, vol. 13, pp. 63-89.

Posner, I.R. And Baecker, R.M. (1993): How people write together. In R.M. Baecker

(Ed.): Readings in Groupware and Computer-Supported Cooperative Work: Assisting

Human-Human Collaboration. San Mateo, CA: Morgan Kaufman, pp. 239-250.

Richardson, T., Stafford-Fraser, Q., Wood, K.R, and Hopper, A. (1998): Virtual Network

Computing. IEEE Internet Computing, vol. 2, no.1, pp.33−38. See also

www.uk.research.att.com/vnc/, www.realvnc.com/vnc/, www.tightvnc.com/vnc/.

Shen, H., Cheong, C.T. And Sun, C. (2004):CoStarOffice: Towards a flexible platform

independence collaborative office system. . In D.Li (ed.) Proceedings of the 6thSixth

Iinternational. Workshop on Collaborative Editing Systems, Chicago, USA, (CSCW

2004), Nov.ember 6, Chicago, USA 2004. Published online, special issue of IEEE

Distributed Systems Online

http://dsonline.computer.org/portal/site/dsonline/menuitem.9ed3d9924aeb0dcd82ccc67

16bbe36ec/index.jsp?&pName=dso_level1&path=dsonline/topics/collaborative/events/

iwces-

6&file=index.xml&xsl=article.xsl&;jsessionid=G82Zhlmn2yjY092TCYBLnmypqJqy

QXXXBTnnddV5BFTmNLdTk5SW!554494575

Sleepycat Software: Berkeley Database, http://www.sleepycat.com/, Accessed: 2005-

Jun-15

Sun Microsystems (2004): FAQ: Applet Security, http://java.sun.com/sfaq/, Accessed:

2005-Jun-15

TellTable: open source editing 27/34

Tichy, W.F. (1985): RCS−A System for Version Control, Software−Practice &

Experience, vol.15, no.7, pp.637-654.

Xia, S., Sun, D., Sun, C., Chen, D. and Shen, H. (2004a:. Leveraging single-user

applications for multi-user collaboration: the CoWord approach.In J. Herbsleb and G.

Olson (eds.): Proceedings of ACM 2004 Conference on Computer Supported

Cooperative Work, November 6-10, Chicago, IL USA. New York: ACM Press, pp.

162-171.

Xia, S., Sun, D., Sun, C., Chen, D. and Shi, Y. (2004b). Supporting interactive

presentations with coPowerPoint. S. In D.Li (ed.) Proceedings of the 6thSixth

Iinternational. Workshop on Collaborative Editing Systems, Chicago, USA, (CSCW

2004), Nov.ember 6, Chicago, USA 2004. Published online, special issue of IEEE

Distributed Systems Online

http://dsonline.computer.org/portal/site/dsonline/menuitem.9ed3d9924aeb0dcd82ccc67

16bbe36ec/index.jsp?&pName=dso_level1&path=dsonline/topics/collaborative/events/

iwces-

6&file=index.xml&xsl=article.xsl&;jsessionid=G82Zhlmn2yjY092TCYBLnmypqJqy

QXXXBTnnddV5BFTmNLdTk5SW!554494575

TellTable: open source editing 28/34

TellTable: open source editing 29/34

TellTable: open source editing 30/34

TellTable: open source editing 31/34

Figure 1: TellTable document selection screen. Users are presented the option to Edit,
View, or Download files. The file "sample" is currently in use, and is locked against
editing by another user. The file "TellTable-s-logo" is also in use, but the editing user has
chosen to share the file (by clicking "Share File" at the top left of Fig. 2). In this case, the
options available to the user are "Shared-Edit" and "Shared-View". Clicking on these
links will open a shared editing session, in which all users view the same application
screen. The "Ver." shows the file version. Clicking on the version will present a file
history and allow the user to view previous saved document versions. "Last Edit" is the
time and userid of the last user to save the file.

TellTable: open source editing 32/34

Figure 2: Screenshot of a TellTable editing screen, showing a draft of a presentation
compiled in the OpenOffice presents software. The software is running on the web
server, and the display is being exported into a Java applet in the web browser window.
Full software functionality is available, but with some security restrictions. A form below
the Java applet offers the possibility of uploading new files or clipboard contents from the
client machine to the server session. Clicking on Share File will allow other users to
share this editing session.

TellTable: open source editing 33/34

Figure 3: Block diagram of internetworked components for TellTable client and server
system. The server consists of components for a CVS service, Web application
(TellTable) service, and VNC services. These services communicate with each other via
TCP/IP, and may be distributed onto several computers. The client browser
communicates with the web application via https, and the VNC applet within the browser
communicates with VNC servers via the VNC protocol.

TellTable: open source editing 34/34

Endnotes

1 Appendix A presents the URIs for the various systems presented in this section.

