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Introduction

Electrical impedance tomography (EIT) uses body surface electrodes to make measurements from which
an image of the conductivity distribution is calculated. Reconstructions are challenging due to the ill-
conditioning of the system matrix and susceptibility of the data to corruption from noise. Regularization
methods are used to calculate stable reconstructions by imposing additional conditions, such as image
smoothness, on a solution. A difficulty with experimental and clinical EIT reconstruction algorithms is
the requirement to select a scalar hyperparameter, λ, to control the amount of regularization used to
achieve a good reconstruction.

In the broader field of inverse problems work on automatic hyperparameter selection has produced
methods such as Generalized Cross Validation (GCV), L-Curve, and the Discrepancy Principle (Hansen
1992). However within the field of EIT by far the most common method of hyperparameter selection is
heuristic selection; researchers inspect reconstructions for a range of hyperparameter values and select
one.

The absence of objective hyperparameter selection methods results in several issues: 1) users of clini-
cal EIT systems would be uncomfortable using “fiddle” adjustments to modify images, 2) comparisons of
EIT reconstruction algorithms can be subjective due to the necessity of manual tuning of hyperparame-
ter values, and 3) meta-algorithms, such as detection of electrode errors (Asfaw and Adler 2005), require
a method to fix these values. In this paper we develop and evaluate some objective hyperparameter
selection techniques.

Methods

We consider the class of one-step linearized reconstruction algorithms that calculate the proportional
change in a finite element conductivity distribution, x, from a proportional change in boundary voltage
difference signal, z. For small changes around a background conductivity the relationship between x

and z may be linearized as
z = Hx + n (1)

where H is the Jacobian or sensitivity matrix and n is the measurement system noise, assumed to
be uncorrelated and Gaussian. In order to overcome the ill-conditioning of H we solve (1) using the
following regularized inverse

x̂ = (HTH + λR)−1HTz = Bz (2)

where x̂ is an estimate of the true conducitivity distribution, R is a regularization matrix and λ is a
scalar hyperparameter that controls the amount of regularization. With R = I (labelled RTik) equation
(2) is the 0th order Tikhonov algorithm. With R = diag(H) (labelled Rdiag) equation (2) is the
regularization matrix used in the NOSER algorithm of Cheney et al (1991). With the maximum a

posteriori (MAP) framework of Adler and Guardo (1996) R is modeled as a Gaussian spatial high pass
filter (labelled RGaus) with a cut off frequency of 10%. While several other one-step regularized inverse
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(a) L-Curve for RTik
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Figure 1: Example L-Curves

algorithms exist for EIT, in this paper we consider equation (2) with these three regularization matrices
as a representative sample with which to compare their effect.

The rest of this paper is organized as follows. Three strategies to objectively select a hyperparameter
are developed: 1) L-Curve, 2) Resolution-Curve, 3) Fixed Noise Figure (NF) Method. We then evaluate
the effectiveness of each strategy for linearized one-step EIT with respect to heuristic selection.

Hyperparameter Selection Methods

A well known method of hyperparameter selection is the L-Curve method (Hansen 1992). This method
plots the semi norm of the regularized solution, ln ‖Rx̂‖, versus the norm of the corresponding residual
vector, ln ‖Hx̂− z‖ parametrically over λ. A resulting plot, such as figure 1(a), will often have an “L”
shape where the optimal value for λ is located at the point of maximum curvature.

Objective hyperparameter selection can also be made using a resolution maximization rationale. We
define Blur Radius (BR) as a measure of the resolution: BR = rz/r0 =

√

Az/A0 where r0 and A0 are
the radius and area respectively of the entire 2D medium and rz and Az are the radius and area of
the reconstructed contrast containing half the magnitude of the reconstructed image (Adler and Guardo
1996). BR calculates the area fraction of the elements that contain 50% of the total image amplitude.
We call this the half amplitude (HA) set. Figure 2(a) shows the evolution of the HA set in response to
increasing λ for an impulse contrast. With insufficient λ the image is dominated by noise and the HA
set is composed of spatially disjoint elements. As λ is increased, noise is filtered through the smoothing
action of the prior, image energy starts to concentrate, and the HA set starts to cluster. Excessive
regularization blurs the image and expands the HA set. A plot of BR vs λ such as figure 3(a) shows a
rapid decrease in BR to a minimum value that occurs after the HA has become contiguous, followed by
a slower increase in BR as filtering starts to blur the image. We refer to the point marked OS as the
“onset of stability.”

We define image SNR as SNR = E[x̂]/
√

var[x̂]. A plot of image SNR vs λ for an impulse contrast
shows that SNR increases rapidly and then stabilizes, after which increases in λ produce smaller increases
in SNR. The point of stability occurs just after the OS point of the Resolution-Curve.

The Fixed NF Method is based on a Noise Figure (NF) calculation introduced by Adler and Guardo
(1996), where NF is a function of λ and is defined as the ratio of signal-to-noise-ratio in the measurements

to signal-to-noise-ratio in the image: NF = SNRin

SNRout

=

(

mean[zc]√
var[n]

)/(

mean[Bzc]√
var[Bn]

)

. The signal used in

this definition is zc = Hxc, where xc is a small contrast in the centre of the medium. The user selects
a NF value and the corresponding λ is found using a bisection search technique. The calculation of
NF does not require knowledge of the noise in the measured data, it is strictly a function of the FEM
geometry, the regularization matrix, and λ. The Fixed NF Method substitutes the manual selection of
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Figure 2: Sample Reconstructions of impulse phantom, tank data with RGauss on 576 element mesh

λ with the manual selection of a NF which the algorithm then maps to λ. The advantage is that the
suitable NF range is not algorithm dependent, while λ is. Experience has shown that noise figures in
the range 0.5 to 2 consistently lead to good reconstructions.

Three sources of test data were used to compare the hyperparameter selection methods: 1) simulated
data, generated with a 1968 element mesh with an impulse contrast located halfway between the centre
and boundary, 2) simulated data obtained by adding .05% AWGN noise to set #1, and 3) lab data using
a 2 cm diameter impulse phantom located halfway along the radius of a 30cm diameter tank containing
a saline solution. The data was used to reconstruct images using 18 configurations (6 meshes and 3
regularization matrices). The 6 meshes have 64, 256, 492, 576, 1024, and 1968 elements.

Results

We compare the techniques of L-Curve, Resolution-Curve, Fixed NF Method (calculated using the
algorithm of Adler and Guardo (1996)), and heuristic selection using the plots of figure 3. Each plot
indicates λ values for NF of 1/2, 1, and 2 as well as λ values that match the reconstructions of figure
2 (indicated by circular markers). For Tikhonov reconstructions, the L-Curve and Resolution-Curves
exhibited more complex behaviour however, the OS and BR minimum point were always evident.

Heuristic selection was performed by 5 graduate students studying image processing. Heuristic
selections varied and were not confined to the minimum region of the Resolution-Curve or knee of the
L-Curve: no clear preference was shown among images reconstructed using λ from the minimum region
of the Resolution-Curve. This suggests that there is no single optimal value of λ, rather there is an
optimal region of λ, over which reconstructions are qualitatively indistinguishable. Heuristic selections
are indicated by diamond markers on the plots of figure 3.

In all 18 configurations the Resolution-Curve indicated a hyperparameter corresponding to a mini-
mum BR that resulted in a “good”reconstruction. Moreover, the Fixed NF method with NF=1 calculated
a hyperparameter that was located in this minimal region of the Resolution-Curve.
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Figure 3: (a) L-Curve, (b) Resolution-Curve. Diamonds indicate heuristic selections.

In the six Tikhonov (RTik) configurations the L-Curve always indicated a clear point of maximum
curvature. However there were some Rdiag and RGaus configurations where the L-Curve did not show
a marked and stable “knee”region from which one could select a hyperparameter. Figure 1(b) is such
an example. In all cases where the L-Curve was able to indicate a value, the hyperparameter was less
than the value selected through inspection of the Resolution-Curve. As a result L-Curve derived images
were noisier than Resolution-Curve images. In several instances the point of maximum curvature of the
L-Curve occurred prior to the OS indicated by a contiguous HA set.

Dicussion and Conclusion

This paper develops and compares 3 methods to objectively select a hyperparameter for use in one-step
image reconstructions and compares them to heuristic selections.

We present four observations: 1) hyperparameters taken from the minimum region of the Resolution-
Curve always produce good solutions. 2) with NF=1 the Fixed NF Method calculates a hyperparameter
that falls in the minimum region of the Resolution curve. 3) the Fixed NF Method provides a config-
uration independent method to select λ. 4) the L-Curve is not reliable for all configurations (doesn’t
indicate a hyperparameter), but when it does it provides a lower hyperparameter value than the other
objective methods.

For the class of regularized reconstruction algorithms used in this work the Resolution-Curve provides
an objective way to select a minimum value for λ. For both lab and simulated data the Fixed NF Method
with NF=1 reliably finds λ on or just after the onset of stability. Thus we recommend the Fixed NF
Method with NF=1 as a configuration independent method to efficiently find the minimum region of the
Resolution-Curve without having to actually construct the computationally expensive Resolution-Curve.
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